几种随机微分方程数值算法和数值模拟

几种随机微分方程数值算法和数值模拟
几种随机微分方程数值算法和数值模拟

随机微分方程在物理学中的应用

科技大学 本科毕业论文 论文题目:随机微分方程在物理学中的应用院系:物理科学与技术学院 专业:应用物理 姓名:vvv 学号:0700000069 指导教师:xxx

二零一二年三月 摘要 牛顿和莱布尼兹创建了微积分学,为了描述机械动力学、天文学等领域的物理现象,建立了确定性的微分方程。确定性的微分方程在实际问题中有大量的应用。然而在研究实际物理现象的数学模型时,描述一个具体物理现象所用的一组数学方程不会是完全精确的。实际问题中不确定性因素大量存在且往往是问题的关键所在,不可忽视。由于二十世纪中叶大量的含有不确定性的实际问题的出现,以及对模型精确性要求和实际问题复杂性认识的不断提高,不确定性因素越来越多的被考虑到模型的建立中,这就在微分方程的基础上引入了随机因素,促使了随机积分的构建与发展,并在此基础上建立了随机微分方程的相关理论和方法。 随着科技的发展,随机微分方程越来越广泛地应用于模型的建立和分析中。本文针对物理学中存在随机性的特征,提取其中的数学本质,利用数学方法和策略,建立相应的随机微分方程,分析其中数学特征和数学机理,推导相关的公式和性质,通过分析来更好的理解物理学中的随机性问题。 关键词:随机微分方程;布朗运动;matlab模拟;

Abstract. Newton and Leibniz created calculus, in order to describe the mechanical dynamics, astronomy and other fields of physics, the establishment of a deterministic differential equation. Deterministic differential equations large number of practical problems in application. However, the actual physical phenomena in the study mathematical model to describe the physical phenomenon of a specific set of mathematical equations used to not be completely accurate. Practical problems of uncertainties abound and often the crux of the problem can not be ignored. Since the mid-twentieth century, a lot of uncertainty with the actual problems, and the accuracy of the model and actual problems requires understanding the complexity of continuous improvement, more and more uncertainty to the model to be considered in This is the basis of the differential equations introduced random factor

081数值计算方法—常微分方程(组)

科学计算—理论、方法 及其基于MATLAB 的程序实现与分析 微分方程(组)数值解法 §1 常微分方程初值问题的数值解法 微分方程(组)是科学研究和工程应用中最常用的数学模型之一。如揭示质点运动规律的Newton 第二定律: ()()()?????'='==0 00022x t x x t x t F dt x d m (1) 和刻画回路电流或电压变化规律的基尔霍夫回路定律等,但是,只有一些简单的和特殊的常微分方程及常微分方程组,可以求得用公式给出的所谓“解析解”或“公式解”,如一阶线性微分方程的初值问题: () ()0 0y y t f ay dt dy =+= (2) 的解为: ()()()τττd f e y e t y t t a at ?-+=00 (3) 但是,绝大多数在实际中遇到的常微分方程和常微分方程组得不到“解析解”,因此,基于如下的事实:

1、绝大多数的常微分方程和常微分方程组得不到(有限形式的)解析解; 2、实际应用中往往只需要知道常微分方程(组)的解在(人们所关心的)某些点处的函数值(可以是满足一定精度要求的近似值); 如果只需要常微分方程(组)的解在某些点处的函数值,则没有必要非得通过求得公式解,然后再计算出函数值不可,事实上,我们可以采用下面将介绍的常微分方程(组)的初值问题的数值解法,就可以达到这一目的。 一般的一阶常微分方程(组)的初值问题是指如下的一阶常微分方程(组)的定解问题: ()()0 00,y t y t t t y t F dt dy f =≤≤= (7) 其中 ()()()()???? ?? ? ??=t y t y t y t y n 21 (8) ()()()()???? ?? ? ??=y t f y t f y t f y t F n ,,,,21 (9) 常微分方程(组)的初值问题通常是对一动态过程(动态系统、动力系统)演化规律的描述,求解常微分方程(组)的初值问题就是要了解和掌握动态过程演化规律。 §1.1 常微分方程(组)的Cauch 问题数值解法概论

微分方程数值解法

《微分方程数值解法》 【摘要】自然界与工程技术中的很多现象,可以归结为微分方程定解问题。其中,常微分方程求解是微分方程的重要基础内容。但是,对于许多的微分方程,往往很难得到甚至不存在精确的解析表达式,这时候,数值解提供了一个很好的解决思路。,针对于此,本文对常微分方程数值解法进行了简单研究,主要讨论了一些常用的数值解法,如欧拉法、改进的欧拉法、Runge —Kutta 方法、Adams 预估校正法以及勒让德谱方法等,通过具体的算例,结合MA TLAB 求解画图,初步给出了一般常微分方程数值解法的求解过程。同时,通过对各种方法的误差分析,让大家对各种方法的特点和适用范围有一个直观的感受。 【关键词】 常微分方程 数值解法 MA TLAB 误差分析 引言 在我国高校,《微分方程数值解法》作为对数学基础知识要求较高且应用非常广泛的一门课程,不仅 在数学专业,其他的理工科专业的本科及研究生教育中开设这门课程.近四十年来,《微分方程数值解法》不论在理论上还是在方法上都获得了很大的发展.同时,由于微分方程是描述物理、化学和生物现象的数学模型基础,且它的一些最新应用已经扩展到经济、金融预测、图像处理及其他领域 在实际应用中,通过相应的微分方程模型解决具体问题,采用数值方法求得方程的近似解,使具体问题迎刃而解。 2 欧拉法和改进的欧拉法 2.1 欧拉法 2.1.1 欧拉法介绍 首先,我们考虑如下的一阶常微分方程初值问题 ???==0 0)() ,('y x y y x f y (2--1) 事实上,对于更复杂的常微分方程组或者高阶常微分方程,只需要将x 看做向量,(2--1)就成了一个一阶常微分方程组,而高阶常微分方程也可以通过降阶化成一个一阶常微分方程组。 欧拉方法是解常微分方程初值问题最简单最古老的一种数值方法,其基本思路就是把(2--1)中的导数项'y 用差商逼近,从而将一个微分方程转化为一个代数方程,以便求解。 设在[]b a ,中取等距节点h ,因为在节点n x 点上,由(2--1)可得:

第十章-偏微分方程数值解法

第十章 偏微分方程数值解法 偏微分方程问题,其求解十分困难。除少数特殊情况外,绝 大多数情况均难以求出精确解。因此,近似解法就显得更为重要。本章仅介绍求解各类典型偏微分方程定解问题的差分方法。 §1 差分方法的基本概念 1.1 几类偏微分方程的定解问题 椭圆型方程:其最典型、最简单的形式是泊松(Poisson )方程 ),(22 2 2y x f y u x u u =??+??=? 特别地,当0),(≡y x f 时,即为拉普拉斯(Laplace )方程,又 称 为调和方程 22 22=??+??=?y u x u u Poisson 方程的第一边值问题为 ?? ???Ω ?=Γ=Ω∈=??+??Γ∈),(),(),() ,(),(22 22y x y x u y x y x f y u x u y x ?

其中 Ω为以Γ为边界的有界区域,Γ为分段光滑曲线,ΓΩY 称为定解区域,),(y x f ,),(y x ?分别为Ω,Γ上的已知连 续函数。 第二类和第三类边界条件可统一表示为 ),(),(y x u u y x ?α=??? ? ??+??Γ∈n 其中n 为边界Γ的外法线方向。当0=α时为第二类边界条件, 0≠α时为第三类边界条件。 抛物型方程:其最简单的形式为一维热传导方程 2 20(0)u u a a t x ??-=>?? 方程可以有两种不同类型的定解问题: 初值问题 ?? ???+∞ <<∞-=+∞<<-∞>=??-??x x x u x t x u a t u )()0,(,00 22? 初边值问题

2 212 00,0(,0)()0(0,)(),(,)()0u u a t T x l t x u x x x l u t g t u l t g t t T ????-=<<<

郑州大学研究生课程数值分析复习---第八章 常微分方程数值解法

郑州大学研究生课程(2012-2013学年第一学期)数值分析 Numerical Analysis 习题课 第八章常微分方程数值解法

待求解的问题:一阶常微分方程的初值问题/* Initial-Value Problem */: ?????=∈=0 )(] ,[),(y a y b a x y x f dx dy 解的存在唯一性(“常微分方程”理论):只要f (x , y ) 在[a , b ] ×R 1 上连续,且关于y 满足Lipschitz 条件,即存在与x , y 无关的常数L 使 对任意定义在[a , b ] 上的y 1(x ) 和y 2(x ) 都成立,则上述IVP 存在唯一解。 1212|(,)(,)||| f x y f x y L y y ?≤?一、要点回顾

§8.2 欧拉(Euler)法 通常取(常数),则Euler 法的计算格式 h h x x i i i ==?+1?? ?=+=+) (),(001x y y y x hf y y i i i i i =0,1,…,n ( 8.2 )

§8.2 欧拉(Euler)法(1) 用差商近似导数 )) (,()()()()(1n n n n n n x y x hf x y x y h x y x y +=′+≈+?? ?=+=+) (),(01a y y y x hf y y n n n n 差分方程初值问题向前Euler 方法h x y x y x y n n n ) ()()(1?≈ ′+)) (,() ()(1n n n n x y x f h x y x y ≈?+))(,()(n n n x y x f x y =′

1. 积分方程一般概念与弗雷德霍姆方程

第十五章 积分方程 积分方程论是泛函分析的一个重要分支,它是研究数学其他学科(例如偏微分方程边值问题)和各种物理问题的一个重要数学工具。本章叙述线性积分方程,重点介绍弗雷德霍姆积分方程的性质和解法;并简略地介绍了沃尔泰拉积分方程以及一些奇异积分方程;此外,还扼要地叙述积分方程的逐次逼近法和预解核,并举例说明近似解法;最后考察了一个非线性积分方程。 §1 积分方程一般概念与弗雷德霍姆方程 一. 积分方程一般概念 1. 积分方程的定义与分类 [线形积分方程] 在积分号下包含未知函数y (x )的方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? (1) 称为积分方程。式中α(x ),F (x )和K (x,ξ)是已知函数,λ,a,b 是常数,变量x 和ξ可取区间(a,b ) 内的一切值;K (x,ξ)称为积分方程的核,F (x )称为自由项,λ称为方程的参数。如果K (x,ξ)关于x,ξ是对称函数,就称方程(1)是具有对称核的积分方程;如果方程中的未知函数是一次的,就称为线性积分方程,方程(1)就是线性积分方程的一般形式;如果F (x )≡0 ,就称方程(1)为齐次积分方程,否则称为非齐次积分方程。 [一维弗雷德霍姆积分方程(Fr 方程)] 第一类Fr 方程 ()()(),d b a K x y F x ξξξ=? 第二类Fr 方程 ()()()(),d b a y x F x K x y λξξξ=+? 第三类Fr 方程 ()()()()(),d b a x y x F x K x y αλξξξ=+? [n 维弗雷德霍姆积分方程] 111()()()()(),d D P y P F P K P P y P P α=+? 称为n 维弗雷德霍姆积分方程,式中D 是n 维空间中的区域,P ,P 1∈D ,它们的坐标分别是 (x 1,x 2, ,x n )和),,,(21 n x x x ''' ,α(P )=α(x 1,x 2, ,x n ),F (P )=F (x 1,x 2, x n )和K (P ,P 1)=K (x 1,x 2, ,x n , ),,,21 n x x x ''' 是已知函数,f (P )是未知函数。 关于Fr 方程的解法,一维和n (>1)维的情况完全类似,因此在以后的讨论中仅着重考虑一维Fr 方程。 [沃尔泰拉积分方程] 如果积分上限b 改成变动上限,上面三类Fr 方程分别称为第一、第二、第三类沃尔泰拉积分方程。 由于第三类Fr 方程当α(x )在(a ,b )内是正函数时,可以化成

随机微分方程2种数值方法的稳定性分析_邱妍

文章编号:1009-1130(2007)04-0035-04 随机微分方程2种数值方法的稳定性分析 邱妍,朱永忠 (河海大学理学院,江苏南京210098) 摘要:给出了求解随机微分方程的2种数值方法:有限差分法和向后Milstein法,基于随机微分方程的试验方程分析讨论了2种数值方法的均方稳定性和A!稳定性,得到了相应的稳定性条件和稳定域.最后应用MatLab进行模拟演示,模拟演示结果表明,有限差分法和向后Milstein法都全局一阶强收敛于随机微分方程的求解过程,并且验证了均方稳定理论的正确性. 关键词:随机微分方程;均方稳定;A!稳定;向后Milstein法;有限差分法 中图分类号:O241.8文献标识码:A 收稿日期:2007-06-19 作者简介:邱妍(1984-),女,江苏扬州人,硕士研究生,应用数学专业. 随机微分方程是针对物理、经济等领域中的随机现象而建立的数学模型,其理论研究和实际应用均取得了丰富而又成熟的成果.但在多数情况下随机微分方程与常微分方程类似,其解析解不易求出,因此,构造有效的数值方法进行数值求解显得十分重要.近20年来,随机微分方程数值计算方法不仅作为随机分析、微分方程数值分析的交叉研究方向得到了高度重视和发展,而且在自然科学以及工程领域得到了广泛的应用,但随机变量的存在给数值方法的构造和各种性质的研究带来了一定的难度.本文中作者在Milstein法的基础上建立有限差分格式,讨论了向后Milstein法[1]和有限差分法的均方稳定性和A!稳定性. 1求解随机微分方程的2种数值方法 考虑如下标量自治初值问题: dX(t)=f(X(t))dt+g(X(t))dW(t)X(0)=X0t∈[0,T"](1) 式中:参数t表示时间;指标集T是一个有限或无限区间,通常取为实轴或实轴上的一个区间;f(X)和g(X)是区间[0,T]上的连续可测函数,分别称为偏移系数和扩散系数;W(t)为标准Wiener过程,其增量"W(t)=W(t+h)-W(t),t+h∈[0,T],若步长h充分小,则ΔW(t)的均值和方差分别为 E"W(t"# )=0,E["W(t)]"$2=h为讨论2种数值方法的均方稳定性和A!稳定性,给出式(1)的2类试验方程,即 dX(t)=!X(t)dt+"X(t)dW(t) (2)dX(t)=!X(t)dt+#dW(t) (3) 式中:!,",#是常系数. 对于求解随机微分方程的数值方法,1974年,Milstein给出了以下差分格式[2]:Xn+1=Xn+f(Xn)h+g(Xn)"Wn+12 [g′g](Xn)[("Wn)2-h]n=0,1,…(4)并证明了该方法在均方意义下的收敛阶为O(h).本文在此基础上给出了2种数值方法:第1种为向后Milstein法,即将式(4)中偏移系数变为隐式;第2种为有限差分法,即将式(4)中的微分用有限差分代替.有限差分法是十分有用的,因为在通常情况下用式(4)求解随机微分方程(1)时需要对其中的g(Xn)求导,若g(Xn)的值是由试验得出的具体数据,则无法进行求导计算,而采用有限差分法将微分转化为差分,避免 第21卷第4期2007年12月Vo1.21No.4 Dec.2007河海大学常州分校学报JOURNALOFHOHAIUNIVERSITYCHANGZHOU

求第一类Fredholm积分方程的离散正则化方法

求第一类Fredholm积分方程的离散正则化方法 【摘要】基于矩阵奇异值分解的离散正则化算法,本文给出了第一类Fredholm积分方程的求解方法。并通过算例验证了此算法的可行性。 【关键词】第一类Fredholm积分方程;矩阵奇异值;正则化方法 0 引言 在实际问题中,有很多数学物理方程反问题的求解最后总要归结为一个第一类算子方程: Kx=y(1) 的求解问题,其中K是从Hilbert空间X到Hilbert空间Y一个有界线性算子,x∈X,y∈Y。通常右端项y是观测数据,因而不可避免的带有一定的误差δ。文中假设方程(1)的右端的扰动数据yδ∈Y满足条件:yδ-y≤δ(C1)。我们需要求解扰动方程Kx=yδ∈Y。(2) 通常境况下,当K为紧算子时,方程(1)的求解时不适定的[1]。即右端数据的小扰动可导致解的巨大变化。消除不稳定性的一个自然的方式是用一族接近适定问题的模型去逼近原问题,比如最著名的Tikhonov正则化方法,用如下适定的算子方程: 去逼近原问题Kx=yδ,其中α>0为一正的“正则参数”,K*表示K的伴随算子。正则化[2-3]是近似求解方程(1)的一种有效方法。Krish应用奇异系统理论提出的正则化子的概念,这给正则化方法的建立提供了新的理论依据。本文利用基于矩阵奇异值分解的离散正则化算法,通过适当选取正则化参数进行不适定问题的求解。 1 基于矩阵奇异值分解的离散正则化算法 矩阵的奇异值分解(SVD)是现代数值线性代数中最重要的基本计算分析工具之一,它具有优良的数值稳定性。其重要应用领域包括矩阵理论以及自动控制理论,力学和物理学等,还有更多的应用方面尚在继续探索中。 对于一般算子方程Kx=y,利用高斯-勒让德求积公式、复化梯形公式或者复化辛普森求积公式等的数值方法将它离散得到一个矩阵方程Ax=y,这样,算子方程Kx=y的求解就转化为矩阵方程: 的求解。 定义设A是m×n实矩阵(m≥n),称n阶方阵ATA的非零特征值的算术平

微分方程的分类及其数值解法

微分方程的分类及其数值解法 微分方程的分类: 含有未知函数的导数,如dy/dx=2x 、ds/dt=0.4都是微分方程。 一般的凡是表示未知函数、未知函数的导数与自变量之间的关系的方程,叫做微分方程。未知函数是一元函数的,叫常微分方程;未知函数是多元函数的叫做偏微分方程。微分方程有时也简称方程。 一、常微分方程的数值解法: 1、Euler 法: 00d (,), (1.1)d (), (1.2) y f x y x y x y ?=???=? 001 (),(,),0,1,,1n n n n y y x y y hf x y n N +=??=+=-? (1.4) 其中0,n b a x x nh h N -=+=. 用(1.4)求解(1.1)的方法称为Euler 方法。 后退Euler 公式???+==+++),,(),(111 00n n n n y x hf y y x y y 梯形方法公式 )].,(),([2 111+++++=n n n n n n y x f y x f h y y 改进的Euler 方法11(,),(,),1().2p n n n c n n p n p c y y hf x y y y hf x y y y y ++?=+??=+???=+??? 2、Runge-Kutta 方法: p 阶方法 : 1()O h -=?总体截断误差局部截断误差 二阶Runge-Kutta 方法 ??? ????++==++=+),,(),,(,2212 1211hk y h x f k y x f k k h k h y y n n n n n n

数值分析_第五章_常微分方程数值解法

图5畅2 令珔h =h λ,则y n +1=1+珔 h +12珔h 2 +16珔h 3+124 珔 h 4y n .由此可知,绝对稳定性区域在珔h =h λ复平面上满足 |1+珔 h +12珔h 2+16珔h 3+124珔h 4 |≤1的区域,也就是由曲线 1+珔h + 12珔h 2+16珔h 3+124 珔h 4=e i θ 所围成的区域.如图5畅2所示. 例22 用Euler 法求解 y ′=-5y +x ,y (x 0)=y 0,  x 0≤x ≤X . 从绝对稳定性考虑,对步长h 有何限制? 解 对于模型方程y ′=λy (λ<0为实数)这里λ=抄f 抄y =-5.由 |1+h λ|=|1-5h |<1 得到对h 的限制为:0<h <0畅4. 四、习题 1畅取步长h =0畅2,用Euler 法解初值问题 y ′=-y -x y 2 , y (0)= 1.  (0≤x ≤0畅6), 2畅用梯形公式解初值问题 y ′=8-3y ,  (1≤x ≤2),

取步长h=0畅2,小数点后至少保留5位. 3畅用改进的Euler公式计算初值问题 y′=1x y-1x y2, y(1)=0畅5,  1<x<1畅5, 取步长h=0畅1,并与精确解y(x)= x 1+x比较. 4畅写出用梯形格式的迭代算法求解初值问题 y′+y=0, y(0)=1 的计算公式,取步长h=0畅1,并求y(0畅2)的近似值,要求迭代误差不超过10-5. 5畅写出用四阶经典Runge唱Kutta法求解初值问题 y′=8-3y, y(0)=2 的计算公式,取步长h=0畅2,并计算y(0畅4)的近似值,小数点后至少保留4位. 6畅证明公式 y n+1=y n+h9(2K1+3K2+4K3). K1=f(x n,y n), K2=f x n+h2,y n+h2K1, K3=f x n+34h,y n+34h K2, 至少是三阶方法. 7畅试构造形如 y n+1=α(y n+y n-1)+h(β0f n+β1f n-1)

。随机微分方程的数值解读后感

随机微分方程的数值模拟算法的读后感 本文主要分为九个部分,对随机微分方程的数值模拟进行了介绍。这篇文章建立在MATLAB程序的基础上,主要包过随机积分、欧拉—丸山法、米尔斯坦法,强弱收敛性、线性稳定性,随机链法则。 第一部介绍了随机微分方程的应用领域,研究需要的背景知识,以及下面几部分的研究你内容和参考文献介绍。 第二部分介绍了布朗运动和计算布朗路径。首先规定了满足布朗运动的三个条件;然后用随机号码发生器通过for循环或randn(1.N)创建一维数组来模拟布朗路径;最后找出通过1000点布朗路径的函数,并与五个独立路径对比。同时也为下面的研究作铺垫。 第三部分我们验证了关于布朗运动的积分并说明了与Ito积分与斯特拉托诺维奇积分的不同点。我们通过两种黎曼和来类比的得到ito积分和斯特拉托诺维奇积分。同时也给出了他们两个的区别,最后给出精确估计随机积分的办法。 第四部分叙述了欧拉—丸山法怎样模拟随机微分方程的。首先引入自治标量的随机微分方程的积分式,通过变形,变量的重新定义得到EM法的表达式。后来通过一个在金融数学中资产价值的模型——毕苏期机定价模式的偏微分方程来进一步说明。 第五部分介绍了强弱收敛性概念,在数值上证明了欧拉—丸山的收敛区间[0.5,1]. 第六部分通过研究米尔斯坦方法来校正欧拉—丸山的收敛性,使强收敛性为1。从第一部分我们知道欧拉—丸山的收敛性为1时才起决定性作用,但是前面满足条件的值是0.5。这一部分就通过米尔斯坦高阶法用在随机增量增加修正值的办法使收敛性为1。 第七部分介绍两种不同的线性稳定性,进而强调随机分析不同与基本定积分。稳定性部分理论是依据变量趋于无穷条件子啊拟合的数值结果,这种数值方法应用于一些定性描述的问题上的,这种方法重现部分性质的能力也是可以分析的。关于稳定性的度量这里只考虑两种,均方数和渐进性。我们通过matlab编程改变参数值和步长来观察均方稳定性和渐进稳定性,最后得到参数和步长变化所对应的不同稳定性的区域。 第八部分引出并证明随机链法则。在第三部分我们发现不只是一种办法可以对随机函数的积分的扩展,这种办法有点像黎曼积分的链式法则,然后对以前的式子进行改进,然后通过matlab编程实现。 第九部分对重要结论简要的叙述。同时指出了一些不足,如没有讨论许多额外的条件,仅仅为了能产生我一定结果,没有提及到随机微分方程和有时间决定的偏微分方程之间的联系,没有注意到标量问题等。 通过这篇文章的学习使我对随机过程有了一定了解,对matlab软件有了更深的认识。同时通过查阅专业数学字典和相关文献使我对专业英文论文的阅读能力有一定的提高。我相信一个暑假的努力对我以后研究生的会有很大的帮助的。 朱园珠 2011年9月1日

微分方程数值方法习题二

并与真解u(x) 2e x x 1相比较. 微分方程数值方法 常微分方程初值问题习题一 u' ax b, u(0) 0, 分别写出Euler 法和改进的Euler 法的近似解 府 的表达式,并求 它们与真解u(x) -ax 2 bx 的差u(X m ) U m . 2. 取步长h 0.1,分别用Euler 法和改进的Euler 法求下列初值问 题的解,并与真解相比较. 真解 u(x) .1 2x ; 2 ,u x . c (2) u 2 ,1 x 2, x u u(1) 2, 1 真解 u(x) x(8 31 n x)3 ; u x u '広乔 u(1) 1, 3 1 真解 u(x) (4x 2 3x 2)3. X 2 3. 用Euler 法计算0£dt 在x 0.1,0.2的近似值. 4. 取步长h 0.2,用四阶Runge-Kutta 法解 u' u x, 0 x 1, u(0) 1, 1.对初值问题 (1) u' u 2x 0x1, u(0) u 1 , (3) 1 x 1.5,

5. 设 f(x,u)关于 u 满足 Lipschitz 条件,证明 N 级 Runge-Kutta 法中的增量函数 (x,u,h)关于u 也满足 Lipschitz 条件. 6. 对初值问题 u' u x 1, u(0) 1, 写出四阶Taylor 级数法和四阶 Runge-Kutta 法的计算公式,它们 是否相同. 7. 证明改进的Euler 法的绝对稳定区间是(-2,0). 8.证明:当h( h)满足 3 4 h h 24 时,四阶 Runge-Kutta 法绝对稳定. 9. 用Tayor 展开确定下面多步法中的系数,使其阶尽可能高,并求 局部截断误差的主项. 10. 对初值问题 u'' f(x,u), u(X °) u °,u'(x 0) u 10, 确定求解公式 (3) u m1 a 2u m 1 h( m 1 2 ). (1) u m 1 a 1u m a 2u m 1 h 0 f m 1 ;

非线性Volterra积分方程(学习资料)

一类第二种非线性Volterra 积分方程 积分数值解方法 1前言 微分方程和积分方程都是描述物理问题的重要数学工具,各有优点.相对于某种情况来说,对于某种物理数学问题,积分方程对于问题的解决比微分方程更加有优势,使对问题的研究更加趋于简单化,在数学上,利用积分形式讨论存在性、唯一性往往比较方便,结果也比较完美,所以研究积分方程便得越来越有用,日益受到重视. 积分方程的发展,始终是与数学物理问题的研究息息相关.一般认为,从积分发展的源头可以追溯到国外的数学家克莱茵的著作《古今数学思想》,该书是被认为第一个清醒的认为应用积分方程求解的是Abel.Abel 分别于1833年和1826年发表了两篇有关积分方程的文章,但其正式的名称却是由数学家du Bois-Raymond 首次提出的,把该问题的研究正式命名为积分方程。所以最早研究积分方程的是Abel,他在1823年从力学问题时首先引出了积分方程,并用两种方法求出了它的解,第一的积分方程便是以Abel 命名的方程.该方程的形式为:?=-b a a x f dt t x t )()() (?,该方程称为广义Abel 方程,式中a 的值在(0,1)之间.当a=21时,该式子便成为)()(x f dt t x x x a =-??.在此之前,Laplace 于1782年所提出的求Laplace 反变换问题,当时这个问题就要求解一个积分方程.但是Fourier 其实已经求出了一类积分方程的反变换,这就说明在早些时候积分方程就已经在专业性很针对的情况下得到了研究,实际上也说明了Fourier 在研究反变换问题是就相当于解出了一类积分方程.积分方程的形成基础是有两位数学家Fredholm 和V olterra 奠定的,积分方程主要是研究两类相关的方程,由于这两位数学家的突出贡献,所以这两个方程被命名为Fredholm 方程和V olterra 方程。后来又有德国数学家D.Hilbert 进行了重要的研究,并作出了突出的贡献,由于D.Hilbert 领头科学家的研究,所以掀起了一阵研究积分方程的热潮,并出现了很多重要的成果,后来该理论又推广到非线性部分。我国在60年代前,积分方程这部分的理论介绍和相关书本主要靠翻译苏联的相关书籍,那时研究的积分方程基本是一种模式,即用古典的方法来研究相关的积分方程问题,这样使得问题的研究变得繁琐、复杂,在内容方面比较单一、狭隘,甚至有些理论故意把积分方程的研究趋向于复杂化。随着数学研究的高速发展,特别是积分方程近年来的丰富发展,如此单一、刻板的解法已经不能跟上数学研究时代的步伐。在九十年代我国的数学专家路见可、钟寿国出版了《积分方程论》,该书选择2L 空间来讨论古典积分方程,并结合泛函分析的算子理论来分析积分方程的相关问题。最近出版的比较适

倒向随机微分方程的数值方法及其误差估计(精)

倒向随机微分方程的数值方法及其误差估计 倒向随机微分方程(BSDE)是一个相对比较新的研究方向。1973年Bismut[9]研究的线性形式可以看作是著名的Girsanov定理的推广。非线性BSDE的概念是由Pardoux和Peng[60]在1990年引入的。Duffie和Epstein[28]于1992年独立引入经济模型中的随机微分效用概念,也可以看作某些特殊的BSDE的解。从那以后,关于BSDE的很多理论和应用结果得到了发展,其中包括:反射倒向随机微分方程、正倒向随机微分方程、偏微分方程与倒向随机微分方程的联系、随机控制、数理金融、非线性期望和非线性鞅论、递归效用和风险敏感效用以及随机微分几何等。在El Karoui和Mazliak[30],Ma和 Yong[5l],Yong和zhou[86]写的书以及综述论文El Karoui,Peng和Quenez[33]中,详细介绍了BSDE的理论和在数理金融和随机控制中的应用。倒向随机微分方程的存在唯一性意味着我们能够明确的解决现在应怎样去做以实现一个给定的将来目标。但是对于一个具体的倒向方程如何算出它的解来对一般情况而言仍是一个未解决的问题。在实际应用中能够显式解出的BSDE是很少见的,因此我们需要计算BSDE的数值解。相对于正向随机微分方程的数值解法,无论是从结果的丰富程度还是从算法实现的难易程度来看,BSDE都要落后很多。出现这 一问题不外乎有以下两个原因:首先,正向随机微分方程与倒向随机微分方程在结构上有本质的区别,从而倒向随机微分方程的数值方法不能完全套用正向随机微分方程已有的数值方法。其次,从应用的角度讲,正向随机微分方程考虑的是如何认识一个客观存在的随机过程,而倒向随机微分方程则主要关心在有随机干扰的环境中如何使一个系统达到预期的目标。在过去的十几年里,许多学者做出了很大的努力,在BSDE数值解法的研究中取得了一系列的成果。这些数值方法按照其求解原理可以划分为两大类:第一类方法主要通过数值求解与BSDE相对应的拟线性偏微分方程;另一类算法直接对随机问题按时间进行倒向计算。2006年,Zhao,Chen和Peng[89]提出了解BSDE的θ格式,该方法结合PDE数值解法的特点,使用随机的思想来解释高精度的差分方法,对BSDE进行时间空间离散,用Monte Carlo方法结合插值近似计算条件数学期望,在数值实验中得到了较好的结果。本文主要研究了BSDE的几种数值方法,在Zhao,Chen和Peng[89]的基础上,离散BSDE时用Gauss-Hermite积分替代Monte Carlo方法近似条件期望,并得到了θ格式的误差估计;提出了一种新的Crank-Nicolson格式并进行误差估计;对一种更高阶的Adams方法也提出了BSDE的离散格式且得到了格式的收敛误差。下面我们列出本文的主要结果。第一章:简要介绍本文中所讨论问题的背景及总体思路,介绍了BSDE,Feynman-Kac公式的基本概念,对BSDE已有的数值解法进行了简要的回顾总结。第二章:给出了BSDE(2-1)的θ格式的误差估计。证明了对一般的θ,格式一阶收敛,特别当θ=(?)时,格式二阶收敛。当 θ=1时,我们得到θ格式对(2-1)的适应解(y_t,z_t)一阶收敛。在θ=(?)的情形,我们还得到解z_t的误差估计。我们称下面两个解(?)的方程为离散 BSDE(2-1)的θ格式:对该格式的误差估计主要有下面的定理。定理2.1.假设2.1成立,令y_t和y~n分别是BSDE(2-1)和θ格式(2-12)的解,那么对足够小的时间步长Δt_n,我们有其中C是一个正常数,它仅依赖于T,φ和f导数的上界和(2-3)的解u(t,x)。定理2.3.假设2.1成立,令y~n(n=N,…,0)是θ格式(2-12)在θ=(?)时的解,y_t(0≤t≤T)是BSDE(2-1)的解,那么对足够小的时间步长Δt_n,我们有定理2.4.假设2.1成立,令(y~n,z~n)(n=N,…,0)是θ格式

常微分方程数值方法

常微分方程数值方法 1、欧拉方法:1,,1,0),,(1-=+=+n k y t hf y y k k k k . function E=euler(f,a,b,ya,n) % Input - f is the function entered as a string 'f' % - a and b are the left and right end points % - ya is the initial condition y(a) % - n is the number of steps % Output - E=[T' Y'] where T is the vector of abscissas and % Y is the vector of ordinates h=(b-a)/n; T=zeros(1,n+1); Y=zeros(1,n+1); T=a:h:b; Y(1)=ya; for j=1:n Y(j+1)=Y(j)+h*feval(f,T(j),Y(j)); end E=[T' Y']; 【例】 用欧拉方法求解区间]3,0[内的初值问题:1)0(,2'=-=y y t y 。 f=inline('(t-y)/2','t','y');a=0;b=3;ya=1;n=12; %n=3,6,12,24,48,96... E=euler(f,a,b,ya,n),plot(E(:,1),E(:,2),'r*'),hold on 符号解:y=dsolve('Dy=(t-y)/2','y(0)=1') h=(3-0)/12;t=0:h:3;y=eval(y);[t' y'] 用图比较数值解:(f 为ode 函数文件) ode45('f',[0,3],1) 2、休恩(Huen)方法(即改进Euler 方法): 1 ,,1,0)],,(,(),([211-=+++=++n k y t hf y t f y t f h y y k k k k k k k k function H=heun(f,a,b,ya,n) % Input - f is the function entered as a string 'f' % - a and b are the left and right end points % - ya is the initial condition y(a) % - n is the number of steps % Output - H=[T' Y'] where T is the vector of abscissas and % Y is the vector of ordinates h=(b-a)/n; T=zeros(1,n+1); Y=zeros(1,n+1); T=a:h:b; Y(1)=ya; for j=1:n k1=feval(f,T(j),Y(j)); k2=feval(f,T(j+1),Y(j)+h*k1); Y(j+1)=Y(j)+(h/2)*(k1+k2); end H=[T' Y'];

常微分方程数值解法

i.常微分方程初值问题数值解法 常微分方程初值问题的真解可以看成是从给定初始点出发的一条连续曲线。差分法是常微分方程初值问题的主要数值解法,其目的是得到若干个离散点来逼近这条解曲线。有两个基本途径。一个是用离散点上的差商近似替代微商。另一个是先对微分方程积分得到积分方程,再利用离散点作数值积分。 i.1 常微分方程差分法 考虑常微分方程初值问题:求函数()u t 满足 (,), 0du f t u t T dt =<≤ (i.1a ) 0(0)u u = (i.1b) 其中(,)f t u 是定义在区域G : 0t T ≤≤, u <∞上的连续函数,0u 和T 是给定的常数。我们假设(,)f t u 对u 满足Lipschitz 条件,即存在常数L 使得 121212(,)(,), [0,]; ,(,)f t u f t u L u u t T u u -≤-?∈∈-∞∞ (i.2) 这一条件保证了(i.1)的解是适定的,即存在,唯一,而且连续依赖于初值0u 。 通常情况下,(i.1)的精确解不可能用简单的解析表达式给出,只能求近似解。本章讨论常微分方程最常用的近似数值解法-差分方法。先来讨论最简单的Euler 法。为此,首先将求解区域[0,]T 离散化为若干个离散点: 0110N N t t t t T -=<< <<= (i.3) 其中n t hn =,0h >称为步长。 在微积分课程中我们熟知,微商(即导数)是差商的极限。反过来,差商就是微商的近似。在0t t =处,在(i.1a )中用向前差商 10()()u t u t h -代替微商du dt ,便得 10000()()(,())u t u t hf t u t ε=++ 如果忽略误差项0ε,再换个记号,用i u 代替()i u t 便得到 1000(,)u u hf t u -= 一般地,我们有 1Euler (,), 0,1, ,1n n n n u u hf t u n N +=+=-方法: (i.4) 从(i.1b) 给出的初始值0u 出发,由上式可以依次算出1,,N t t 上的差分解1,,N u u 。

偏微分方程数值解法

《偏微分方程数值解法》 课程设计 题目: 六点对称差分格式解热传导方程的初边 值问题 姓名: 王晓霜 学院: 理学院 专业: 信息与计算科学 班级: 0911012 学号: 091101218 指导老师:翟方曼 2012年12月14

日 一、题目 用六点对称差分格式计算如下热传导方程的初边值问题 222122,01,01(,0),01 (0,),(1,),01x t t u u x t t x u x e x u t e u t e t +???=<<<≤?????=≤≤??==≤≤??? 已知其精确解为 2(,)x t u x t e += 二、理论 1.考虑的问题 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauch y 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。 现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T =τ为时间步长,其中N ,M 是自然数,

第一章积分方程的来源及基本概念

第一篇积分方程 第一章方程的导出和基本概念 §1.1 方程的导出 许多力学、工程技术和数学物理问题都能用积分方程形式描述,而求解常微分方程和偏微分方程的定解问题常常可转化为求解积分方程的问题。下面举几个典型的问题作为例子,扼要地阐明导出积分方程的方法以及微分方程与积分方程之间的联系。 例1:弹性弦负荷问题 一根轻且软的弹性弦,长为l,两端固定,如图所示,静止时与x轴重合,弦内张力为 T.今在其上加以强度为

()x ?的负荷.设在任一点M (横坐标 为x ) ()x ?, 且设 解:在任一点x ξ=处取微小的一段弦d ξ,则作用于其上的重力为 ()d ?ξξ,记之为0P ,则这一重力0P 必 引起弦的形变,记ξ处位移为S ,则: 01020sin sin T T P θθ+=, 因为0()T x ?>>,所以12,1θθ<< 112sin tan ,sin .S S l θθθξξ ?≈=≈- 所以000S S T T P l ξξ ?+? =-, 得

00()P l S T l ξξ-=?. 记0P 引起的x 处位移为* ()y x , 则0x ξ≤≤时, 由y S x ξ *=得 * 00() ()P l S y x x x T l ξξ-=?=??; 当x l ξ≤≤时,y S l x l ξ*= -- , ? 00()()P l x y x T l ξ* -= ??; 记:0 0,0(,),.l x x T l G x l x x l T l ξ ξξξξ-??≤≤??=?-??≤≤?? 则 0()(,)y x G x P ξ* =, ()(,)()y x G x d ξ?ξξ* =, 对ξ从0l 到求积分,

相关文档
最新文档