17种焊接方法

17种焊接方法
17种焊接方法

1、手弧焊

手弧焊是各种电弧焊方法中发展最早、目前仍然应用最广的一种焊接方法。它是以外部涂有涂料的焊条作电极和填充金属,电弧是在焊条的端部和被焊工件表面之间燃烧。涂料在电弧热作用下一方面可以产生气体以保护电弧,另一方面可以产生熔渣覆盖在熔池表面,防止熔化金属与周围气体的相互作用。熔渣的更重要作用是与熔化金属产生物理化学反应或添加合金元素,改善焊缝金属能。手弧焊设备简单、轻便,*作灵活。可以应用于维修及装配中的短缝的焊接,特别是可以用于难以达到的部位的焊接。手弧焊配用相应的焊条可适用于大多数工业用碳钢、不锈钢、铸铁、铜、铝、镍及其合金。

2、钨极气体保护电弧焊

;这是一种不熔化极气体保护电弧焊,是利用钨极和工件之间的电弧使金属熔化而形成焊缝的。焊接过程中钨极不熔化,只起电极的作用。同时由焊炬的喷嘴送进氩气或氦气作保护。还可根据需要另外添加金属。在国际上通称为TIG焊。钨极气体保护电弧焊由于能很好地控制热输入,所以它是连接薄板金属和打底焊的一种极好方法。这种方法几乎可以用于所有金属的连接,尤其适用于焊接铝、镁这些能形成难熔氧化物的金属以及象钛和锆这些活泼金属。这种焊接方法的焊缝质量高,但与其它电弧焊相比,其焊接速度较慢。

3、熔化极气体保护电弧焊

这种焊接方法是利用连续送进的焊丝与工件之间燃烧的电弧作热源,由焊炬喷嘴喷出的气体保护电弧来进行焊接的。熔化极气体保护电弧焊通常用的保护气体有:氩气、氦气、CO2气或这些气体的混合气。以氩气或氦气为保护气时称为熔化极惰*气体保护电弧焊(在国际上简称为MIG焊);以惰*气体与氧化*气体(O2,CO2)混合气为保护气体时,或以CO2气体或CO2+O2混合气为保护气时,或以CO2气体或CO2+O2混合气为保护气时,统称为熔化极活*气体保护电弧焊(在国际上简称为MAG焊)。熔化极气体保护电弧焊的主要优点是可以方便地进行各种位置的焊接,同时也具有焊接速度较快、熔敷率高等优点。熔化极活*气体保护电弧焊可适用于大部分主要金属,包括碳钢、合金钢。熔化极惰*气体保护焊适用于不锈钢、铝、镁、铜、钛、锆及镍合金。利用这种焊接方法还可以进行电弧点焊。

4、等离子弧焊

等离子弧焊也是一种不熔化极电弧焊。它是利用电极和工件之间地压缩电弧(叫转发转移电弧)实现焊接的。所用的电极通常是钨极。产生等离子弧的等离子气可用氩气、氮气、氦气或其中二者之混合气。同时还通过喷嘴用惰*气体保护。焊接时可以外加填充金属,也可以不加填充金属。等离子弧焊焊接时,由于其电弧挺直、能量密度大、因而电弧穿透能力强。等离子弧焊焊接时产生的小孔效应,对于一定厚度范围内的大多数金属可以进行不开坡口对接,并能保证熔透和焊缝均匀一致。因此,等离子弧焊的生产率高、焊缝质量好。但等离子

弧焊设备(包括喷嘴)比较复杂,对焊接工艺参数的控制要求较高。钨极气体保护电弧焊可焊接的绝大多数金属,均可采用等离子弧焊接。与之相比,对于1mm以下的极薄的金属的焊接,用等离子弧焊可较易进行。

5、管状焊丝电弧焊

管状焊丝电弧焊也是利用连续送进的焊丝与工件之间燃烧的电弧为热源来进行焊接的,可以认为是熔化极气体保护焊的一种类型。所使用的焊丝是管状焊丝,管内装有各种组分的焊剂。焊接时,外加保护气体,主要是CO2。焊剂受热分解或熔化,起着造渣保护溶池、渗合金及稳弧等作用。管状焊丝电弧焊除具有上述熔化极气体保护电弧焊的优点外,由于管内焊剂的作用,使之在冶金上更具优点。管状焊丝电弧焊可以应用于大多数黑色金属各种接头的焊接。管状焊丝电弧焊在一些工业先进国家已得到广泛应用。“管状焊丝”即现在所说的“药芯焊丝”

6、电阻焊

这是以电阻热为能源的一类焊接方法,包括以熔渣电阻热为能源的电渣焊和以固体电阻热为能源的电阻焊。由于电渣焊更具有独特的特点,故放在后面介绍。这里主要介绍几种固体电阻热为能源的电阻焊,主要有点焊、缝焊、凸焊及对焊等。电阻焊一般是使工件处在一定电极压力作用下并利用电流通过工件时所产生的电阻热将两工件之间的接触表面熔化而实现连接的焊接方法。通常使用较大的电流。为了防止在接触面上发生电弧并且为了锻压焊缝金属,焊接过程中始终要施加压力。进行这一类电阻焊时,被焊工件的表面善对于获得稳定的焊接质量是头等重要的。因此,焊前必须将电极与工件以及工件与工件间的接触表面进行清理。点焊、缝焊和凸焊的牾在于焊接电流(单相)大(几千至几万安培),通电时间短(几周波至几秒),设备昂贵、复杂,生产率高,因此适于大批量生产。主要用于焊接厚度小于3mm的薄板组件。各类钢材、铝、镁等有色金属及其合金、不锈钢等均可焊接。

7、电子束焊

电子束焊是以集中的高速电子束轰击工件表面时所产生的热能进行焊接的方法。电子束焊接时,由电子枪产生电子束并加速。常用的电子束焊有:高真空电子束焊、低真空电子束焊和非真空电子束焊。前两种方法都是在真空室内进行。焊接准备时间(主要是抽真空时间)较长,工件尺寸受真空室大小限制。电子束焊与电弧焊相比,主要的特点是焊缝熔深大、熔宽小、焊缝金属纯度高。它既可以用在很薄材料的精密焊接,又可以用在很厚的(最厚达300mm)构件焊接。所有用其它焊接方法能进行熔化焊的金属及合金都可以用电子束焊接。主要用于要求高质量的产品的焊接。还能解决异种金属、易氧化金属及难熔金属的焊接。但不适于大批量产品。

8、激光焊

激光焊是利用大功率相干单色光子流聚焦而成的激光束为热源进行的焊接。这种焊接方法通常有连续功率激光焊和脉冲功率激光焊。激光焊优点是不需要在真空中进行,缺点则是穿透力不如电子束焊强。激光焊时能进行精确的能量控制,因而可以实现精密微型器件的焊接。它能应用于很多金属,特别是能解决一些难焊金属及异种金属的焊接。

9、钎焊

钎焊的能源可以是化学反应热,也可以是间接热能。它是利用熔点比被焊材料的熔点低的金属作钎料,经过加热使钎料熔化,*毛细管作用将钎料及入到接头接触面的间隙内,润湿被焊金属表面,使液相与固相之间互扩散而形成钎焊接头。因此,钎焊是一种固相兼液相的焊接方法。钎焊加热温度较低,母材不熔化,而且也不需施加压力。但焊前必须采取一定的措施清除被焊工件表面的油污、灰尘、氧化膜等。这是使工件润湿*好、确保接头质量的重要保证。钎料的液相线湿度高于450℃而低于母材金属的熔点时,称为硬钎焊;低于450℃时,称为软钎焊。根据热源或加热方法不同钎焊可分为:火焰钎焊、感应钎焊、炉中钎焊、浸沾钎焊、电阻钎焊等。钎焊时由于加热温度比较低,故对工件材料的*能影响较小,焊件的应力变形也较小。但钎焊接头的强度一般比较低,耐热能力较差。钎焊可以用于焊接碳钢、不锈钢、高温合金、铝、铜等金属材料,还可以连接异种金属、金属与非金属。适于焊接受载不大或常温下工作的接头,对于精密的、微型的以及复杂的多钎缝的焊件尤其适用。

10、电渣焊

电渣焊是以熔渣的电阻热为能源的焊接方法。焊接过程是在立焊位置、在由两工件端面与两侧水冷铜滑块形成的装配间隙内进行。焊接时利用电流通过熔渣产生的电阻热将工件端部熔化。根据焊接时所用的电极形状,电渣焊分为丝极电渣焊、板极电渣焊和熔嘴电渣焊。电渣焊的优点是:可焊的工件厚度大(从30mm到大于1000mm),生产率高。主要用于在断面对接接头及丁字接头的焊接。电渣焊可用于各种钢结构的焊接,也可用于铸件的组焊。电渣焊接头由于加热及冷却均较慢,热影响区宽、显微组织粗大、韧、因此焊接以后一般须进行正火处理。

11、高频焊

高频焊是以固体电阻热为能源。焊接时利用高频电流在工件内产生的电阻热使工件焊接区表层加热到熔化或接近的塑*状态,随即施加(或不施加)顶锻力而实现金属的结合。因此它是一种固相电阻焊方法。高频焊根据高频电流在工件中产生热的方式可分为接触高频焊和

感应高频焊。接触高频焊时,高频电流通过与工件机械接触而传入工件。感应高频焊时,高频电流通过工件外部感应圈的耦合作用而在工件内产生感应电流。高频焊是专业化较强的焊接方法,要根据产品配备专用设备。生产率高,焊接速度可达30m/min。主要用于制造管子时纵缝或螺旋缝的焊接。

12、气焊

气焊是用气体火焰为热源的一种焊接方法。应用最多的是以乙炔气作燃料的氧-乙炔火焰。由于设备简单使*作方便,但气焊加热速度及生产率较低,热影响区较大,且容易引起较大的变形。气焊可用于很多黑色金属、有色金属及合金的焊接。一般适用于维修及单件“搴附印?

13、气压焊

气压焊和气焊一样,气压焊也是以气体火焰为热源。焊接时将两对接的工件的端部加热到一定温度,后再施加足够的压力以获得牢固的接头。是一种固相焊接。气压焊时不加填充金属,常用于铁轨焊接和钢筋焊接。

14、爆炸焊

爆炸焊也是以化学反应热为能源的另一种固相焊接方法。但它是利用炸药爆炸所产生的能量来实现金属连接的。在爆炸波作用下,两件金属在不到一秒的时间内即可被加速撞击形成金属的结合。在各种焊接方法中,爆炸焊可以焊接的异种金属的组合的范围最广。可以用爆炸焊将冶金上不相容的两种金属焊成为各种过渡接头。爆炸焊多用于表面积相当大的平板包覆,是制造复合板的高效方法。

15、摩擦焊

摩擦焊是以机械能为能源的固相焊接。它是利用两表面间机械摩擦所产生的热来实现金属的连接的。摩擦焊的热量集中在接合面处,因此热影响区窄。两表面间须施加压力,多数情况是在加热终止时增大压力,使热态金属受顶锻而结合,一般结合面并不熔化。摩擦焊生产率较高,原理上几乎所有能进行热锻的金属都能摩擦焊接。摩擦焊还可以用于异种金属的焊接。要适用于横断面为圆形的最大直径为100mm的工件。

16、超声波焊

超声波焊也是一种以机械能为能源的固相焊接方法。进行超声波焊时,焊接工件在较低的静压力下,由声极发出的高频振动能使接合面产生强裂摩擦并加热到焊接温度而形成结合。超声波焊可以用于大多数金属材料之间的焊接,能实现金属、异种金属及金属与非金属间的焊接。可适用于金属丝、箔或2~3mm以下的薄板金属接头的重复生产。

17、扩散焊

扩散焊一般是以间接热能为能源的固相焊接方法。通常是在真空或保护气氛下进行。焊接时使两被焊工件的表面在高温和较大压力下接触并保温一定时间,以达到原子间距离,经过原子朴素相互扩散而结合。焊前不仅需要清洗工件表面的氧化物等杂质,而且表面粗糙度要低于一定值才能保证焊接质量。扩散焊对被焊材料的*能几乎不产生有害作用。它可以焊接很多同种和异种金属以及一些非金属材料,如陶瓷等。扩散焊可以焊接复杂的结构及厚度相差很大的工件。

常用焊接方法—焊接工艺

常用焊接方法——焊接工艺 我公司是生产自动焊接设备的大型厂家。作为公司员工,就更应该了解常用焊接方法及焊接工艺。结合设备调试,这里将常用的埋弧焊、气体保护焊、钨极氩弧焊作为简要的讲述,以供有关人员参考。 一、埋弧焊 电弧在焊剂层下燃烧进行焊接的方法称为埋弧焊。主要优点:劳动条件好,节省焊接材料和电能,焊缝质量好,生产效率高等。但不适合薄板焊接。(当焊接电流小于100A时,电弧稳定性差,目前板厚小于1mm的薄板还无法采用埋弧焊)只限于水平或倾斜度不大的位置施焊。 埋弧焊是高效焊接常用方法之一。主要用于:焊接各种钢板结构。焊接碳素结构钢、低合金结构钢、不锈钢、耐热钢和复合材料以及堆焊耐磨、耐蚀合金等。 焊接工艺参数对焊接质量影响较大的有:焊接电流、电弧电压、焊接速度、焊丝直径与伸出长度、焊丝倾角、装配间隙与坡口大小等。此外焊剂层厚度及粒度对焊接质量也有影响。下面分别讲述它们对焊接质量的影响: 1.焊接电流: 焊接电流是决定熔深的主要因素。在一定范围内,焊接电流增加,焊缝的熔深和余高都增加。而焊缝的宽度增加不大。增大焊接电流能提高生产率,但在一定的焊接速度下,焊接电流过大会使热影响区过大,并产生焊瘤及焊件被烧穿等缺陷。若焊接电流过小,测熔深不足,

熔合不好、未焊透和夹渣,并使焊缝成形变坏。 2.电弧电压: 电弧电压是决定熔宽的主要因素。电弧电压增加时,弧长增加,熔深减小,焊缝宽度变宽,余高减小,电弧电压过大,溶剂熔化量增加,电弧不稳,严重时会产生咬边和气孔等。 3.焊接速度: 焊接速度增加,母材熔合比较小。焊接速度过高时,会产生咬边,未焊透,电弧偏吹和气孔等缺陷,焊缝余高大而窄成形不好。 4.焊丝直径与伸出长度: 当焊接电流不变时,减小焊丝直径,电流密度增加,熔深增大,成形系数减小。焊丝伸出长度增加时,熔深速度和余高都增加。 5.焊丝倾角: 焊丝前倾,焊缝成形系数增加,熔深变浅,焊缝宽度增加。焊丝后倾,熔深与余高增,。熔宽明显减小,焊缝成形不变。 6.装配间隙与坡口: 在其他工艺参数不变的条件下,装配间隙与坡口角度增大时,熔合比与余高减小,熔深增大,焊缝厚度基本保持不变。 7、焊机层厚度与粒度: 焊剂层太薄时,容易露弧,电弧保护不好,容易产生气孔或裂纹。焊剂层太厚,焊缝变窄,成形不好。 一般情况下,焊剂粒度对焊缝成形影响不大,但采用小直径焊丝焊薄板时,焊剂粒度对焊缝成形就有影响。若焊剂颗粒太大,电弧不

焊接工艺规范与操作规程完整

焊接工艺规范及操作规程 1.目的和适用范围 1.1 本规范对本公司特殊过程――焊接过程进行控制,做到技术先进、经济合理、安全适用、确保质量。 1.2 本规范适用于各类铁塔结构、桁架结构、多层和高层梁柱框架结构等工业与民用建筑和一般构筑物的钢结构工程中,钢材厚度≥4mm的碳素结构钢和低和金高强度结构钢的焊接。适用的焊接方法包括:手工电弧焊、气体保护焊、埋弧焊及相应焊接方法的组合。 2.本规范引用如下标准: JGJ81-2002《建筑钢结构焊接技术规程》 GB50205-2001《钢结构工程施工质量验收规范》 GB50017-2003《钢结构设计规范》 3.焊接通用规范 3.1焊接设备 3.1.1 焊接设备的性能应满足选定工艺的要求。 3.1.2 焊接设备的选用: 手工电弧焊选用ZX3-400型、BX1-500型焊机 CO2气体保护焊选用KRⅡ-500型、HKR-630型焊机 埋弧自动焊选用ZD5(L)-1000型焊机 3.2 焊接材料 3.2.1 焊接材料的选用应符合设计图纸的要求,并应具有钢厂和焊接材料厂出具的质量证明书或检验报告;其化学成份、力学性能和其它质量要求必须符合国家现行标准规定。3.2.2 焊条应符合现行国家标准《碳钢焊条》(GB/T5117),《低合金钢焊条》(GB /T5118)的规定。 3.2.3 焊丝应符合现行国家标准《熔化焊用钢丝》(GB/T14957)、《气体保护电弧焊用碳钢、低合金钢焊丝》(GB/T8110)及《碳钢药芯焊丝》(GB/T10045)、《低合金钢药芯焊丝》(GB/T17493)的规定。 3.2.4 埋弧焊用焊丝和焊剂应符合现行国家标准《埋弧焊用碳钢焊丝和焊剂》(GB/

焊接的正确方法和步骤

(1)焊前处理步骤 焊接前,应对元器件引脚或电路板的焊接部位进行处理,一般有“刮”、“镀”、“测”三个步骤: “刮”:就是在焊接前做好焊接部位的清洁工作。一般采用的工具是小刀和细砂纸,对集成电路的引脚、印制电路板进行清理,去除其上的污垢,清理完后一般还需要往待拆元器件上涂上助焊剂。 “镀”:就是在刮净的元器件部位上镀锡。具体做法是蘸松香酒精溶液涂在刮净的元器件焊接部位上,再将带锡的热烙铁头压在其上,并转动元器件,使其均匀地镀上一层很薄的锡层。 “测”:就是利用万用表检测所有镀锡的元器件是否质量可靠,若有质量不可靠或已损坏的元器件,应用同规格元器件替换。 (2)焊接步骤 做好焊前处理之后,就可进行正式焊接。 不同的焊接对象,其需要的电烙铁工作温度也不相同。判断烙铁头的温度时,可将电烙铁碰触松香,若有“吱吱”的声音,说明温度合适;若没有声音,仅能使松香勉强熔化,则说明温度太低;若烙铁头一碰上松香就大量冒烟,则说明温度太高。 一般来讲,焊接的步骤主要有三步:

(1)烙铁头上先熔化少量的焊锡和松香,将烙铁头和焊锡丝同时对准焊点。 (2)在烙铁头上的助焊剂尚未挥发完时,将烙铁头和焊锡丝同时接触焊点,开始熔化焊锡。 (3)当焊锡浸润整个焊点后,同时移开烙铁头和焊锡丝。 焊接过程一般以2~3s为宜。焊接集成电路时,要严格控制焊料和助焊剂的用量。为了避免因电烙铁绝缘不良或内部发热器对外壳感应电压而损坏集成电路,实际应用中常采用拔下电烙铁的电源插头趁热焊接的方法。电烙铁虚焊及其防治方法 焊接时,应保证每个焊点焊接牢固、接触良好,锡点应光亮、圆滑无毛刺,锡量适中。锡和被焊物熔合牢固,不应有虚焊。所谓虚焊,是指焊点处只有少量锡焊住,造成接触不良,时通时断。为避免虚焊,应注意以下几点: (1)保证金属表面清洁 若焊件和焊点表面带有锈渍、污垢或氧化物,应在焊接之前用刀刮或砂纸磨,直至露出光亮金属,才能给焊件或焊点表面镀上锡。 (2)掌握温度

焊接施工方法及注意事项

目前最常用的焊接方法主要为下表: 焊前准备 1、焊接工艺评定 为了进一步保证焊接质量,需做一些焊接试验,从中更准确地摸索出最合适的焊接工艺规范参数。 2、焊工资格评定 焊工需按劳动部制定的《锅炉、压力容器焊工考试规则》进行培训考核: a、从事钢结构焊接的焊工必须具有相应厚度的全位置电弧焊合格证。 b、从事碳钢管焊接的焊工应具有氩电联合焊或氩弧焊全位置合格证。 c、从事不锈钢管焊接的焊工应具有氩弧焊或氩电联合焊全位置合格证。 焊工具有以上所述合格证后,在焊接正式产品以前,必要时尚需经业主认可方许正式上岗操作。 2、焊材的验收及保管 施焊产品用焊材(包括焊丝、焊条)在使用前必须认真地进行验收。所有焊材必须外部包装完好,质保书齐全且完全符合有关标准时方可入库。否则应对该批焊 材进行一系列复验试验,确认合格后才可使用。 产品焊接操作 1、焊条的烘干发放

焊前焊条应按其说明书规定的温度烘干,不同牌号的焊条不得混杂一起烘干。焊工领用焊条时不得互相代领,每次领用的焊条数量最多不得超过半个工日所需, 且每次只能领用一种牌号的焊条。焊条领出后存放在保温筒内,用一根取一 根。 焊丝在施焊前应用丙酮认真地擦洗干净,显露出金属光泽。 2、施焊环境要求 产品施焊时如遇到下列情况之一,必须采取特殊措施,否则禁止施焊。 1、环境温度 碳钢:低于-5℃ 不锈钢及合金钢:低于0℃ 2、风速: 氩弧焊:不小于2m/s 电弧焊:不小于10m/s 3、干湿度:不小于90% 4、下雨或下雪天 3、坡口的加工 坡口型式及尺寸参照GB985-88《手弧焊接接头基本型式和尺寸》执行。 不锈钢和合金钢坡口加工采用机械方法。 碳钢件破口加工除采用机械方法外,还可采用火焰加工,但必须清除掉割口的毛刺、发渣等。 1、组对点焊 焊件组对时避免强行组对,管件要保持内壁 平齐,点焊的焊工资格与正式产品焊接相同。 点后仔细检查点缝各个部位的焊点质量,如有疑问时用液体渗透检验来核实。一旦发现有缺陷存在,立即清除并移位重点。 2、施焊焊接 产品焊接时,严禁在被焊件表面引弧、试验电流或随意焊接临时物。管子焊接时,管内不得有穿堂风。另外产品焊接过程中应特别注意接头和收弧的质量。 多层焊时,层间温度不宜太高,以手摸不烫为好。同时多层焊的层间接头应错开。

焊接的操作要点

焊接要点 平焊的操作要点 (1)正确控制焊条角度,使熔渣与液态金属分离,防止熔渣前流,尽量采用短弧焊接。焊接时焊条与焊件成40°~90°的夹角; (2)根据板厚选用直径较粗的焊条和较大的焊接电流; (3)对于不同厚度的T形、角接、搭接的平焊接头,在焊接时应适当调整焊条角,使电弧偏向工件较厚的一侧,保证两侧受热均匀。对于多层多道焊应注意焊接层次及焊接顺序; (4)选择正确的运条方法。 1) 板厚在5mm以下,Ⅰ形坡口对接平焊可采用直线形运条方法,熔深应大于23δ,运条速度要快。 2) 板厚在5mm以上,开其他坡口(如V形、X形、Y形等)对接平焊,可采用多层焊和多层多道焊,打底焊宜用直线形运条焊接。多层焊缝的填充层及盖面层焊缝,应根据具体情况分别选用直线形、月牙形、锯齿形运条。多层多道焊时,宜采用直线形运条。 3)当T形接头的焊脚尺寸较小时,可选用单层焊,用直线形、斜环形或锯齿形运条方法;当焊脚尺寸较大时,宜采用多层焊或多层多道焊,打底焊都采用直线形运条方法,其后各层的焊接可选用斜锯齿形、斜环形运条方法。多层多道焊宜选用直线形运条方法焊接。 4)搭接、角接平角焊时,运条操作与T形接头平角焊运条相似。 2、立焊 立焊是在垂直方向进行焊接的一种操作方法,具有以下特点。 (1)铁水和熔渣因重力作用下坠,容易分离。当熔池温度过高时,铁水易下流形成焊瘤。 (2)易掌握焊透情况,但表面易咬边,不易焊得平整。 (3)对于T形接头的立焊,焊缝根部容易产生焊不透的缺陷。 立焊操作要点 (1)保证正确的焊条角度,一般应使焊条角度向下倾斜60°~80°。 (2)用较小直径的焊条和较小的焊接电流,大约比一般平焊小10%~15%,以减小熔滴体积,使之受自重的影响减小,有利于熔滴过渡。 (3)采用短弧焊,缩短熔滴过渡到熔池的距离,以形成短路过渡。 (4)根据接头形式、坡口形状、熔池温度等情况,选择合适的运条方法。 1)对于不开坡口的对接立焊,由下向上焊,可采用直线形、锯齿形、月牙形及跳弧法; 2)开坡口的对接立焊常采用多层或多层多道焊,第一层常采用跳弧法或摆幅较小的三角形、月牙形运条,其余各层可选用锯齿形或月牙形运条。 3、横焊 横焊是在垂直面上焊接水平焊缝的一种操作方法,具有以下特点。 (1)铁水因受重力作用易下坠至坡口上,形成未熔合和层间夹渣。宜采用较小直径的焊条,短弧焊接。 (2)铁水与熔渣易分清,略似立焊。 (3)采用多层多道焊能较容易地防止铁水下坠,但外观不整齐。

焊接工艺方法代号(Welding process code)-5页精选文档

焊接工艺方法代号(Welding process code) Welding process code AW - ARC WELDING - electric arc welding AHW - atomic hydrogen welding - atomic hydrogen welding BMAW bare metal arc welding -- no protection wire arc welding CAW - carbon arc welding - carbon arc welding CAW-G - gas carbon arc - Welding gas carbon arc welding CAW-S shielded - carbon arc welding - carbon arc welding CAW-T - Twin carbon arc - welding double carbon electrode arc welding EGW - electrogas welding - electro gas welding FCAW - flux cored arc - welding flux cored arc welding FCW-G gas-shielded flux cored arc welding gas shielded flux cored arc welding FCW-S self-shielded flux cored arc welding self shielded flux cored wire GMAW - gas metal arc - Welding GMAW GMAW-P - pulsed arc - MIG pulsed arc welding GMAW-S - short circuiting arc - MIG arc welding short circuit transition GTAW - gas tungsten arc - Welding gas tungsten arc welding GTAW-P - pulsed arc - tungsten inert gas arc welding pulse MIAW - magnetically impelled arc - welding magnetic thrust arc PAW - plasma arc welding - plasma arc welding SMAW shielded metal arc welding - SMAW SW - stud arc welding - bolt welding SAW - submerged arc welding - submerged arc welding SAW-S - series - row double wire submerged arc welding RW - RWSISTANCE WELDING - resistance welding FW - flash - welding flash welding RW-PC pressure controlled resistance welding - pressure

激光焊接注意事项及接操作方法

一.安全注意事项 该设备属于四类激光产品,能产生漫反射,能引起人身伤害或火灾,在使用本机器之前,请仔细阅读以下安全注意事项,以确保能安全、正确的操作本机器。 1.本机供市电380V,箱内有高压,开机状态下不可触摸机器内部。 2.不准私自拆卸、安装、改造焊接机。 3.把焊接机放在水平和安全的地方。 4.接地,如果不接地,发生异常的时候你可能会触电。 5.不要窥视或触摸激光。 6.在操作过程中请佩戴好防护眼镜、防护手套、长袖夹克、皮革围裙等保护眼 睛和皮肤免受飞溅物的伤害。 7.避免激光直射皮肤。 8.不要触摸正在焊接或者钢焊接完成的工件。 9.只能使用给定的电缆。 10.不可损坏电源线和各种连接线。 11.若机器出现非正常情况,请立即按下急停按钮关机停止使用。 12.戴心脏起搏器的人严禁靠近焊接机,焊接机工作时会产生磁场,可能影响到 起搏器的正常工作而危害患者生命。 13.不要把水泼在焊接机上,水洒在焊接机上可能引起焊接机短路或者起火。 14.焊接机上不可放盛水的容器,水洒在焊接机上可能引起触电或火灾。 15.焊溅物可能点燃易燃品,所以焊接时远离易燃品。 16.为避免火灾,禁止让激光照射易燃材料。 17.除了焊接指定工件,焊接机不能移作他用。 18.为了以防万一,焊接机旁要放置灭火器。 19.焊接机要定期维护和保养,以防止任何潜在的危险。

二.使用注意事项 1.配备具有激光和焊接机的相关知识与经验的担当人员,担当人员不仅要掌握 焊接机的安全锁钥匙和密码,而且要指导操作者如何使用焊接机。 2.建立专用的激光焊接区,同时在焊接区设立“闲杂人员禁止靠近”等相关标 示。 3.把焊接机安装在水平、牢固的地方,不准放在倾斜的地方。 4.请在环境温度为5℃~30℃,湿度不大于35%的环境中使用本焊接机,周围环 境温度不应波动过大。禁止在下列环境中使用本焊接机: 有油污的环境;有震动的环境;有腐蚀的环境;高频噪声的环境; 潮湿的环境;含有高浓度碳、氮、硫的氧化物(CO 2、NO X 、 SO X )的环境。 5.在冬天,如果环境温度降到0℃以下,水箱里的水就会结冰,水箱可能冻破。 所以特别小心在冬天要保证焊接机的环境温度不要低于0℃。如果环境温度降到0℃以下,请先排干水箱里的水,同时可以参考相关章节的介绍。 6.如果环境温度变化剧烈,在YAG激光棒和镜片上会形成水蒸气,这会影响焊 接机的使用。所以,尽可能阻止环境的剧烈变化。如果已经形成水蒸气,那么开机后先预热一会儿再使用机器。 7.如果焊接机的机壳有污点或水,请用干布或潮湿的布擦干。如果污点擦不干 净,可用中性的清洁剂或酒精擦拭干净。不可用汽油或油漆稀释剂擦拭机器。 8.禁止把螺丝或硬币等放在焊接机的内部或外部,这样可能引起短路而损害机 器。 9.请用手轻轻操作按钮,不要用螺丝刀等工具接触按钮。尤其不要用尖锐的东 西接触触摸屏,这样会造成触摸屏的永久性损害。应该用手指或专用的触摸笔操作触摸屏。 10.按钮和开关不要连续操作,保证每次只按一次。反复的开关对机器的寿命有 影响。

焊接常用代号及焊接重点要求

焊接常用代号及焊接重点要求 郑岩编辑 第一部分:焊接常用代号 一、焊接类型字头 AW(arc welding):电弧焊; TIG:钨极氩弧焊; SMAW(shielded metal arc welding):焊条电弧焊; Ws:全氩弧焊接; GTAW+SMAW:为手工钨极氩弧焊打底+手工电弧焊盖面; GTAW(gas tungsten arc welding):钨极气体保护电弧焊(实芯或药芯焊丝); Ws+Ds:氩弧打底+电弧盖面; FCAW:(flux cored arc welding):药芯焊丝电弧焊; ESW:(electroslag welding)电渣焊; FCW-G:(gas-shielded flux cored arc welding):气体保护药芯焊丝电弧焊; FCAW:药芯焊丝CO2保护焊; SAW:(submerged arc welding):埋弧焊; GMAW:CO2半自动焊; MIG:熔化极半自动惰性气体保护焊; OAW(oxy-acetylene welding)氧乙炔焊; FW:(flash welding)闪光焊; EGW:气体立焊; FRW:(friction welding)摩擦焊; LBW:(laser beam welding)激光焊; EXW(explosion welding)爆炸焊。 二、焊接方法代号(GB5185) 1 电弧焊: 11无气体保护电弧焊;111手弧焊;112重力焊;113光焊丝电弧焊;114药芯焊丝电弧焊;115涂层焊丝电弧焊;116熔化极电弧电焊;118躺焊。 12 埋弧焊:121丝极埋弧焊;122带极埋弧焊。 13 熔化极气体保护电弧焊:131:MIG焊,熔化极惰性气体保护电弧焊(含熔化极Ar弧焊);135:MAG焊,熔化极非惰性气体保护电弧焊(含CO2保护焊);136非惰性气体保护药芯焊丝电弧焊;137非惰性气体保护熔化极电弧点焊。 14 熔化极非惰性气体保护电弧焊:141:TIG焊:钨极惰性气体保护电弧焊(含钨极Ar弧焊);142:TIG点焊;149原子氢焊。 15 等离子弧焊:151大电流等离子电焊;152微束等离子弧焊;153等离子弧粉末堆焊(喷焊);154等离子弧填丝堆焊(冷、热丝);155等离子弧MIG焊;156等离子弧点焊。 18 其他电弧方法:181碳弧焊;182旋弧焊。 2 电阻焊:21点焊;22缝焊:221搭接缝焊;223加带缝焊。23凸焊;24闪光焊;25电阻

焊接方法发展概述及焊接的本质及其分类

焊接方法发展概述及焊接的本质及其分类 电弧焊是指利用电弧作为热源的焊接方法,简称弧焊。它是熔焊中最重要的、应用最广泛的焊接方法。 一、焊接方法发展概况 焊接是指通过适当的物理化学过程(加热、加压或两者并用)使两个分离的固态物体产生原子(分子)间结合力而连接成一体的连接方法。被连接的两个物体可以是各种同类或不同类的金属、非金属(石墨、陶瓷、玻璃、塑料等),也可以是一种金属与一种非金属。 早期的焊接,是把两块熟铁(钢)加热到红热状态以后用锻打的方法连接在一起的锻接;用火烙铁加热低熔点铅锡合金的软钎焊,已经有几百年甚至更长的应用历史。现代焊接方法的发展是以电弧焊和压力焊为起点的。电弧作为一种气体导电的物理现象,是在19世纪初被发现的,但只是到19世纪末电力生产得到发展以后,人们才有条件研究电弧的实际应用。. 1885年俄国人别那尔道斯发明了碳极电弧,起初主要用作强光源,可把它看作是电弧作为工业热源应用的创始。而电弧焊真正用于工业,则是在1892年发现金属极电弧后,研制出结构简单、使用方便、成本低廉的交流电弧焊机,特别是

1930年前后出现了薄皮和厚皮焊条以后才逐渐开始的。厚皮焊条的出现,使手工电弧焊技术进入成熟阶段,它熔深大、效率高、质量好、操作方便等突出优点是气焊方法无法比拟的,于是手工电弧焊很快被广泛应用于车辆、船舶、锅炉、起重设备和桥梁等金属结构的制造。钨极氩弧焊和熔化极氩弧焊也是在30年代先后研究成功的,成为焊接有色金属和 不锈钢等材料的有效方法。这一时期,工业产品和生产技术的发展速度较快,迫切要求焊接过程向机械化、自动化方面发展,而且当时的机械制造、电力拖动与自动控制技术也已为实现这一目标提供了技术和物质基础。于是便在30年代 中期研究成功了变速送丝式埋弧焊机,以及与之匹配的颗粒状焊剂和光焊丝,从而实现了焊接过程自动化,显著提高 了焊接效率和焊接质量。. 进半个世纪以来,正是现代工业和科学技术迅猛发展的时代,一方面,这些工业和科学技术的发展不断提出了各种使用要求(动载、强韧性、高温、高压、低温、耐蚀、耐磨等)、各种结构形式及各种黑色和有色金属材料的焊接问题。例如,造船和海洋开发工业的发展要求解决大面积拼板大型立体 框架结构自动焊及各种低合金高强钢的焊接问题;石化工业的发展要求解决各种耐高、低温及耐各种腐蚀性介质的压力容器焊接;航空航天业则要求解决大量铝、钛等轻质合金结构的焊接;电子及精密仪表制造业则要求解决大量微型精密

完整的焊接方法代号(数字+字母)

焊接方法代号分类

焊接代号 AW——ARC WELDING——电弧焊 AHW——atomic hydrogen welding——原子氢焊 BMAW——bare metal arc welding——无保护金属丝电弧焊CAW——carbon arc welding——碳弧焊 CAW-G——gas carbon arc welding——气保护碳弧焊 CAW-S——shielded carbon arc welding——有保护碳弧焊 CAW-T——twin carbon arc welding——双碳极间电弧焊EGW——electrogas welding——气电立焊 FCAW——flux cored arc welding——药芯焊丝电弧焊 FCW-G——gas-shielded flux cored arc welding——气保护药芯焊丝电弧焊FCW-S——self-shielded flux cored arc welding——自保护药芯焊丝电弧焊GMAW——gas metal arc welding——熔化极气体保护电弧焊 GMAW-P——pulsed arc——熔化极气体保护脉冲电弧焊

GMAW-S——short circuiting arc——熔化极气体保护短路过度电弧焊GTAW——gas tungsten arc welding——钨极气体保护电弧焊 GTAW-P——pulsed arc——钨极气体保护脉冲电弧焊MIAW——magnetically impelled arc welding——磁推力电弧焊PAW——plasma arc welding——等离子弧焊 SMAW——shielded metal arc welding——焊条电弧焊 SW——stud arc welding——螺栓电弧焊 SAW——submerged arc welding——埋弧焊 SAW-S——series——横列双丝埋弧焊 RW——RWSISTANCE WELDING——电阻焊 FW——flash welding——闪光焊 RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊 RSEW——resistance seam welding——电阻缝焊 RSEW-HF——high-frequency seam welding——高频电阻缝焊RSEW-I——induction seam welding——感应电阻缝焊 RSEW-MS——mash seam welding——压平缝焊RSW——resistance spot welding——点焊 UW——upset welding——电阻对焊 UW-HF——high-frequency ——高频电阻对焊 UW-I——induction——感应电阻对焊 SSW——SOLID STATE WELDING——固态焊 CEW——co-extrusion welding—— CW——cold welding——冷压焊 DFW——diffusion welding——扩散焊 HIPW——hot isostatic pressure diffusion welding——热等静压扩散焊EXW——explosion welding——爆炸焊 FOW——forge welding——锻焊 FRW——friction welding——摩擦焊 FRW-DD——direct drive friction welding——径向摩擦焊FSW——friction stir welding——搅拌摩擦焊 FRW-I——inertia friction welding——惯性摩擦焊 HPW——hot pressure welding——热压焊 ROW——roll welding——热轧焊 USW——ultrasonic welding——超声波焊S——SOLDERING——软钎焊 DS——dip soldering——浸沾钎焊 FS——furnace soldering——炉中钎焊 IS——induction soldering——感应钎焊 IRS——infrared soldering——红外钎焊 INS——iron soldering——烙铁钎焊 RS——resistance soldering——电阻钎焊 TS——torch soldering——火焰钎焊 UUS——ultrasonic soldering——超声波钎焊 WS——wave soldering——波峰钎焊

常见焊接缺陷产生原因及处理办法

以下是焊接缺陷方面的浅析 缺陷产生原因及防止措施 一、缺陷名称:气孔(Blow Hole) 焊接方式发生原因防止措施 手工电弧焊(1)焊条不良或潮湿。 (2)焊件有水分、油污或锈。 (3)焊接速度太快。 (4)电流太强。 (5)电弧长度不适合。 (6)焊件厚度大,金属冷却过速。 (1)选用适当的焊条并注意烘干。 (2)焊接前清洁被焊部份。 (3)降低焊接速度,使内部气体容易逸出。 (4)使用厂商建议适当电流。 (5)调整适当电弧长度。 (6)施行适当的预热工作。 CO2气体保 护焊(1)母材不洁。 (2)焊丝有锈或焊药潮湿。 (3)点焊不良,焊丝选择不当。 (4)干伸长度太长,CO2气体保护不周密。 (5)风速较大,无挡风装置。 (6)焊接速度太快,冷却快速。 (7)火花飞溅粘在喷嘴,造成气体乱流。 (8)气体纯度不良,含杂物多(特别含水分)。 (1)焊接前注意清洁被焊部位。 (2)选用适当的焊丝并注意保持干燥。 (3)点焊焊道不得有缺陷,同时要清洁干净,且使用焊 丝尺寸要适当。 (4)减小干伸长度,调整适当气体流量。 (5)加装挡风设备。 (6)降低速度使内部气体逸出。 (7)注意清除喷嘴处焊渣,并涂以飞溅附着防止剂,以 延长喷嘴寿命。 (8)CO2纯度为99.98%以上,水分为0.005%以下。 埋弧焊接(1)焊缝有锈、氧化膜、油脂等有机物的杂质。 (2)焊剂潮湿。 (3)焊剂受污染。 (4)焊接速度过快。 (5)焊剂高度不足。 (6)焊剂高度过大,使气体不易逸出(特别在焊剂 粒度细的情形)。 (7)焊丝生锈或沾有油污。 (8)极性不适当(特别在对接时受污染会产生气 孔)。 (1)焊缝需研磨或以火焰烧除,再以钢丝刷清除。 (2)约需300℃干燥 (3)注意焊剂的储存及焊接部位附近地区的清洁,以免 杂物混入。 (4)降低焊接速度。 (5)焊剂出口橡皮管口要调整高些。 (6)焊剂出口橡皮管要调整低些,在自动焊接情形适当 高度30-40mm。 (7)换用清洁焊丝。 (8)将直流正接(DC-)改为直流反接(DC+). 设备不良(1)减压表冷却,气体无法流出。 (2)喷嘴被火花飞溅物堵塞。 (3)焊丝有油、锈。 (1)气体调节器无附电热器时,要加装电热器,同时检 查表之流量。 (2)经常清除喷嘴飞溅物。并且涂以飞溅附着防止剂。 (3)焊丝贮存或安装焊丝时不可触及油类。 (2)焊丝突出长度过短。(2)依各种焊丝说明使用。

焊接工艺介绍

焊接工艺介绍 一、概述 二、CO2气体保护焊 三、点焊 四、电极

一、概述 1、焊接工艺的基本概念 焊接工艺是根据产品的生产性质、图样和技术要求,结合现有条件,运用现代焊接技术知识和先进生产经验,确定出的产品加工方法和程序,是焊接过程中的一整套技术规定。包括焊前准备、焊接材料、焊接设备、焊接方法、焊接顺序、焊接操作的最佳选择以及焊后处理等。制订焊接工艺是焊接生产的关键环节,其合理与否直接影响产品制造质量、劳动生产率和制造成本,而且是管理生产、设计焊接工装和焊接车间的主要依据。 焊接结构生产的一船工艺过程如图所示。焊接是整个过程中的核心丁序,焊前准备和焊后处理的各个工序都是围绕着获得符合焊接质量要求的产品而做的工作。质量检验贯穿于整个生产过程,以控制和保证焊接生产的质量。每个工序的具体内容,由产品的结构特点、复杂程度、技术要求和生产量的大小等因素决定。 2 焊接工艺的发展概况 焊接方法是焊接工艺的核心内容,其发展过程代表了焊接工艺的进展情况。焊接方法的发明年代及发明国家见表2.1.1。按照焊接过程的特点,焊接分为熔焊、压焊和钎焊三大类,每一类根据工艺特点又分为若干不同方法,见图2.1.2。 目前许多新的焊接工艺正逐步用于焊接生产,极大地提高了焊接生产率和焊接质量。在重型机械、冶金矿山机械、工程机械、电站锅炉压力容器、石油化工、机车车辆、汽车等行业中普遍采用了数控切割技术、

埋弧自动焊、电渣焊、CO2气体保护焊、TIG焊、MIG焊、电阻焊和钎焊等焊接方法并具有成套的焊接工艺装备。尤其是汽车生产线中采用了co 2气体保护焊、TIG焊、MIG焊等焊接机器人、电阻焊机器人和自动生产线,大大提高了焊接质量和生产效率,焊接机械化、自动化水平己达到总焊接工作量的35%一45%。与工业发达国家相比,我国的焊接机械化和自动化水平还较低,按熔化焊来计算,目前日本为67%,德国为80%.美国为56%,原苏联为40%,而我国还不到20%,其主要原因是我国焊接生产主要还靠手工电弧焊,自动化水平高的气体保护焊和埋弧自动焊应用少。从焊接生产工艺装备水平来看,我国近年来,生产了成套的焊接工艺装备和焊接生产线,也有的厂家从国外引进了自动化水平较高的焊接辅助装置、焊接质量和生产效率有了很大提高。 计算机控制系统在焊接生产工艺中的应用、在国外已经比较普遍,除用于焊接工艺参数的控制之外,还可用于整条生产线、焊机的群控。它还可以根据材料厚度自动选择并预置焊接工艺参数.对焊接过程实现自适应控制、最佳控制以及智能控制等。 研究开发具有智能的焊接机器人,特别是具有自动路径规划,自动校正轨迹,自动控制熔深的机器人将是近期和21世纪的重点方向。 电子束、激光、等离子等高能束流用于焊接,可以完成难熔合金和难焊材料的焊接,焊接熔深大、热影响区小、焊缝性能好、焊接变形小、精度高,并具有较高的生产率。必将在核、航空、航天、汽车等工业中得到广泛的应用,推进焊接工艺的进步。 采用复合热源焊接是焊接工艺的又一发展动向。利用复合热源焊接

焊接的正确方法和步骤

焊接的正确方法和步骤 Revised as of 23 November 2020

(1)焊前处理步骤 焊接前,应对元器件引脚或电路板的焊接部位进行处理,一般有“刮”、“镀”、“测”三个步骤: “刮”:就是在焊接前做好焊接部位的清洁工作。一般采用的工具是小刀和细砂纸,对集成电路的引脚、印制电路板进行清理,去除其上的污垢,清理完后一般还需要往待拆元器件上涂上助焊剂。 “镀”:就是在刮净的元器件部位上镀锡。具体做法是蘸松香酒精溶液涂在刮净的元器件焊接部位上,再将带锡的热烙铁头压在其上,并转动元器件,使其均匀地镀上一层很薄的锡层。 “测”:就是利用万用表检测所有镀锡的元器件是否质量可靠,若有质量不可靠或已损坏的元器件,应用同规格元器件替换。 (2)焊接步骤 做好焊前处理之后,就可进行正式焊接。 不同的焊接对象,其需要的电烙铁工作温度也不相同。判断烙铁头的温度时,可将电烙铁碰触松香,若有“吱吱”的声音,说明温度合适;若没有声音,仅能使松香勉强熔化,则说明温度太低;若烙铁头一碰上松香就大量冒烟,则说明温度太高。 一般来讲,焊接的步骤主要有三步: (1)烙铁头上先熔化少量的焊锡和松香,将烙铁头和焊锡丝同时对准焊点。 (2)在烙铁头上的助焊剂尚未挥发完时,将烙铁头和焊锡丝同时接触焊点,开始熔化焊锡。 (3)当焊锡浸润整个焊点后,同时移开烙铁头和焊锡丝。 焊接过程一般以2~3s为宜。焊接集成电路时,要严格控制焊料和助焊剂的用量。为了避免因电烙铁绝缘不良或内部发热器对外壳感应电压而损坏集成电路,实际应用中常采用拔下电烙铁的电源插头趁热焊接的方法。 电烙铁虚焊及其防治方法 焊接时,应保证每个焊点焊接牢固、接触良好,锡点应光亮、圆滑无毛刺,锡量适中。锡和被焊物熔合牢固,不应有虚焊。所谓虚焊,是指焊点处只有少量锡焊住,造成接触不良,时通时断。为避免虚焊,应注意以下几点: (1)保证金属表面清洁

焊接方法代号

焊接工艺方法代号2009-09-26 11:25焊接工艺方法 序号焊接名词符号 1 氧乙炔焊 OAW 2 手工电弧焊 SMAW 3 埋弧焊 SAW 4 非熔化极气体保护焊 GTAW (即氩弧焊TIG) 5 熔化极气体保护焊 GMAW (含半自动药芯焊丝保护焊FCAW) 6 钨极惰性气体保护电弧焊 TIG

7 熔化极惰性气体保护电弧焊 MIG(备注:熔化极气体保护电弧焊通常用的保护气体有氩气,氦气,二氧化碳气或这些的混合气体。以氩气或氦气为保护气时称为熔化极惰性气体保护电弧焊(在国际上称为MIG焊);以惰性气体与氧化性气体(氧气,二氧化碳)的混合气为保护气时,或以二氧化碳气体或二氧化碳+氧气的混合气体为保护气时,统称为熔化极活性气体保护电弧焊(在国际上称为MAG焊)。 熔化极气体保护电弧焊的主要优点是可以方便的进行各种位置的焊接,同时也具有焊接速度较快,熔敷率较高的优点。熔化极活性气体保护电弧焊可适用于大部分主要金属的焊接,包括碳钢,合金钢。熔化极惰性气体保护电弧焊适用于不锈钢,铝,镁,铜,钛,镐及镍合金。利用这种焊接方法还可以进行电弧点焊。)《8 》活性气体保护电弧焊 MAG 《9 》钨极脉冲氩弧焊 TAW-P 《10 》熔化极脉冲氩弧焊 MAW-P 《11 》气电立焊 EGW 《12 》等离子弧焊 PAW 《13 》电渣焊 ESW 《14 》电子束焊 EBW 《15 》激光焊 LBW 《16 》热剂焊 TW 《17 》高频电阻焊 HFRW 《18 》闪光对焊 FW 《19 》摩擦焊 FRW 《20 》电阻焊 RW 《21 》扩散焊 DFW 《22 》爆炸焊 EW 《23 》超声波焊 USW 《24 》硬钎焊 B 《25 》软钎焊 S 《26 》热切割 TC 《27 》氧乙炔气割 OFC-A 《28 》等离子弧切割 PAC 《29 》激光切割 LBC 《30 》火焰喷涂 FLSP 《31 》电弧喷涂 EASP 《32 》等离子弧喷涂 PSP 《33 》焊态 AW 《34 》母材 BM 《35 》焊缝 WM 《36 》热影响区 HAZ

焊接的正确方法和步骤

焊接的正确方法和步骤 1)焊前处理步骤 焊接前,应对元器件引脚或电路板的焊接部位进行处理,一般有“刮”、“镀”、“测”三个步骤: “刮”:就是在焊接前做好焊接部位的清洁工作。一般采用的工具是小刀和细砂纸,对集成电路的引脚、印制电路板进行清理,去除其上的污垢,清理完后一般还需要往待拆元器件上涂上助焊剂。 “镀”:就是在刮净的元器件部位上镀锡。具体做法是蘸松香酒精溶液涂在刮净的元器件焊接部位上,再将带锡的热烙铁头压在其上,并转动元器件,使其均匀地镀上一层很薄的锡层。 “测”:就是利用万用表检测所有镀锡的元器件是否质量可靠,若有质量不可靠或已损坏的元器件,应用同规格元器件替换。 (2)焊接步骤 做好焊前处理之后,就可进行正式焊接。 不同的焊接对象,其需要的电烙铁工作温度也不相同。判断烙铁头的温度时,可将电烙铁碰触松香,若有“吱吱”的声音,说明温度合适;若没有声音,仅能使松香勉强熔化,则说明温度太低;若烙铁头一碰上松香就大量冒烟,则说明温度太高。 一般来讲,焊接的步骤主要有三步: (1)烙铁头上先熔化少量的焊锡和松香,将烙铁头和焊锡丝同时对准焊点。 (2)在烙铁头上的助焊剂尚未挥发完时,将烙铁头和焊锡丝同时接触焊点,开始熔化焊锡。 (3)当焊锡浸润整个焊点后,同时移开烙铁头和焊锡丝。

焊接过程一般以2?3s为宜。焊接集成电路时,要严格控制焊料和助焊剂的用量。为了避免因电烙铁绝缘不良或内部发热器对外壳感应电压而损坏集成电路,实际应用中常采用拔下电烙铁的电源插头趁热焊接的方法。 电烙铁虚焊及其防治方法 焊接时,应保证每个焊点焊接牢固、接触良好,锡点应光亮、圆滑无毛刺,锡量适中。锡和被焊物熔合牢固,不应有虚焊。所谓虚焊,是指焊点处只有少量锡焊住,造成接触不良,时通时断。为避免虚焊,应注意以下几点: 1)保证金属表面清洁 若焊件和焊点表面带有锈渍、污垢或氧化物,应在焊接之前用刀刮或砂纸磨,直至露出光亮金属,才能给焊件或焊点表面镀上锡。 (2)掌握温度 为了使温度适当,应根据元器件大小选用功率合适的电烙铁,并注意掌握加热时间。若用功率小的电烙铁去焊接大型元器件或在金属底板上焊接地线,易形成虚焊。 烙铁头带着焊锡压在焊接处时,若移开电烙铁后,被焊处一点焊锡不留或留下很少,则说明加热时间太短、温度不够或被焊物太脏;若移开电烙铁前,焊锡就往下流,则表明加热时间太长,温度过高。 (3)上锡适量 根据所需焊点的大小来决定烙铁蘸取的锡量,使焊锡足够包裹住被焊物,形成一个大小合适且圆滑的焊点。若一次上锡不够,可再补上,但须待前次上的锡一同被熔化后再移开电烙铁。 (4)选用合适的助焊剂 助焊剂的作用是提高焊料的流动性,防止焊接面氧化,起到助焊和保护作用。焊接电子元器件时,应尽量避免使用焊锡膏。比较好的助焊剂是松香酒精溶液,焊接时,在被焊处滴上一点即可。 回流焊接工艺 回流炉必须能够为整个组件和所有引脚位置提供足够的热量(温度)。与组件上装配的其他SMC相比,许多异形/通孔器件较高并具有较大的热容。对于THF应用,一般认为强制对流系统优于IR。分开的顶部和底部加热控制也有助于降低PCB组件上的△ T。对于带有高堆叠25脚DSUB!接器(1.5 in )的计算机主板,组件本体温度高得不能接受。解泱这个问题的方法是增加底部温度而降低顶部温度。液相线之上的时间应该足够长,从而使助焊剂从PTH中挥发,可能比标准温度曲线要长。截面切片分析可能很重要,以确认回流焊温度曲线的正确性。此外,还必须仔细测量组件上的峰值温度和热梯度并严加控制。所以,设置回流焊接温度曲线时必须注意: ?控制空洞/气泡的产生;

焊接作业指导书及焊接工艺

焊接作业指导书及焊接工艺 文件编号:005 版本/版次:A/0 日期:2010.2 1. 目的:明确工作职责,确保加工的合理性、正确性及可操作性。规 范安全操作,防患于未然,杜绝安全隐患以达到安全生产并保证 加工质量。 2. 范围: 2.1. 适用于钢结构的焊接作业。 2.2. 不适用有特殊焊接要求的产品及压力容器等。 3. 职责:指导焊接操作者实施焊接作业等工作。 4.2. 基本作业: 4.2.1. 查看当班作业计划:按作业计划顺序及进度要求进行作业,以 满足生产进度的需要。 4.2.2 .阅读图纸及工艺:施焊前焊工应仔细阅读图纸、技术要求及焊 接工艺文 件,明白焊接符号的涵义。确定焊接基准和焊接步骤; 自下料的要计算下料尺寸及用料规格,参照工艺要求下料。有半 4.工作流程 4.1作业流程图

成品分件的要核对材料及尺寸,全部满足合焊图纸要求后再组焊。 4.2.3. 校准:组焊前校准焊接所需工、量具及平台等。 4.2.4. 自检、互检:所有焊接件先行点焊,点焊后都要进行自检、互检,大 型、关键件可由检验员配合检验,发现问题须及时调整。 4.2. 5. 首件检验:在批量生产中,必须进行首件检查,合格后方能继续加工。 4.2.6. 报检:工件焊接完成后及时报检,操作者需在图纸加工工艺卡片栏及施 工作业计划上签字。(外加工件附送货单及自检报告送检)。 5. 工艺守则: 5.1. 焊前准备 5.1.1. 施焊前焊缝区(坡口面、I 型接头立面及焊缝两侧)母材表面20? 30mm宽范围内的氧化物、油、垢锈等彻底清理干净,呈现均匀的金属光泽。 5.1.2. 检查被焊件焊缝(坡口形式)的组对质量是否符合图纸要求,对保证焊 接质量进行评估,如有疑义应向有关部门联系,以便采取相应工艺措施。 5.1.3. 按被焊件相应的焊接工艺要求领取焊接材料,并确认焊接牌号无误。 5.1.4. 检查焊接设备是否运转正常,各仪表指数是否准确可靠,然后遵照本 工艺提供的工艺规范参数预调焊接电流、电压及保护气体流量。 5.1.5. 合焊前应先行组对点焊,点焊的焊材应与正式施焊焊材相同,点焊长度一般应为10-15m m (可视情况而定),点焊厚度应是焊脚高度的1/2(至少低于焊脚高度)。 5.1. 6. 对于有焊前预热要求的焊件,根据工艺文件要求规范参数预热,温度必 须经热电偶测温仪测定,预热范围宽度应符合工艺文件的规定。 5.2. 焊接过程 5.2.1. 施焊过程应密切注视电弧的燃烧状况及母材金属与熔敷金属的熔合情 况,发现异常应及时调整或停止焊接,采取相应的改进措施。

专业焊接工艺方法代号及其符号含义

专业焊接工艺方法代号及其符号含义 江科大焊接最牛逼。 焊接工艺方法代号的符号含义 焊接工艺方法代号 焊接代号 AW——arc welding——电弧焊 AHW——atomic hydrogen welding——原子氢焊 BMAW——bare metal arc welding——无保护金属丝电弧焊 CAW——carbon arc welding——碳弧焊 CAW-G——gas carbon arc welding——气保护碳弧焊 CAW-S——shielded carbon arc welding——有保护碳弧焊 CAW-T——twin carbon arc welding——双碳极间电弧焊EGW——electrogas welding——气电立焊 FCAW——flux cored arc welding——药芯焊丝电弧焊 FCW-G——gas-shielded flux cored arc welding——气保护药芯焊丝电弧焊FCW-S——self-shielded flux cored arc welding——自保护药芯焊丝电弧焊GMAW——gas metal arc welding——熔化极气体保护电弧焊 GMAW-P——pulsed arc——熔化极气体保护脉冲电弧焊 GMAW-S——short circuiting arc——熔化极气体保护短路过度电弧焊GTAW——gas tungsten arc welding——钨极气体保护电弧焊 GTAW-P——pulsed arc——钨极气体保护脉冲电弧焊 MIAW——magnetically impelled arc welding——磁推力电弧焊PAW——plasma arc welding——等离子弧焊 SMAW——shielded metal arc welding——焊条电弧焊 SW——stud arc welding——螺栓电弧焊 SAW——submerged arc welding——埋弧焊 SAW-S——series——横列双丝埋弧焊 RW——RWSISTANCE WELDING——电阻焊 FW——flash welding——闪光焊 RW-PC——pressure controlled resistance welding——压力控制电阻焊PW——projection welding——凸焊 RSEW——resistance seam welding——电阻缝焊 RSEW-HF——high-frequency seam welding——高频电阻缝焊 RSEW-I——induction seam welding——感应电阻缝焊 RSEW-MS——mash seam welding——压平缝焊 RSW——resistance spot welding——点焊 UW——upset welding——电阻对焊

相关文档
最新文档