液压传动控制回路

液压传动控制回路
液压传动控制回路

哈尔滨应用职业技术学院毕业论文

题目液压同步回路的应用

学生姓名张硕

系部名称机电工程系

专业班级机械一班

指导教师吴君

起止时间

教务处制

毕业论文项目表

填表日期2015年 05月12日迄今已进行周剩余周

学生姓名张硕系部机电工程专业、班级机械一班

指导教师姓名吴君职称

从事

专业

是否外聘□是□否题目名称液压传动速度控制回路

指导教师

意见

指导教师签字:年月日

系意见

系主任签字:年月日

毕业答辩成绩:

年月日小组答辩委员会成员签字:

年月日答辩委员会主任签字:

年月日

摘要

本课题研究主要讲述了液压传动系统在机械工业制造中的应用,全方面的介绍了液压传动系统的各种知识。在液压传动系统中,各机构的运动速度要求各不相同,而液压能源却是共用的,这就要采用速度控制回路来解决各执行元件不同的速度要求。再如飞机上的某些执行收放动作的液压缸,受外负载的影响很大,使得“收”和“放”两方向的速度相差较大,为使“放下"液压缸平稳而均匀地动作,也需要采用速度控制回路来解决。液压传动系统中速度控制回路包括调节液压执行元件的速度的调速回路,使之获得快速运动的快速回路,快速运动和工作进给速度以及工作进给速度之间的速度接换回路。

关键词:减速回路、增速回路、调速回路

(一)减速回路

利用控制流量的减速回路有以下几种。

图6—16所示是歼击机起落架收放系统中常用的一种“进路节流力减速回路,在放下起落架.(活塞杆伸出)的高压进油路上安装节流阀和单向阀,当放起落架时单向阀关闭,液压油只能经节流阀进入液压缸,使液压缸活塞杆伸出动作平稳。这种回路一般用于负载为“正”的场合.(即负载与活塞运动方向相反)。

图6-17所示是一种“回路节流”的减速回路,调速阀和单向阀并联安装在回油路上。这种回路一般用于负载为“负"的场合或负载突然减小的场合。此回路的优点是能形成背压以承受“负抄负载,防止突进,运动较平稳,在机床液压系统中用得较多。此种回路有一个缺点,若泵源是采用溢流阀保持给定压力时,则效率较低。因为泵源的

功率消耗与液压缸的负载和速度无关,低载低速时效率低,系统发热大。

图6—18所示是一种“旁路节流"的减速回路,将调速阀与进油路并联安装,构成旁路回油。此回路的优点是泵源的压力随负载而变,此处溢流阀起安全阀的作用。仅在超出安全压力时才打开,所以系统效率较高。其缺点是速度调节范围比前述两种回路小。

目录

摘要..................................................................................................................................................... I 目录..................................................................................................................................................... I 前言. (1)

第一章调速回路 (2)

1.1概述 (2)

1.2调速回路方法 (2)

1.2.1节流调速 (3)

1.2.2容积调速 (4)

1.2.2容积节流调速 (4)

第二章快速运动回路 (10)

2.1液压缸差动连接的快速运动回路 (13)

2.2双泵供油的快速运动回路 (14)

第三章速度换接回路..................................................................................... 错误!未定义书签。

3.1激动换向阀速度换接回路............................... 错误!未定义书签。

3.2两种工作进给速度的换接回路........................... 错误!未定义书签。

3.3采用两个调速阀并联的速度换接回路..................... 错误!未定义书签。结论. (15)

参考文献 (23)

致谢 (23)

前言

在现代化的社会中,工业制造是支持整个国民经济的根本。制造工业中液压技术是实现现代化传动与控制的关键技术之一,世界各国对液压工业的发展都很重视。液压技术具有独特的优点,如:功率重量比大,体积小,频响高,压力、流量可控性好,可柔性传送动力,易实现直线运动等。这种技术还易与微电子、电气技术相结合,形成自动控制系统。据统计,世界液压元件的总销售额为350亿美元,世界各主要国家液压工业销售额占机械工业产值的2%~3.5%,而我国只占1%左右,努力扩大其应用领域,将有广阔的发展前景。

第一章

1.1概述

行走驱动系统是工程机械的重要组成部分。与工作系统相比,行走驱动系统不仅需要传输更大的功率,要求器件具有更高的效率和更长的寿命,还希望在变速调速、差速、改变输出轴旋转方向及反向传输动力等方面具有良好的能力。于是,采用何种传动方式,如何更好地满足各种工程机械行走驱动的需要,一直是工程机械行业所要面对的课题。尤其是近年来,随着我国交通、能源等基础设施建设进程的快速发展,建筑施工和资源开发规模不断扩大,工程机械在市场需求大大增强的同时,更面临着作业环境更为苛刻、工况条件更为复杂等所带来的挑战,也进一步推动着对其行走驱动系统的深入研究。这里试图从技术构成及性能特征等角度对液压传动技术在工程机械行走驱动系统的发展及其规律进行探讨。

1.2 调速方法

调速方法概述

不考虑液压油的压缩性和泄漏性,

液压缸的运动速度 V=Q/A ;

液压马达的转速为 n=Q/qm。

改变Q或A,可以改变速度。

对于特定的液压缸,一般用改变Q的办法变速。对于液压马达,用改变输入流量也可用改变马达排量的方法来变速。

调速回路调速原理

液压缸: v = q /A < 液压马达:n = q /Vm

由上两式知:

∵改变q 、 Vm、A,皆可改变v或n,

一般A是不可改变的。

液压缸:改变q,即可改变v

∴ <

液压马达:既可改变q,又可改变Vm

概括起来,调速方法可分以下几种:

1、节流调速。即用定量泵供油,采用节流元件调节输入执行元件的流量Q来实现调速;改变q

2、容积调速。即改变变量泵的供油量Q和改变变量液压马达的排量qm来实现调速;改变泵和马达的V

3、容积节流调速。用自动改变流量的变量泵及节流元件联合进行调速。既可改变q,又可改变V

本章介绍以节流元件为基础的各种流量控制阀的结构、原理以及节流调速回路的性能。

1.2.1 节流调速

1795年英国约瑟夫?布拉曼,在伦敦用水作为工作介质,以水压机的形式将其应用于工业上,诞生了世界上第一台水压机。1905年将工作介质水改为油,又进一步得到改善。

对调速回路的要求:调速范围大,速度稳定性好,效率高

节流调速回路组成:定量泵、流量阀、溢流阀、执行元件等。

节流调速回路工作原理:通过改变流量控制阀阀口的通流面积来控制流进或流执行元件的流量,以调节其运动速度。根据节流阀在油路中的位置的不同,调速回路有以下三种基本形式:

进口节流调速。节流阀串联在进入液压缸的油路上。

出口节流调速。节流阀串联在液压缸的回油路上。旁路节流调速。节流阀装在与执行元件并联的支路上。

节流调速回路分类

节流阀节流调速

按采用流量阀不同节流阀节流调速〈调速阀节流调速

按流量阀安装位置不同回油路〈旁油路

节流阀进口节流调速回路

特征:将节流阀串联在进入液压缸的油路上

,即串联在泵和缸之间,调节A节,即可改变

q,从而改变速度,且必须和溢流阀联合使用。

油路:节流阀→液压缸

qp <

溢流阀→油箱

节流阀进口节流调速回路工作特性分析

从图中可看出,活塞运动速度取决于进入液压缸的流量Q1和液压缸进油腔的有效面积A1,既:

V=Q1/A1

根据连续性方程,进入液压缸的流量等于通过节流阀的流量,而通过节流阀的流量可由节流阀的流量特性方程决定。即

Q1=Ka(P1)1/2=Ka(Ps-P1) 式中 Ps-液压泵出口压力。

图8-7 进油路节流调速

回路

容积调速当活塞以稳定的速度运动时,作用在活塞上的力平衡方程为: p1A1=p2+FL

式中 FL—负载力;p2—液压缸回油腔压力。所以P1=FL/A1=PL,PL为克服负载所需的压力,称为负载压力。再将P1代入前式得:

Q=K.a(Ps-FL/A1)1/2=(Ka/A11/2).(PsA1+PL)

V=Q1/A1=(K.a/A13/2).(Ps.A-FL)1/2

进油路节流调速回路的速度-负载特性方程

若活塞运动速度为v为纵坐标,负载为横坐标,将上式按不同节流阀通流面积a作图,可得一组抛物线,称为进油节流调速回路的速度负载特性曲线。

回路的速度负载特性

其它条件不变时,速度v与通流面积a成正比

薄壁小孔节流阀最小稳定流量很小,稳定速度。调速范围大

当节流阀通流面积a一定时,

随着负载FL 的增加,节流阀

两端压差减小,活塞运动速

度按抛物线规律下降。图8-8 进油路节流调速回路的速度负载特性

当FL=psA时,压差为零,活塞停止,液压泵的流量全部经溢流阀流回油箱。

这种调速回路的速度负载特性较软。通常用速度刚度T表示负载变化对速度的影响程度。

T=-dFL/dv=ctg

再由前式可得出:

-dFL/dv=(2A13/2/K.a)(Ps-A1-FL) =2(Ps-A1-FL)/v

由上式可以看出:

(1)当节流阀通流面积一定时,负载越小,速度刚度T越大。(2)当负载一定时,节流阀通流面积越小,速度刚度T越大。(3)适当增大液压缸有效面积和提高液压泵供油压力可提高速度刚度。

1.2.2 容积调速回路

∵节流调速回路效率低、发热大,只适用于小

功率场合。

∴而容积调速回路,因无节流损失或溢流损失

故效率高,发热小,一般用于大功率场合。

容积调速回路分析

容积调速回路通过改变液压泵和液压马达的排量来调节执行元件的速度。由于没有节流损失和溢流损失,回路效率高,系统温升小,适用于高速、大功率调速系统。

变量泵—定量马达闭式调速回路安全阀4防止回路过载,辅助泵1补充主泵和马达的泄漏,改善主泵的吸油条件,置换部分发热油液以降低系统温升。

泵的转速 np 和马达排量VM 视为常数,改变泵的排量Vp可使马达转速 nM 和输出功率 PM 随之成比例的变化。马达的输出转矩 TM 和回路的工作压力Δp 取决于负载转矩,不会因调速而发生变化,所以这种回路常称为恒转矩调速回路。

回路的速度刚性受负载变化影响的原

因随着负载增加,因泵和马达的

泄漏增加,致使马达输出转速下降。

回路的调速范围 Re≈40。

变量泵—变量马达闭式调速回路回路中元件对称布置,变换泵的供油方向,即可实现马达正反向旋转。单向阀4、5 用于辅助泵3 双向补油,单向阀6、7 使溢流阀8 在两个方向都起过载保护作用。

在低速段,先将马达排量调至最大,用变量泵调速,当泵的排量由小变大,直至最大,马达转速随之升高,输出功率也随之线性增加。此时因马达排量最大,马达能获得最大输出转矩,且处于恒转矩状态(恒转矩调节)。

高速段,泵为最大排量,用变量马达调速,将马达排量由大调小,马达转速继续升高,输出转矩随之降低。此时因泵处于最大输出功率状态不变,故马达处于恒功率状态(恒功率调节)。

由于泵和马达的排量都可调,

扩大了回路的调速范围,一

般Re≤100 。

容积节流调速回路用压力补偿泵供油,用流量控制阀调定进入或流出液压缸的流量来调节液压缸的速度;并使变量泵的供油量始终随流量控制阀调定流量作相应的变化。这种回路无溢流损失,效率较高,速度稳定性比容积调速回路好。

曲线ABC是限压式变量泵的压力-流

量特性,曲线CDE是调速阀在某一开

度时的压差-流量特性,点F是泵的

工作点。这种回路无溢流损失,但有

节流损失,其大小与液压缸的工作压

力有关。回路效率ηp1q1/ppqp=p1/pp 差压式变量泵和节流阀的调速回路

这种回路不但变量泵的流量与节流阀确定的液压缸所需流量相适应,而且泵的工作压力能自动跟随负载的增减而增减。

由于节流阀两端的压差基本由作用

在变量泵控制活塞上的弹簧力来确

定,因此输入液压缸的流量不受负

载变化的影响。此外回路能补偿负

载变化引起泵的泄漏变化,故回路

具有良好的稳速性能。

回路效率η=p1q1/ppqp=p1/(p1+Ft/A0)

式中A0、Ft为变量泵控制活塞的作用面积和弹簧力。

容积调速回路

容积调速回路有泵-缸式回路和泵-马达式回路。这里主要介绍泵-马达式容积调速回路。

变量泵-定量马达式容积调速回路

马达为定量,改变泵排量VP可使马达转速nM随之成比例地变化.

变量泵-定量马达容积

调速回路工作特性曲线

1.2.3 容积节流调速回路

容积节流调速回路采用压力补偿型变量泵供油,用流量调节阀进入或流出液压缸的流量来实现调速,同时使泵的输油量自动地与液压缸的需油量相适应。这种调速回路无溢流损失,效率较高,速度稳定性也较好,常用在速度范围大、中小功率场合,如组合机床的进给系统等。

图4—29(a)所示为由限压式变量泵和调速阀组成的容积节流调速回路。该回路由限压式变量泵1供油,由调速阀2控制液压缸3的运动速度。在稳态工作时,泵的流量与缸的流量相等,当在关小调速阀的一瞬间,而泵的输油量还未来得及改变,这时泵的出口压力升高,因而限压式变量泵输出流量自动减小,直至泵、缸流量相等;反之亦然。可见,调速阀不仅使进入液压缸的流量稳定,而且还使泵的流量自动与缸所需流量相适应。图4—29(b)所示为该回路的调速特性,由图可见,回路虽无溢流损失,但仍有节流损失,其大小与液压缸工作腔压力P,有关。这种回路中的调速阀也可装在回油路上,它的承载能力、运动平稳性、速度刚性等与相应采用调速阀的节流调速回路相同。

图4—30所示为差压式变量泵和节流阀构成的容积节流调速回路,该回路的调速方式与上述回路基本相似。节流阀2控制进入液压缸3的流量,并使变量泵1输出流量自动与液压缸流量相适应。当q。>q。时,泵的供油压力上升,泵内左、右两个控制柱塞便进一步压缩弹簧,推动定子向右移动,减小泵的偏心,使泵的流量减小到q。一q。。反之亦然。

由于节流阀两端的压差由泵控制柱塞上的弹簧力确定,而弹簧刚度较小,工作中其压缩量又很小,所以弹簧力基本恒定,节流阀两端的压差也基本恒定,流过节流阀的流量就不会随负载而变,从而持液压缸速度基本恒定。该回路的调速范围只受节流阀调节范围的限制,而且还能补偿由负载变化引起的泵的泄漏变化,因此它在低速小流量的场合使用性能尤佳。在该回路中,不仅没有溢流损失,而且泵的供油压力也随负载而变化,因而它的效率较前一种调速回路高。这种回路宜用在负载变化大,速度较低的中、小功率场合。

第二章 快速运动回路

快速运动回路的功用在于使执行元件获得尽可能大的工作速度,以提高劳动生产率并使功率得到合理的利用。实现快速运动可以有几种方法。

这里仅介绍液压缸差动连接的快速运动回路和双泵供油的快速运动回路。

2.1 液压缸差动连接的快速运动回路

换向阀2处于原位时,液压泵1输出 的液压油同时与液压缸3的左右两腔 相通,两腔压力相等。由于液压缸无 杆腔的有效面积A1大于有杆腔的有 效面积A2,使活塞受到的向右作用 力大于向左的作用力,导致活塞向 右运动。

于是无杆腔排出的油液与泵1输出的油液合流进入无杆腔,即在不增加泵流量的前提下增加了供给无杆腔的油液量,使活塞快速向右运动。

这种回路比较简单也比较经济,但液压缸的速度加快有限,差动连接与非差动连接的速度之比为:

)

(2111

'1A A A -=

υυ

图8.1 液压缸差动连接的快速运动回路

有时仍不能满足快速运动的要求, 常常要求和其它方法(如限压式 变量泵)联合使用。

2.2 双泵供油的快速运动回路

换向阀6处图示位置,并且由于外负载

很小,使系统压力低于顺序阀3的调定 压力时,两个泵同时向系统供油,活塞 快速向右运动;

换向阀6的电磁铁通电后, 缸有杆腔经节流阀7回油箱,系统压力升高,达到顺序阀3的调定压力后,大流量泵1通过阀3卸荷,单向阀4自动关闭,只有小流量泵2单独向系统供油,活塞慢速向右运动.

大流量泵1的卸荷减少了动力消耗,回路效率较高。这种回路常用在执行元件快进和工进速度相差较大的场合,特别是在机床中得到了广泛的应用。

图8.1 液压缸差动连接的快速运动回路

图8.2双泵供油的快速运动回路

双泵供油快速回路是利用低压大流量泵1和高

压小流量泵7并联为系统供油。

1-低压大流量泵

2-泄荷阀

3-单向阀

4-换向阀

5-节流阀

6-溢流阀

7-高压小流量泵

第三章速度换接回路

速度换接回路的功用是使液压执行机构在一个工作循环中从一种运动速度换到另一种运动速度,因而这个转换不仅包括快速转慢速的换接,而且也包括两个慢速之间的换接。实现这些功能的回路应该具有较高的速度换接平稳性。这个原理和液压系统中的流量调节阀控制的流量调节回路有些类似。 1.快速运动转慢速运动的换接回路

图4—34所示为用行程阀来实现快慢速换接的回路。在图示状态下,液压缸7快。当活塞所连接的挡块压下行程阀6时,行程阀关闭,液压缸回油经节流阀5回油箱,活塞运动转变为慢速工进。液噩缸反向运动时,压力油同时经单向阀4和节流阀5进液压缸右腔,活塞快速向右返回。该回路快慢速换接过程比较平稳,换接点的位置比较准确,不过行程阀安装位置不能任意布置。将行程阀改为电磁阀,也可实现快、慢速

液压课程设计(理工大学)

目录 0.摘要 (1) 1.设计要求 (2) 2.负载与运动分析 (2) 2.1负载分析 (2) 2.2快进、工进和快退时间 (3) 2.3液压缸F-t图与v-t图 (3) 3.确定液压系统主要参数 (4) 3.1初选液压缸工作压力 (4) 3.2计算液压缸主要尺寸 (4) 3.3绘制液压缸工况图 (5) 4.拟定液压系统的工作原理图 (7) 4.1拟定液压系统原理图 (7) 4.2原理图分析 (8) 5.计算和选择液压件 (8) 5.1液压泵及其驱动电动机 (8) 5.2阀类元件及辅助元件的选 (10) 6.液压系统的性能验算 (10) 6.1系统压力损失验算 (10) 6.2系统发热与温升验算 (11) 7.课设总结 (12)

0.摘要 液压传动技术是机械设备中发展最快的技术之一,特别是近年来与微电子、计算技术结合,使液压技术进入了一个新的发展阶段,机、电、液、气一体是当今机械设备的发展方向。在数控加工的机械设备中已经广泛引用液压技术。作为机械制造专业的学生初步学会液压系统的设计,熟悉分析液压系统的工作原理的方法,掌握液压元件的作用与选型是十分必要的。 液压传动在国民经济的各个部门都得到了广泛的应用,但是各部门采用液压传动的出发点不尽相同:例如,工程机械、压力机械采用液压传动的主要原因是取其结构简单、输出力大;航空工业采用液压传动的主要原因取其重量轻、体积小;机床上采用液压传动的主要原因则是取其在工作过程中能无级变速,易于实现自动化,能实现换向频繁的往复运动等优点。 关键词:钻孔组合机床卧式动力滑台液压系统

1.设计要求 设计一台卧式钻孔组合机床的液压系统,要求完成如下工作循环式:快进→工进→快退→停止。机床的切削力为25000N ,工作部件的重量为9800N ,快进与快退速度均为7m/min ,工进速度为0.05m/min ,快进行程为150mm ,工进行程40mm ,加速、减速时间要求不大于0.2s ,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为0.1 。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 2.负载与运动分析 2.1负载分析 (1)工作负载: T F =25000N (2)摩擦负载: 摩擦负载即为导轨的摩擦阻力 静摩擦阻力:Ffs = 0f ?G=1960N 动摩擦阻力:Ffd =d f ?G=980N (3)惯性负载:Fa = t v g G ??=500N (4)液压缸在个工作阶段的负载。 设液压缸的机械效率cm η =0.9,得出液压缸在各个工作阶段的负载和推力,如表1所示。 表1液压缸各阶段的负载和推力 工况 计算公式 外负载F/N 液压缸推力 F0= F / cm η/N 启动 F=Ffs 1960 2178 加速 F=Ffd +Fa 1480 1644 快进 F=Ffd 980 1089 工进 F=Ffd +T F 25980 28867 反向启动 F=Ffs 1960 2178 加速 F=Ffd +Fa 1480 1644 快退 F=Ffd 980 1089

液压系统回路设计

1、液压系统回路设计 1.1、 主干回路设计 对于任何液压传动系统来说,调速回路都是它的核心部分。这种回路可以通过事先的调整或在工作过程中通过自动调整来改变元件的运行速度,但它的主要功能却是在传递动力(功率)。 根据伯努力方程: d q C x = (1-1) 式中 q ——主滑阀流量 d C ——阀流量系数 v x ——阀芯流通面积 p ?——阀进出口压差 ρ——流体密度 其中d C 和ρ为常数,只有v x 和p ?为变量。 液压缸活塞杆的速度: q v A = (1-2) 式中A 为活塞杆无杆腔或有杆腔的有效面积 一般情况下,两调平液压缸是完全一样的,即可确定1121A A =和1222A A =所以要保证两缸同步,只需使12q q =,由式(1-2)可知,只要主滑阀流量一定,则活塞杆的速度就能稳定。又由式(1-1)分析可知,如果p ?为一定值,则主滑阀流量q 与阀芯流通面积成正比即:v q x ∞,所以要保证两缸同步,则只需满足以下条件: 11p c ?=,22p c ?=且12v v x x = 此处主滑阀选择三位四通的电液比例方向流量控制阀,如图1-1所示。 图1-1 三位四通的电液比例方向流量控制阀 它是一种按输入的电信号连续地、按比例地对油液的流量或方向进行远距离控制的阀。比例阀一般都具有压力补偿性能,所以它输出的流量可以不受负载变化的

影响。与手动调节的普通液压阀相比,它能提高系统的控制水平。它和电液伺服阀的区别见表1-1。 表1-1 比例阀和电液伺服阀的比较 所以它被广泛应用于要求对液压参数进行连续远距离控制或程序控制,但对控制精度和动态特性要求不太高的液压系统中。 又因为在整个举身或收回过程中,单缸负载变化范围变化比较大(0~50T),而且举身和收回时是匀速运动,所以调平缸的功率为P Fv =,为变功率调平,为达到节能效果,选择变量泵。 综上所可得,主干调速回路选用容积节流调速回路。容积节流调速回路没有溢流损失,效率高,速度稳定性也比单纯容积调速回路好。 为保证p?值一定,可采用负荷传感液压控制,其控制原理图如图1-2所示。它主要利用负荷传感和压力补偿技术,可用单泵(或一组泵)驱动多个执行元件,各执行元件运动速度仅依赖于各节流阀开启度,而与各执行元件的负载压力和其它执行元件的工作状态无关。即使当泵的输出流量达不到实际需要时,各执行元件运动速度的比例关系仍然可以得到保持。此系统的这一特有的独立调速功能大大减少了作业中操纵者协调各执行元件动作所花费的时间,不但显著提高了作业效率,而且有效减轻了操作者的劳动强度。另外,能够以最节省能量的方式实现调速,系统无溢流损失,并以推动执行元件动作所需的最低压力供油。在工作间隙(发动机不停机,各执行元件处于无载状态,不动作),系统自动调节泵的排量到最小值。可以有效降低功率损耗、减小液压系统的温升,所以它是一种性能较好的新型液压系统。

液压传动第七章液压基本回路

思考题与习题 7-1试说明由行程阀与液动阀组成的自动换向回路的工作原理。 泵压p p、溢流功率损失ΔP y和回路效率η。⑵当A T=0.01㎝2和0.02㎝2时,若负载F=0,则泵压和缸的两腔压力p1和p2多大?⑶当F=10kN时,若节流阀最小稳定流量为50×10-3 L/min,对应的A T和缸速νmin多大?若将回路改为进油节流调速回路,则A T和νmin多大? 232

两项比较说明什么问题? 7-6能否用普通的定值减压阀后面串联节流阀来代替调速阀工作?在三种节流调速回路中试用,其结果会有什么差别?为什么? q=30L/min。不计管道和换向阀压力损失。试问:⑴欲使缸速恒定。不计调压偏差,溢流阀最小调定压力p y多大?⑵卸荷时能量损失多大?⑶背压若增加了Δp b,溢流阀定压力的增量Δp y应有多大? 7-9如图所示,双泵供油、差动快进—工进速度换接回路有关数据如下:泵的输出流量q1=16L/min,q2=16L/min,所输油液的密度ρ=900㎏/m3,运动粘度υ=20×10-6㎡/s;缸的大小腔面积A1=100cm2,A2=60 cm2;快进时的负载F=1kN;油液流过方向阀时的压力损 233

失Δpυ=0.25MPa,连接缸两腔的油管ABCD的内径d=1.8㎝,其中ABC段因较长(L=3m),计算时需计其沿程压力损失,其它损失及由速度、高度变化形成的影响皆可忽略。试求:⑴快进时缸速v和压力表读数。⑵工进时若压力表读数为8MPa,此时回路承载能力多大(因流量小,不计损失)?液控顺序阀的调定压力宜选多大? 7-10图示调速回路中,泵的排量V P=105ml/r,转速n P=1000r/min,容积效率ηvp=0.95。溢流阀调定压力p y=7MPa。液压马达排量V M=160ml/r,容积效率ηvM=0.95,机械效率ηmM=0.8,负载扭矩T=16N·m。节流阀最大开度A Tmax=0.2㎝2(可视为薄刃孔口),其流量系数C q=0.62,油液密度ρ=900㎏/m3.不计其它损失.试求: ⑴通过节流阀的流量和液压缸 ⑴缸的左腔压力p1; ⑵当负载F=0和F=9000N时的右腔压力p2; ⑶设泵的总效率为0.75,求系统的总效率。 234

液压传动课程设计题目2

1.汽车板簧分选实验压力机(立式),液压缸对工件(汽车板簧)施加的最大压 力为3万N,动作为:快进→工进→加载→保压→慢退→快退,快进速度14mm/s,工进速度0.4mm/s,要求液压缸上位停止、下行时、保压后慢退不能失控。最大行程600mm。试完成: (1)系统工况分析; (2)液压缸主要参数确定; (3)拟定液压系统原理图; (4)选取液压元件; (5)油箱设计(零件图);* (6)油箱盖板装配图、零件图;* (7)集成块零件图; 2.钻孔动力部件质量m=2000kg,液压缸的机械效率ηw=0.9,钻削力Fc=16000N 工作循环为:快进→工进→死挡铁停留→快退→原位停止。行程长度为150mm ,其中工进长度为50mm。快进、快退速度为75mm/s,工进速度为1.67 mm/s。导轨为矩形,启动、制动时间为0.5s。要求快进转工进平稳可靠,工作台能在任意位置停止。 3.单面多轴钻孔组合机床动力滑台液压系统,要求设计的动力滑台实现的工作 循环是:快进——工进——快退——停止。主要性能参数与性能要求如下:切削阻力FL=30468N;运动部件所受重力G=9800N;快进、快退速度1=

3=0.1m/s,工进速度2=0.88×10-3m/s;快进行程L1=100mm,工进行程 L2=50mm;往复运动的加速时间Δt=0.2s;动力滑台采用平导轨,静摩擦系数μs=0.2,动摩擦系数μd=0.1。液压系统执行元件选为液压缸。 4.卧式钻孔组合机床液压系统设计:设计一台卧式钻孔组合机床的液压系统, 要求完成如下工作循环:快进→工进→快退→停止。机床的切削力为25×103 N,工作部件的重量为9.8×103 N,快进与快退速度均为7 m/min,工进速度为0.05 m/min,快进行程为150 mm,工进行程为40 mm,加速、减速时间要求不大于0.2 s,动力平台采用平导轨,静摩擦系数为0.2,动摩擦系数为 0.1。要求活塞杆固定,油缸与工作台连接。设计该组合机床的液压传动系统。 5.某厂需要一台加工齿轮内孔键槽的简易插床,插头刀架的上下往复运动采用 液压传动。工件安装在工作台上,采用手动进给。 其主要技术规格如下: 1)加工碳钢齿轮键槽,插槽槽宽t=12mm,走刀量S=0.3mm/行程; 2)插头重量500N; 3)插头工作行程(下行)的速度为13m/min。 试设计该插床的液压系统及其液压装置。 6.设计一台钻镗专用机床,要求孔的加工精度为二级,精镗的光洁度为▽6。加 工的工作循环是工件定位、夹紧——动力头快进——工进——快退——工件松开、拔销。加工时最大切削力(轴向)为20000N,动力头自重30000N,工作进给要求能在20-120mm/min内进行无级调速,快进、快退的速度均为6m/min,动力头最大行程为400mm,为使工作方便希望动力头可以手动调整进退并且能中途停止,动力滑台采用平导轨。 要求:1)按机床工作条件设计油路系统,绘系统原理图。 2)列出电磁铁动作顺序图。

液压回路分析

6、如图所示的液压系统,可以实现快进-工进-快退-停止的工作循环要求 (1)说出图中标有序号的液压元件的名称。 (2)写出电磁铁动作顺序表。 解:(1)1-三位四通电磁换向阀,2-调速阀,3-二位三通电磁换向阀(2) 7、图示回路中,溢流阀的调整压力为5.0MPa、减压阀的调整压力为2.5MPa。试分析下列三种情况下A、B、C点的压力值。 (1)当泵压力等于溢流阀的调定压力时,夹紧缸使工件夹紧后。 (2)当泵的压力由于工作缸快进、压力降到1.5MPa时。 (3)夹紧缸在夹紧工件前作空载运动时。 解:(1)2.5MPa、5MPa、2.5MPa (2)1.5MPa、1.5MPa、2.5MPa (3)0、0、0

8、图示回路,若阀PY的调定压力为4Mpa,阀PJ的调定压力为2Mpa,回答下列问题:(1)阀PY 是()阀,阀P J是()阀; (2)当液压缸运动时(无负载),A点的压力值为()、B点的压力值为(); (3)当液压缸运动至终点碰到档块时,A点的压力值为()、B点的压力值为()。 解:(1)溢流阀、减压阀; (2)活塞运动期时P A=0,P B=0; (3)工件夹紧后,负载趋近于无穷大:P A=4MPa,P B=2MPa。 9、如图所示系统可实现“快进→工进→快退→停止(卸荷)”的工作循环。 (1)指出液压元件1~4的名称。 (2)试列出电磁铁动作表(通电“+”,失电“-”)。 解: 10、如图所示的液压回路,要求先夹紧,后进给。进给缸需实现“快进——工进——快退——停止”这四个工作循环,而后夹紧缸松开。 (1)指出标出数字序号的液压元件名称。 (2)指出液压元件6的中位机能。 (3)列出电磁铁动作顺序表。(通电“+”,失电“-”)

液压传动课程设计

液压与气压传动课程设计 班级机制1211 姓名 学号2012116102 指导老师邬国秀

目录 一.设计要求及工况分析 (3) 1.负载与运动分析 2.负载循环图.速度循环图 二.确定液压系统主要参数 (4) 1.初选液压缸工作压力 2.计算液压缸主要尺寸 三.拟定液压系统原理图 (7) 1.选择基本回路 2.组成液压系统 四.计算和选择液压件 (9) 确定液压泵的规格和电动机功率 五.附表与附图 (11) 六.参考文献 (13)

(一)、设计要求及工况分析 设计要求 1、设计一台专用铣床,工作台要求完成快进--工作进给--快退--停止的自动工作循环。铣床工作台重量4000N ,工件夹具重量为1500N ,铣削阻力最大为9000N ,工作台快进、快退速度为4.5m /min ,工作进给速度为0.06~1m /min ,往复运动加、减速时间为0.05s 工作采用平导轨,静、动摩擦分别为fs =0.2,fd =0.1,?工作台快进行程为0.3m 。工进行程为0.1m ,试设计该机床的液压系统 1、负载与运动分析 (1) 工作负载 工作负载即为切削阻力F L =30000N 。 (2) 摩擦负载 摩擦负载即为导轨的摩擦阻力: 静摩擦阻力 N G F S FS 110055002.0=?==μ 动摩擦阻力 N G F d fd 55055001.0=?==μ (3) 惯性负载 N 842 N 05×60 . 0 8 . 9 5500 i ? = ? ? = t g G F υ 4.5 =

(4) 运动时间 快进 s v L t 3.360 /5.4102503 111=?==- 工进 s v L t 9060/1.0101503 222=?==- 快退 s v L L t 3.560 /5.4104003 3213=?=+=- 设液压缸的机械效率ηcm =0.9,得出液压缸在各工作阶段的负载和推力,如表1所列。 表1液压缸各阶段的负载和推力 2、 根据液压缸在上述各阶段内的负载和运动时间,即可绘制出负载循环图F -t 和速度循环图υ-t ,见附图 (二) 确定液压系统主要参数 1.初选液压缸工作压力 所设计的动力滑台在工进时负载最大,在其它工况负载都不太高,参考表2和表3,初选液压缸的工作压力p 1=4MPa 。

液压基本回路讲解

单元六基本回路 学习要求 1、掌握各种基本回路所具有的功能,功能的实现方法 2、掌握各种基本回路的元件组成 3、能画出各种简单的基本回路 重点与难点: 本章的难点是:三种节流调速回路的速度—负载特性;液压效率的概念;三种容积调速回路的调速过程与特性;系统卸荷的卸荷方式;容积——节流调速的调速过程;同步回路中提高同步精度的补偿措施等。 第一节速度控制回路 速度控制回路是调节和改变执行元件的速度的回路,又称为调速回路;能实现执行元件运动速度的无级调节是液压传动的优点之一。速度控制回路包括调整工作行程速度的调速回路、空行程的快速运动回路和实现快慢速度切换的速度换接回路。 一、调速回路 调速是为了满足液压执行元件对工作速度的要求,在不考虑液压油的压缩性和泄漏的情况下。由液压系统执行元件速度的表达式 可知: 液压缸的运动速度为: 液压马达的转速: 所以,改变输入液压执行元件的流量q或改变液压缸的有效面积A(或液压马达的排量)均可以达到改变速度的目的。但改变液压缸工作面积的方法在实际中是不现实的,因此,只能用改变进入液压执行元件的流量或用改变变量液压马达排量的方法来调速。为了改变进入液压执行元件的流量,可采用变量液压泵来供油,也

可采用定量泵和流量控制阀,以改变通过流量阀流量的方法。 根据以上分析,液压系统的调速方法可以有以下三种: (1)节流调速:采用定量泵供油,由流量阀调节进入执行元件的流量来实现调节执行元件运动速度的方法。 (2)容积调速:采用变量泵来改变流量或改变液压马达的排量来实现调节执行元件运动速度的方法。 (3)容积节流调速:采用变量泵和流量阀相配合的调速方法,又称联合调速。(一)节流调速回路 节流调速回路的工作原理是通过改变回路中流量控制元件(节流阀和调速阀)通流截面积的大小来控制流入执行元件或从执行元件中流出的流量,以调节其运动速度。节流调速回路的优点是结构简单可靠、成本低,但这种调速方法的效率较低;所以,节流调速回路一般适用于小功率系统。根根流量阀在回路中的位置不同,分为进油节流调速、回油节流调速和旁路节流调速三种回路。 1、进油路节流调速回路 将流量阀装在执行元件的进油路上称为进油节流调速,如图6-1所以。在进油路节流调速回路中,泵的压力由溢流阀调定后,基本保持不变,调节节流阀阀口的大小,便能控制进入液压缸的流量,从而达到调速的目的,定量泵输出的多余油液经溢流阀排回油箱。

液压系统课程设计任务书

学号: 课程设计任务书 2013~2014 学年第二学期 学生姓名:专业班级: 指导教师:工作部门: 一、课程设计题目: 二、课程设计内容 液压传动课程设计一般包括以下内容: (1) 明确设计要求进行工况分析; (2) 确定液压系统主要参数; (3) 拟定液压系统原理图; (4) 计算和选择液压件; (5) 验算液压系统性能; (6) 结构设计及绘制零部件工作图; (7) 编制技术文件。 学生应完成的工作量: (1) 液压系统原理图1张; (2) 部件工作图和零件工作图若干张; (3) 设计计算说明书1份。 三、进度安排

四、基本要求 (1) 液压传动课程设计是一项全面的设计训练,它不仅可以巩固所学的理论知识,也可以为以后的设计工作打好基础。在设计过程中必须严肃认真,刻苦钻研,一丝不苟,精益求精。 (2) 液压传动课程设计应在教师指导下独立完成。教师的指导作用是指明设计思路,启发学生独立思考,解答疑难问题,按设计进度进行阶段审查,学生必须发挥主观能动性,积极思考问题,而不应被动地依赖教师查资料、

给数据、定方案。 (3) 设计中要正确处理参考已有资料与创新的关系。任何设计都不能凭空想象出来,利用已有资料可以避免许多重复工作,加快设计进程,同时也是提高设计质量的保证。另外任何新的设计任务又总有其特定的设计要求和具体工作条件,因而不能盲目地抄袭资料,必须具体分析,创造性地设计。 (4) 学生应按设计进程要求保质保量的完成设计任务。 液压传动课程设计原始资料 一、课程设计内容(含技术指标) 设计中等复杂程度的机床液压传动系统,确定液压传动方案,选择有关液压元件,设计液压缸的结构,编写技术文件并绘制有关图纸。 1、设计一台卧式单面多轴钻孔组合机床液压动力滑台的液压系统。已知参数:切削负载FL=30500N,机床工作部件总质量m=1000kg,快进、快退速度均为5.5m/min,工进速度在20~100mm/min范围内可无级调节。滑台最大行程400mm,其中工进行程150mm,往复运动加、减速时间≤0.2s,滑台采用平导轨,其摩擦系数fs=0.2,动摩擦系数fd=0.1。滑台要求完成“快进-工进-快退-停止”的工作循环。 2、设计一台卧式单面多轴钻孔组合机床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:轴向切削力为32000N,移动部件总重量为10810N,工作台快进行程为150mm,工进行程为100mm,快进、快退速度为7m/min,工进速度为60mm/min,加、减速时间为0.2s,导轨为平导轨,静摩擦系数为0.2,动摩擦系数为0.1。 3、设计一台专用卧式钻床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:最大轴向钻削力为14000N,动力滑台自重为15000N,工作台快进行程为100mm,工进行程为50mm,快进、快退速度为 5.5m/min,工进速度为51—990mm/min,加、减速时间为0.1s,动力滑台为平导轨,静摩擦系数为0.2,动摩擦系数为0.1。 4、设计一台专用卧式铣床的液压系统,要求液压系统完成“快进—工进—快退—停止”的工作循环。已知:铣头驱动电动机功率为8.5kw,铣刀直径为70mm,转速为350r/min,

液压同步回路的方法及特点

液压同步回路的方法及特点 液压缸机械结合同步回路 图1 中回路由两执行油缸和刚性梁组成,通过刚性梁联接实现两缸同步,图2 中回路由两执行油缸、齿轮齿条缸组成,通过齿轮齿条将两缸联接在一起,从而实现同步。 两液压回路液压缸的同步都是靠机械结构来保证的,这种回路特点是同步性能较可靠,但由于油缸的受力有差别时硬性的机械作用力可能对油缸有所损伤,同时对机械联接的 强度要求增加. 2 串联液压缸同步回路 图3 中回路由泵、溢流阀、换向阀、两串联缸组成,要求实现两串联缸同步。实现此串联液压缸同步回路的前提条件是:必须使用双侧带活塞杆的液压缸,或者串联的两油腔的有效作用面积相等,这样根据油缸速度为流量与作用面积的比值,油缸的速度才能相同。但是,这种结构往往由于制造上的误差、内部泄露及混入空气等原因而影响其同步性。对于负载一定时,需要的油路压力要增加,其增加的倍数为其所串联的油缸数。为了补偿因为泄 露造成的油缸不同步问题,在设计同步回路时可以采用带补油装置的同步回路,见图4。 图4 中回路较图3 增加了液压锁和控制液压锁打开的换向阀,这条油路的增加可使两串联缸更好地实现同步。同样,缸Ⅰ的有杆腔A和缸Ⅱ的无杆腔B 的受力面积相同。在工作状态,活塞杆伸出的情况下,如果缸Ⅰ先伸出到底部,限位开关的作用使电磁换向阀得电,压力油进入 B 腔补入一部分油液,使油缸Ⅱ完成全部行程;如果缸Ⅱ先伸出到底部,限位开关的作用使电磁阀得电,液控单向阀打开,使A腔放出部分油液,使油缸Ⅰ完成全部行程。

3 采用节流阀的同步回路 用节流阀来控制工作缸的同步,其结构比较简单,造价低廉,且同步效果较好,因此,是在液压同步回来设计中较常用的控制方法。

液压系统的课程设计说明书

目录 引言 (2) 第一章明确液压系统的设计要求 (2) 第二章负载与运动分析 (3) 第三章负载图和速度图的绘制 (4) 第四章确定液压系统主要参数 (4) 4.1确定液压缸工作压力 (4) 4.2计算液压缸主要结构参数 (4) 第五章液压系统方案设计 (7) 5.1选用执行元件 (7) 5.2速度控制回路的选择 (7) 5.3选择快速运动和换向回路 (8) 5.4速度换接回路的选择 (8) 5.5组成液压系统原理图 (9) 5.5系统图的原理 (10) 第六章液压元件的选择 (12) 6.1确定液压泵 (12) 6.2确定其它元件及辅件 (13) 6.3主要零件强度校核 (15) 第七章液压系统性能验算 (16) 7.1验算系统压力损失并确定压力阀的调整值 (17) 7.2油液温升验算 (18) 设计小结 (19) 参考文献 (21)

引言 液压系统已经在各个部门得到越来越广泛的应用,而且越先进的设备,其应用液压系统的部门就越多。 液压传动是用液体作为来传递能量的,液压传动有以下优点:易于获得较大的力或力矩,功率重量比大,易于实现往复运动,易于实现较大范围的无级变速,传递运动平稳,可实现快速而且无冲击,与机械传动相比易于布局和操纵,易于防止过载事故,自动润滑、元件寿命较长,易于实现标准化、系列化。 液压传动的基本目的就是用液压介质来传递能量,而液压介质的能量是由其所具有的压力及力流量来表现的。而所有的基本回路的作用就是控制液压介质的压力和流量,因此液压基本回路的作用就是三个方面:控制压力、控制流量的大小、控制流动的方向。所以基本回路可以按照这三方面的作用而分成三大类:压力控制回路、流量控制回路、方向控制回路。 第一章明确液压系统的设计要求 要求设计一台卧式单面多轴钻孔组合机床动力滑台的液压系统。要求实现的动作顺序为:启动→快进→工进→快退→停止。液压系统的主要参数与性能要求如下:轴向切削力F t=20000N,移动部件总质量G=10000N;快进行程l1=100mm,工进行程l2=50mm。快进、快退的速度为5m/min,工进速度0.1m/min。加速减速时间△t=0.15s;静摩擦系数f s=0.2;动摩擦系数f d=0.1。该动力滑台采用水平放置的平导轨,动力滑台可在任意位置停止。

液压作业2(基本回路有答案)

《液压与气压传动》复习资料及答案 9、先导式溢流阀原理如图所示,回答下列问题: + (1)先导式溢流阀原理由哪两部分组成 (2)何处为调压部分 (3)阻尼孔的作用是什么 (4)主阀弹簧为什么可较软 解:(1)先导阀、主阀。 (2)先导阀。 (3)制造压力差。 (4)只需克服主阀上下压力差作用在主阀上的力,不需太硬。 10、容积式液压泵的共同工作原理是什么 答:容积式液压泵的共同工作原理是:⑴形成密闭工作容腔;⑵密封容积交替变化;⑶吸、压油腔隔开。 11、溢流阀的主要作用有哪些 答:调压溢流,安全保护,使泵卸荷,远程调压,形成背压,多级调压 液压系统中,当执行元件停止运动后,使泵卸荷有什么好处 答:在液压泵驱动电机不频繁启停的情况下,使液压泵在功率损失接近零的情况下运转,以减少功率损耗,降低系统发热,延长泵和电机的使用寿命。 12、液压传动系统主要有那几部分组成并叙述各部分的作用。 答:动力元件、执行元件、控制调节元件、辅助元件、传动介质——液压油。 13、容积式液压泵完成吸油和压油必须具备哪三个条件 答:形成密闭容腔,密闭容积变化,吸、压油腔隔开。 14、试述进油路节流调速回路与回油路节流调速回路的不同之处。 17、什么叫做差动液压缸差动液压缸在实际应用中有什么优点 答:差动液压缸是由单活塞杆液压缸将压力油同时供给单活塞杆液压缸左右两腔,使活塞运动速度提高。 差动液压缸在实际应用中可以实现差动快速运动,提高速度和效率。 18、什么是泵的排量、流量什么是泵的容积效率、机械效率

答:(1)泵的排量:液压泵每转一周,由其密封几何尺寸变化计算而得的排出液体的体积。 (2)泵的流量:单位时间内所排出的液体体积。 (3)泵的容积效率:泵的实际输出流量与理论流量的比值。 (4)机械效率:泵的理论转矩与实际转矩的比值。 19、什么是三位滑阀的中位机能研究它有何用处 答:(1)对于三位阀,阀芯在中间位置时各油口的连通情况称为三位滑阀的中位机能。 (2)研究它可以考虑:系统的保压、卸荷,液压缸的浮动,启动平稳性,换向精度与平稳性。 20、画出直动式溢流阀的图形符号;并说明溢流阀有哪几种用法 答:(1) (2)调压溢流,安全保护,使泵卸荷,远程调压,背压阀。 21、液压泵完成吸油和压油必须具备什么条件 答:(1)具有密闭容积; (2)密闭容积交替变化; (3)吸油腔和压油腔在任何时候都不能相通。 22、什么是容积式液压泵它的实际工作压力大小取决于什么 答:(1)液压系统中所使用的各种液压泵,其工作原理都是依靠液压泵密封工作容积的大小交替变化来实现吸油和压油的,所以称为容积式液压泵。 (2)液压泵的实际工作压力其大小取决于负载。 23、分别说明普通单向阀和液控单向阀的作用它们有哪些实际用途 答:普通单向阀 (1)普通单向阀的作用是使油液只能沿着一个方向流动,不允许反向倒流。 (2)它的用途是:安装在泵的出口,可防止系统压力冲击对泵的影响,另外,泵不工作时,可防止系统油液经泵倒流回油箱,单向阀还可用来分隔油路,防止干扰。单向阀与其他阀组合便可组成复合阀。 单向阀与其他阀可组成液控复合阀 (3)对于普通液控单向阀,当控制口无控制压力时,其作用与普通单向阀一样;当控制口有控制压力时,通油口接通,油液便可在两个方向自由流动。 (4)它的主要用途是:可对液压缸进行锁闭;作立式液压缸的支承阀;起保压作用。 24、试举例绘图说明溢流阀在系统中的不同用处: (1)溢流恒压;(2)安全限压;(3)远程调压;(4)造成背压;(5)使系统卸荷。 答:(1)溢流恒压(2)安全限压(3)远程调压

小型液压机液压系统课程设计

$ 攀枝花学院 学生课程设计(论文) 题目:小型液压机的液压系统 学生姓名: vvvvvv 学号: vvvvvvvv < 所在院(系):机械工程学院 专业: 班级: 指导教师: vvvvvv 职称: vvvv # 2014 年 06 月 15 日 攀枝花学院教务处制

》 攀枝花学院本科学生课程设计任务书

目录 前言 (1) 一设计题目 (2) 二技术参数和设计要求 (2) 三工况分析 (2) 四拟定液压系统原理 (3) . 1.确定供油方式 (3) 2.调速方式的选择 (3) 3.液压系统的计算和选择液压元件 (4) 4.液压阀的选择 (6) 5.确定管道尺寸 (6) 6.液压油箱容积的确定 (7) 7.液压缸的壁厚和外径的计算 (7) 8.液压缸工作行程的确定 (7) [ 9.缸盖厚度的确定 (7)

10.最小寻向长度的确定 (7) 11.缸体长度的确定 (8) 五液压系统的验算 (9) 1 压力损失的验算 (9) 2 系统温升的验算 (11) 3 螺栓校核 (11) 总结 (13) : 参考文献 (14)

前言 液压传动是以流体作为工作介质对能量进行传动和控制的一种传动形式。利用有压的液体经由一些机件控制之后来传递运动和动力。相对于电力拖动和机械传动而言,液压传动具有输出力大,重量轻,惯性小,调速方便以及易于控制等优点,因而广泛应用于工程机械,建筑机械和机床等设备上。 作为现代机械设备实现传动与控制的重要技术手段,液压技术在国民经济各领域得到了广泛的应用。与其他传动控制技术相比,液压技术具有能量密度高﹑配置灵活方便﹑调速范围大﹑工作平稳且快速性好﹑易于控制并过载保护﹑易于实现自动化和机电液一体化整合﹑系统设计制造和使用维护方便等多种显著的技术优势,因而使其成为现代机械工程的基本技术构成和现代控制工程的基本技术要素。 液压压力机是压缩成型和压注成型的主要设备,适用于可塑性材料的压制工艺。如冲压、弯曲、翻边、薄板拉伸等。也可以从事校正、压装、砂轮成型、冷挤金属零件成型、塑料制品及粉末制品的压制成型。本文根据小型压力机的用途﹑特点和要求,利用液压传动的基本原理,拟定出合理的液压系统图,再经过必要的计算来确定液压系统的参数,然后按照这些参数来选用液压元件的规格和进行系统的结构设计。小型压力机的液压系统呈长方形布置,外形新颖美观,动力系统采用液压系统,结构简单、紧凑、动作灵敏可靠。该机并设有脚踏开关,可实现半自动工艺动作的循环。

液压课程设计模版

一、液压传动课程设计的目的: 1、综合运用《液压传动》课程及其它先修课程的理论和工程实际知识,以课 程设计为载体,通过液压功能原理及液压装置的设计实践,使理论和工程实际知识密切地结合起来,从而使这些知识得到进一步巩固、加深和扩展,并培养分析和解决工程实际问题的设计计算能力。 2、使学生掌握根据设计题目搜集有关设计资料和文献的一般方法和途径,提高学生综合利用设计资料的能力,为独立从事液压传动设计建立良好的基础。 3、在设计实践中学习和掌握方案论证及拟定方法,掌握液压回路的组合方法及液压元件的选用原则、结构形式,深化对液压系统设计特点的认识和了解。 二、液压课程设计题目: 设计一台上料机液压系统,要求驱动它的液压传动系统完成快速上升一慢速上升一停留一快速下降的工作循环。其结构示意图如图1所示。其垂直上升工作的重力为 7OO0J,滑台的重量为500C N,快速上升的行程为450mm其最小速度为55mm/ s;慢速上升行程为200mm其最小速度为13mm/s;快速下降行程为450mm速度要求55mm/s。滑台采用V型导轨,其导轨面的夹角为90,滑台与导轨的最大间隙为2mm启动加速与减速时间均为0.5s,液压缸的机械效率(考虑密封阻力)为0.9。

目录 1前言 (1) 2负载分析 (2) 2.1负载与运动分析 (2) 2.2 负载动力分析 (2) 2.3负载图和速度图的绘制 (4) 3设计方案拟定 (5) 3.1液压系统图的拟定 (5) 3.2液压系统原理图 (6) 3.3 液压缸的设计 (6) 4主要参数的计算 (9) 4.1初选液压缸的工作压力 (9) 4.2计算液压缸的主要尺寸 (9) 4.3活塞杆稳定性校核 (9) 4.4计算循环中各个工作阶段的液压缸压力,流量和功率 (10) 5液压元件的选用 (11) 5.1确定液压泵的型号及电动机功率 (11) 5.2选择阀类元件及辅助元件 (12) 6液压系统的性能验算 (13) 6.1压力损失及调定压力的确定 (13) 6.2验算系统的发热与温升 (14) 致谢 (16) 参考文献 (17)

液压基本回路

第七章液压基本回路 7-4 多缸(马达)工作控制回路 一、顺序动作回路(sequencing circuit) 1、行程控制顺序动作回路 图a所示为用行程阀控制的顺序动作回路。在图示状态下,A、B两缸的活塞均在端。当推动手柄,使阀C左位工作,缸A左行,完成动作①;挡块压下行程阀D后,缸B左行,完成动作②;手动换向阀C复位后,缸A先复位,实现动作③;随着挡块后移,阀D 复位,缸B退回实现动作④。完成一个工作循环。 图b所示为用行程开关控制的顺序动作回路。当阀E得电换向时,缸A左行完成动作①;其后,缸A触动行程开关S1使阀得电换向,控制缸B左行完成动作②;当缸B左行至触动行程开关S2使阀E失电时,缸A返回,实现动作③;其后,缸A触动S3使9断电,缸B返回完成动作④;最后,缸月触动S4使泵卸荷或引起其它动作,完成一个工作循环。 2、压力控制顺序动作回路 图所示为使用顺序阀的压力控制顺序动作回路。

当换向阀左位接入回路且顺序阀D的调定压力大于缸A的最大前进工作压力时,压力油先进入缸A左腔,实现动作①;缸行至终点后压力上升,压力油打开顺序阀D进入缸B 的左腔,实现动作②;同样地,当换向阀右位接入回路且顺序阀C的调定压力大于缸B的最大返回工作压力时,两缸按③和④的顺序返回。 3、时间控制顺序动作回路 这种回路是利用延时元件(如延时阀、时间继电器等)使多个缸按时间完成先后动作的回路。图所示为用延时阀来实现缸3、4工作行程的顺序动作回路。 当阀1电磁铁通电,左位接通回路后,缸3实现动作①;同时,压力油进入延时阀2

中的节流阀B,推动换向阀A缓慢左移,延续一定时间后,接通油路a、b,油液才进入缸4,实现动作②。通过调节节流阀开度,来调节缸3和4先后动作的时间差。当阀1电磁铁断电时,压力油同时进入缸3和缸4右腔,使两缸返向,实现动作③。由于通过节流阀的流量受负载和温度的影响,所以延时不易准确,一般都与行程控制方式配合使用。 二、同步回路(synchronizing circuit) 同步回路的功用是:保证系统中的两个或多个缸(马达)在运动中以相同的位移或相同的速度(或固定的速比)运动。在多缸系统中,影响同步精度的因素很多,如:缸的外负载、泄漏、摩擦阻力、制造精度、结构弹性变形以及油液中含气量,都会使运动不同步。为此,同步回路应尽量克服或减少上述因素的影响。 1、容积式同步回路 (1)、同步泵的同步回路:用两个同轴等排量的泵分别向两缸供油,实现两缸同步运动。正常工作时,两换向阀应同时动作;在需要消除端点误差时,两阀也可以单独动作。 (2)、同步马达的同步回路:用两个同轴等排量马达作配流环节,输出相同流量的油液来实现两缸同步运动。由单向阀和溢流阀组成交叉溢流补油回路,可在行程端点消除误差。 (3)、同步缸的同步回路:同步缸3由两个尺寸相同的双杆缸连接而成,当同步缸的活塞左移时,油腔a与b中的油液使缸1与缸2同步上升。若缸1的活塞先到达终点,则油腔a的余油经单向阀4和安全阀5排回油箱,油腔b的油继续进入缸2下腔,使之到达终点。同理,若缸2的活塞先达终点,也可使缸1的活塞相继到达终点。

液压传动系统的基本回路

同兴液压总汇:贴心方案星级服务 液压传动系统的基本回路 由有关液压元件组成,用来完成特定功能的典型油路。任何一个液压传动系统都是由几个基本回路组成的,每一基本回路都具有一定的控制功能。几个基本回路组合在一起,可按一定要求对执行元件的运动方向、工作压力和运动速度进行控制。根据控制功能不同,基本回路分为压力控制回路、速度控制回路和方向控制回路。 压力控制回路 用压力控制阀(见液压控制阀)来控制整个系统或局部范围压力的回路。根据功能不同,压力控制回路又可分为调压、变压、卸压和稳压4种回路。 ①调压回路:这种回路用溢流阀来调定液压源的最高恒定压力,图中的溢流阀就起这一作用。当压力大于溢流阀的设定压力时,溢流阀开口就加大,以降低液压泵的输出压力,维持系统压力基本恒定。 ②变压回路:用以改变系统局部范围的压力,如在回路上接一个减压阀则可使减压阀以后的压力降低;接一个升压器,则可使升压器以后的压力高于液压源压力。 ③卸压回路:在系统不要压力或只要低压时,通过卸压回路使系统压力降为零压或低压。 ④稳压回路:用以减小或吸收系统中局部范围内产生的压力波动,保持系统压力稳定,例如在回路中采用蓄能器。 速度控制回路 通过控制介质的流量来控制执行元件运动速度的回路。按功能不同分为调速回路和同步回路。 ①调速回路:用来控制单个执行元件的运动速度,可以用节流阀或调速阀来控制流量,如图中的节流阀就起这一作用。节流阀控制液压泵进入液压缸的流量(多余流量通过溢流阀流回油箱),从而控制液压缸的运动速度,这种形式称为节流调速。也可用改变液压泵输出流量来调速,称为容积调速。 ②同步回路:控制两个或两个以上执行元件同步运行的回路,例如采用把两个执行元件刚性连接的方法,以保证同步;用节流阀或调速阀分别调节两个执行元件的流量使之相等,以保证同步;把液压缸的管路串联,以保证进入两液压缸的流量相同,从而使两液压缸同步。 方向控制回路 控制液压介质流动方向的回路。用方向控制阀控制单个执行元件的运动方向,使之能正反方向运动或停止的回路,称为换向回路,图中的换向阀即起这一作用。在执行元件停止时,防止因载荷等外因引起泄漏导致执行元件移动的回路,称为锁紧回路。

液压与气压传动课程设计说明书

一、设计题目及其要求 1、1题目: 设计一台汽车变速箱体孔系镗孔专用组合机床的液压系统。要求该组合机床液压系统要完成的工作循环是:夹具夹紧工件~工作台1快进~工作台2工进~终点停留~工作台快退~工作台起点停止~夹具松开工件。该组合机床运动部件的重量(含工作台基多轴箱)为20000N,快进、快退速度为6m/min,一工进的速度为800~1000mm/min,二工进的速度为600~800mm/min,工作台的最大行程为500mm,其中工进的总行程为300mm,工进是的最大轴向切削力为20000N,工作台采用山字形~平面型组合导轨支撑方式,夹具夹紧缸的夹紧行程为25mm,夹紧力在20000~14000N之间可调,夹紧时间不大于一秒钟。 依据以上题目完成下列设计任务: 1)、完成该液压系统的工况分析,系统计算并最终完成该液压系统工作原理图的工作; 2)、根据已完成的液压系统工作原理图选择标准液压元件; 3)、对上述液压系统钟的液压缸进行结构设计,完成液压缸的相关计算何部件装配图设计,并对其中的1~2个非标零件进行零件图设计。 1、2明确液压系统设计要求 本组合机床用于镗变速箱体上的孔,其动力滑台为卧式布置,工件夹紧及工进拟采用液压传动方式。 2、夹紧时间不大于一秒钟,按一秒计算。 3、属于范围数值取中间值。 二、工况分析 2、1 动力滑台所受负载见表2-1,其中 静摩擦负载:= Ffsμ×20000N=3600N s ? =G 动摩擦负载:= Ffdμ×20000N=2400N d ? =G

F /KN 惯性负载: N N t v g G F 10202 .01 .08.920000=?=??= α 式中 s μ、d μ,分别为静、动摩擦因数,考虑到导轨的形状不利于润滑油的储存,分别取s μ=、d μ=。 v ?,启动或者制动前后的速度差,本例中v ?=s t ?,启动或者制动时间,取t ?= 2、2 由表1-1和表2-1可分别画出动力滑台速度循环图和负载循环图如图2-1和2-2 6 图2-2

液压同步回路

液压同步回路 1)机械联结同步回路 用机械构件将液压缸的运动件联结起来,可实现多缸同步。本回路是用齿轮齿条机构将两缸的活塞杆联结起来,也可以用刚性梁,杆机构等联结。机械联结同步,简单、可靠,同步精度取决于机构的制造精神和刚性。缺点是偏载不能太大,否则易卡住。(2)用分流阀的同步回路 当换向阀A与C均置于左位时,两液压缸活塞同步上升,换向阀A与C均置于右位时,两缸活塞同步下降。分流阀只能保证速度同步,而不能做到位置同步。因为它是靠提供相等的流量使液压缸同步的。使用分流阀同步,可不受偏载影响,阀内压降较大,一般不宜用于低压系统。 (3)用分流集流阀的同步回路 使用分流集流阀,既可以使两液压缸的进油流量相等,也可以使两缸的回油量相等,从而液压缸往返均同步。为满足液压缸的流量需要,可用两个分流集流阀并联,本回路即是。分流集流阀亦只能保证速度同步,同步精度一般为2~5%。 (4)用计量阀的同步回路 计量阀需要电动机带动,故也称计量泵,工作原理也与柱塞泵类似。本回路用同一电动机带动两个相同的计量阀,使两个液压缸速度同步,同步精度1~2%。计量阀流量范围小,故一般只用在液压缸所需流量很小的场合。

用调速阀控制流量,使液压缸获得速度同步。本回路用两个调速阀使两个液压缸单向同步。图示位置,两液压缸右行,可做到速度同步。但同步精度受调速阀性能和油温的影响,一般速度同步误差在5~10%左右。 (6)用调速阀同步的回路之二 因调速阀只能控制单方向流量,本回路采用了液桥回路后,使两个液压缸可获得双向速度同步。活塞上升时为进油节流调速,下降时为回油节流调速,速度同步误差一般为5~10%左右。 (7)液压马达与液压缸串联的同步回路 用液压马达驱动车床主轴,液压缸驱动车床拖板进给,液压马达的转速与液压缸活塞速度成一定比例同步运行,运行速度由变量泵调节。当泵的流量一定时,调节液压马达的排量,可在进给量不变的条件下改变主轴转速。 (8)串联缸的同步回路之一 液压缸1的有杆腔与液压缸2的无杆腔有效面积相等,可实现位移同步。其同步精度高,能适应较大偏载。为保证严格同步,必须对两缸之间的油腔采取排油和补油措施。本回路当两缸活塞下行时,如缸1的活塞先到达终点,则行程开关1XK动作,使电磁阀3带电,压力油进入缸2上腔,使其活塞继续下降到端点;如果缸2的活塞先下降到终点,则行程开关2XK动作,使电磁阀4带电,液控单向阀5被打开,可使缸1活塞继续下降到端点。

相关文档
最新文档