MW太阳能并网发电全套系统

MW太阳能并网发电全套系统
MW太阳能并网发电全套系统

5MW太阳能并网发电系统

1.太阳能并网发电系统简介

太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,直接通过并网逆变器,把电能送上电网。太阳能并网发电代表了太阳能电源的发展方向,是21世纪最具吸引力的能源利用技术。与离网太阳能发电系统相比,并网发电系统具有以下优点:

(1)利用清洁干净、可再生的自然能源太阳能发电,不耗用不可再生的、资源有限的含碳化石能源,使用中无温室气体和污染物排放,与生态环境和谐,符合经济社会可持续发展战略。

(2)所发电能馈入电网,以电网为储能装巻,省掉蓄电池,比独立太阳能光伏系统的建设投资可减少达3 5%-4 5%,从而使发电成本大为降低。省掉蓄电池并可提髙系统的平均无故障时间和蓄电池的二次污染。

(3)光伏电池组件与建筑物完美结合,既可发电又能作为建筑材料和装饰材料,使物质资源充分利用发挥多种功能,不但有利于降低建设费用,并且还使建筑物科技含呈:提高、增加“卖点”。

(4)分布式建设,就近就地分散发供电,进入和退岀电网灵活,既有利于增强电力系统抵御战争和灾害的能力,又有利于改善电力系统的负荷平衡,并可降低线路损耗。

(5)可起调峰作用。联网太阳能光伏系统是世界各发达国家在光伏应用领域竞相发展的热点和重点,是世界太阳能光伏发电的主流发展趋势,市场巨大,前景广阔。

2.并网发电系统的原理及组成

太阳能电池发电系统是利用光生伏打效应原理制成的,它是将太阳辐射能屋直接转换成电能的发电系统。它主要由太阳能电池方阵和逆变器两部分组成。如图1所示:白天有日照时,太阳能电池方阵发岀的电经过并网逆变器将电能直接输送到交流电网上,或将太阳能所发出的电经过并网逆变器直接为交流负载供电。

交涼电网

并网

逆变

图1:原理框图

2.1太阳能电池组件

一个太阳能电池只能产生大约0.6伏左右的电压,远低于实际使用所需电压。为了满足实际应用的需要,需要把太阳能电池连接成组件。太阳能电池组件包含一泄数量的太阳能电池,这些太阳能电池通过导线连接。如一个组件上,太阳能电池的数疑是36片串联,这意味着一个太阳能组件大约能产生21.6 伏左右的电压。

通过导线连接的太阳能电池被密封成的物理单元被称为太阳能电池组件,具有一左的防腐、防风、防雹、防雨的能力,广泛应用于各个领域和系统。肖应用领域需要较髙的电压和电流而单个组件不能满足要求时,可把多个组件组成太阳能电池方阵,以获得所需要的电压和电流。

2.2直流/交流逆变器

将直流电变换成交流电的设备。由于太阳能电池发岀的是直流电,而一般的负载是交流负载,所以逆变器是不可缺少的。逆变器按运行方式,可分为独立运行逆变器和并网逆变器。独立运行逆变器用于独立运行的太阳能电池发电系统,为独立负载供电。并网逆变器用于并网运行的太阳能电池发电系统将发岀的电能馈入电网。逆变器按输出波形又可分为方波逆变器和正弦波逆变器。

3.5MW太阳能并网发电系统设计

3.1设计总方案

(1)并网系统可以分为低压并网系统(即局域并网系统)和髙压并网系统。

低压并网系统特点在于太阳能光伏发电系统通过并网逆变器和一些电力保护装置连接到局域电网的配电盘上,其电力与电网电力混合在一起向负载供电,多余或不足的电力通过局域电网来调节。

高压并网系统特点在于太阳能光伏发电系统发的电逆变成交流后通过升圧变压器直接被输送到高压电网上,由电网把电力统一分配到冬个用电单位,大型太阳能光伏发电站采用这种形式。

局域并网系统的优点就是就地发电就地使用,很适合家庭、住宅小区和办公楼太阳能光伏发电.

不但节省了长距离大容量的输电线缆和线损,而且故障可以就地解决。

这种系统不使用蓄电池,配置比较简单,施工方便,系统自身损耗的电力少,所发电力的收得率

达90 %以上,因此采用并网发电方案,如图2所示。

(2)考虑到并网系统在安装及使用过程中的安全及可靠性,在并网逆变器直流输入加装直流

配电接线箱。

(3)并网逆变器采用三相四线制的输出方式。

3. 2电池组件及方阵支架的设计

3. 2.1电池组件

选用电池片型号为SE-180M,主要参数为:输出功率180Wp 、最佳工作电压36V 、最佳工作 电流5.0A 、开路电压48V 、短路电流5.3A,共需要27778片。

太阳能电池由16块串联成1路,共35路,需要180Wp 规格组件560块电池片总功率为: 180x16x35= 100800Wpo

太阳能电池方阵的主要技术参数为: (1) 工作电压580V,开路电压768V : (2) 工作电流175A,短路电流185A : (3) 转换效率大于16%; (4) 工作温度40°C ?90°C。 太阳能电池方阵的主要特点:

(1) 采用髙效率晶体硅太阳电池片,转换效率高:216%: (2) 使用寿命长:鼻25年,衰减小;

(3) 采用无螺钉紧固铝合金边框,便于安装,抗机械强度高; (

4) 采用高透光率钢化玻璃封装,透光率和机械强度髙: (5)采用密封防水的多功能接线盒。

3. 2?2方阵支架及光电场设计

太阳能电池支架采用混凝上标桩、槽钢底框、角钢支架、支架倾角20度。

50 X KHIKVV

图2:设计总方案

3. 3并网逆变器

3. 3. 1并网逆变器要求

一般的家庭、办公室、工厂等大多数用交流电源,但太阳能发电是供给直流电。如果要把交流电、太阳能电池、蓄电池联系起来,就必须先把直流变为交流,这类装置称为逆变器。但在实际应用逆变器时,不单纯是个电流变换的问题,还必须同时考虑到频率、电压、电流、相位、同步、有功功率、无功功率、电能质量等问题。因此,这是一个特殊的逆变器,它至少具备如下的控制功能。

①系统的自动启动和关闭一一应根据日照情况和规左的日照强度,在使太阳能发出电力能有效利用的限制条件下,对系统进行自动启动和关闭°

②最大功率点跟踪控制一一随着太阳能电池温度变化和日照强度的变化,相应的输出电压、电流也变化。这时应自动控制使太阳能电池的输出功率始终保持最大值。这个环节称为最大功率跟踪控制, 又称MPPT 控制。这是保证了太阳能发电系统髙效工作的最重要环石。

③防止单独运行一一系统侧虽然已停电,但由于太阳能继续供电,逆变器的输出电压并未改变,此时如不能正确检测出是否停电,一旦再恢复来电就有可能造成事故。这种情况称为单独运行。为保护设备维修人员不受到伤害,系统应设置保护功能。

④电压自动调整一一太阳能发出的富裕功率要反馈电网,称逆潮流供电。但在某种情况下,逆变输出点的电压上升可能会超过交流电网电压,故应有自动调整装置,使逆潮流电压与市场电网电压相等。

⑤事故时的系列关断一一系统侧或逆变器本事均有可能岀现事故,当检测岀不正常信号时,应安全地将系统脱开或完全地关断。

3. 3. 2设计原理图

设计原理采用如图3所示的电路。由并网逆变器、MPPT功率控制、工频变压器、电源、同步电压取样、IGBT 驱动、智能控制环肖、传感器等组成。

图3:并网逆变器主框图

并网逆变器采用最大功率跟踪技术,最大限度地把太阳能电池板转换的电能送入电网。逆变器自带 的显示单元可显示太阳能电池方阵电压、电流,逆变器输出电压、电流、功率,累汁发电虽:、运行状态、 异常报警等各项电气参数。同时具有标准电气通讯接口,可实现远程监控。具有可靠性高、具有多种并 网保护功能(比如孤岛效应等)、多种运行模式、对电网无谐波污染等特点。

根据以上要求选用徳国进口 Line Back S100KW 并网逆变器。本逆变器的特征如下:

(1) 无变压器,实现了小型轻量化。

(2) 功能模块化,可根据需要制左岀合理的安装模块。 (3) 有自立运行功能。停电时自动进行自立运行,向负荷供电。 (4) 自立运行或者并网运行时有相同容量的功率。

(5) 由显示单元,可显示输岀功率、累汁电量、运行状态及异常等内容。 (6) 带有通信功能,使用GS 标准计量软件,可由PC 机计量其电流、电压等值。 (7) 可全自动运行。 (8) 主要技术参数为:

额定容呈::5MVA ;

直流额左电压:400V,直流额左电流:600A ; 直流电压输入范围:400V —600V :

交流输出功率因数0.99,频率50Hz,三相AC22OV ; 输出电流失真度:THDV5%,各次THDV3%: 逆变器效率〉95% o

33.3并网逆变器控制设计:

并网逆变控制器采用图4原理,将来尽可能集成化,采用单片机实现智能控制。

智徒

控制器

电源

"AC220V (

AC3S0V

图4:并网逆变器控制图

3.4最大功率点的跟踪(MPPT)控制

3. 4.1引言

太阳能电池在工作时,随着日照强度、温度的改变,其端电压将发生变化,使输岀功率也产生很大的变化。故太阳能电池本身是一种不稳泄的电源C如何能在不同日照、温度的条件下输出尽可能多的电能,提高系统的效率,这就在理论和实践上提岀了太阳能电池阵列的最大功率点跟踪问题。

在常规的线性系统电气设备中,为了使负载获得最大功率,通常要进行恰当的负载匹配,使负载电阻等于供电系统的内阻,此时负载上就可获得最大功率。

对于一些内阻不变的供电系统,可以用这种外阻等于内阻的简单方法获得最大输出功率。但在太阳能电池供电系统中,太阳能电池的内阻不仅受日照强度的彫响,而且受环境温度及负载的影响,因而处在不断变化之中。从而不可能用上述的简单方法来获得最大输出功率。目前所采用的方法是在太阳能电池的阵列和负载之间增加一个DC/DC变换器,通过改变DC/DC变换器中功率开关管的导通率,来调整、控制太阳能电池阵列工作在最大功率点,从而实现最大功率跟踪控制。

最大功率点的跟踪(MPPT)控制是一个自寻优过程,通过控制太阳能电池阵列端电压,使阵列能在各种不同的日照和温度环境下智能化地输出最大功率。

3. 4. 2MPPT控制的几种不同算法

1.功率扰动观察法

扰动观察法的原理是先给你个扰动输出电压信号(Uj+AU),再测量苴功率变化,与扰动之前功率相比, 若功率值增加,则表示扰动方向正确,可继续向同一(+4U)方向扰动:若扰动后的功率值小于扰动前,则往反(-AU)方向扰动,流程如图5所示。此法的最大优点是在于其结构简单,测量参数少,通过不断扰动使阵列输出功率趋于最大;缺点在于初始值Ui以及跟踪步长AU的选取对跟踪精度和速度有较大的影响,且有可能在最大功率点附近振荡,导致部分功率损失,有时还会发生程序控制在运行中的失序, 岀现“误判”现象。

图5:功率扰动法流程图

2.增量电导法

微扰观察法是通过调整工作点电压,使之逐渐接近最大功率点电压来实现太阳能电池最大功率跟踪的。这种方法并不知道最大功率点大致在什么方向。增量电导法避免了微扰观察法的盲目性,可以判断出工作点电压和最大功率点电压之间的关系。它的最大优点是当日照强度变化时,太阳能电池的输岀端电压能以平稳的方式追随其变化,其电压的晃动教小。

3.滞环比较法

这是一种带反馈的PWM控制方式,如图6所示,即每相电流反馈回来与电流给左值经滞环比较器,得岀相应桥臂开关器件的开关状态,使得实际电流跟踪给左电流的变化。该方法的优点是电路简单,动态性能好,输出电压不含特立频率的谐波分量。它避免了在扰动法中因太阳日照不会快速变化而引起多余的扰动可能带来的损失的缺陷。

图6: MPPT 控制电路

4. 最大功率跟踪的模糊控制

模糊控制的原理是以模糊集合理论、模糊语言及模糊逻辑推理为基础的控制,它是模糊数学在控制 系统中的应用,是一种非线性智能控制。它利用人的知识对对象进行控制,通常用“if 条件,then 结 果”的形式来表示,所以又称语言控制。它的核心部分是模糊控制器。苴过程是:微机采样获取被控制 量的精确值,然后将此量与给定值比较得到误差信号E : —般选误差信号E 作为模糊量可用相应的模糊 语言表示,从而得到误差E 的模糊语言集合的一个子集e :再由e 和模糊控制规则R (模糊关系)根据推 理的合成规则进行模糊决策,得到模糊控制量叽其中u=cR.为了对被控对象施加精确的控制,还需 要将模糊疑I 】进行非模糊化处理转换为精确量。得到精确数字后,经数模转换变为精确的模拟量送给执 行机构,对被控对象进行第一步控制,然后进行第二次采样,完成第二步控制……这样循环下去,就实 现了被控对象的模糊控制。

5. 应用人工神经网络进行太阳能电池最大功率点的控制 太阳能电池的特性可以用一下四个方程来描述:

J = hh + /0[1-exp(^t/ / AkT c )]

301)0/100

厶=L(T c /TS expl qE s JBk(\IT r -\/T c )\

T (=T a + hco (!)

以上述的方程为基础,根据检测岀的直流电流和质量电压可以测出照度,把该直流电压Ude 输入网 络的输入层,将该网络的输出和学习信号之间的误差在网被全部进行叠加、传递,则输出值和学习信号 间的差将

太阳能 电池板

谐频DC/DC

变换器

并网逆变器

驱动信号

反相 放大器

平均值 电路

U/f 变换器

采样脉冲 需荡器

采样 保持器

滞后环

2

加法器

滞后环 1

=TFF2 TFF1

多谐

振荡器2

多谐 振荡器1

最低电流 值设定

按一立精度而收敛,如此反复进行可以达到目标。收敛之后,该神经元值可输入时刻的太阳能电池特性公式的各参数得到。用求得的特性公式,由数值计算法求岀公式的极大值,该极大值就是最大功率输出点的电压。

6.基于dp/de的太阳光发电系统的最大功率控制方法

这种方法是假立在最大功率点上功率对电压的微分dp/dc=O。此方法的优点是肖输岀电压变化时,在该点上可用单调的调节方法容易地改变微分值,将dp/dt构成一个闭环系统,实施使英值为0的控制。因此,先将一个非线性控制对象的状态方程列出,经线性化处理,采用简单的电流、电压负反馈闭环控制系统,即可实现既左的控制目标。该控制系统对应于日照变化和电池板温度变化,能自我进行稳定补偿, 得到一个髙速响应和高精度的最大功率输出控制系统。其特点是将控制系统运算公式化,充分考虑光照和温度的影响,且直观的用数式表示。

该系统由太阳能电池板、升压DC/DC、单相电压型PWM逆变器及电网交流电源组成。控制输岀直流功率的DC/DC变换器其输出端为接有电容和电感的电池板,开关管输出端接有二极管和滤波电容。

输出功率代和其微分dPs/des之间有如下的关系:

dP s/de5和心之间是一种单调的关系,dP7de s=0的点恰好就是最大功率点,且改点和日照、温度的变化无关。为此,设左最大功率控制的目标值是使dP$/dCs=O,这样就简单化了。

该种方法在控制速度和精度两方面都比较满足。

3.5数据采集监控软件设计

利用逆变器提供的R S 2 3 2 口,P C机与逆变器中单片机控制电路进行通信,将逆

变器采集到的有关运行数据(包括输入电压、输入电流、输出电压、输出电流、输出频率、系统输出功率、当日发电量、总累汁发电量、对环境的贡献等)存储在专用的数据采集监控软件所带的SQL Server 数据库中。使用面向对象的髙级语言一一++Builder 5. 0,针对光伏并网发电系统的有关情况,设计开发的数据采集监控,软件的主要功能有:

1)与逆变器进行串口通信,采集相关的数据到计算机:

2)分析数据的正确性,并将正确的数据存储到数拯库中,若数据不正确提醒用户及时处理。

3)管理并维护数据库中的有关数据,并提供导入导出功能,供用户做它用:

4)分析有关数据,并按照用户要求生成有关数据曲线。

3.6室内外数据显示

数据采集监控软件对采集到的数据进行有关分析处理后,使用无线通信模式将数据提供给有关显示部件(包括远/近程L E D大屏幕)进行实时的显示。

3.7并网运行

正常运行时,要求太阳能电池逆变后的交流电压波形、频率应与电网相同;而当电网产生故障时, 太阳能电池应能自动控制使变频器与电网断开。

3.8配电室设计

MPPT控制器,并网逆变器,并网点的低压配电室,工频变压器。

3.9电缆的选取

3.9. 1系统中电缆的选择主要考虑如下因素:

①电缆的绝缘性能:

②电缆的耐热阻燃性能;

③电缆的防潮、防光:

④电缆的敷设方式:

⑤电缆芯的类型(铜芯,铝芯);

⑥电缆的大小规格。

3.9. 2光伏系统中不同的部件之间的连接,因为环境和要求的不同,选择的电缆也不相同。以下分别列出不同连接部分的技术要求。

①组件及组件之间的连接必须进行UL测试,耐热90°C,防酸,防化学物质,防潮,防邸晒。

②方阵内部和方阵之间的连接可以眾露或者埋在地下,要求防潮、防暴晒。建议穿管安装,导致必须耐热90°C.

③室内接线(环境干燥)可以使用较短的宜流连线。

3. 9.3电缆大小规格设计,必须遵循如下原则:

①交流负载的连接,选取的电缆额左电流为汁算所得电缆电流最大连续电流的1.25倍。

②逆变器的选择,选取的电缆额左电流为计算所得电缆电流最大连续电流的1.25倍。

③方阵内部和方阵之间的连接,选取的电缆额左电流为汁算所得电缆电流最大连续电流的1.56倍。

④考虑温度对电缆的影响。

⑤考虑电压降不要超过2%。

⑥适当的电缆尺径选取基于两个因素,电流强度与电路电压损失。完整的计算公式为

线损二电流X电路总线长X线缆电压因子

式中,线缆电压因子可有电缆制造商处获得。

3. 10并网发电系统的防雷

3.10.1接地和防雷设计

太阳能光伏电站为三级防雷建筑物,防雷和接地涉及以下的方而(可参考GB 50057-94《建筑防雷涉及规范》)。

①电站站址的选择;在配电室附近建一避雷针,高15M,并单独做一地线。

②尽疑避免将电站建在雷电易发和易遭受雷击的位巻;

③尽量避免避雷针的投影落在太阳电池组件上;

④防止雷电感应,控制机房内的全部金属物包括设备、机架、金属管道、电缆的金属外皮都要可靠

接地,每件金属物品都要单独接到接地F?线,不允许串联后在接到干线上;

⑤防止雷电波侵入,在出线杆上安装阀型避雷器,对于低压22OV/38OV可采用低压阀型避雷器。要

在每条回路的出线和零线上装设。架空引入室内的进水管道和电缆外皮在入口处可靠接地,冲压电阻不宜大于30Q

⑥接地系统的要求,所有接地都要连接在一个接地体上,接地电阻满足其中的最小值,不允许串联

后在接到干线上

光伏电站对接地电阻值的要求比较严格,因此要实测数据,建议采用复合接地体。

⑦光伏电站接地结零要求,电气设备的接地电阻RW4Q满足屏蔽接地和工作接地的要求。选择光电

厂附近土层较厚、潮湿的地点,挖一2M深地线坑,采用40扁钢,添加降阻剂并引岀地线, 引出线采用铜芯电缆,接地电阻应小于4欧姆。在中性点直接接地系统中,要重复接地,RW10Q 防雷接地点应该独立设置,要求RW30Q且和主接地装垃在地下的距离保持在3m以上。

⑧太阳电池方阵电缆进入配电室的电压为DC580V,采用PVC管地埋,加防雷器保护。此外电池板方

阵的支架应保证良好的接地。

⑨并网逆变器交流输岀线采用防雷箱一级保护(并网逆变器内有交流输出防雷器)。

3.10.2供电系统的基础建设

基础建设包括太阳电池组件地基和控制机房的建设。太阳电池组件可以安装在地而上,也可以在屋顶上。如果光伏方阵安装在地而上,在设计时需要考虑抗震设计(参见国标《建筑抗丧设计

规范》GBJ 11—89)

太阳电池组件地基属于丙类建筑,要符合一下要求:

①选择建筑物时,尽量选择坚硬土或者开阔、平坦、密实、均匀的中硬上;

②同一结构单元不宜设置在截然不同的地基土上:

③地基有软弱粘性土、液化丄、新近填上或者严重不均匀上层时,宜采取措施加强基础的整体性

和刚性:

④混凝上砌块的等级强度,中砌块不宜低于MU10,小砌块不低于MU5,砌块的砂浆强度等级不宜低

于M5;

⑤混凝上的强度等级不宜低于C20:

⑥基基础抗震验算

F S E =颈

式中,FsE——调整后的地基抗箴承载设计值;

"——地基土抗震承载力调整参数,参考《建筑抗震设il?规范》GBJ 11-89);

fs——地基上静承受力设il?值,采用《建筑抗震设计规范》GBJ 7-896

⑦对于存在液化上层的地基应根据地基的液化等级采取一泄的措施:

a.用深基础时,基础地面埋入液化深度以下稳定涂层中的深度不应小于500mm:

b.采用加密法(如振冲、振动加密、强夯等)加固时,应处理至液化深度下界,且处理后上层的

标准贯入锤击数的实测值,应大于相应的临界值;

c.挖岀全部液化上层。

⑧对于组件基础,安装支架的混凝土基础技术规范。

a .基础混凝上的混合比例为1 :2:4 (水泥、胶石、水),采用42号水泥或更细,胶石每块尺

寸为20mm或更小:

b.基础尺寸建议为500mm长X500mm宽X400mm髙。如果发现现场上壤疏松,要相应地增加基础深

度。

c.基础的上表而要在同一水平面上,平整光滑。

d.支架四个支撑腿所用的四个基础应保持在同一水平而上。

e.基础上的预埋螺杆应该要求正确地位于基础中央,同样要保持螺杆的垂直。

f .基础上的预埋螺杆应高于混凝上基础表而50mm,确保已经将基础螺杆的凸出螺纹上的混凝土擦

干净。

g.注意每副组件支架两个基础之间的朝向和尺寸。建议安装一副支架(不安装太阳电池组件),

将四条支架安装到适当的位宜,为基础建造做标记。

⑨如果太阳电池组件安装在屋顶就不需考虑冻土的情况,但要考虑抗震对屋顶和支架的技术需要。

4系统建设及施工

工程的施工包括:配电室及太阳电池支架的基础制作、配电室,太阳电池支架制作安装、太阳能电池方阵的安装、电气设备的安装调试、系统的并网运行调试。

4.1施工顺序

基础及配电室上建施工一太阳电池支架制作安装一太阳电池方阵安装调试一电气仪表设备安装调试一工频变压器的安装一并网运行调试一试运行一竣工验收。

4.2施工准备

4.2.1技术准备

技术准备是决立施工质量的关键因素,它主要进行以下几方而的工作:

(1)先对实地进行勘测和调查,获得当地有关数据并对资料进行分析汇总,做出切合实际的工程设计。

(2)准备好施工中所需规范,作业指导书,施工图册有关资料及施工所需各种记录表格。

(3)组织施工队熟悉图纸和规范,做好图纸初审记录。

(4)技术人员对图纸进行会审,并将会审中问题做好记录。

(5)会同建设单位和设讣部门对图纸进行技术交底,将发现的问题提交设讣部门和建设方,并由设计部门和建设方做出解决方案(书而)并做好记录。

(6)确泄和编制切实可行的施工方案和技术措施,编制施工进度表。

4.2.2现场准备

(1)物资的存放

准备一座临时仓库:主要贮存并网发电系统的逆变器、太阳电池、太阳电池支架、线缆及苴它辅助性的材料。

(2)物资准备

施工前对太阳能电池组件、方阵支架、并网逆变器等设备进行检查验收,准备好安装设施及使用的各种施工所需主要原材料和其他辅助性的材料。

5.设备安装部分

5.1太阳电池组件安装和检验

预埋太阳电池阵列架基柱,检查其横列水平度,符合标准再进行铁架组装。检测单块电池板电流、电压,合格后进行太阳电池组件的安装。最后检査接地线、铁架紧固件是否紧固,太阳电池组件的接插头是否接触可靠,接线盒、接插头须进行防水处理。检测太阳电池组件阵列的空载电压是否正常,此项工作应由组件提供商技术人员完成。

5.2总体控制部分安装

参照产品说明书的要求,对并网逆变器、太阳电池组件、交流电网的低压配电室按相应顺序连接,观察并网逆变器的%项运行参数,并做好相应记录,将实际运行参数和标称参数做比较,分析其差距,为以后的调试做准备°

6.检査和调试

(「)根据现场考察的要求,检查施工方案是否合理,能否全而满足要求。

(2)根据设计要求、供货淸单,检查配套元件、器材、仪表和设备是否按照要求配齐,供货质量是否符合要求。对一些工程所需的关键设备和材料,可视具体情况按照相关技术规范和标准在设备和材料制造厂或交货地点进行抽样检查。

(3)现场检査验收:检查太阳电池组件方阵水泥基础、配电室施工质量是否符合要求,并做记录。

此项工作应由组件提供商技术人员完成。

(4)调试是按设备规格对已完成安装的设备在各种工作模式下进行实验和参数调巧。系统调试按设备技术手册中的规定和相关安全规范进行,完成后须达到或超过设备规格所包含的性能指标。如在调试中发现实际性能和手册中的参数不符,设备供应商须采取措施进行纠正,达标后才具备验收条件。

7.并网电站建设流程图

图7:简单施工流程图

&并网发电系统配置表

表1: 5MW并网发电系统配置表

9.成本预算

海口市斜而日均辐射MHr=13510 kj/m2,

海口平均ill*值日照时数二HM2? 778/10000=3. 75小时:

海口的平均日照时间3.75小时,也就是说1OOOW的电池片,一天能发电3.75度电。那么,1W的

电池片,一年能够发电X— =1 368度电。5MW的电站一年可发电5xlO6xl.368度电,即

1000

6.84X106度,一度四元钱,一年可以收回2736万人民币。

具体成本还有待进一步调研后才能确左。

5kWp光伏太阳能并网发电系统

5kWp光伏太阳能并网发电系统 设 计 方 案 设计人:申小波(Mellon) 单位:个人 电话: 日期: 2013年10月27日

目录 一、光伏太阳能并网发电系统简介 (2) 二、项目地点及气候辐照状况 (2) 三、相关规范和标准 (5) 四、系统结构与组成 (5) 五、设计过程 (6) 1、方案简介 (6) 2、设计依据 (6) 3、组件设计选型 (7) 4、直流防雷汇流箱设计选型 (9) 5、交直流断路器 (11) 6、并网逆变器设计选型 (13) 7、电缆设计选型 (14) 8、方阵支架 (15) 9、配电室设计 (15) 10、接地及防雷 (15) 11、数据采集检测系统 (16) 六、仿真软件模拟设计 (17) 七、接入电网方案 (22)

八、设备配置清单及详细参数 (22) 九、系统建设及施工 (22) 十、系统安装及调试 (23) 十一、运行及维护注意事项 (26) 十二、设计图纸 (28) 十三、工程预算投资分析报告 (32)

5kWp光伏太阳能并网发电系统配置方案 一、光伏太阳能并网发电系统简介 并网系统(Utility Grid Connected)最大的特点:太阳电池组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电之后直接接入公共电网,并网系统中光伏方阵所产生电力除了供给交流负载外,多余的电力反馈给电网。在阴雨天或夜晚,太阳电池组件没有产生电能或者产生的电能不能满足负载需求时就由电网供电。 因为直接将电能输入电网,免除配置蓄电池,省掉了蓄电池储能和释放的过程,可以充分利用光伏方阵所发的电力,从而减小了能量的损耗,并降低了系统的成本。但是系统中需要专用的并网逆变器,以保证输出的电力满足电网电力对电压、频率等电性能指标的要求。因为逆变器效率的问题,还是会有部分的能量损失。这种系统通常能够并行使用市电和太阳能太阳电池组件阵列作为本地交流负载的电源,降低了整个系统的负载缺电率,而且并网系统可以对公用电网起到调峰作用。但并网光伏供电系统作为一种分散式发电系统,对传统的集中供电系统的电网会产生一些不良的影响,如谐波污染,孤岛效应等。 二、项目地点及气候辐照状况 图片来自Google地球 1、项目地点为:江苏省泰州市XX区XX镇; 2、纬度:32°22’,经度:120°12’; 3、平均海拔高度:7m;

家用太阳能发电系统DIY(转载)

自制家用太阳能发电照明系统(转载) 太阳能发电系统由太阳能电池、太阳能充放电控制器、铅酸免维护蓄电池、逆变器和照明灯具组成。 太阳能电池(30W) 一般使用单晶硅/多晶硅太阳能电池,体积小,光电转换效率高。现在的价格平均为30元/W,封装后的成品会略贵些。建议购买成品,质量和稳定性有保证。本人使用30W单晶硅太阳能电池,设计寿命为25年,使用不锈钢支架安装于阳台外(可在铝合金门窗加工店定制),横向摆放可使抗风性更好,如图1。 For personal use only in study and research; not for commercial use

图1 太阳能充放电控制器(12V/10A) 太阳能充放电控制器是专为太阳能直流供电系统设计的,目的是为了提供过充、过放、电子短路、过载保护,在10W以上的太阳能系统中,是必不可少的,相当于整个系统的心脏。控制器的空载损耗仅为6mA,非常省电。太阳能充放电控制器有三对正负极接口,分别接太阳能电池、蓄电池和负载,如图2。控制器的选购跟负载有关,如负载超过120W,需要选用12V/20A的控制器。 图2 铅酸免维护蓄电池(12V/24AH)

在有些国家的太阳能系统中,可以直接通过逆变器转为交流电后输到电网,由政府收购,然后晚上再从电网问政府买电,如果发电量大还可以赚钱,也节约了蓄电池的成本。但我国目前还没有类似收购计划,电表也是单向运转的,如果将电输到电网,还会增加每月电费开支,所以使用蓄电池来存储白天所发的电量以供夜间使用,如图3。蓄电池建议选择铅酸免维护蓄电池,不用加水,使用方便。蓄电池的容量不能选太小,因为太小会浪费太阳能电池所发电量;也不能选太大,因为长时间处于未充满状态会影响电池寿命。一般情况下,以两天可以充满电池为宜。 图3 逆变器(70W) 现在市面上有很多车载逆变器,转换效率高,价格便宜。因车载逆变器也是12V输入,所以用来当太阳能发电系统的逆变器正好合适。经测

50kW太阳能烟囱电站涡轮机的数值模拟

50kW太阳能烟囱电站涡轮机的数值模拟 发表时间:2018-12-17T15:33:45.567Z 来源:《防护工程》2018年第23期作者:杨施敏 [导读] 本论文中,建立了50kW太阳能烟囱电站的物理模型,对烟囱和集热棚、蓄热层相接的弧段部分 上海勘测设计研究院有限公司上海 200434 摘要:在本论文中,建立了50kW太阳能烟囱电站的物理模型,对烟囱和集热棚、蓄热层相接的弧段部分,即喇叭管和导流锥部分进行几何设计,改善了整个流场的分布情况。利用MATLAB编程,获得集热棚和蓄热层的温度分布情况,作为FLUENTF的边界条件,再利用 FLUENT进行数值求解,解收敛后得到涡轮机周围流场分布。最后对模拟结果进行了验证,证明了设计和模拟方法的合理性。 在已完成设计的烟囱电站数值模拟情况下,针对同一翼型,同一转速,不同叶片数目的涡轮机进行数值模拟,比较不同叶片数目的涡轮机性能,并分析产生这些差异的主要因素,获得最佳叶片数。 关键词:太阳能热气流发电涡轮机数值模拟 一、基本原理 太阳能烟囱热气流动力发电的实际工程技术概念,最早是由两位德国工程师Schlaich和Bergermann于1976年提出的。根据热压差效应,利用热烟囱中向上抽吸流动的热气流驱动风轮机做功,早在20世纪以前就有这样的设想。由于现代技术和材料科学的发展,可以实际建造高大的热烟囱,使得太阳能烟囱热气流动力发电在技术上变得可行。 CFD方法是计算流体力学(ComputationalfluidDynamics)的简称,通过计算和图像显示的方法,在时间和空间角度上定量描述流畅的数值解,从而达到对物理问题研究的目的。 通过这种数值模拟,可以得到极其复杂的问题中流场内不同位置上的基本物理量(如速度、压力、温度等)的分布,以及物理量随时间的变化情况,确定旋涡分布特性、空化特性及脱流区等。 二、太阳能热气流发电系统的热力学分析 太阳能热气流(烟囱)发电的基本热力学过程:靠近地面的空气流过集热棚,吸收太阳辐射能变成具有温升和动能的热气流;热气流在涡轮机流道里膨胀做功推动涡轮发电机组发电;不断上升的热气流在烟囱里持续膨胀,然后排到高空环境;排出的空气还有剩余的速度和温度,在大气环境中继续释放能量,再和高空环境相平衡;最后经可逆绝热过程回到地面呈空气状态,这样就完成了整个热力循环。这是一个复杂的开式热力体系,和常规热力循环系统相比,这个系统与环境之间有大尺度的接触,变化的大气环境和地面环境会对热力循环产生一定的影响,热气流作为系统转换能量的介质,在这个大系统内的流动比较复杂,其流动的状况和热力过程都会影响到太阳能的利用效率。 如图2-1所示是太阳能热气流发电系统的热力过程示意图。整个环境和系统形成了一个大循环。为了便于分析,将系统分为集热棚、涡轮机和烟囱三大区域。 分析各个区域的热力学过程时,作如下假定:(1)太阳辐射恒定,且不考虑太阳高度角的变化;(2)大气温度即进入集热棚的空气温度保持恒定;(3)空气集热棚的光学性质保持不变;(4)系统是一个稳定流动过程;(5)分析系统热力过程及热力循环时,将从烟囱出来的工质视为集热棚入口进去的那部分工质,这样既不会影响热力过程的分析结果,也会简化分析过程。 工质在各区域进出口的关键状态点如下:1为集热棚入口状态,2为集热棚出口状态,3为烟囱入口状态,4为烟囱出口状态,5为与烟囱出口相同高度处的外部大气环境状态。

100kW光伏并网发电系统典型案例解

100kW光伏并网发电系统典型案例解 100kW光伏并网发电系统典型案例解析 1、项目地点分析 本项目采用光伏并网发电系统设计方案,应用类别为村级光伏电站项目。项目安装地为江西,江西位于位于中国的东南部,长江中下游南岸。地处北纬24°29′-30°04′,东经113°34′-118°28′之间。项目所在地坐标为北纬25°8′,东经114°9′。根据查询到的经纬度在NASA上查询当地的峰值日照时间如下: (以下数据来源于美国太空总署数据库) 从上表可以看出,项目建设地江西在国内属于二三类太阳能资源地区,年平均太阳能辐射量峰值平均每天为3.41kWh/m2,年平均太阳能总辐射量峰值为:3.41kWh/m2*365=1244.65 kWh/m2。 2、光伏组件 2.1光伏组件的选择 本项目选用晶硅太阳能电池板,单块功率为260Wp。下面是一组多晶硅的性能参数,组件尺寸为1650*990*35mm。 2.2光伏组件安装角度

根据项目所在地理位置坐标,项目所在地坐标为项目所在地坐标为北纬25°8′,东经114°9′,光伏组件安装最佳倾角为20°如下图所示: 2.3组件阵列间距及项目安装面积 采用260Wp的组件,组件尺寸为1650*990*35mm,共用400块太阳能电池板, 总功率104kWp。根据下表公式可以计算出组件的前后排阵列间距为2.4m,单 块组件及其间距所占用面积为2.39㎡。

104kWp光伏组件组成的光伏并网发电系统占地面积为2.39*400=956㎡,考虑到安装间隙、周围围墙等可能的占地面积,大约需要1000㎡。 3、光伏支架 本项目为水平地面安装,采用自重式支架安装方式。自重式解决方案适用于平屋顶及地面系统。利用水泥块压住支架底部的铝制托盘,起到固定系统的作用。

2021年太阳能光伏发电系统基本组成

太阳能光伏发电系统基本组成 欧阳光明(2021.03.07) 太阳能发电分为光热发电和光伏发电。通常说的太阳能发电指的是太阳能光伏发电,简称“光电”。光伏发电是利用半导体界面的光生伏特效应而将光能直接转变为电能的一种技术。这种技术的关键元件是太阳能电池。太阳能电池经过串联后进行封装保护可形成大面积的太阳电池组件,再配合上功率控制器等部件就形成了光伏发电装置。 理论上讲,光伏发电技术可以用于任何需要电源的场合,上至航天器,下至家用电源,大到兆瓦级电站,小到玩具,光伏电源无处不在。太阳能光伏发电的最基本元件是太阳能电池(片),有单晶硅、多晶硅、非晶硅和薄膜电池等。其中,单晶和多晶电池用量最大,非晶电池用于一些小系统和计算器辅助电源等。中国国产晶体硅电池效率在10至13%左右,国际上同类产品效率约12至14%。由一个或多个太阳能电池片组成的太阳能电池板称为光伏组件。 太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。如输出电源为交流220V或110V,还需要配置逆变器。各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。其作用是将太阳

的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。太阳能电池板的质量和成本将直接决定整个系统的质量和成本。 (二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。在温差较大的地方,合格的控制器还应具备温度补偿的功能。其他附加功能如光控开关、时控开关都应当是控制器的可选项。 (三)蓄电池:一般为铅酸电池,小微型系统中,也可用镍氢电池、镍镉电池或锂电池。其作用是在有光照时将太阳能电池板所发出的电能储存起来,到需要的时候再释放出来。 (四)逆变器:在很多场合,都需要提供220V AC、110V AC 的交流电源。由于太阳能的直接输出一般都是12V DC、24V DC、48V DC。为能向220V AC的电器提供电能,需要将太阳能发电系统所发出的直流电能转换成交流电能,因此需要使用DC-AC逆变器。在某些场合,需要使用多种电压的负载时,也要用到DC-DC 逆变器,如将24V DC的电能转换成5V DC的电能(注意,不是简单的降压)。

太阳能并网10KW发电系统安装

太阳能并网10KW发电系统 太阳能电池板发电系统是利用光生伏打效应原理,它是将太阳辐射能量直接转换成电能的发电系统。太阳能并网发电系统通过把太阳能转化为电能,不经过蓄电池储能,把满足负载需要后多余的电量或在没有负载情况下把产生的电量,通过并网逆变器送上电网。 系统安装施工 施工安装人员应采取以下防触电措施: 1 应穿绝缘鞋,带低压绝缘手套,使用绝缘工具; 2 施工场所应有醒目、清晰、易懂的电气安全标识; 3 在雨、雪、大风天气情况下不得进行室外施工作业; 4 在建筑工地安装光伏系统时,安装场所上空的架空电线应有隔离措施;

5 使用手持式电动工具应符合《手持式电动工具的管理、使用、检查和维修安全技术规程》GB3787的要求。 安装施工光伏系统时还应采取以下安全措施: 1 光伏系统各部件在存放、搬运、吊装等过程中不得碰撞受损。光伏组件吊装时,其底部要衬垫木,背面不得受到任何碰撞和重压; 2 光伏组件在安装时表面应铺有效遮光物,防止电击危险; 3 光伏组件的输出电缆不得发生短路; 4 连接无断弧功能的开关时,不得在有负荷或能够形成低阻回路的情况下接通正、负极或断开; 5 连接完成或部分完成的光伏系统,遇有光伏组件破裂的情况应及时设置限制接近的措施,并由专业人员处置; 6 接通光伏组件电路后应注意热斑效应的影响,不得局部遮挡光伏组件; 7 在坡度大于10°的坡屋面上安装施工,应设置专用踏脚板; 8 施工人员进行高空作业时,应佩带安全防护用品,并设置醒目、清晰、易懂的安全标识。 项目的施工包括:太阳能电池板组件支架制作安装、太阳能电池板组件方阵的安装、电气设备的安装调试、系统的并网运行调试。 施工顺序:基础施工-太阳能电池板组件支架制作安装-太阳能电池板组件方阵安装 调试—电气仪表设备安装调试-并网运行调试-系统试运行—竣工验收。 施工准备 主要材料需用量计划 序号材料名称数量单位 1 太阳电池板40 块 2 组件支架 2 套 3 防雷汇流箱 1 套 5 交流逆变器 1 台 6 三相并行电表 1 台 7 电缆线50红、50黑米 主要测量仪器及用途

太阳能离网发电系统(20kWp)技术方案

20kWp太阳能离网发电系统技术方案桂林尚华新能源有限公司

(一)太阳能离网系统主要组成 离网型光伏发电系统广泛应用于偏僻山区、无电区、海岛、通讯基站和路灯等应用场所。系统一般由太阳电池组件组成的光伏方阵、太阳能控制逆变一体机、蓄电池组、负载等构成。光伏方阵在有光照的情况下将太阳能转换为电能,通过太阳能控制逆变一体机给负载供电,同时给蓄电池组充电;在无光照时,由蓄电池给太阳能控制逆变一体机供电,再给交流负载供电。 图1 离网型光伏发电系统示意图 (1) 太阳电池组件 是太阳能供电系统中的主要部分,也是太阳能供电系统中价值最高的部件,其作用是将太阳的辐射能量转换为直流电能; (2) 太阳能控制逆变一体机 主要功能分为2部分,MPPT太阳能控制器和DC/AC双向充放电控制器,其作用是对太阳能电池组件所发的电能进行调节和控制,最大限度地对蓄电池进行充电,并对蓄电池起到过充电保护、过放电保护的作用。同时把组件和蓄电池的直流电逆变成交流

电,给交流负载使用。 (3) 蓄电池组 其主要任务是贮能,以便在夜间或阴雨天保证负载用电。 (一) 主要组成部件介绍 2.1 太阳电池组件介绍 图2 硅太阳电池组件结构图 太阳电池组件是将太阳光能直接转变为直流电能的阳光发电装置。根据用户对功率和电压的不同要求,制成太阳电池组件单个使用,也可以数个太阳电池组件经过串联(以满足电压要求)和并联(以满足电流要求),形成供电阵列提供更大的电功率。太阳电池组件具有高面积比功率,长寿命和高可靠性的特点,在25年使用期限内,输出功率下降一般不超过20%。 2.2 太阳能控制逆变一体机介绍 采用新一代的全数字控制技术,纯正弦波输出;太阳能控制器和逆变器集成于一体,方便使用;可以由太阳能电池板单独供电工作,也可以接入市电或发电机,实现太阳能/市电互补、太阳能/发电机互补;适用于电力缺乏和电网不稳定的地区,为其提供经济的电源解决方案。

未来太阳能光伏并网发电对电网的影响

未来太阳能光伏并网发电对电网的影响 尽管寻找新能源的工作已经有相当的历史了,但是世界性的环境污染和能源短缺已经迫使人们更加努力的寻找和开发新能源。在寻找和开发新能源的过程中,人们很自然的把目光投向了各种可再生的替代能源。光伏发电就是其中之一。虽然光伏发电的实际应用存在着种种的局限,但是随着光伏发电成本的降低和矿物发电成本的提高以及矿物能源的减少,总有一天光伏发电的成本将会与传统发电成本相当。到时侯,光伏发电将逐步进入商业化阶段。光伏并网发电形成规模后会对电网形成什么样的影响是本文想要探讨的问题。 一、光伏发电的基本原理 1 太阳能光伏发电系统的组成 太阳能光伏发电系统主要由太阳能光伏电池组,光伏系统电池控制器,蓄电池和交直流逆变器是其主要部件。其中的核心元件是光伏电池组和控制器。各部件在系统中的作用是: 光伏电池:光电转换。 控制器:作用于整个系统的过程控制。光伏发电系统中使用的控制器类型很多,如2点式控制器,多路顺序控制器、智能控制器、大功率跟踪充电控制器等,我国目前使用的大都是简单设计的控制器,智能型控制器仅用于通信系统和较大型的光伏电站。 蓄电池:蓄电池是光伏发电系统中的关键部件,用于存储从光伏电池转换来的电力。目前我国还没有用于光伏系统的专用蓄电池,而是使用常规的铅酸蓄电池。 交直流逆变器:由于它的功能是交直流转换,因此这个部件最重要的指标是可靠性和转换效率。并网逆变器采用最大功率跟踪技术,最大限度地把光伏电池转换的电能送入电网。 2 太阳能光伏电池板: 太阳能电池主要使用单晶硅为材料。用单晶硅做成类似二极管中的P-N结。工作原理和二极管类似。只不过在二极管中,推动P-N结空穴和电子运动的是外部电场,而在太阳能电池中推动和影响P-N结空穴和电子运动的是太阳光子和光辐射热(*)。也就是通常所说的光生伏特效应原理。目前光电转换的效率,大约是光伏电池效率大约是单晶硅13%-15%,多晶硅11%-13%。目前最新的技术还包括光伏薄膜电池。(参考资料12)1839年,法国物理学家A.E.Becquerel在实验室中发现液体的光生伏特效应(由光照射在液体蓄电池的金属电极板上使得蓄电池电路中的伏特表产生微弱变化)至今,在所有能找到的材料中,由单晶硅做成的P-N结光伏电池是光电转换效率最高的材料。 3 太阳能光伏发电系统的分类: 目前太阳能光伏发电系统大致可分为三类,离网光伏蓄电系统,光伏并网发电系统及前两者混合系统。 A)离网光伏蓄电系统。这是一种常见的太阳能应用方式。在国内外应用已有若干年。系统比较简单,而且适应性广。只因其一系列种类蓄电池的体积偏大和维护困难而限制了使用范围。 B)光伏并网发电系统,当用电负荷较大时,太阳能电力不足就向市电购电。而负荷较小时,或用不完电力时,就可将多余的电力卖给市电。在背靠电网的前提下,该系统省掉了蓄电池,从而扩张了使用的范围和灵活性,并降低了造价。 C)A, B两者混合系统,这是介于上述两个方之间的系统。该方案有较强的适应性,例如可以根据电网的峰谷电价来调整自身的发电策略。但是其造价和运行成本较上述两种方案高。 二、光伏发电的优点 进入70年代后,由于2次石油危机的影响,光伏发电在世界范围内受到高度重视,发展非常迅速。从远期看,光伏发电将以分散式电源进入电力市场,并部分取代常规能源。不论从近期和从近期看,光伏发电可以作为常规能源的补充,在解决特殊应用领域,如通信、信号电源,和边远无电地区民用生活用电需求方面,从环境保护及能源战略上都具有重大的意义。光伏发电的优点充分体现在以下几个方面: 1,充分的清洁性。(如果采用蓄电池方案,要考虑对废旧蓄电池的处理) 2,绝对的安全性。(并网电压一般在220V以下) 3,相对的广泛性。 4,确实的长寿命和免维护性。

家用太阳能发电系统-方案书(方案版)

太阳能离网发电系统设计 方案书 二0一一年五月

目录 一、地理位置及光照情况...................................... 错误!未定义书签。 二、系统概况及技术方案 (3) 三、设备材料及工程估算 (4) 四、负载需求及系统性能 (5) 1 负载需求 (5) 2 系统性能 (5) 五、施工及调试方案 (6) 1、工程范围 (6) 2、施工人员及指导 (6) 3、设备安装流程 (6) 4、安装及调试 (7)

二、系统概况及技术方案 根据各种数据采集后计算所制定本太阳能离网发电系统,本系统将给别墅的三层用电负载进行供电,展示太阳能发电、储能、供电的过程并达到一定的环保节能的目的。 图1 60kW太阳能离网发电系统方案图 本系统主要由太阳能电池板、控制器、蓄电池、逆变器、稳压保护装置和ATS等组成,系统框图见图1。 本系统中,负载为照明、电脑、电视和小功率电器等负载。为确保系统安全可靠运行,根据初步的预算,系统的安装容量设计为60kw。根据负载情况,采用夏季和冬季的发电量最大指标来设计系统。当系统供电不足时采用ATS装置切换到市电,以保持负载正常运行所需电量。ATS装置可确保太阳能离网发电系统供电和电力电网供电分离,在任何时候,只能取一种电源供电,系统运行的可靠安全性得到保障。

三、设备材料及工程估算 主要元器件一览表 序号代号名称型号规格数量单价小计1CELL1.1太阳能电池组件DC12V, 180W×34060000 2KP充电控制系统SYT-F10001 3INV逆变系统SYT-B1000Uin=99-155V,Uo=AC220V,4.6A1 4ATS1自动电源切换系统DR61T AC220V,500A1 5ATS2稳压保护装置SCU-A1 6BAT1.1密封式胶体蓄电池DC12V, 200Ah×20040000 7SPV防雷汇流箱SPVMB-164 主要材料一览表 序号名称规格单位数量单价小计1聚氯乙烯绝缘电力电缆2x6mm2, 750V米约2000 2同上3x25mm2, 750V米约2000 工程造价估算 序号项目规格单位数量单价小计1太阳能电池阵机架项1 蓄电池机架项1 可编辑修改

光伏并网发电系统设计

光伏并网发电系统设计 摘要:最大功率点跟踪是光伏并网发电系统中经常遇见的问题。系统设计采用电流型控制芯片UC3845实现最大功率点跟踪(MPPT),由单片机STC12C5408AD产生SPWM信号,实现频率相位跟踪功能、输入欠压保护功能、输出过流保护功能。结果表明,该设计不但电路设计简单,软硬件结合,控制方法灵活,而且能够有效的完成最大功率跟踪的目的。 关键词:STC12C5408AD DC-AC转换电路 MPPT 太阳能作为绿色能源,具有无污染、无噪音、取之不尽、用之不竭等优点,越来越受到人们的关注。光伏电池的输出是一个随光照、温度等因素变化的复杂量,且输出电压和输出电流存在非线性关系。光伏系统的主要缺点是初期投资大、太阳能电池的光电转换效率低。为充分利用太阳能必须控制电池阵列始终工作在最大功率点上,最大功率点跟踪(MPPT, Maximum Power Point Tracker)是太阳能并网发电中的一项重要的关键技术。 1 设计任务 为研究方便设计一光伏并网发电模拟装置,其结构框图如图1所示。用直流稳压电源U S和电阻R S模拟光伏电池,U S=60V,R S=30Ω~36Ω;u REF为模拟电网电压的正弦参考信号,其峰峰值为2V,频率f REF为45Hz~55Hz;T为工频隔离变压器,变比为n2:n1=2:1、n3:n1=1:10,将u F作为输出电流的反馈信号;负载电阻R L=30Ω~36Ω。要求系统具有最大功率点跟踪(MPPT)功能,频率、相位跟踪功能,输入欠压保护和输出过流保护功能。另外要求系统效率高、失真度低。 U R L

图1 并网发电模拟装置框图 2 系统总体方案 光伏并网系统主要由前级的DC-DC变换器和后级的DC-AC逆变器组成。在系统中,DC-DC 变换器采用BOOST结构,主要完成系统的MPPT控制;DC-AC部分采用全桥逆变器,维持中间电压稳定并且将电能转换成110 V/50 Hz交流电。设计采用单片机SPWM调制,驱动功率场效应管,经滤波产生正弦波,驱动隔离变压器,向负载输出功率。系统设计保证并网逆变器输出的正弦电流与电网电压同频同相。系统总体硬件框图如图2所示: 图2 系统总体硬件框图 3 MPPT原理及电路设计 MPPT原理 由于光伏阵列的最大功率点是一个时变量,可以采用搜索算法进行最大功率点跟踪。其搜索算法可分为自寻优和非自寻优两种类别。所谓自寻优算法即不直接检测外界环境因素的变化,而是通过直接测量得到的电信号,判断最大功率点的位置。典型的追踪方法有扰动观测法和增量导纳法等。增量导纳法算法的精确度最高,但是,由于增量导纳法算法复杂,对实现该算法的硬件质量要求较高、运算时间变长,会增加不必要的功率损耗,所以实际工程应用中,通常采用扰动观测法算法]1[。 扰动观测法原理:每隔一定的时间增加或者减少电压,并通过观测其后功率变化的方向,

太阳能光伏并网发电系统

太阳能光伏并网发电系统 摘要:随着经济的发展、社会的进步,电能的消耗越来越大,传统的火电需要燃烧煤、石油等化石燃料,一方面化石燃料蕴藏量有限、越烧越少,正面临着枯竭的危险。另一方面燃烧燃料将排出二氧化碳和硫的氧化物,因此会导致温室效应和酸雨,恶化地球环境。针对上述问题人们对能源提出越来越高的要求,寻找新能源成为当前人类面临的迫切课题。太阳能是一种干净的可再生的新能源,越来越受到人们的亲睐,在人们生活、工作中有广泛的作用,其中之一就是将太阳能转换为电能。本文将对太阳能光伏并网发电系统这个新产品进行体系的构建和市场分析,运用产品开发与管理的知识对新产品进行可行性分析,材料分析以及工艺性分析。 关键词:太阳能发电系统产品体系构建市场分析可行性分析 一、产品体系的构建产品体系由战略层面的文化以及策略层面的价格、包装等一系列要素构成,是企业从操作性角度对产品的审视[1]。 1、产品与文化文化是产品的一个重要组成部分,属于产品附加利益这一层次。产 品文化,是以企业生产的产品为载体,反应物质及精神追求的各种文化要素的总和,是产品价值和文化价值的统一。随着知识经济时代的到来,企业生产的产品决不仅仅是为了满足人们的某种物质生活需要,而是越来越多地考虑人们的精神生活需要,越来越重视产品文化附加值的开发,努力为顾客提供实用的、情感的、心理 的等多方面的享受,努力把使用价值和审美价值融为一体,突出产品中的人性化因素 [1] 。 结合自身的产品,不仅要发掘尽可能多的使用价值,更多的是体现太阳能光伏并网发电系统的文化价值。本产品推崇的太阳不仅仅给世界带来了温暖和光照,即太阳能光伏并网系统结合自身的特点所体现出的文化价值。在当前能源短缺的大环境下,太阳能蕴藏丰富不会枯竭,是理想的清洁能源。由于其安全、干净,不会威胁人类和破坏环境,比传统的煤燃料更环保,所以太阳能更值得推广。 对于顾客的情感方面,近阶段,国家电网的供电大多是采用火力发电,势必造成 能源的短缺和环境的破坏,顾客使用本产品能有效节约能源,保护坏境,充分体 现了顾客对环境保护的高度责任感,也能把这份责任感传递给更多。 2、产品与定位 产品的定位是体系构建中重要的一个环节,产品定位指企业针对同种产品市场进入者的情况,根据消费者对该产品的某一属性或特征的重视程度,为该产品设计

太阳能发电系统的结构和工作原理

太阳能发电系统的结构和工作原理 在理解太阳能发电原理之前,如果您对太阳能还有所疑问的话,建议您先看一下什么是太阳能。 所谓太阳能发电是利用电池组件将太阳能直接转变为电能的装置。太阳能电池组件(Solar cells)是利用半导体材 料的电子学特性实现P-V转换的固体装置,在广大的无电力网地区,该装置可以方便地实现为用户照明及生活供电,一些发达国家还可与区域电网并网实现互补。目前从民用的角度,在国外技术研究趋于成熟且初具产业化的是"光伏--建筑(照明)一体化"技术,而国内主要研究生产适用于无电地区家庭照明用的小型太阳能发电系统。 1、太阳能发电原理 太阳能发电系统主要包括:太阳能电池组件(阵列)、控制器、蓄电池、逆变器、用户即照明负载等组成。其中 ,太阳能电池组件和蓄电池为电源系统,控制器和逆变器为控制保护系统,负载为系统终端。 1.1 太阳能电源系统 太阳能电池与蓄电池组成系统的电源单元,因此蓄电池性能直接影响着系统工作特性。 (1) 电池单元: 由于技术和材料原因,单一电池的发电量是十分有限的,实用中的太阳能电池是单一电池经串、并联组成的 电池系统,称为电池组件(阵列)。单一电池是一只硅晶体二极管,根据半导体材料的电子学特性,当太阳光照射到由P型和N型两种不同导电类型的同质半导体材料构成的P-N结上时,在一定的条件下,太阳能辐射被半导体材料吸收,在导带和价带中产生非平衡载流子即电子和空穴。同于P-N结势垒区存在着较强的内建静电场,因而能在光照下形成电流密度J,短路电流Isc,开路电压Uoc。 若在内建电场的两侧面引出电极并接上负载,理论上讲由P-N结、连接电路和负载形成的回路,就有"光生电流"流过,太阳能电池组件就实现了对负载的功率P输出。 理论研究表明,太阳能电池组件的峰值功率Pk,由当地的太阳平均辐射强度与末端的用电负荷(需电量)决定。(2) 电能储存单元: 太阳能电池产生的直流电先进入蓄电池储存,蓄电池的特性影响着系统的工作效率和特性。蓄电池技术是十 分成熟的,但其容量要受到末端需电量,日照时间(发电时间)的影响。因此蓄电池瓦时容量和安时容量由预定的连续无日照时间决定。 1.2 控制器 控制器的主要功能是使太阳能发电系统始终处于发电的最大功率点附近,以获得最高效率。而充电控制通常 采用脉冲宽度调制技术即PWM控制方式,使整个系统始终运行于最大功率点Pm附近区域。放电控制主要是指当电池缺电、系统故障,如电池开路或接反时切断开关。目前日立公司研制出了既能跟踪调控点Pm,又能跟踪太阳移动参数的"向日葵"式控制器,将固定电池组件的效率提高了50%左右。 1.3 DC-AC逆变器 逆变器按激励方式,可分为自激式振荡逆变和他激式振荡逆变。主要功能是将蓄电池的直流电逆变成交流电 。通过全桥电路,一般采用SPWM处理器经过调制、滤波、升压等,得到与照明负载频率f,额定电压UN等匹配的正弦交流电供系统终端用户使用。 2、太阳能发电系统的效率 在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及 负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围

利用太阳能烟囱抽取地下水的技术

利用太阳能烟囱抽取地下水的技术 近几年来,国内有越来越多的人对太阳能烟囱发电技术产生兴趣,许多专家认为,在中国开发太阳能烟囱发电技术具有很大的地理优势。我国西部地区具有丰富的土地资源,人口稀少,阳光充足,是修建太阳能烟囱的理想场所;我国西部地区也是能源和水资源匮乏的地区,利用太阳能烟囱技术直接抽取地下水是值得思考的问题。 太阳能烟囱直接抽取地下水技术的提出 在化石能源日益减少的今天,开发以太阳能为代表的可再生能源是一条解决能源问题的出路。太阳能烟囱发电技术采用一些常规材料,运行成本很低,而且能减少温室气体CO2的排放,其优点已经被建造在西班牙的太阳能烟囱电站所证明。然而,其固有的缺点和难题也是限制其发展的主要原因。 ①太阳能烟囱发电系统的总能量转化效率低。西班牙50kW太阳能烟囱电站的能量转换效率不到0.2%,预测的10MW大型太阳能烟囱的总能量转化效率也只有1.39%。只有太阳能烟囱的规模越大,其效率才越高。 ②投资巨大。100MW的太阳能烟囱建造成本为0.789亿英镑,澳大利亚计划建造的200MW的太阳塔的预计投资为7亿美元。 ③超高烟囱的安全总是和可靠性问题是令人担忧的。目前世界上最高的人工建筑物(加拿大的多伦多电视塔)只有550m高,而待建的澳大利亚太阳能烟囱的高度是它的2倍。 ④太阳能集热棚灰尘的清洗和效率的维持是一个难题。集热棚表面很容易覆盖灰尘,大面积集热棚表面的清洗又很困难,集热棚积灰会影响太阳光的透过,降低发电效率。

在我国西部地区,普遍存在能源和水源缺乏的问题。水资源的开发是解决荒漠化地区人类生存的关键。抽取地下水是解决干旱地区水资源缺乏的一种有效途径。这些地区交通困难,经济落后,电力匮乏,领先传统电网的延伸来提供水泵动力是难以实现的。虽然我国已经在西部地区开展了太阳能光伏发电提水的研究,但是由于太阳能电池的成本太高,因此目前还未达到大规模应用。另外,风力提水技术只能适合于风力资源丰富的地区,在许多风力资源贫乏的地区就不能使用。 根据太阳能烟囱发电技术的难点和我国西部地区的具体情况,建立大规模的太阳能烟囱的时机还不成熟。回避修建大规模电站的风险,建造中小规模的太阳能烟囱装置直接抽取地下水,是解决我国西部地区水资源问题的新思路。 太阳能烟囱直接抽取地下水的模型设计 太阳光透过塑料或玻璃集热棚加热地面。为了增加地面的蓄热性能,将地面铺设一层水管作为蓄热材料。由于温室效应,集热棚内空气温度升高,热空气膨胀而向集热棚中部流动,进入集热棚中部的烟囱。实际应用的烟囱一般采用钢筋混凝土结构,以保证一定的强度和防风抗震性能。上升的气流在烟囱中加速上升,推动安装在烟囱底部的涡轮机旋转,并通过机械传动带动曲轴取的地下水通过过滤器被提升到高位水塔中。高位水塔中的水通过喷淋设施清洗集热棚表面的灰尘,也可以输送到远处。 最简单常见的活塞水泵是由1个圆形水管外筒和1个活塞组成。圆管底部设进水口,并安装有过滤器,在圆管的顶部设出水口,活塞上装有一个单向活门。当活塞处于向下行程时,圆管底部的活门关闭,活塞上的活门被水的压力冲开而流入活塞以上部位。当活塞处于向上的行程时,活塞活门受上部水的压力而关闭,圆管底部的单向活门被吸开,水进入到圆管内,活塞活门上部的水就被提升到其顶部的水管中。只要太阳能烟囱有足够的功率,就可以把地下水抽到水塔内或输送到很远的地方。一个太阳能烟囱提水装置所需的功率大小,主要考虑

小型太阳能离网发电系统

施工组织设计 1、工程概况 建设单位:************发展有限公司 项目名称:**********太阳能发电系统 建设地点:*********** 该工程位于********,建筑面积****平方米, 2、系统要求: 1)根据项目要求,为**个房间供电,每个房间平均负荷约***W,负载最大功率为:16000W ,所以选用逆变器功率为20Kw。 2)每个房间平均每天用电4~5小时,平均用电量为16kw×4.5h=72kwh。 3)电池组件集中放置在宿舍楼屋顶。 4)由于蓄电池数量较多,且较重,所以集中放置在一楼独立的一个房间,并且便于维护,检测。 系统主要由太阳电池板、充放电控制器、免维护铅酸蓄电池、安装支架、电池柜等组成,太阳电池板产生的电能经过电缆、控制器、蓄电池等环节,转换为交流负载所能使用的电能。示意图如下:

3、系统配置方案: 根据客户要求,主要给家庭户用电源系统,配置计算如下: 说明:1、本报价为系统的货物总价,包含安装、运输、施工等费用,直至系统正常运行。 2、其它项包括螺栓螺母、穿线管等配件费用; 3、本报价有效期为即日起15个日历日内。 4、系统的关键部件描述: 1)太阳能电池板: 在太阳光的照射下将太阳能转换成电能输出,是整个光伏系统的核心部件。本系统采用电池组件共计200块,8块36V/170W(外形尺寸为1580×808×50)串联组成一组,然后进行并联,共计20组。我公司专业生产太阳能电池板,产品已经通过了CE、ISO9001、ISO14001认证,电池片效率20%以上,使用寿命25年以上。

2)充放电控制器: 根据系统的充放电要求,采用GS-200PFL6-V控制器,控制器对蓄电池充放电条件加以规定和控制,具有LCD中英文菜单显示、精确的电池电量测量显示、工作状态指示等功能,是整个系统的核心控制部分,控制器具有以下特点: a、 LED、LCD显示功能,可对蓄电池电压,负载电流及充电电流、日发/放电量、累计发 /放电量、负载短路次数、环境温度进行实时监控和显示。 b、具有过充、过放、过载、短路、接反、过压、过热等一系列声光报警和保护功能。 c、温度补偿调节电压,补偿系数可设定。 d、提供标准RS232/RS485接口。 e、人性化的人机交互界面,具有故障信息和运行状态查询功能。 型号GS-50PFL2-R GS-100PFL4-V GS-150PFL6-V GS-200PFL6-V GS-300PFL6-V 额定容量(A)50 100 150 200 300 最大光伏组件功 10.8 21.6 32.4 43.2 64.8 率(KWp) 额定电压(VDC)216 216 216 216 216 负载最大电流(A)50 100 150 200 300 充电最大电流(A)55 110 165 220 330 充电路数 2 4 6 6 6 每路光伏阵列最 25 25 25 34 50 大电流(A)

太阳能并网光伏发电系统设计

】 南昌航空大学 自学考试毕业论文 【 题目太阳能并网光伏发电系统 专业光伏材料及应用 学生姓名 准考证号 指导教师 . 2012 年 04 月

光伏发电并网控制技术设计 摘要 随着全球经济社会的不断发展,能源消费也相应的持续增长。能源问题已经成为关系到人类生存和发展的首要问题。所以,迫切需要对新的能源进行开发和研究。而太阳能的利用近年来已经逐渐成为新能源领域中开发利用水平高,应用较广泛的能源,尤其在远离电网的偏远地区应用更为广泛。 本文主要对光伏并网发电系统作了分析和研究。论文首先介绍了太阳能发电的意义以及光伏并网发电在国内外的应用现状。其次,对太阳能发电系统的特性和基本原理分别做了具体分析,并对系统各组成部分的功能进行了详细的介绍。接着,对光伏并网中最重要部分——逆变器进行研究。再次,提出光伏并网发电系统的设计方案。最后,对光伏并网发电系统的硬件进行设计。并网光伏发电充分发挥了新能源的优势,可以缓解能源紧张问题,是太阳能规模化发展的必然方向。我国政府高度重视光伏并网发电,并逐步推广"屋顶计划"。太阳能并网发电正在由补充能源向替代能源方向迈进。 关键词:能源;太阳能;光伏并网;逆变器

目录 第一章太阳能光伏产业绪论 (1) 光伏发电的意义 (1) 光伏并网发电 (1) 第二章太阳能光伏发电系统 (5) 太阳能光伏发电简介 (5) 太阳能光伏发电系统的类别 (5) 太阳能光伏发电系统的发电方式 (6) 影响太阳能光伏发电的主要因素 (7) 第三章并网太阳能光伏发电系统组成 (10) 并网光伏系统的组成和原理 (10) 光伏电池的分类及主要参数 (12) 光伏控制器性能及技术参数 (14) 光伏逆变器性能及技术参数 (15) 第四章发展与展望 (18) 发展与展望 (18) 全文总结 (19) 参考文献 (20) 致谢 (21)

太阳能发电系统的设计分析

太阳能发电系统的设计分析 发表时间:2018-06-04T16:55:59.477Z 来源:《基层建设》2018年第10期作者:林刚张少利[导读] 摘要:在太阳能的有效利用中,太阳能发电是最具活力的研究领域,也是最受瞩目的项目之一。 江苏四季沐歌有限公司江苏省连云港市 222000 摘要:在太阳能的有效利用中,太阳能发电是最具活力的研究领域,也是最受瞩目的项目之一。太阳能发电系统采用太阳能电池阵列、太阳能控制器、蓄电池(组)、DC/AC 逆变器(并网/不并网)、低压输配电网及交、直流负载等部分组成。下面就谈谈自己对太阳能发电系统的设计的看法。 关键词:太阳能;发电系统;设计太阳能电池发电是基于“光生伏打效应”的原理,利用充电效应把太阳辐射直接转化为电能。太阳能具有永久性、清洁性和灵活性三大优点,是其他能源无法比拟的。总之,太阳能发电的过程没有机械转动部件也燃料消耗,不排放包括温室气体在内的任何有害物质,无噪音、无环境污染,太阳能资源分布广泛没有地域限制。维修保养简单,维护费用低,运行可靠性、稳定性好。无需架设输电线路即可就地发电供电及建设周期短。 1太阳能的特点 利用太阳能发电有两大类型,一类是太阳光发电(亦称太阳能光发电),另一类是太阳热发电(亦称太阳能热发电)。太阳能光发电是将太阳能直接转变成电能的一种发电方式。它包括光伏发电、光化学发电、光感应发电和光生物发电四种形式,在光化学发电中有电化学光伏电池、光电解电池和光催化电池。太阳能是一种普遍存在的能源,并且无需采集、运输就可以直接开发利用;其次,太阳能作为一种清洁能源,对环境不会造成任何损害,在环保意识逐步提高的今天,值得推广应用;有数据显示,4年地球接受到的太阳能相当于130万亿吨煤产生的能量,应用潜力巨大;此外,太阳能量可持续时间如果用地球的寿命来换算,儿乎是取之不尽用之不竭的。然而,与此同时,太阳能的利用目前还存在一些问题,比如太阳能虽然普遍存在,但是也存在严重的不稳定性,同时总量虽大但是能流密度却相对较低,并且人类对于太阳能的利用率还处于较低的水平,同时应用成本也较高。 2太阳能发电系统 太阳能发电系统分为独立发电系统与并网发电系统:独立发电系统也叫离网发电系统。主要由太阳能电池组件、控制器、蓄电池组成,若要为交流负载供电,还需要配置交流逆变器。并网发电系统就是太阳能组件产生的直流电经过并网逆变器转换成符合市电电网要求的交流电后直接接入公共电网。并网发电系统有集中式大型并网电站一般都是国家级电站,主要特点是将所发电能直接输送到电网,由电网统一调配向用户供电。但这种电站投资大、建设周期长、占地面积大,目前还没有太大发展。而分散式小型并网发电系统,特别是光伏建筑一体化发电系统,由于投资小、建设快、占地面积小、政策支持力度大等优点,是目前并网发电的主流。 太阳能电池板、太阳能控制器、蓄电池组是太阳能发电系统的主要组成部分,此外逆变器也是常见的辅助设备,用于输出合适交流电太阳能电池板的主要功能是转换太阳的辐射能为电能,送往电池组中进行存储,并推动负载作用,是太阳能发电系统中最核心、最有价值的组成部分,它的质量也直接决定了整个太阳能发电系统的质量。太阳能控制器负责对整个太阳能发电系统进行监控,并对蓄电池组起到一个保护的作用,此外,部分控制器可能还兼具有光控和时控功能。值得注意的是,一个合格的控制器在温差较大的地方,还应该配备温差补偿功能。太阳能蓄电池组的功能,就是将太阳能发电系统产生的电能储存起来以备用,铅酸电池、镍氢电池、镍锅电池或铿电池是最常见的蓄电池种类,除铅酸电池外,主要用于小微型的太阳能发电系统中。我们知道,太阳能直接输出的电能为12VDC,24VDC,48VDC,而我们日常使用的电能则为220VAC,110VAC,囚此逆变器的主要作用就是为我们提供合适的电能。 3太阳能发电系统的效率在太阳能发电系统中,系统的总效率ηese由电池组件的PV转换率、控制器效率、蓄电池效率、逆变器效率及负载的效率等组成。但相对于太阳能电池技术来讲,要比控制器、逆变器及照明负载等其它单元的技术及生产水平要成熟得多,而且目前系统的转换率只有17%左右。因此提高电池组件的转换率,降低单位功率造价是太阳能发电产业化的重点和难点。太阳能电池问世以来,晶体硅作为主角材料保持着统治地位。目前对硅电池转换率的研究,主要围绕着加大吸能面,如双面电池,减小反射;运用吸杂技术减小半导体材料的复合;电池超薄型化;改进理论,建立新模型;聚光电池等。 4太阳能发电系统的运行 4.1并网全自动运行方式 设计的太阳能发电系统产生的电能将直接分配到需要太阳能供电的用电负载上,包括楼道间照明以及地下停车场照明,不足的电力将由连接的电网进行补充调节。具体工作起来,就是太阳能发电系统在旱晚分别对太阳能电池板阵列的电压进行监测:旱上达到设定值即执行并网发电,并将产生的直流电经由逆变器转换为可供使用的交流电;晚上低于设定值时,并网发电系统将自动停止运行。 4.2并联运行方式 太阳能发电系统并联运行方式与并网全自动运行方式在电能利用和调节方式上基本一致,是一个相对独立的发电系统。该方式的配电方式与柴油发电机的配电方式基本相同,即增加一路交流市电供电,将经逆变器转换的交流电和市电组成A'1'SE双电源自动切换,这是一种简单、灵活、独立的发电系统,A'1'SE双电源自动切换系统会在太阳能供电中断,或者供电不足的时候自动切换到市电供电,供电的可靠性也随之提高然而,并联运行方式也有一定缺点,那就是A'1'SE双电源自动切换的过程中,将会中断一段时间的供电,这将不利于一些用电设备的正常运行,甚至可能会造成一定的损坏。同时,考虑到太阳能发电的不稳定性,并联运行方式的用电量也很难达到平衡。不过,由于并联运行方式可以尽量更多的发挥太阳能的发电量,从而部分节约备用的蓄电池,进而节约投资。 5太阳能光伏发电需要考虑的因素 5.1地理位置及气象条件 利用太阳能光伏发电必须要综合考虑各种因素,包括地点、纬度、经度、海拔等,太阳能每月的总辐射量。直接辐射量,年平均气温,最长连续阴雨天数,最大风速降雪及冰雹等特殊气象情况。 5.2最大负载及用电特性

相关文档
最新文档