高频变压器测试要点

高频变压器测试要点
高频变压器测试要点

高頻變壓器測試要點

壹.概說﹕

由于變壓器的種類及規格繁多﹐且又無法如其他電子元件一般導入全自動化生產﹐故必須仰賴大量的人工來從事生產與檢測﹐也因為人工的不可避免﹐因此變壓器的制作并無法像其他的元件一樣--只要有良好的生產設備自然可生產出高品質的產品。目前變壓器的制造商為因應目前的高品質的市場需求﹐只好投入更大量的人力來作制程的規划與管制﹐同時也必須更新檢測設備﹐以求出廠的產品品質優良﹐減少客戶抱怨與增加訂單﹐進而創造更多的利潤。

至于變壓器的檢測需要何種測試設備呢?首先我們將先從變壓器的制作過程中開始探討。到底在制程中會有哪些個程序會有問題產生?而所產生的問題應該用何種方式與檢測儀器才可將不良品完全剔除?下面我們將以一般的變壓器測試項目為主題來一一探討各項測試所著重的意義與制程中會發生的問題。

一.直流電阻測試(DC RESISTANCE)﹕

直流電阻的測試主要用以檢測變壓器在制作過程中會發生的几個項目﹕

◆銅線材質的好壞

◆銅線直徑是否正確

◆繞線的緊密度與張力

◆是否有斷線

◆焊錫點是否良好

A.銅線的材質

我們都了解當銅線的含銅量越高時則線材本身的電阻值越小﹐因此在相同線徑下如果其電阻值太高則表示其含銅量不足﹐相對的在將來使用中會因銅損增加而變熱﹐對變壓器的壽命有直接的影響。因此我們必須控制線材的含銅量使其銅損在設計范圍內﹐才能保証變壓器在長時間使用下不會有不良的狀況發生。

B.線材的線徑

在同一長度銅線的電阻值與其截面積成反比﹐如果截面積改變其電阻值也會隨之變化﹐因此檢測直流電阻值的另一個有效控制項目是控制其線材的線徑。

C.繞線的張力

變壓器制作時﹐其繞線的張力與其線包的松緊程度有絕對的關系。在使用較粗的線材繞制時﹐若張力太大(線繞太緊)則使線材總長度不足﹐導致直流電阻值變小﹐當使用較細的線材時﹐若線繞太緊﹐可能會因銅線被拉長而變細﹐導致直流電阻值加大。

因此﹐當直流電阻值發生變化時﹐很有可能的不良原因之一是變壓器的繞線張力發生了變化。因張力太大所產生的問題﹕例如細線延伸導致漆包膜變薄或破裂等﹐因而影響到變壓器的品質與壽命。

D.多股并繞斷線

多股線并繞的方式為高頻變壓器為減少集膚效應﹐讓變壓器可以承受較大的電流所采取的措施。如果其中一股斷掉﹐其直流電阻值將會變大﹐相對的所承受的電流將

分配到其他股線中﹐將使剩余的線材因承受較大的電流值而影響到變壓器的品質與壽命。

E.焊接點的品質

錫點焊接不良是所有電子產品的致命傷﹐當變壓器的接腳本身焊錫性不佳如氧化或冷焊﹐使銅線與接腳焊接不完全﹐都會造成直流電阻值偏高造成其發熱點集中。一般人常會忽略接腳焊錫所產生的問題﹐制造時應特別注意。

二.電感測試﹕

電感測試主要在檢測變壓器中制程中﹕

◆鐵粉芯材質

◆鐵芯間的間距(GAP)

A.鐵粉芯材質

鐵粉芯為鐵粉材料經粉末冶金鑄造而成﹐不同的材質雖其外觀相同﹐但特性相差很大﹐最基本的參數為其『導磁系數』。如果尺寸相同﹑繞線相同﹐而其導磁系數不同時﹐所產生出來的變壓器之電感量必不相同。因此利用電感量的測量我們可以檢測其導磁系數是否有變異﹐相對的也是確認材質是否有差異。

B.鐵粉芯之間距(GAP)

鐵粉芯變壓器為防止在工作中因鐵芯磁飽和而造成電感量偏移﹐必須在鐵芯間留有間隙。一般高頻變壓器在設計時都會考慮到諧振率問題﹐當電感量產生偏移相對的其諧振頻率亦跟隨產生飄移﹐而造成中工作時的電壓與電流不正常﹐甚至嚴重時將整個應用線路上的功率晶體燒毀。因此檢查鐵芯的材質與鐵芯間的間隙是確保變壓器正常工作的重要條件之一。

三.漏電感的測試﹕

當鐵粉芯的材質與繞線固定時﹐測量漏電感主要在于檢測變壓器的內阻耦合系數。

漏電感的測量系將變壓器之次級線圈全部短路﹐在初級線圈測量其電感值﹐其測量

線路如圖(一)a.而其以理想變壓器表示之等效電路如圖(一)b.其中﹕

◆Xi 為變壓器之初級串聯阻抗

◆Xp 為變壓器之初級并聯阻抗

◆T 為理想變壓器﹐其耦合系數為k﹐圈數比為n﹕1

◆Xs 為變壓器之初級串聯阻抗

◆Zs 為變壓器之次級短路后之元件阻抗(含開關及引線﹑接觸等)

由圖(一)b.可得變壓器初級之等效阻抗

由圖(一)c.我們可藉由測量初級端之漏電感來確認Xi﹐Xs及k的值是否有偏移。

而其實際含義為

◆變壓器內阻﹕變壓器之內阻包括變壓器銅線阻抗﹑變壓器之寄生電容等﹐

因此藉由漏電感之測試我們可以確定變壓器在繞線時其布線沒有問題。

◆耦合系數﹕理想變壓器之耦合系數為1﹐但因材質等因素﹐實際上之耦合

系數不可能為1﹐再加上鐵芯安裝時往往無法使兩鐵芯完全密合﹐因此耦

合系數自然會降低。而當變壓器之耦合系數降低時﹐其漏電感將隨之變大

(Xi 會隨耦合系數變小而變大)。

四. 圈數比測試﹕

高頻變壓器由于其耦合較矽銅片變壓器良好﹐因而使用的圈數一般都較少。在一般電源部分(power)初級約使用60圈﹐次級則更少﹐且有很多次級端的應用線路設計時并不采用穩壓電路﹐而將次級端輸出電壓直接濾波整流后就使用。因為變壓器輸出電壓與圈數比成正比﹐因此在圈數不多的情況下﹐增加或減少一圈﹐已使輸出電壓超出了使用范圍。因此變壓器制造商必須確認圈數比無誤﹐才能確保將來在應用上能使電路工作正常。而影響圈數比的因素有下﹐我們將一一討論﹕

◆ 圈數

◆ 布線鐵粉芯之間隙

◆ 耦合狀況

A. 圈數﹕圈數的正確與否是影響圈數比最直接的因素﹐繞線圈數不對自然圈數比

一定不正確﹐因而測量圈數比是確保繞線圈數正確的最佳方法。

B. 布線﹕因為圈數比的計算公式為n =

布線不同時其電感值也會跟著改變﹐所以圈數比也會跟著變化。因此測量圈數比無誤時﹐我們可以確定其布線的差異不大。

C. 鐵粉芯之間隙很大的變壓器﹐由于繞線有上下層之分﹐所以相同的圈數所對應的電感值并不一定相同﹐因此圈數比也會跟著改變。所以檢測圈數比亦有確認鐵芯之間隙在一定的范圍內。

D.

耦合情況﹕其作用與鐵芯之間隙類似﹐耦合情況也會影響到圈數比值﹐故圈數比的檢測亦可檢知耦合的情況。

五. 極性﹕

極性是線圈繞線的方向﹐當極性相反時﹐所輸出的電壓波形將相反。因此在設計變壓時必須先定好繞線方向。若極性錯誤﹐則變壓器在工作時的特性將全部改變﹐將對所有的應用線路產生不良的影響。

六. 層間短路﹕

變壓器發生層間短路的原因如下﹕

◆ 漆包線刮傷或脫漆

◆ 繞線上下層絕緣不良

◆ 以銅片做內部遮蔽(Shielding)處理不當

A.

漆包線刮傷或脫漆﹕當使用漆包線刮傷或脫漆時﹐經加工繞線后﹐線與線之間只以一狹小的間隙相隔﹐如此一來﹐在使用中變壓器將會因發熱而使線與線之間的間隙更小﹐并且兩銅線之間會有電壓差的產生﹐于是在有刮傷或脫漆的漆包層將會被擊穿造成短路﹐而使變壓器的工作電流上升﹐嚴重時將使整個變壓器燒毀。因此﹐層間短路測試是保証變壓器線與線之間不會有短路現象的產生最好的方法。 L1

L2

B.繞線上下層絕緣不良﹕當銅一組繞線有繞超過層時﹐上下層之間的電位差將會

很高。例如﹕線圈的每一圈電壓為10伏特﹐如果每一層繞線30圈﹐則上下層

之間的電壓差最高可達到10×30×2=600伏特﹐如果漆包線之針孔正好在上下層

之間發生﹑或漆包膜不良﹐則會有放電的現象發生﹐一般稱為電暈(CORONA)

現象。當變壓器有電暈現象產生時﹐變壓器在時間工作下將會使漆包膜碳化﹐

最后將破壞絕緣導致變壓器燒毀。而檢測變壓器內部是否會有電暈發生也是利

用層間短路的方法來測試。

C.內包銅箔﹕當變壓器在防止電磁干擾(EMI)的要求下一般會使用內包銅箔的方

法來處理。由于銅片非常銳利或作業上的問題而造成銅片在繞上后與繞線短路

或銅片本身短路﹐而造成層間短路的不良現象。

七.耐壓絕緣測試﹕

一般變壓器使用在電源端必須合于安規之要求﹐變壓器在制作過程中環境﹑材質與

作業疏忽都可能造成耐壓或絕緣不良。因為耐壓與絕緣是安規所必須要求的測試項

目﹐所以必須通過本項測試。

貳.變壓器測試注意要點﹕

在了解測試需求后﹐針對變壓器各種特性與測試設備﹑治具等項目于實際測試中應注意的地方我們將詳述如下﹕

2.1.直流電阻

直流電阻在測試中是感覺最簡單的測試項目﹐但當其電阻值很小﹐如几十個mΩ時﹐測試又變得不容易了。主要的原因為﹐當電阻值很小時﹐變壓器之接腳與探針或彈片的接觸阻抗問題便會發生。就經驗而言﹐探針在要測量小電阻的測試下并不很適合﹐因為一般變壓器的接腳通常使用鍍錫鐵材﹐經過截斷后打入塑膠線架中﹐由于截斷面通常不平整或有毛邊﹐且因無再處理過﹐使得截斷面很容易氧化﹐所以當以探針從接腳的底部與其接觸時﹐接觸阻抗并有穩定﹐如果待測體的阻抗很小時常因此造成誤判﹐所以應選擇使用從接腳側面夾取的彈片來做連接較好。但彈片為一平面﹐而變壓器在制作過程中其接腳常沾粘了凡立水與松香等物質﹐常常會黏在彈片表面造成接觸阻抗變大﹐所以在使用彈片作治具時﹐應該要時常清理彈片表面﹐才能保持接觸性良好。2.2.電感

電感測試在變壓器的測試項目中較為單純﹐只要選擇好正確的測試頻率與測試電壓便可量測出正確數值。測試頻率之選擇應力求與變壓器工作頻率相近﹐以往常因設備的性能不足﹐不論變壓器的用途而將測試頻率一律訂定為1KHz是不正確的方式。2.3.漏電感

漏電感之測試在變壓器測試項目中是最難檢測的項目﹐主要的因素是在測量漏電感時﹐必須將次級端直接短路后來測試初級端。由于一般的機皆由機體內部的元件來達到短路的效用﹐因而引線一接頭之阻抗將會直接影響漏電感測試值。由圖(二)為例說明如下﹕

圖(二)a.變壓器漏電感測試線路 b.漏電感測試之等效電路

Zs 為引線﹑接頭﹑開關等所產生的阻抗總合

Xi 為變壓器之理想漏電感值

n 變壓器之圈數比

Z LL 為變壓器由外部短路后之漏電感阻抗

Xp 為變壓器之并聯阻抗﹐可以忽略

由圖(二)b.我們可得知﹕

Z LL = Xi + n 2Zs

如果Zs 變大﹐則相對的測量到的Z LL 亦變大﹐所以在測試時﹐我們應該盡可能將引線﹑接點等的阻抗減至最小。

另外﹐由于Z 值會隨頻率之不同而改變﹐其公式如下﹕

Z LL = ωL LL = ωLi + n 2Rs => ΔL LL = L LL -Li = = (因引線﹑接點等阻抗几乎為純電阻)

由此可知﹐當測量頻率提高時ΔL LL 會減小﹐也就是說在沒有辦法移除接觸阻抗的情況下﹐我們可利用提高測試頻率的方式將外部干擾阻抗減至最低﹐使測量值越接近實際值。

2.4.圈數比

圈數比一般是指線圈繞線的比率N ﹐但在變壓器的測量中﹐

我們可以

n L = 或用n V = 的方式來做測量。因而Δn = N -n

v ﹐由于兩者的測量方式不同﹐各說明如下﹕

2.4.1.電感量測法

在變壓器耦合非常良好的情況下﹐K->1時﹐ n L = 因而量測變壓器兩端之電感值再予以計算即可求得圈數比。但當變壓器耦合不佳

時﹐則N = Kn ﹐其中K 為變壓器的耦合系數﹐故當K 值為變數時(變小)﹐此方式就不能准確地計算出實際的圈數比。

2.4.2.電壓量測法

電壓量測法系在變壓器之初級端加一電壓V 1在測量其次級端所感應的電壓V 2﹐而

n

v =由于高頻變壓器之內阻較小﹐電壓加上后之損失很小(變頻交流電)﹐因而 Δn

= N -n 趨近于零﹐所以測量較精確。

2.5.層間短路測量 n2Rs ω n2Rs 2πf L1 L2

V1 V2 L1

L2 V1 V2

高頻變壓器層間短路測試是利用『磁能互換』與『能量不減』的原理﹐將待測變壓器之一端并聯一個電容﹐并且產生自然諧振現象﹐此諧振波的波幅將隨時間的增加面衰退。當有層間短路現象發生時﹐此瞬間高壓脈沖將擊穿漆包膜而放電﹐能量將于此放電時瞬間消失﹐因此所產生的諧振波波形很快的的衰減到零。

當我們將變壓器的一組線圈兩端并聯上一個固定電容C P ﹐而R S 為線路的串聯電阻(繞線內阻﹐為能量消耗所在)﹐我們再加上一瞬間脈沖于變壓器上﹐如此一來﹐變壓器的線圈端電壓將被強制拉到最高值﹐當此一外部脈沖消失后﹐電壓將轉換成電流而將能量儲存于鐵粉芯內﹐如圖(三)b.經過一個諧振單位時間后﹐能量將會轉換并儲存于電容內﹐這段期間由于有R S 來消耗能量﹐所以當電容充電時﹐其電壓已不知第一次脈沖那么高﹐如此周而復始能量慢慢消耗怠盡﹐若接上一示波器則可看見如圖(三)c.的波形。

而波與波之諧振時間趨近于

如果變壓器的電感與內阻相差不多時﹐并且每次送的脈沖高度一樣時﹐則所產生的諧振波開應相似。如果發生層間短路現象﹐則能量將于瞬間消失﹐諧振波形亦隨之快速衰減﹐因而可用此波形來比對判斷出變壓器是否有`層間短路現象。 1 LC

高频变压器的分析与设计.

高频链中高频变压器的分析与设计 文章作者:四川成都西南交通大学龙海峰郭世明江苏南京国电南京自动化股份有限公司呙道静文章类型:设计应用文章加入时间:2004年9月6日14:54 文章出处:电源技术应用 摘要:高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体 积和重量。在高频链的硬件电路设计中,高频变压器是重要的一环。叙述了高频变压器的设计过程。 实验结果证明该设计满足要求。 关键词:高频链;高频变压器;逆变器 引言 MESPELAGE于1977年提出了高频链逆变技术的新概念[1]。高频链逆变技术与常规的逆变技术最 大的不同,在于利用高频变压器实现了输入与输出的电气隔离,减小了变压器的体积和重量。近年来, 高频链技术引起人们越来越多的兴趣。 1 概述 图1是传统的逆变器框图。其缺点是采用了笨重庞大的工频变压器和滤波电感,导致效率低,噪 音大,可靠性差。另外,谐波含量大,波形畸变严重,与要求的优质正弦波相差甚远。

图2所示为电压源高频链逆变器的框图,该方案是当今研究的最先进方案[2],也是本文中采用的方案。采用此方案有其一系列的优点,诸如,以小型的高频变压器替代工频变压器;只有两级功率变换;正弦波质量高;控制灵活等。高频变压器是高频链的核心部件,肩负着隔离和传输功率的重任,其性能好坏直接决定逆变器的性能好坏。不合格的变压器温升高,效率低,漏感严重,输出波形畸变大,直接影响电路的稳定性和可靠性,甚至损坏开关器件,导致实验失败。 2 高频变压器的设计 设计高频变压器首先应该从磁芯开始。开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。各种磁芯物理性能及价格比如表1所列。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。本文采用的就是铁氧体材料。 表1 各种磁芯特性比较表

高频变压器的计算

高频变压器参数计算 2009-08-28 11:26 一.电磁学计算公式推导: 1.磁通量与磁通密度相关公式: Ф = B * S⑴ Ф ----- 磁通(韦伯) B ----- 磁通密度(韦伯每平方米或高斯) 1韦伯每平方米=104高斯 S ----- 磁路的截面积(平方米) B = H * μ⑵ μ ----- 磁导率(无单位也叫无量纲) H ----- 磁场强度(伏特每米) H = I*N / l⑶ I ----- 电流强度(安培) N ----- 线圈匝数(圈T) l ----- 磁路长路(米) 2.电感中反感应电动势与电流以及磁通之间相关关系式: EL =⊿Ф / ⊿t * N⑷ EL = ⊿i / ⊿t * L⑸ ⊿Ф ----- 磁通变化量(韦伯) ⊿i ----- 电流变化量(安培) ⊿t ----- 时间变化量(秒) N ----- 线圈匝数(圈T) L ------- 电感的电感量(亨) 由上面两个公式可以推出下面的公式: ⊿Ф / ⊿t * N = ⊿i / ⊿t * L 变形可得: N = ⊿i * L/⊿Ф 再由Ф = B * S 可得下式: N = ⊿i * L / ( B * S )⑹ 且由⑸式直接变形可得: ⊿i = EL * ⊿t / L⑺ 联合⑴⑵⑶⑷同时可以推出如下算式: L =(μ* S )/ l * N2⑻ 这说明在磁芯一定的情况下电感量与匝数的平方成正比(影响电感量的因素) 3.电感中能量与电流的关系: QL = 1/2 * I2 * L⑼ QL -------- 电感中储存的能量(焦耳) I -------- 电感中的电流(安培) L ------- 电感的电感量(亨) 4.根据能量守恒定律及影响电感量的因素和联合⑺⑻⑼式可以得出初次级匝数

高频变压器的设计

高频变压器的设计 高频链逆变技术用高频变压器代替传统逆变器中笨重的工频变压器,大大减小了逆变器的体积和重量。在高频链的硬件电路设计中,高频变压器是重要的一环。 设计高频变压器首先应该从磁芯开始。开关电源变压器磁芯多是在低磁场下使用的软磁材料,它有较高磁导率,低的矫顽力,高的电阻率。磁导率高,在一定线圈匝数时,通过不大的激磁电流就能承受较高的外加电压,因此,在输出一定功率要求下,可减轻磁芯体积。磁芯矫顽力低,磁滞面积小,则铁耗也少。高的电阻率,则涡流小,铁耗小。铁氧体材料是复合氧化物烧结体,电阻率很高,适合高频下使用,但Bs值比较小,常使用在开关电源中。 高频变压器的设计通常采用两种方法[3]:第一种是先求出磁芯窗口面积AW与磁芯有效截面积Ae的乘积AP(AP=AW×Ae,称磁芯面积乘积),根据AP值,查表找出所需磁性材料之编号;第二种是先求出几何参数,查表找出磁芯编号,再进行设计。 注意: 1)设计中,在最大输出功率时,磁芯中的磁感应强度不应达到饱和,以免在大信号时产生失真。 2)在瞬变过程中,高频链漏感和分布电容会引起浪涌电流和尖峰电压及脉冲顶部振荡,使损耗增加,严重时会造成开关管损坏。同时,输出绕组匝数多,层数多时,应考虑分布电容的影响,降低分布电容有利于抑制高频信号对负载的干扰。对同一变压器同时减少分布电容和漏感是困难的,应根据不同的工作要求,保证合适的电容和电感。 单片开关电源高频变压器的设计要点 高频变压器是单片开关电源的核心部件,鉴于这种高频变压器在设计上有其特殊性,为此专门阐述降低其损耗及抑制音频噪声的方法,可供高频变压器设计人员参考。 单片开关电源集成电路具有高集成度、高性价比、最简外围电路、最佳性能指标等优点,能构成高效率无工频变压器的隔离式开关电源。在1994~2001年,国际上陆续推出了TOtch、TOtch-Ⅱ、TOtch-FX、TOtch-GX、Tintch、Tintch-Ⅱ等多种系列的单片开关电源产品,现已成为开发中、小功率开关电源、精密开关电源及开关电源模块的优选集成电路。 高频变压器是开关电源中进行能量储存与传输的重要部件,单片开关电源中高频变压器性能的优劣,不仅对电源效率有较大的影响,而且直接关系到电源的其它技术指标和电磁兼容性(EMC)。为此,一个高效率高频变压器应具备直流损耗和交流损耗低、漏感小、绕组本身的分布电容及各绕组之间的耦合电容要小等条件。 高频变压器的直流损耗是由线圈的铜损耗造成的。为提高效率,应尽量选择较粗的导线,并取电流密度J=4~10A/mm2。 高频变压器的交流损耗是由高频电流的趋肤效应以及磁芯的损耗引起的。高频电流通过导线时总是趋向于从表面流过,这会使导线的有效流通面积减小,并使导线的交流等效阻抗远高于铜电阻。高频电流对导体的穿透能力与开关频率的平方根成反比,为减小交流铜阻抗,导线半径不得超过高频电流可达深度的2倍。可供选用的导线线径与开关频率的关系曲线如图1所示。举例说明,当f=100kHz时,导线直径理论上可取φ0.4mm。但为了减小趋肤效应,实际可用更细的导线多股并绕,而不用一根粗导线绕制。 在设计高频变压器时必须把漏感减至最小。因为漏感愈大,产生的尖峰电压幅度愈高,漏极钳位电路的损耗就愈大,这必然导致电源效率降低。对于一个符合绝缘及安全性标准的高频变压器,其漏感量应为次级开路时初级电感量的1%~3%。要想达到1%以下的指标,在制造工艺上将难于实现。减小漏感时可采取以下措施:o减小初级绕组的匝数NP; o增大绕组的宽度(例如选EE型磁芯,以增加骨架宽度b);

高频变压器检验规范

页序1of3 版本首版发行制定审核日期A/0版本变更 批准: 生效日期:

页序2of3 1.0 目的 规范高频变压器的检验内容与方式,以确保来料品质符合产品生产要求 2.0 范围 仅适用于高频变压器的一般检验 3.0 参考 COP830-01不合格品控制程序 COP743-01来料检验控制程序 4.0 定义 一种由铁氧体和漆包线组成的电子元器件,主要作用是在频率较高的范围内转换电磁过程 5.0 责任 5.1 IQC负责其物料检验或试验 5.2 MRB负责不合格物料的处理 6.0 程序: 6.1抽样 6.1.1外观检验:依据MIL-STD-105E按LevelⅡ级水准进行抽样,抽样时应随机从批量不同的包装单元中抽取,切忌单一从最小单元中抽取样品数 6.1.2特性&尺寸与实验则按Level S-2级水准进行抽样,并从LevelⅡ级抽样数中抽取样品数 6.2检验项目及标准 检验项目检验标准 缺陷判定 检验方法 Min Maj Cri 外观1.胶芯无破裂、烂。 2.针脚光亮、无氧化发黑、锈蚀、压痕、变 形、毛刺、锡点大或过高。 3.磁芯无破损、断裂、披锋、结合处间隙小、 均匀。 4.表面无积油、锡渣。 5.变压器无露铜。 × × × × × 以内臂长 70%左右时 照样品目视 检验 尺寸1.符合设计/开发确认资料或样品要求。 2.允许公差以零件规格书为准,无要求时, 一般允许公差: 外形尺寸:±0.5mm 引脚直径、长度:±0.1mm 引脚间中心距离:±0.3mm 初次间引脚中心距离:±0.5mm × ×参照样品检 验用游标卡 尺、千分尺 测量 制定审核批准

标 准高频变压器检验规范 文件编号QA-WI-577 版本A/0 页序3of3 检验项目检验标准 缺陷判定 检验方法 Min Maj Cri 特性1.电感量符合零件规格书要求,无要求时, 一般误差:±10% 2.直流电阻符合零件规格书,无要求时,一 般误差:±15% 3.相位正确。 4.初级、次级、磁芯之间耐压不低于工程确 认资料要求。 × × × × 1.LCR仪表 测试。 2.用LCR仪 表测试,同 相增加,反 相减少。 3.用高压机 测试。 实验1.可焊性 表面光泽、无凹凸点毛刺,浸锡均匀,无发 黑或不沾锡现象。 × 锡槽法可焊 性实验。 (温度 350℃± 20℃) 制定审核批准

对变压器变比的测试(借鉴分享)

摘要 变压器变压比是变压器一次绕组与二层绕组之间的电压比。是为了检测变压器每次绕组的匝数是否符合设计要求。 测量变压器的变压比,是变压器交接、大修后必须进行的试验,在变电所投入使用时,变压器是保证变电所所用电与馈出电的电压稳定的重要设备,具体到变压器时,是变压器变压比起作用,通过试验可以验证变压器的电压变换是否正确,还可以检查各线圈的匝数比与设计是否相符、各分接引线是否连接正确,及变压器匝数是否短路等,变压器能否投入运行,也要根据试验结果进行判断。 本论文主要是通过变压器变压比自动测试仪对树脂绝缘干式整流变压器的变压比进行测试,通过测试结果判断该变压器变压比是否合格。 关键字:变压器,变压比,变压器变压比自动测试仪

Abstract Transformer transformer ratio is the voltage transformer primary and secondary windings between the voltage ratio. In order to detect whether the number of turns of each winding of the transformer meets the design requirements. V oltage ratio measurement of transformer, transformer overhaul test must be carried out after the handover, the substation put into use, is to ensure that the transformer substation auxiliary power feeder and important electrical equipment of voltage stability, specific to the transformer, the transformer is compared, through the test can verify voltage transformer is correct, you can also check the coil number ratio and design are consistent with the tap lead is properly connected, and the transformer turns is short circuit, the transformer can put into operation, should be judged according to the test results. This paper is mainly through the transformer transformer ratio automatic test instrument for resin insulation dry rectifier transformer transformer ratio of the test, through the test results to determine whether the transformer transformer ratio is qualified. Keyword:Transformer, transformer ratio, transformert ransformer ratio automatic test instrument

变压器的基本知识及测量方法

变压器的基本知识及测量方法 一、简介:变压器是借助于电磁感应,在绕组之间交换交流电压或电流的一种电气设备。从电厂发出的电能,要经过很长的输电线路输送给远方的用户,为了减少输电线路上的电能损耗,必须采用高压或超高压输送。而目前一般发电厂发出的电压,由于受到绝缘水平的限制,电压不能太高,这就要经过变压器将电厂发出的电压进行升高送到电力网。这种变压器统称升压变压器。对各用户来说,各种电气设备所要求的电压又不太高,也要经过变压器,将电力系统的高电压变成符合用户各种电气设备要求的额定电压。作为这种用途的变压器统称降压变压器。电力变压器是电力系统中,用以改变电压的主要电气设备 二、变压器的分类 变压器有不同的使用条件、安装环境,有不同的电压等级和容量级别,有不同的结构形式和冷却方式,所以应按不同原则进行分类。 分类方式 名称 备注 按容量 中小型变压器 35KV及以下,容量630~6300KVA 大型变压器 110KV及以下,容量8000~63000KVA 特大型变压器 220KV及以上,容量3150及以上 按用途 电力变压器 升压、降压、配电、联络、专用变压器 仪用变压器 电压、电流互感器 电炉变压器 试验变压器 整流变压器 调压变压器 矿用变压器 其他变压器 按相数分为 三相 单相 按铁心结构

心式变压器 壳式变压器 按调压方式 无载调压 有载调压 按铁心型式 叠片式 卷铁心 按冷却方式 油浸自冷 油浸风冷 油浸水冷 干式空气自冷 干式空气风冷 干式浇注绝缘 按绕组数量 双绕组 三绕组 按绕组耦合方式 普通变 自耦变 三、结构 1.铁心 普通变压器硅钢片叠成,变压器的铁芯由硅钢带绕制而成。铁芯是完成电能---磁能---电能转换的主体。 2.绕组(俗称线圈)

道路噪声环境监测实验报告.doc

道 路 噪 声 监 测 班级:城规x5班 小组:第一小组 小组成员:李国强、苗茗凯、王莉、郝璐、万利、任慧、张素毓、任安平、 王璐玭、张平、牛凯、薛飞

道路噪声环境监测 噪声就是人们生活工作所不需要的声音。从物理现象判断。一切无规律的或声信号叫噪声,或人们主观上一切不希望存在的干扰声都叫噪声。环境噪声监测是环境监测的一个重要组成部分,是为环境保护事业服务、为创造清洁、优美、安静环境的一项基础性工作。 一、实验目的 1.掌握声级计的使用方法和环境噪声的监测技术; 2.熟悉对非稳定噪声监测数据的处理方法; 3.对道路噪声源及周边环境进行监测。 二、监测条件 1.天气条件选在无雨、无雪,风力小于四级(5.5m/s)的时间,声级计应保持传声器膜片清洁,风力在三级以上必须加风罩(以避免风噪声干扰),五级以上大风应停止测量。 2.测量仪器为普通声级计,了解如何使用仪器。 3.手持仪器测量,传声器要求距离地面1.2m。 三、监测项目 兴安南路,大学路至乌兰察布路段内车流量及噪声监测。 四、实验步骤

1.小组成员分工到各点测量。测量时间定为早上 8:00~8:30、9:00~9:00。 2.测量时,传声器水平设置,于道路边沿20厘米处,高约1.2m 左右,垂直指向道路。监测时,三人一小个组,一位同学负责固定仪器,一位同学计时,一位同学记录读数。 3.每个测点位在三个时间段各测 200个数据,读数方式使用慢档,每隔五秒读一个瞬时A声级,连续读取200个数据,求取各测点等效连续声级。测量时记录过往车流量、附近主要噪声来源(如交通噪声、施工噪声、工厂或车间噪声、锅炉噪声等)、天气条件及测量时间、点位位置和测量人姓名。 五、数据记录与处理 由于环境噪声是随时间无规则变化的,因此测量结果一般用统计值或等效声级来表示。因数据符合正态分布,可用近似公式:等效连续声级:L eq=d2/60+L50 ,d=L10-L90 噪声污染级:L NP=L eq+d

对变压器变比的测试

摘要 变压器变压比就就是变压器一次绕组与二层绕组之间得电压比。就就是为了检测变压器每次绕组得匝数就就是否符合设计要求。 测量变压器得变压比,就就是变压器交接、大修后必须进行得试验,在变电所投入使用时,变压器就就是保证变电所所用电与馈出电得电压稳定得重要设备,具体到变压器时,就就是变压器变压比起作用,通过试验可以验证变压器得电压变换就就是否正确,还可以检查各线圈得匝数比与设计就就是否相符、各分接引线就就是否连接正确,及变压器匝数就就是否短路等,变压器能否投入运行,也要根据试验结果进行判断。 本论文主要就就是通过变压器变压比自动测试仪对树脂绝缘干式整流变压器得变压比进行测试,通过测试结果判断该变压器变压比就就是否合格。 关键字:变压器,变压比,变压器变压比自动测试仪

Abstract Transformertransformer ratiois thevoltage transformer primary andsecondary windings between the voltage ratio、In order to detectwhether the numberof turns of each windingofthetransformermeetsthedesign requirements、 Voltageratiomeasurementof transformer, transformer over haultest must becarried outafter thehandover,the substation put intouse,is toensure that the transformer substation auxiliary power feederand importantelectrical equipmentof voltagestability, specificto the transformer,the transformer is pared,through the test canverifyvoltagetransformer is correct,you can alsocheck the coil number ratioanddesign are consistent with the tapleadis properly connected,and thetransformerturns isshort circui t, the transformer canput into operation,should be judged accordin gto the test results、 This paper ismainly throughthe transformertransformer ratio automatic test instrument for resin insulation dry rectifier transformer t ransformer ratio of thetest, through thetest results to determinewhether the transformer transformer ratio is qualified、 Keyword:Transformer, transformerratio, transformert ransformer ratio automatictest instrument 目录 摘要?I Abstract?II 目录?III 1绪论?1 2试验概况?1

噪声监测实践报告

环境监测课程实习报告 院系:环境科学与工程学院指导老师:** 姓名:学号: ** 日期: 一、前言 (1)实习目的 噪声是人们生活工作所不需要的声音,环境噪声监测是环境监测的一个重要组成部分, 是为了保护环境,创造清洁、优美、安静的环境的一项基础性工作。此次实习将课堂上学的 理论知识应用于实践中,加深对课题知识的理解和记忆,了解二者之间的异同点,学会噪声 监测的方法和基本工作步骤。(2)实习意义 对校园内的声环境进行监测,了解学校的声环境功能划分和声环境质量状况,对学校的 声环境质量做出评价,掌握一些简单的声环境监测原理及技术方法,学习声级计的使用方法 和环境噪声的监测技术,通过实习,加深对自己专业的认识程度。(3)实习时间 2013年11月4日——2013年11月8日(4)小组成员 ***************** 二、监测方案的设计 (1)采样点设置 本次实习的监测区域为第二教学楼、林学楼、图书馆和实验楼所围成的区域,见图1, 将该区域按网格划分,选取了双亭苑东南方的楼梯口作为监测点,该处处于整个区域的车行 道路上,比邻图书馆和第二教学楼两个需要安静的产所,偶尔会有车辆和行人经过,而该条 道路又是学生下课必经之路,在下课时人流量大,对图书馆有一定的影响。 图1 监测区域图 (2)噪声评价方法 本次实习对噪声的评价方法采用连续等效声级法,将实地测得的leq值做平均值,所得 的平均值代表该地区的噪声水平,对照《声环境质量标准》gb3096--2008对该地区的声环境 质量做出评价。 按照区域的使用功能特点和环境质量要求,将声环境功能区划分为物种类型: 0类声环境功能区:指康复疗养区等特别需要安静的区域。 1类声环境功能区:指以居民住宅、医疗卫生、文化体育、科研设计、行政办公为主要 功能,需要保持安静的区域。 2类声环境功能区:指以商业金融、集市贸易为主要功能,或者居住、商业、工业混杂, 需要维护住宅安静的区域。 3类声环境功能区:指以工业生产、仓储物流为主要功能,需要防止工业噪声对周围环 境产生严重影响的区域。 4类声环境功能区:指交通干线两侧一定区域之内,需要防止交通噪声对周围环境产生 严重影响的区域,包括4a类和4b类两种类型。4a类为高速公路、一级公路、二级公路、城 市快速路、城市主干路、城市次干路、城市轨道交通(地 面段)、内河航道两侧区域;4b类为铁路干线两侧区域。 本次监测的区域在校园内,所以属于1类声功能区,根据划分的区域执行相应的标准值, 环境噪声限值见表1: 表1 环境噪声限值 三、操作步骤 选取08:00—10:00、10:00—12:00、14:00—16:00、16:00—18:00、20:00—22:00五个 时间段作为监测时段,每个时段在同一监测点每隔5秒测得一个噪声值,连续测100个噪声 值,得出100个噪声值中的平均值作为该时段的噪声值。 四、环境质量评价

基于常见变压器容量测试的方法概述

基于常见变压器容量测试的方法概述 电能是一种商品,在市场经济条件下,国家有关文件规定:居民生活、农业生产用电,实行单一制电度电价;工商业及其他用户中受电变压器容量在100kV A 或用电设备装接容量为100kW及以上的用户,实行两部制电价,即基本电价和电度电价。在两部制电价中,基本电价是由变压器的容量大小决定的。但其现有的一些变压器容量测试方法得出常规变压器容量的检测方法是各种不同的,文章对其进行综合讨论。 标签:变压器;容量;测试 1 概述 从变压器的整体构造来讲,其主要构成部件有:变压器高压侧绕组、变压器低压侧绕组及铁芯。由于绕组的选择、铁芯构成以及制造手段的差异,会使各种变压器之间存在差异。就算是同一台变压器,由于使用的条件不同,其也会产生不一样的参数,变压器基本参数:I0、P0、Uk、Pk。其数值大小是由变压器的制造技术、使用材料、工作效率、运行方式、电力系统稳定性、电能质量等决定的。油浸式变压器和干式变压器的基本参数在变压器国家标准GBT6451-1999和GBT10228-1997中都规定了相应的标准。主要有以下几个参数: (1)空载电流I0 当变压器低压侧绕组开路,高压侧加上UN时,在高压侧绕组中的电流大小即空载电流。习惯用其绕组的额定电流百分数表示。 (2)空载损耗P0 变压器的空载损耗主要是铁芯损耗,当变压器一侧绕组开路,另一侧加上50Hz的UN时,变压器吸收的有功功率。由变压器原理:E1=KfBm,K是比例常数,E1是原边感应电动势。可得到铁耗: (3)短路电压Uk 变压器短路电压又称为阻抗电压。即将变压器二次侧绕组短接,在一次侧绕组加上50Hz的电压直到二次侧绕组中的电流达到额定值,此时以一侧所加的电压。 (4)短路损耗PK 变压器的短路损耗主要是铜耗PCU,当变压器一次侧绕组短路,二次侧绕组流过IN时变压器消耗的有功功率。PCU为直流电阻损耗,表示为:

变压器变比及极性测试

变压器变比试验 一、工作目的 检查各绕组的匝数、引线装配、分接开关指示位置是否符合要求;提供变压器能否与其他变压器并列运行的依据。 二、工作对象 变压器的一、二次侧绕组。 三、知识准备 变压器的电压比(简称变比),是变压器空载时高压绕组电压U1与低压绕组电压U2的比值,即变比k= U1/ U2。变压器的变比试验是验证变压器能否达到规定的电压变换效果,变比是否符合变压器技术条件或铭牌所规定的数值的一项试验。四、工作器材准备 BBC6638变比测试仪1套;包括变比测试仪专用导线若干、放电棒等。 五、工作危险点分析 (1)注意与加压部分保持足够的安全距离。 (2)防止加压部分从高出脱落造成人身伤害。 (3)注意与相邻试验班组的谐调。 六、工作接线图 七、工作步骤 (1)将变比测试仪接地(先接接地端,后接仪器端) (2)将变比测试仪的ABC,abc通过专用导线和变压器的ABC,abc相连接。 (3)在变比测试仪上分别输入“变压器组别”,“总分接数”,“级差”和“额定变比”。 八、工作标准 根据《电力设备预防性试验规程DL/T 596-1996》规定;试验周期:1)分接开关引线拆装后,2)更换绕组后,3)必要时。要求:1)各相应接头的电压比与铭牌

值相比,不应有显著差别,且符合规律,2)电压35kV以下,电压比小于3的变压器电压比允许偏差为±1%;其它所有变压器:额定分接电压比允许偏差±0.5%,其它分接的电压比应在变压器阻抗电压值(%)的1/10以内,但不得超过±1. 九、综合分析方法及注意事项 1.注意事项 (1)变压器的相序为,面对高压侧从左往右依次是(中性点)、A、B、C相。接线时不能将其接反。 (2)注意在变比测试仪上输入变压器组别,防止出现错误。 2.常见问题 (1)检查仪器设置档位与变压器的实际档位是否一致。 (2)考虑分接开关接头位置是否错误。 (3)考虑线圈匝数是否错误。 变压器的极性测试 (一)直流法确定变压器的极性 测量变压器绕组极性的方法有直流法和交流法,这里介绍简单适用的直流法:用一节干电池接在变压器的高压端子上,在变压器的二次侧接上一毫安表或微安表,实验时观察当电池开关合上时表针的摆动方向,即可确定极性。 图1 用直流法测量极性图2 用直流法确定接线组别 如图1所示,将干电池的正极接在变压器一次侧A端子上,负极接到X上,电流表的正端接在二次侧a端子上,负极接到x上,当合上电源的瞬间,若电流表的指针向零刻度的右方摆动,而拉开的瞬间指针向左方摆动,说明变压器是减极性的。 若同样按照上面接线,但当电源合上或拉开的瞬间,电流表的指针的摆动方向与上面相反,则说明变压器是加极性的。 (二)直流法确定变压器的组别 直流法是最为简单适用的测量变压器绕组接线组别的方法,如图2所示是对一Y Y/接法的三绕组变压器用直流法确定组别的接线,对于其他形式的变压器接线相同。用一低压直流电源如干电池加入变压器高压侧AB、BC、AC,轮流确定接在低压侧ab、bc、 ac上的电压表指针的偏转方向,从而可得到9个测量结果。这9个测量结果的表示方法为:用正号“+”表示当高压侧电源合上的瞬间,低压侧表针摆动的某一个方向,而用负号“-”表示与其相反的方向。如果用断开电源的瞬间来作为结果,则正好相反。另外还有一种情况,就是当测量Y/ Y接法的变压器时,会出现表针为零,我们用“0”来作为结果。 / ?或? 将所测得的结果与表一所列对照,即可知道该变压器的接线组别。

电力变压器部放电测试方法

电力变压器局部放电试验方法 一、电力变压器 通常有两种试验方法 一种是如图(1)所示的接法,它主要用于试验绕组间的绝缘。为提高测试灵敏度,耦合电容Ck 应比被试变压器初、次级间电容大得多。这种试验不是用于检查各个绕组,每个绕组的两端就可连接在一起,铁芯和外壳应和低压绕组一起牢固接地。 图(2)的电路可对变压器进行自激励试验,高压套管上的轴头与高压端的电容可以作为耦合电前现时简化试验电路,输入单元初级A-B 接在套管抽头与接地法蓝之间。不过,需排除高压管本身放电的可能性。如无套管抽头可用,则仍需外接耦合电容Ck 。 图(1)测试变压器初、次级间绝缘的试验电路 图(2)自激励条件下变压器局部放电试验电路 输入单元 至放大器 至定标 至放大器 至定标

IEC76-3(1980)规定校正方波发生器的前沿小于0.1μs,注入电容Cq为50pf。校正方波发生器经匹配电缆将匹配接线盒放在尽量靠近测量的高压端上经Cq注入。 对于试验时的加压时间程序,IEC的规定见图(3) 5 秒 5分30 秒 U2 图(3)变压器试验的加压时间程序 其中线和中性端间试验电压用Um/3表示如下: U1=3Um/3= Um U2=1.5Um/3 = Um此时规定放电量q=500pc =1.3Um/3此时规定放电量q=300pc 变电器局部放电测试中应注意以下一些问题: 1)IEC规定视在电荷(或放电量)主要根据最高的稳定状态的重复脉冲读出。偶然的高脉冲可不予理会。 2)对不同线端的测量通道都要各自进行校正。 3)背景噪音电平应低于规定的允许放电量q的一半。 4)对高大的变压器测试时,方波发生器应通过有电阻匹配的同轴电缆,并将Cq靠近试品线端用JEE-1时应将线盒靠近试品测量端,可减小测量误差。 5)变压器绕组是具有分布参数的试品,和旋转电机一样。变压器绕组中产生的局部放电脉冲波先是在检测端出现直达波,然后传输波一面传输一面到达。α大的饼式绕组和α小的园筒式绕组的起始电位

接地变压器进行变比误差测量

接地变压器进行变比误差测量 3~10 kV电力输配电系统一般都为不直接接地系统,为了保障系统单相接地时仍能继续运行,往往在变电站内利用ZN,yn11接地变压器的人工接地点,并加装消弧装置来限制单相接地故障电流,确保电网安全。对于这类变压器的变比测量,运用现有各个厂家生产的变比电桥难以得到正确的测量结果。为此有很多用户只能釆用电压表比较法进行测量,但由于受电压波动、测量仪表误差及人为误差等因素的影响,往往也难以得到理想的结果。 1 变比误差测量中发现的问题 广东省广电集团有限公司江门供电分公司220 kV群星变电站站用变压器为许继电气股份有限公司产品,型号为SC9-630/11.250/0.4,联结组别为ZN,yn11,电压组合为(11±2×2.5%)/0.4 kV,额定容量为630 kVA;使用的变比测量仪器为金源科技有限公司生产的JYT变比测量仪。按照试验的步骤输入变比、联结组别及分接头值进行测量,最大变比误差为9.85%,而厂家出厂报告中变比误差均在0.1%以下。 2 ZN,yn11变压器变比误差测量方法 以ZN,yn11变压器U相和V相的变比误差测试为例。如图1所示,短接变压器低压侧V2相和W2相,有如下关系式: 式中:NU1,o——变压器高压侧U1相外线圈匝数; NU1,i——变压器高压侧U1相内线圈匝数; NU2——变压器低压侧U2相线圈匝数; UU1-V1——变压器高压侧U1相与V1相之间的电位差; UU2-V2——变压器低压侧U2相与V2相之间的电位差。 从式(1)看出:可以将变压器的变比测量转化为绕组匝数比的测量。 3 ZN,yn11变压器变比误差测量

单级PFC高频变压器设计及参数计算详解

单级PFC高频变压器设计及参数计算详解 由于LED照明电源要求:民用照明PF值必需大于0.7,商业照明必需大于0.9。对于10~70W的LED驱动电源,一般采用单级PFC来设计。即节省空间又节约成本。接下来我们来探讨一下单级PFC高频变压器设计。 以一个60W的实例来进行讲解: 输入条件: 电压范围:176~265Vac 50/60Hz PF>0.95 THD<25% 效率ef〉0.87 输出条件: 输出电压:48V 输出电流:1.28A 第一步:选择ic 和磁芯: Ic用士兰的SA7527,输出带准谐振,效率做到0.87应该没有问题。 按功率来选择磁芯,根据以下公式: Po=100*Fs*Ve Po:输出功率;100:常数;Fs:开关频率;Ve:磁芯体积。 在这里,Po=Vo*Io=48*1.28=61.44;工作频率选择:50000Hz;则: Ve=Po/(100*50000) =61.4/(100*50000)=12280 mmm PQ3230的Ve值为:11970.00mmm,这里由于是调频方式工作。完全可以满足需求。可以代入公式去看看实际 需要的工作频率为:51295Hz。 第二步:计算初级电感量。 最小直流输入电压:VDmin=176*1.414=249V。 最大直流输入电压:VDmax=265*1.414=375V。 最大输入功率:Pinmax=Po/ef=61.4/0.9=68.3W(设计变压器时稍微取得比总效率高一点)。 最大占空比的选择: 宽电压一般选择小于0.5,窄电压一般选择在0.3左右。考虑到MOS管的耐压,一般不要 选择大于0.5 ,220V供电时选择0.3比较合适。在这里选择:Dmax=0.327。 最大输入电流: Iinmax=Pin/Vinmin=68.3/176=0.39 A 最大输入峰值电流:Iinmaxp=Iin*1.414=0.39*1.414=0.55A MOS管最大峰值电流:Imosmax=2*Iinmaxp/Dmax=2*0.55/0.327=3.36A 初级电感量:Lp= Dmax^2*Vin_min/(2*Iin_max*fs_min)*10^3 =0.327*0.327*176/(2*0.39*50000)*1000 =482.55 uH 取500uH。 第三步:计算初级匝数NP: 查磁芯资料,PQ3230的AL值为:5140nH/N^2,在设计反激变压器时,要留一定的气息。选择0.6倍的AL值比较合适。在这里AL我们取:

变压器容量及空负载测试仪

变压器容量及空负载测试仪 一、概述 我国电力系统实行两部制电价:除了收取计量装置所计量的费用外,还要根据变压器容量收取基本电费;对于较大用户在投运变压器时还要一次性交纳增容费。随着电力行业的发展,用电量的增大,自有变压器和私人承包变压器已渐渐占据了配变中相当的份额,随之而来的就是个人为了达到少交费、多用电的目的而采取的各种弄虚作假的手段(主要是改、换变压器铭牌);电力部门苦于没有有效的监管手段,有些用户年偷窃电费金额相当惊人。 变压器容量及空负载测试仪,是我公司专门针对不良电力用户偷逃基本电费、私自增容问题而研发设计的新型仪器,用于变压器容量、空载、负载等特性参数测量的高精密仪器。本仪器为多功能测量仪器,相当于两种测试仪器:即变压器容量测试仪及变压器特性参数测试仪。可对多种变压器的容量、型式、空载电流、空载损耗、短路(负载)损耗、阻抗电压等一系列工频参数进行精密的测量。 该仪器具有体积小、重量轻、测量准确度高、稳定性好、操作简单等诸多优点。完全可以取代以往利用多表法测量变压器损耗和容量的方法,接线更简单,测试、记录更方便,使您的工作效率得到了大幅度的提升。

二、功能特性 1、可精确测量各种配电变压器的容量,方便、准确。 2、可测量变压器的空载电流、空载损耗、短路电压、短路(负载)损 耗。 3、仪器内部自动进行量程切换,允许测量电压、电流范围宽,接线简 单。 4、测试三相变压器的空载、负载时,仪器能自动判断接线是否正确, 并显示三相电压、电流的向量图。 5、单机可以完成1000KVA以下的配电变压器全电流下的负载实验的 测量;在三分之一额定电流下可完成3150KVA以下的配电变压器的负载试验的测量(在三分之一的额定电流下,仪器可换算到额定电流下的负载损耗参数)。 6、所有测试结果均自动进行校正。仪器可自动进行诸如:波形校正、 温度校正、非额定电压校正、非额定电流校正等多种校正,使测试结果准确度更高。 7、320×240大屏幕、高亮度的液晶显示,全汉字菜单及操作提示实 现友好的人机对话,触摸按键使操作更简便,宽温液晶带亮度调节,可适应冬夏各季。 8、仪器可以由用户预设40组被试品参数,而且这些参数可以根据需 要随时删除和增加,使用非常方便。 9、自带实时电子钟,自动记录试验的日期、时间利于实验结果的保存、

高频变压器制作与技术参数

高频变压器制作与技术参数 脉冲变压器也可称作开关变压器,或简单地称作高频变压器。在传统的高频变压器设计中,由于磁芯材料的限制,其工作频率较低,一般在20kHz左右。随着电源技术的不断发展,电源系统的小型化、高频化和大功率化已成为一个永恒的研究方向和发展趋势。因此,研究使用频率更高的电源变压器是降低电源系统体积、提高电源输出功率比的关键因素。 随着应用技术领域的不断扩展,开关电源的应用愈来愈广泛,但制作开关电源的主要技术和耗费主要精力就是制作开关变压器的部件。 开关变压器与普通变压器的区别大致有以下几点: (1)电源电压不是正弦波,而是交流方波,初级绕组中电流都是非正弦波。 (2)变压器的工作频率比较高,通常都在几十赫兹,甚至高达几十万赫兹。在确定铁芯材料及损耗时必须考虑能满足高频工作的需要及铁芯中有高次谐波的影响。 (3)绕组线路比较复杂,多半都有中心抽头。这不仅增大了初级绕组的尺寸,增大了变压器的体积和重量,而且使绕组在铁芯窗口中的分布关系发生变化。

图1 开关电源原理图 本文介绍了一款如图1所示的DC—DC变换器,输入电压为直流24V,输出电压分别为5V 及12V的多路直流输出。要求各路输出电流都在lA以上,核心器件是美国Unitrode公司生产的一种高性能单端输出式电流控制型脉宽调制器芯片UC3842,最高工作频率可达200kHz。根据锌锰铁氧体合金的优异电磁性能,通过具体示例介绍工作频率为100kHz的高频开关电源变压器的设计及注意事项。 2变压器磁芯的选择与工作点的确定 2.1 磁芯材料的选择 从变压器的性能指标要求可知,传统的薄带硅钢已很难满足变压器在频率、使用环境方面的设计要求。磁芯的材料只有从坡莫合金、铁氧体材料、钴基非晶态合金和超微晶合金几种材料中

关于噪音实验报告模板

关于噪音实验报告模板 篇一:建筑物理环境噪声测量实验报告 课程名称: 学生学号: 所属院部: (理工类) 专业班级: 学生姓名: 指导教师: 20xx——20xx学年第x学期 xx学院教务处制 实验项目名称:环境噪声测量实验实验学时:4 同组学生姓名:实验地点: 实验日期:实验成绩:批改教师:批改时间: 一、实验目的和要求 (1)掌握噪声测量的方法,对噪声的大小有一个主观的认识 (2)学会使用声级计; (3)分析噪声的大小与来源,得知建筑是否符合规定。 二、实验仪器和设备HS5633型声级计 三、实验过程 (1)测点的选择:建筑物外1m处,高1.2m; (2)检查声级计的电池电力并采用校准器对其进行校准;

(3)测量应在无风雪、无雷电天气,风速5m/s以下进行。大风时应停止测量; (4)记录声级计读数值,保持声级计在L档,每隔5秒读一个数值,共记录200个数。 四、实验结果与分析 原理:将记录的200个数从大到小的顺序排列,第20个数值就是L10,L10反映交通噪声的峰值;第100个数值就是L50,第180个数值就是L90,L90反映背景噪声值。等效声级反映了在测量的时间内声能的平均分布情况。计算公式:Leq=L50+d/60其中d=L10-L90 测量得出数据(单位:db): 依据测量的的数据得出: L10(在10%时最大噪音峰值)=58.9db L50(在200个数据中最大平均值)=52.4 db L90(背景噪声)=47.5 Leq(等效声级)=52.59 (Leq=L50+d/60d=L10-L90) 分析:对照《城市区域环境噪声标准》的校园1类的昼间等效声级Leq<=55db,所以符合标准。 篇二:噪声测量实验报告 一、前言 随着城市人口的增长,城市建设、交通工具、现代化工业的发展,各种机器设备和交通工具数量急剧增加,以工业和交通噪声为主的噪声污染日趋严重,甚至形成了公害,它严重破坏了人们生活的安宁,危害人们的身心健康,影响人们的正常工作与生活。

变压器测试方法-网上测试方法

中周变压器的检测 A 将万用表拨至R×1挡,按照中周变压器的各绕组引脚排列规律,逐一检查各绕组的通断情况,进而判断其是否正常。 B 检测绝缘性能 将万用表置于R×10k挡,做如下几种状态测试: (1)初级绕组与次级绕组之间的电阻值; (2)初级绕组与外壳之间的电阻值; (3)次级绕组与外壳之间的电阻值。 上述测试结果分出现三种情况: (1)阻值为无穷大:正常; (2)阻值为零:有短路性故障; (3)阻值小于无穷大,但大于零:有漏电性故障。 3 电源变压器的检测和经验 其容易出的毛病主要为内部短路。这时可通过万用表检查电源电压来判定其是否正常,若行输出变压器绝缘性能下降或有匝间局部短路现象时,将使得行扫描电流激增,开关电源输出电压下降。因此,可通过测量电源电压来判断行输出变压器是否短路。 A 通过观察变压器的外貌来检查其是否有明显异常现象。如线圈引线是否断裂,脱焊,绝缘材料是否有烧焦痕迹,铁心紧固螺杆是否有松动,硅钢片有无锈蚀,绕组线圈是否有外露等。 B 绝缘性测试。用万用表R×10k挡分别测量铁心与初级,初级与各次级、铁心与各次级、静电屏蔽层与衩次级、次级各绕组间的电阻值,万用表指针均应指在无穷大位置不动。否则,说明变压器绝缘性能不良。 C 线圈通断的检测。将万用表置于R×1挡,测试中,若某个绕组的电阻值为无穷大,则说明此绕组有断路性故障。 D 判别初、次级线圈。电源变压器初级引脚和次级引脚一般都是分别从两侧引出的,并且初级绕组多标有220V字样,次级绕组则标出额定电压值,如15V、24V、35V等。再根据这些标记进行识别。 E 空载电流的检测。 (a) 直接测量法。将次级所有绕组全部开路,把万用表置于交流电流挡(500mA,串入初级绕组。当初级绕组的插头插入220V交流市电时,万用表所指示的便是空载电流值。此值不应大于变压器满载电流的10%~20%。一般常见电子设备电源变压器的正常空载电流应在100mA左右。如果超出太多,则说明变压器有短路性故障。 (b) 间接测量法。在变压器的初级绕组中串联一个10/5W的电阻,次级仍全部空载。把万用表拨至交流电压挡。加电后,用两表笔测出电阻R两端的电压降U,然后用欧姆定律算出空载电流I空,即I空=U/R。 F 空载电压的检测。将电源变压器的初级接220V市电,用万用表交流电压接依次测出各绕组的空载电压值(U21、U22、U23、U24)应符合要求值,允许误差范围一般为:高压绕组≤±10%,低压绕组≤±5%,带中心抽头的两组对称绕组的电压差应≤±2%。 G 一般小功率电源变压器允许温升为40℃~50℃,如果所用绝缘材料质量较好,允许温升还可提高。

相关文档
最新文档