信号与系统实验讲义

信号与系统实验讲义
信号与系统实验讲义

实验一常用信号的分类与观察

一、实验目的

1、观察常用信号的波形特点及产生方法。

2、学会使用示波器对常用波形参数的测量。

二、实验仪器

1、信号与系统实验箱一台。

2、40MHz双踪示波器一台。

三、实验原理

对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。

1、指数信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示:

图1―1 指数信号

2、正弦信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号图1-3 指数衰减正弦信号

3、指数衰减正弦信号:其表达式为其波形如上图:

4、Sa(t)信号:其表达式为:Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

5、钟形信号(高斯函数):其表达式为:其信号如下图所示:

6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示:

图1-6 脉冲信号

7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示

四、实验内容及主要步骤

1、用示波器测量指数信号波形,并分析其所对应的a、k参数。具体步骤

如下:

(1)接通电源,并按下此模块电源开关S8。

(2)按下此模块中的按键“指数波”,用示波器观察输出的指数信号,并分析其对应的频率、a、k参数。

(3)再按一下“频率降”或“频率升”键,观察波形的变化,分析其对应频率的变化,并分析此时的参数a的变化。(注:复位后输出的信号频率最大,只有当按下“频率降”时,按“频率升”键波形才会变化。以下波形的输出与此类似。)

2、利用示波器观察正弦信号的波形,并测量分析其对应的振幅K,角频率

w。具体步骤如下:

(1)按下此模块中的按键“正弦波”,用示波器观察输出的正弦信号,并分析其对应的频率(注:如果前一次波形频率有下降,则此时波形的频率不是最大值,而也会下降。以下波形的输出与此类似。)

(2)再按一下“频率降”或“频率升”键,观察波形的变化,并分析且测量对应频率的变化,记录此时的振幅K,角频率w。

3、指数衰减正弦信号观察(正频率信号)。具体步骤如下:

(1)按下此模块中的按键“指数衰减”,用示波器观察输出的指数信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化,并分析且测量对应频率的变化。

4、信号的观察:具体操作如下:

(1)按下此模块中的按键“Sa(t)”,用示波器观察输出的指数信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化,并分析且测量对应频率的变化。

5、钟形信号的观察:

(1)按下此模块中的按键“高斯”,用示波器观察输出的指数信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化,并分析且测量对应频率的变化及相应的参数。

6、脉冲信号的观察:

(1)按下此模块中的按键“脉冲”,用示波器观察输出的指数信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化和特点,并分析且测量对应频率的变化。

7、方波、三角波、锯齿波信号的观察:

(1)按下此模块中的相应信号的按键,用示波器观察输出的指数信号,并分析其对应的频率。

(2)再按一下“频率降”或“频率升”键,观察波形的变化和特点,并分析且测量对应频率的变化。

五、实验报告要求

1、用坐标纸画出各波形。

2、分析各信号在频率升和频率降时的波形变化。

实验二函数信号的产生与测试

一、实验目的

1、通过实验掌握函数信号的产生原理。

2、学会函数信号的测量方法。

二、实验设备

1、信号与系统实验箱一台。

2、20M示波器一台。

三、实验原理(能分析电路图)

1、方波、三角波产生电路原理

下图中IC1(U1A)、R100、R102组成比较器电路;IC2(U1B)、R104、W100、C100成有源积分电路,R103右端输出(TP100)为方波信号,IC2(U1B)输出(TP101)为三角波信号。

图2-1方波、三角波产生电路原理图

利用差分放大器传输特性的非线性,实现的三角波-正弦波变换的过程如下图所示:

图2-2 三角波-正弦波变换的过程

实现三角波-正弦波变换差放电路如下:

图2-3 三角波-正弦波变换差分放电路

四、实验内容及主要步骤

1、接通电源,按下此模块中的电源开关S1。

2、用示波器分别测量方波、三角波波形,调节电位器w100(频率调节)改变

其频率再次观察与测量,并用坐标纸按1:1画出测量波形。

3、用示波器测量正弦波,首先调节电位器w102(对称调节)使线性区变窄,

从而使差分放大器传输特性更加对称,则输出波形更接近正弦波,然后

可以调节电位器w101(幅度调节)改变其输出的幅度。用坐标纸按1:1

画出测量波形

五、实验报告的要求

1、画出测量信号的波形。

2、分析正弦波失真几种原因。

实验三函数信号发生器的组装与调试

一、实验目的

1、了解单片多功能集成电路函数信号发生器的功能及特点

2、进一步掌握波形参数的测试方法

二、实验原理

1、 ICL8038是单片集成函数信号发生器,其内部框图如图3-1所示。它

由恒流源I

1和I

2

、电压比较器A和B、触发器、缓冲器和三角波变正弦波电路等

组成。

图3-1 ICL8038原理框图

外接电容C由两个恒流源充电和放电,电压比较器A、B 的阈值分别为电源电

压(指U

CC +U

EE

)的2/3和1/3。恒流源I

1

和I

2

的大小可通过外接电阻调节,但

必须I

2>I

1

。当触发器的输出为低电平时,恒流源I

2

断开,恒流源I

1

给 C充电,

它的两端电压u

C 随时间线性上升,当u

C

达到电源电压的2/3时,电压比较器A

的输出电压发生跳变,使触发器输出由低电平变为高电平,恒流源I

2

接通,由

于I

2>I

1

(设I

2

=2I

1

),恒流源I

2

将电流2I

1

加到C上反充电,相当于C由一个

净电流I放电,C 两端的电压u

C

又转为直线下降。当它下降到电源电压的1/3时,电压比较器B的输出电压发生跳变,使触发器的输出由高电平跳变为原来的

低电平,恒流源I

2断开,I

1

再给 C充电,…如此周而复始,产生振荡。若调整

电路,使I

2=2I

1

,则触发器输出为方波,经反相缓冲器由管脚⑨输出方波信号。

C上的电压u

C

,上升与下降时间相等,为三角波,经电压跟随器从管脚③输出三角波信号。将三角波变成正弦波是经过一个非线性的变换网络(正弦波变换器)而得以实现,在这个非线性网络中,当三角波电位向两端顶点摆动时,网络提供的交流通路阻抗会减小,这样就使三角波的两端变为平滑的正弦波,从管脚②输出。

2、ICL8038管脚功能图

图3-2 ICL8038管脚图

3、实验电路如图3-3所示

图3-3 ICL8038实验电路图

三、实验设备与器件

1、±12V直流电源

2、双踪示波器

3、频率计

4、直流电压表

5、 ICL8038

6、晶体三极管3DG12×1(9013)

电位器、电阻器、电容器等

四、实验内容(注意频率调节或幅度调节:顺时针增大;逆时针减小)

1、按图3-3所示的电路图组装电路,按下船形开关、总电源开关及该模块开关S

,调整电路,使其处于振荡,使其输出(TP301)为方波,通过调整电

3

位器W302,使方波的占空比达到50%。(注:“波形选择”档(K302)的跳线连接1-2脚时输出方波,连接2-3或是-4脚时输出三角波,连接4-5脚时输出正弦波;而“频率选择”档(K301)连接1-2脚时输出波形频率最小,连接2-3或是-4脚时输出频率适中,而连接4-5脚时输出最大;另外,“频率调节”大电位器可微调频率,“幅度调节”大电位器可微调幅度,“可调电阻W305可用于幅度粗调。

2、保持方波的占空比为50%不变,用短路器连接“波形选择”档的4-5脚,用示波器观测8038 正弦波输出端(TP301)的波形,反复调整W303,W304,使正弦波不产生明显的失真。

3. 调节“频率可调”电位器W302,使输出信号频率从小到大变化,记录管脚8的电位及测量输出正弦波的频率,列表记录之。试分析该管脚电压与输出信号频率有何关系?

4、改变外接电容C的值(用跳线选择,取C=0.1和1000P),观测三种输出波形,并与C=0.01μf时测得的波形作比较,有何结论?

5、改变电位器W302的值,观测三种输出波形,有何结论?(如影响方波的占空比,那么对正弦波和三角波有何影响?)

6、如有失真度测试仪,则测出C分别为0.1μf,0.01μf和1000P时的正弦波失真系数r值(一般要求该值小于3%)。

五、预习要求

1、翻阅有关ICL8038的资料,熟悉管脚的排列及其功能。

2、如果改变了方波的占空比,试问此时三角波和正弦波输出端将会变成怎样的一个波形?

六、实验总结

1、分别画出C=0.1μf,C=0.01μf,1000P时所观测到的方波,三角

波和正弦波的波形图,从中得出什么结论。

2、列表整理C取不同值时三种波形的频率和幅值。

3、组装、调整函数信号发生器的心得、体会。

实验四非正弦周期信号的频谱分析(选做)

一、实验目的

1、掌握频谱仪的基本工作原理与正确使用方法。

2、掌握非正弦周期信号的测试方法。

3、理解非正弦周期信号频谱的离散性、谐波性与收敛性。

二、实验设备

1、信号与系统实验箱一台。

2、频谱仪一台。

3、20MHz示波器一台。

三、实验原理与说明

1、任何一个周期信号只要满足狄里赫利条件,就可以分解为直流和很多谐

波。

即:

当n=0,

当n=1时

为基波振幅,为基波初相

A

1

当n=2时

为二次谐波振幅,为二次谐波初相

A

2

…… ……

当n=i时

A

为i次谐波振幅,为次谐波初相

i

各谐波的振幅及初相决定于信号的波形,常见的非正弦周期信号又方波、三角波及矩形波等,本实验就是用频谱仪显示他们的各次谐波及幅度。

2、不同脉宽的矩形波、三角波及方波可由多功能函数发生器提供。

四、实验任务与要求

1、掌握频谱仪各旋钮功能及使用方法。

2、接通电源,按下电源开关S3。

3、分别用示波器与频谱仪测量频率在10kHz脉宽为50μs方波的波形及频谱(通过跳线K302选择波形,如“方波”“三角波”“正弦波”.通过跳线K301选择频段,如“低”“中”“高”)。输出幅度V

=4V左右(调节电位器W305

s

进行幅度粗调,W304进行幅度的细调)。记录信号波形及频谱显示图象,并于理论分析结果相比较。

4、分别用示波器与频谱仪测量频率在10kHz脉宽为50μs三角波的波形及频谱(通过跳线K302选择波形,如“方波”“三角波”“正弦波”.通过跳线

=4V左右(调节电位K301选择频段,如“低”“中”“高”)。输出幅度V

s

器W305进行幅度粗调,W304进行幅度的细调)。记录信号波形及频谱显示图象,并于理论分析结果相比较。

5、把方波、三角波信号调节成频率为20kHz,脉宽50μs的信号,重复以上内容。

五、验报要求

1、画出相应的输入和其相应的频谱图,然后与理论进行比较。

六、思考题

1、说明脉冲周期T和脉宽τ变化所引起频谱变化的规律。

实验五电信号的分解与合成

一、实验目的:

1、观察信号波形的分解与合成。

2、研究频率失真与相位失真。

二、实验设备

1、信号与系统实验箱一台。

2、20MHz双踪示波器

三、实验原理:

任何电信号都是由各种不同的频率、幅度和初相的正弦波叠加而成的。对数字信号由它的傅立叶级数展开可知。各次谐波为基波频率的整数倍。而非周期信号包含了从零到无穷大的所有频率

成分,每一频率成分均趋向无限小,但其相对大小是不同的。

通过一个选频网络可以将电信号中所包含的某一频率成分提取出来。最简单的选频网络是一个谐振回路,因此对信号波形进行分解的是实验方案如图5-1所示。

图5-1 电信号波形分解

将被测信号加到分别调谐于基波与各次谐波频率的一系列谐振回路。从每一谐振回路两端可以用示波器观察到被取出的各种正弦波。若有一个谐振回路即不谐振于基波又不谐振于谐波,则用示波器在它的两端一定观察不到波形。若被测信号是50kHz的方波,由傅氏级数展开可知应使L1、C1谐振于50kHz,L2、C2谐振于150kHz,L3、C3谐振于250kHz,L4、C4谐振于350kHz,L5、C5谐振于450kHz,则一定能从各次谐波回路两端观察到基波和各次谐波。反之,若干频率、振幅和初相各不相同的正弦波可以合成各种非正弦波。如将频率为1f,3f,5f,7f……,振幅比例为:1:1/3:1/5:1/7;……的一系列正弦波叠加可以合成一个方波,若相叠加的两个正弦信号的频率和幅度都不变,仅是初相发生变化,则其合成的信号也不大一样。见图5-2。

图5-2 初相不同的合成波形

由CPU产生的1f,3f,5f,7f正弦波。将各次谐波幅度分别调节为基波1f幅度的1/n,则它们通过加法器后合成的结果为一方波。若“三次谐波反相”,“五次谐波反相”和“七次谐波反相”合成到加法器输出,则相当于初相发生变化,此时合成的波形会发生变化,这种由于谐波相位变化而使波形发生失真称为“相位失真”。若“频率2”,“频率3”或“频率4”断开,则在相叠加的正弦波中缺少了一种频率成分,合成的波形也会发生变化,这

种失真称为“频率失真”。

四、实验预习

1、按比例绘出1f到3f迭加,1f与3f,5f相迭加,以及1f,3f,5f,7f相迭

加的波形。

2、按比例绘出1f,5f迭加,1f,5f,7f相迭加,以及1f,3f,7f相迭加后

的波形。

3、按比例绘出1f,3f反相,5f,7f相迭加的波形。

五、实验内容:

1、观察方波的分解:(此模块的右边)

按实验电路,将函数发生器模块的输出(通过跳线K302选择“方波”,跳线K301选择频段“高”,调节电位器W301(频率细调)和电位器W302(占空比调节),使其输出一个占空比为50%,频率为50k的方波)与信号分解实验电路的各次谐波的输入(“输入1”“输入2”“输入3”“输入4”“输入5”)依次相连。用示波器观察并记录信号源的波形,并测出其频率。依次观察“基波”,“三次谐波”,“五次谐波”,“七次谐波”,“九次谐波”两端间的波形,测出振幅和频率。

2、观察方波的合成:(此模块的左边)

按实验图4-3线路,用示波器观察并调节1f,3f,5f,7f正弦波的振幅(通过电位器W200、W201、W202调节“三次谐波”、“五次谐波”、“七次谐波”的幅度,使其与基波幅度的比例为1:3:5:7),录个波形的频率,振幅和相位。再用导线把基波及各次谐波和插孔(“频率1”“频率2”“频率3”“频率4”)依次相连,用示波器观察由插孔“合成输出”输出的正弦波合成波形。并与实验预习1相比较。

3、观察相位失真的波形:

按实验线路,用导线将“反相输入1”和“三次谐波反相”相连,观察此信号的相位变化,再观察合成信号的波形,并与实验预习3相比较。

4、观察频率失真的波形:

将实验线路上插孔“频率2”或“频率3”不接导线,观察合成信号的波形,并分别与实验预习2相比较。

六、实验报告要求

1、整理并绘出实验中所观察到的各种波形,指出他们之间的联系。

2、将具有相位失真与频率失真的波形与无失真的合成波形相比较。

3、总结实验心得与体会。

实验六信号的抽样与恢复(PAM)

一、实验目的

1、验证抽样定理。

2、观察了解PAM信号形成的过程。

二、实验仪器

1、信号与系统实验箱一台。

2、20MHz示波器一台。

三、预备知识

1、学习“从抽样信号恢复连续时间信号”。

2、理想低通滤波器的冲击响应形式。

3、冲击函数的性质。

四、实验原理

利用抽样脉冲把一个连续信号变为离散时间样值的过程称为抽样,抽样后的信号称为脉冲调幅(PAM)信号。在满足抽样定理条件下,抽样信号保留了原信号的全部信息,并且从抽样信号中可以无失真的恢复出原始信号。

抽样定理在通信系统、信息传输理论方面占有十分重要的地位。数字通信系统是以此定理作为理论基础。抽样过程是模拟信号数字化的第一步,抽样性能的优劣关系到通信设备整个系统的性能指标。

抽样定理指出:一个频带受限信号m(t),如果它的最高频率为f h,则可以唯一的由频率等于或大于2f h的样值序列所决定。抽样信号的时域与频域变化过程如下图所示:

记在输入、输出端需要加一低通滤波器。前一个低通滤波器是为了滤除高于f g/2的输入信号,防止出现频谱混迭现象,产生混迭噪声,影响恢复出的信号质量。后面一低通滤波器是为了从抽样序列中恢复出信号,滤除抽样信号中的高次谐波分量。

五、实验步骤(要求采样冲激幅度与模拟信号幅度接近)

1、采样冲激串的测量:

(1)用示波器观察插孔“抽样频率”的输出,同时测量插孔“抽样频率”输出信号的频率。

(2)调节电位器W 501(抽样频率调节),改变脉冲信号的输出频率,重复上一步。

2、模拟信号的加入:

(1)通过函数信号发生器模块产生一频率为1KHz(T=1MS)的正弦信号(具体的操作:按下函数信号发生器模块的开关电源S3,通过跳线K302选择“正弦波”,跳线 K301选择“中”,调节电位器W301,进行频率细调)。

(2)用导线将函数信号发生器模块的输出端与此模块的插孔“模拟输入”端相连。

3、信号采样的PAM观察:用示波器观察插孔“抽样信号”的输出,可测量到输入信号的采样序列,用示波器比较采样序列与原始信号的关系,及采样序列与采样冲激串之间的关系。在测量过程中注意,由于信号采样串为高频脉冲串,由于实际电路的频响范围有限在采样冲激串上会观察到过冲现象。

4、PAM信号的恢复:用示波器观察并测量插孔“模拟输出”端的信号,用示波器比较恢复出的信号与原始信号的关系与差别。

5、改变抽样频率(调节电位器W501)重复上述4步(用三种不同的抽样频率)。

六、实验报告要求

1、整理并绘出原信号、抽样信号以及恢复信号的波形,你能得出什么结论?

2、整理在三种不同抽样频率情况下,波形,比较后得出结论。

3、实验调试中的体会。

七、思考题

=0.5ms的窄脉冲,试求 1、若连续时间信号为50H Z的正弦波,开关函数为T

S

抽样后信号。

2、设计一个二阶RC低通滤波器,截止频率为5KH Z。

3、若连续时间信号取频率为200H Z~300H Z的方波和三角波,计算其有效的频带宽度。该信号经频率为的周期脉冲抽样后,若希望通过低通滤波后的信号失真较小,则抽样频率和低通滤波器的截止频率应取多大,试设计一满足上述要求的低通滤波器。

实验七零输入响应与零状态响应分析

一、实验目的

1、掌握电路的零输入响应。

2、掌握电路的零状态响应。

3、学会电路的零状态响应与零输入响应的观察方法。

二、实验仪器

1、信号与系统实验箱一台。

2、20MHz示波器一台。

三、实验原理

电路的响应一般可分解为零输入响应和零状态响应。首先考察一个实例:在下图中由RC组成一电路,电容两端有起始电压Vc(0-),激励源为e(t)。

则系统响应-电容两端电压:

上式中第一项称之为零输入响应,与输入激励无关,零输入响应是以初始电压值开始,以指数规律进行衰减。

第二项与起始储能无关,只与输入激励有关,被称为零状态响应。在不同的输入信号下,电路会表征出不同的响应。

四、实验内容与主要步骤

1、系统的零输入响应特性观察

(1)接通电源,按下此模块电源开关S7和常用的信号分类与观察模块的电源开关S8,按下常用的信号分类与观察模块中的按键“方波”,通过按“频率降”产生周期为35ms的方波信号。

(2)用导线将信号源的输出端与“零输入响应与零状态响应”单元的“输入”端口相连,用方波信号作同步,观察输出信号的波形。

2、系统的零状态响应特性观察

(1)接通电源,按下此模块电源开关S7和常用的信号分类与观察模块的电源开关S8,按下常用的信号分类与观察模块中的按键“方波”,通过按“频率降”产生周期为35ms的方波信号。

(2)用导线将信号源的输出端与“零输入响应与零状态响应”单元的“输入”端口相连,用脉冲信号作同步,观察输出信号的波形。

五、写出完整的实验报告

绘出零输入和零状态的输出波形。

六、实验思考总结

信号与系统实验报告1

学生实验报告 (理工类) 课程名称:信号与线性系统专业班级:M11通信工程 学生学号:1121413017 学生姓名:王金龙 所属院部:龙蟠学院指导教师:杨娟

20 11 ——20 12 学年第 1 学期 金陵科技学院教务处制 实验报告书写要求 实验报告原则上要求学生手写,要求书写工整。若因课程特点需打印的,要遵照以下字体、字号、间距等的具体要求。纸张一律采用A4的纸张。 实验报告书写说明 实验报告中一至四项内容为必填项,包括实验目的和要求;实验仪器和设备;实验内容与过程;实验结果与分析。各院部可根据学科特点和实验具体要求增加项目。 填写注意事项 (1)细致观察,及时、准确、如实记录。 (2)准确说明,层次清晰。 (3)尽量采用专用术语来说明事物。 (4)外文、符号、公式要准确,应使用统一规定的名词和符号。 (5)应独立完成实验报告的书写,严禁抄袭、复印,一经发现,以零分论处。 实验报告批改说明 实验报告的批改要及时、认真、仔细,一律用红色笔批改。实验报告的批改成绩采用百分制,具体评分标准由各院部自行制定。 实验报告装订要求

实验批改完毕后,任课老师将每门课程的每个实验项目的实验报告以自然班为单位、按学号升序排列,装订成册,并附上一份该门课程的实验大纲。

实验项目名称:常用连续信号的表示 实验学时: 2学时 同组学生姓名: 无 实验地点: A207 实验日期: 11.12.6 实验成绩: 批改教师: 杨娟 批改时间: 一、实验目的和要求 熟悉MATLAB 软件;利用MATLAB 软件,绘制出常用的连续时间信号。 二、实验仪器和设备 586以上计算机,装有MATLAB7.0软件 三、实验过程 1. 绘制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?=; 2. 绘制指数信号at Ae t (f =),其中A=1,0.4a -=; 3. 绘制矩形脉冲信号,脉冲宽度为2; 4. 绘制三角波脉冲信号,脉冲宽度为4;斜度为0.5; 5. 对上题三角波脉冲信号进行尺度变换,分别得出)2t (f ,)2t 2(f -; 6. 绘制抽样函数Sa (t ),t 取值在-3π到+3π之间; 7. 绘制周期矩形脉冲信号,参数自定; 8. 绘制周期三角脉冲信号,参数自定。 四、实验结果与分析 1.制正弦信号)t Asin t (f 0?ω+=(),其中A=1,πω2=,6/π?= 实验代码: A=1;

信号与系统实验

《信号与系统及MATLAB实现》实验指导书

前言 长期以来,《信号与系统》课程一直采用单一理论教学方式,同学们依靠做习题来巩固和理解教学内容,虽然手工演算训练了计算能力和思维方法,但是由于本课程数学公式推导较多,概念抽象,常需画各种波形,作题时难免花费很多时间,现在,我们给同学们介绍一种国际上公认的优秀科技应用软件MA TLAB,借助它我们可以在电脑上轻松地完成许多习题的演算和波形的绘制。 MA TLAB的功能非常强大,我们此处仅用到它的一部分,在后续课程中我们还会用到它,在未来地科学研究和工程设计中有可能继续用它,所以有兴趣的同学,可以对MA TLAB 再多了解一些。 MA TLAB究竟有那些特点呢? 1.高效的数值计算和符号计算功能,使我们从繁杂的数学运算分析中解脱出来; 2.完备的图形处理功能,实现计算结果和编程的可视化; 3.友好的用户界面及接近数学表达式的自然化语言,易于学习和掌握; 4.功能丰富的应用工具箱,为我们提供了大量方便实用的处理工具; MA TLAB的这些特点,深受大家欢迎,由于个人电脑地普及,目前许多学校已将它做为本科生必须掌握的一种软件。正是基于这些背景,我们编写了这本《信号与系统及MA TLAB实现》指导书,内容包括信号的MA TLAB表示、基本运算、系统的时域分析、频域分析、S域分析、状态变量分析等。通过这些练习,同学们在学习《信号与系统》的同时,掌握MA TLAB的基本应用,学会应用MA TLAB的数值计算和符号计算功能,摆脱烦琐的数学运算,从而更注重于信号与系统的基本分析方法和应用的理解与思考,将课程的重点、难点及部分习题用MA TLAB进行形象、直观的可视化计算机模拟与仿真实现,加深对信号与系统的基本原理、方法及应用的理解,为学习后续课程打好基础。另外同学们在进行实验时,最好事先预习一些MA TLAB的有关知识,以便更好地完成实验,同时实验中也可利用MA TLAB的help命令了解具体语句以及指令的使用方法。

信号与系统实验题目及答案

第一个信号实验的题目 1实现下列常用信号 (1)(5)u t +;(2)(1)t δ-;(3)cos(3)sin(2)t t +;(4)()[(1)(2)]f t t u t t u t t =?---; (5)0.5()4cos(),010t f t e t t π-=?= 2连续信号的基本运算与波形变换 已知信号2 2,2 1 ()33 t t f t ? -+-≤≤?=???,试画出下列各函数对时间t 的波形: (1)()f t -(2)(2)f t -+(3)(2)f t (4)1 (1)2 d f t dt +(5)(2)t f d ττ-∞-? 3连续信号的卷积运算 实现12()()f t f t *,其中1()f t 、2()f t 从第2个题目中任选3对组合。 4连续系统的时域分析 (1) 描述某连续系统的微分方程为()2()()()2()y t y t y t f t f t ''''++=+,求当输入信号为 2()2()t f t e u t -=时,该系统的零状态响应()y t 。 (2) 已知描述某连续系统的微分方程为2()()3()()y t y t y t f t '''+-=,试用MATLAB 绘出 该系统的冲激响应和阶跃响应的波形。 实验一答案: (1)(5)u t +在MATLAB 软件的输入程序及显示波形如下:

(2)(1)t δ-在MATLAB 软件的输入程序及显示波形如下: (3)cos(3)sin(2)t t +在MATLAB 软件的输入程序及显示波形如下: (4)()[(1)(2)]f t t u t t u t t =?---在MATLAB 软件的输入程序及显示波形如下: (5)0.5()4cos(),010t f t e t t π-=?=在MATLAB 软件的输入程序及显示波形如下:

浙江大学 信号与系统实验-基础实验

本科实验报告 课程名称:信号与系统实验 姓名:Wzh 院系:信电学院 专业:信息工程 学号:xxxxxxx 指导教师:周绮敏、史笑兴、李惠忠 2017年6月 1 日 Copyright As one member of Information Science and Electronic Engineering Institute of Zhejiang University, I sincerely hope this will enable you to acquire more time to do whatever you like instead of struggling on useless homework. All the content you can use as you like. I wish you will have a meaningful journey on your college life. ——W z h

实验报告 课程名称:信号与系统实验指导老师:史笑兴、周绮敏、李惠忠成绩:__________________ 实验名称:实验一MATLAB基本实验实验类型:设计型 一、第一次基本实验 1、利用Matlab自带的sinc函数,在时间区间[-4,4]上产生sinc信号,并画出信号图形。 2、利用./运算符,在时间区间[ -4*pi , 4*pi ]上产生Sa信号,并画出信号图形。 具体要求: (1)将图形窗口分为上下两部分,sinc信号画在上图,Sa信号画在下图。 (2)对两个信号分别设置合适的坐标显示范围。 【思考题】sinc函数与Sa函数二者的关系为何?用表达式表示。 【代码】 【运行结果】

信号与系统实验报告一

1. 实验原理 2. 设描述连续时间系统的微分方程为: ) ()()()()()()()(01) 1(1) (01)1(1)(t f b t f b t f b t f b t y a t y a t y a t y a m m m m n n n n +'+++=+'+++---- 则可用向量a 和b 表示该系统,即 ],,,,[011a a a a a n n -= ],,,,[011b b b b b m m -= 注意,向量a 和b 的元素一定要以微分方程时间求导的降幂次序排列,且缺项要用0补齐。 如微分方程 )()()(2)(3)(t f t f t y t y t y +''=+'+'' 表示该系统的向量为 ]2 3 1[=a ]1 0 1[=b (1)求解冲激响应:impulse()函数 impulse()函数有以下四种调用格式: ① impulse(b,a) 该调用格式以默认方式绘制由向量a 和b 定义的连续时间系统的冲激响应的时域波形。 ② impulse(b,a,t) 该调用格式绘制由向量a 和b 定义的连续时间系统在t ~0时间范围内的冲激响应的时域波形。 ③ impulse(b,a, t1:p:t2) 该调用格式绘制由向量a 和b 定义的连续时间系统在21~t t 时间范围内,且以时间间隔 p 均匀抽样的冲激响应的时域波形。 ④ y=impulse(b,a,t1:p:t2) 该调用格式并不绘制系统冲激响应的波形,而是求出由向量a 和b 定义的连续时间系统在21~t t 时间范围内以时间间隔p 均匀抽样的系统冲激响应的数值解。 (2)求解阶跃响应:step()函数 step()函数也有四种调用格式: ① step(b,a) ② step(b,a,t) ③ step(b,a, t1:p:t2) ④ y=step(b,a,t1:p:t2) 上述调用格式的功能与impulse()函数完全相同。 (3)求解零状态响应:lsim()函数 lsim()函数有以下二种调用格式:

信号与系统综合实验项目doc信号与系统综合实验项目(竞

信号与系统综合实验项目doc 信号与系统综合实验项目 (竞 实 验 指 导 项目一 用MATLAB 验证时域抽样定理 目的: 通过MATLAB 编程实现对时域抽样定理的验证,加深抽样定理的明白得。同时训练应用运算机分析咨询题的能力。 任务: 连续信号f(t)=cos(8*pi*t)+2*sin(40*pi*t)+cos(24*pi*t),通过理想抽样后得到抽样信号fs(t),通过理想低通滤波器后重构信号f(t)。 方法: 1、确定f(t)的最高频率fm 。关于无限带宽信号,确定最高频率fm 的方法:设其频谱的模降到10-5左右时的频率为fm 。 2、确定Nyquist 抽样间隔T N 。选定两个抽样时刻:T S T N 。 3、MA TLAB 的理想抽样为 n=-200:200;nTs=n*Ts; 或 nTs=-0.04:Ts:0.04 4、抽样信号通过理想低通滤波器的响应 理想低通滤波器的冲激响应为 )()()()(2ωωωπωωj H G T t Sa T t h C S C C S +?= 系统响应为 )()()(t h t f t y S *= 由于 ∑∑∞-∞=∞-∞=-=-=n S S n S S nT t nT f nT t t f t f )()()() ()(δδ 因此 )] ([)()()()()(S C n S C S C C S n S S nT t Sa nT f T t Sa T nT t nT f t y -=*-=∑∑∞-∞=∞-∞=ωπωωπωδ MATLAB 运算为 ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); 要求(画出6幅图): 当T S

信号与系统实验总结及心得体会

信号与系统实验总结及心得体会 2011211204 刘梦颉2011210960 信号与系统是电子信息类专业的一门重要的专业核心基础课程,该课程核心的基本概念、基本理论和分析方法都非常重要,而且系统性、理论性很强,是将学生从电路分析领域引入信号处理与传输领域的关键性课程,为此开设必要的实验对我们加强理解深入掌握基本理论和分析方法,以及对抽象的概念具体化有极大的好处,而且为后续专业课程的学习提供了理论和大量实验知识储备,对以后的学术科研和创新工作都是十分重要的。下面我将从实验总结、心得体会、意见与建议等三方面作以总结。 一.实验总结 本学期我们一共做了四次实验,分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。 1.信号的分类与观察 主要目的是:观察常用信号的波形特点以及产生方法,学会用示波器对常用波形参数进行测量。主要内容是:利用实验箱中的S8模块分别产生正弦信号、指数信号和指数衰减正弦信号,并用示波器观察输出信号的波形,测量信号的各项参数,根据测量值计算信号的表达式,并且与理论值进行比较。 2.非正弦信号的频谱分析 主要目的是:掌握频谱仪的基本工作原理和正确使用方法,掌握非正弦周期信好的测试方法,理解非正弦周期信号频谱的离散性、谐波性欲收敛性。主要内

容是:通过频谱仪观察占空比为50%的方波脉冲的频谱,和占空比为20%的矩形波的频谱,并用坐标纸画图。 3.信号的抽样与恢复 主要目的是:验证抽样定理,观察了解PAM信号的形成过程。主要内容是:通过矩形脉冲对正弦信号进行抽样,再把它恢复还原过来,最后用还原后的图形与原图形进行对比,分析实验并总结。 4.模拟滤波器实验 主要目的是:了解RC无源和有源滤波器的种类、基本结构及其特性,比较无源和有源滤波器的滤波特性,比较不同阶数的滤波器的滤波效果。主要内容:利用点频法通过测试无源低通、高通、带通和有源带阻,以及有源带通滤波器的幅频特性,通过描点画图形象地把它们的特点表现出来。 通过对信号与实验课程的学习,我掌握了一些基本仪器的使用方法,DDS 信号源、实验箱、示波器、频谱仪等四种实验仪器。初步了解了对信号的测试与分析方法对以前在书本上看到的常见信号有了更加具体的认识,使得书本上的知识不再那么抽象。 DDS信号源,也就是函数发生器,可以产生固定波形,如正弦波、方波或三角波,频率和幅度可以调节。实验箱是很多个信号实验装置的集合,可谓集多种功能于一身,其中包括函数发生器、模拟滤波器、函数信号的产生与测量、信号的抽样与恢复等模块。示波器能把抽象的电信号转换成具体的图像,便于人们研究各种电现象的变化过程。利用示波器能观察各种不同的信号幅度随时间变化的波形曲线,还可以用它测试各种不同的电量,如电压、电流、频率、相位差、

信号与系统实验三

信号与系统实验实验三:信号的卷积 小组成员: 黄涛13084220 胡焰焰13084219 洪燕东13084217

一、实验目的 1. 理解卷积的物理意义; 2. 掌握运用计算机进行卷积运算的原理和方法; 3. 熟悉卷积运算函数conv的应用; 二、预习内容 1. 卷积的定义及物理意义; 2. 卷积计算的图解法; 3. 卷积的应用 三、实验原理说明 1.卷积的定义 连续时间和离散时间卷积的定义分别如下所示: 2.卷积的计算 由于计算机技术的发展,通过编程的方法来计算卷积积分和卷积和已经不再是冗繁的工作,并可以获得足够的精度,因此信号的时域卷积分析法在系统分析中得到了广泛的应用。 卷积积分的数值运算可以应用信号的分段求和来实现,即: 数值运算只求当时的信号值,则由上式可以得到: 上式中实际上就是连续信号等间隔均匀抽样的离散序列的卷积和,当足够小的时候就是信号卷积积分的数值近似。因此,在利用计算机计算两信号卷积积分时,实质上是先将其转化为离散序列,再利用离散卷积和计算原理来计算。 3.卷积的应用 3.1 求解系统响应 卷积是信号与系统时域分析的基本手段,主要应用于求解系统响应,已知一LTI系统的单位冲激响应和系统激励信号则系统响应为激励与单位冲激响应的卷积。 需要注意的是利用卷积分析方法求得的系统响应为零状态响应。 3.2 相关性分析 相关函数是描述两个信号相似程度的量。两信号之间的相关函数一般称之为互相关函数或者互关函数,定义如下: 若是同一信号,此时相关函数称为自相关函数或者自关函数: 对于相关函数与卷积运算有着密切的联系,由卷积公式与相关函数比较得: 可见,由第二个信号反转再与第一个信号卷积即得到两信号的相关函数。 4.涉及的Matlab函数 4.1 conv函数 格式w = conv(u,v),可以实现两个有限长输入序列u,v的卷积运算,得到有限冲激响应系统的输出序列。输出序列长度为两个输入序列长度和减一。 四、实验内容 给定如下因果线性时不变系统: y[n]+0.71y[n-1]-0.46y[n-2]-0.62y[n-3=0.9x[n]-0.45x[n-1]+0.35x[n-2]+0.002x[n-3] (1)不用impz函数,使用filter命令,求出以上系统的单位冲激响应h[n]的前20个样本; clc; N = 0:19;

信号与系统实验DOC

信号与系统实验讲义 雷明东编 重庆文理学院 电子电气学院 2014年10月

实验注意事项 1、不准迟到早退,开始做实验前需要签字; 2、在离开实验室前,要整理好实验设备、桌椅、收拾好垃圾后,待老师检查完毕,方可离开实验室; 3、做实验期间不准大声喧哗,如有问题需举手示意; 4、不准在无老师授权的情况下随意拆卸实验设备; 5、在每次做新实验前,需交前个实验的实验报告。

实验一 常用信号的分类和观察 一 实验目的: 1、观察和了解常见信号的波形和特点。 2、理解相关信号参数的作用和意义。 3、掌握信号的FFT 变换。 3、熟练掌握示波器的使用。 二 实验原理: 描述信号的基本方法是写出它的数学表达式,此表达式是时间的函数,绘出函数的图像称为信号的波形。 对于各种信号,可以从不同的角度分类。如分成确定性信号与随机信号;周期信号与非周期信号;连续时间信号与离散时间信号等。 常见信号除了包括正弦波)sin()(0φω+=t A t x 、指数函数信号t Ke t x α=)(、抽样函数信号t t A t x /)(sin )(=、高斯函数信号τ/)(t Ke t x -=、方波、三角波、锯齿波,还包括一些直流信号。 三 预习练习: 1、预习有关信号的分类和描述。 2、理解信号的函数表达式和相关参数的意义。 四 实验内容及步骤: 1、 根据实验箱上函数信号发生器模块的提示选择相应的信号波形代码。 01:正弦波 02:方波 03:锯齿波 04:三角波

05:阶梯波 06:衰减指数信号 07:高斯函数信号 08:抽样函数信号 09:抽样脉冲 10:调幅信号 11:扫频信号 2、用示波器测量信号,读取信号的幅度和频率,并用坐标纸记录信号波形; 在信号与系统实验箱上的电源模块用电压表(或万用表)与示波器来观 测电源信号的特点,并测量电源的幅度。 3、在示波器上观测扫频信号的波形特征,大致画出扫频信号的波形。 4、利用示波器中的FFT函数,来观看信号的FFT变换形式。 5、用频谱分析仪观测各个信号的频谱(选做)。 五实验仪器: 1、信号系统实验箱(函数信号发生器模块) 2、双踪示波器 六实验报告内容: 1、根据实验测量所得数据,绘制各个信号的波形图。 2、绘制各个波形的FFT变换波形。 3、写出相应的函数表达式与频域变换表达式。 4、用示波器直流档观测函数信号的波形特点,并说明原因(提示:本函数发生器所产生的信号均由单片机AT89C51产生)。

信号与系统实验报告_1(常用信号的分类与观察)

实验一:信号的时域分析 一、实验目的 1.观察常用信号的波形特点及产生方法 2.学会使用示波器对常用波形参数的测量 二、实验仪器 1.信号与系统试验箱一台(型号ZH5004) 2.40MHz双踪示波器一台 3.DDS信号源一台 三、实验原理 对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。在本实验中,将对常用信号和特性进行分析、研究。 信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。 1、信号:指数信号可表示为f(t)=Ke at。对于不同的a取值,其波形表现为不同的形式,如下图所示: 图1―1 指数信号 2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。其波形如下图所示:

图1-2 正弦信号 3、指数衰减正弦信号:其表达式为其波形如下图: 图1-3 指数衰减正弦信号 4、Sa(t)信号:其表达式为:。Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。该函数在很多应用场合具有独特的运用。其信号如下图所示:

图1-4 Sa(t)信号 5、钟形信号(高斯函数):其表达式为:其信号如下图所示: 图1-5 钟形信号 6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。其信号如下图所示: 7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示 U(t)

信号与系统综合实验报告-带通滤波器的设计DOC

广州大学 综合设计性实验 报告册 实验项目选频网络的设计及应用研究 学院物电学院年级专业班电子131 姓名朱大神学号成绩 实验地点电子楼316 指导老师

《综合设计性实验》预习报告 实验项目:选频网络的设计及应用研究 一 引言: 选频网络在信号分解、振荡电路及其收音机等方面有诸多应用。比如,利用选频网络可以挑选出一个周期信号中的基波和高次谐波。选频网络的类型和结构有很多,本实验将通过设计有源带通滤波器实现选频。 二 实验目的: (1)熟悉选频网络特性、结构及其应用,掌握选频网络的特点及其设计方法。 (2)学会使用交流毫伏表和示波器测定选频网络的幅频特性和相频特性。 (3)学会使用Multisim 进行电路仿真。 三 实验原理: 带通滤波器: 这种滤波器的作用是只允许在某一个通频带范围内的信号通过,而比通频带下限频率低和比上限频率高的信号均加以衰减和抑制。 典型的带通滤波器可以从二阶低通滤波器中将其中一级改成高通而成,如图1所示。 电路性能参数可由下面各式求出。 通带增益:CB R R R R A f vp 144+= 其中B 为通频带宽。 中心频率:)1 1(121 3 12 20R R C R f += π

通带宽度:)2 1(14 321R R R R R C B f -+= 品质因数:B f Q 0 = 此电路的优点是,改变f R 和4R 的比值,就可以改变通带宽度B 而不会影响中心频率0f 。 四 实验内容: 设计一个中心频率Hz f 20000=,品质因数5>Q 的带通滤波器。 五 重点问题: (1)确定带通滤波器的中心频率、上限频率及下限频率。 (2)验证滤波器是否能筛选出方波的三次谐波。 六 参考文献: [1]熊伟等.Multisim 7 电路设计及仿真应用.北京:清华大学出版社,2005. [2]吴正光,郑颜.电子技术实验仿真与实践.北京:科学出版社,2008. [4]童诗白等.模拟电子技术基础(第三版).北京:高等教育出版社, 2001. 图1 二阶带通滤波器

信号与系统实验报告

实验三 常见信号的MATLAB 表示及运算 一、实验目的 1.熟悉常见信号的意义、特性及波形 2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法 二、实验原理 根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。 1.连续时间信号 从严格意义上讲,MATLAB 并不能处理连续信号。在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。在MATLAB 中连续信号可用向量或符号运算功能来表示。 ⑴ 向量表示法 对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。 ⑵ 符号运算表示法 如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。 ⑶ 常见信号的MATLAB 表示 单位阶跃信号 单位阶跃信号的定义为:10()0 t u t t >?=? 0); %定义函数体,即函数所执行指令

北京理工大学信号与系统实验实验报告

实验1 信号的时域描述与运算 一、实验目的 1. 掌握信号的MATLAB表示及其可视化方法。 2. 掌握信号基本时域运算的MA TLAB实现方法。 3. 利用MA TLAB分析常用信号,加深对信号时域特性的理解。 二、实验原理与方法 1. 连续时间信号的MATLAB表示 连续时间信号指的是在连续时间范围内有定义的信号,即除了若干个不连续点外,在任何时刻信号都有定义。在MATLAB中连续时间信号可以用两种方法来表示,即向量表示法和符号对象表示法。 从严格意义上来说,MATLAB并不能处理连续时间信号,在MATLAB中连续时间信号是用等时间间隔采样后的采样值来近似表示的,当采样间隔足够小时,这些采样值就可以很好地近似表示出连续时间信号,这种表示方法称为向量表示法。表示一个连续时间信号需要使用两个向量,其中一个向量用于表示信号的时间范围,另一个向量表示连续时间信号在该时间范围内的采样值。例如一个正弦信号可以表示如下: >> t=0:0.01:10; >> x=sin(t); 利用plot(t,x)命令可以绘制上述信号的时域波形,如图1所示。 如果连续时间信号可以用表达式来描述,则还可以采用符号表达式來表示信号。例如对于上述正弦信号,可以用符号对象表示如下: >> x=sin(t); >> ezplot(X); 利用ezplot(x)命令可以绘制上述信号的时域波形 Time(seconds) 图1 利用向量表示连续时间信号

t 图 2 利用符号对象表示连续时间信号 sin(t) 2.连续时间信号的时域运算 对连续时间信号的运算包括两信号相加、相乘、微分、积分,以及位移、反转、尺度变换(尺度伸缩)等。 1)相加和相乘 信号相加和相乘指两信号对应时刻的值相加和相乘,对于两个采用向量表示的可以直接使用算术运算的运算符“+”和“*”来计算,此时要求表示两信号的向量时间范围和采样间隔相同。采用符号对象表示的两个信号,可以直接根据符号对象的运算规则运算。 2)微分和积分 对于向量表示法表示的连续时间信号,可以通过数值计算的方法计算信号的微分和积分。这里微分使用差分来近似求取的,由时间向量[N t t t ,,,21?]和采样值向量[N x x x ,,,21?]表示的连续时间信号,其微分可以通过下式求得 1,,2,1,|)('1-?=?-≈ +=N k t x x t x k k t t k 其中t ?表示采样间隔。MA TLAB 中用diff 函数来计算差分 k k x x -+1。 连续时间信号的定积分可以由MATLAB 的qud 函数实现,调用格式为 quad ('function_name',a,b) 其中,function_name 为被积函数名,a 、b 为积分区间。

信号与系统实验报告

中南大学 信号与系统试验报告 姓名: 学号: 专业班级:自动化 实验一 基本信号的生成 1.实验目的 ● 学会使用MATLAB 产生各种常见的连续时间信号与离散时间信号; ● 通过MATLAB 中的绘图工具对产生的信号进行观察,加深对常用信号的 理解; ● 熟悉MATLAB 的基本操作,以及一些基本函数的使用,为以后的实验奠 定基础。 2.实验内容 ⑴ 运行以上九个例子程序,掌握一些常用基本信号的特点及其MATLAB 实现方法;改变有关参数,进一步观察信号波形的变化。 ⑵ 在 k [10:10]=- 范围内产生并画出以下信号: a) 1f [k][k]δ=; b) 2f [k][k+2]δ=; c) 3f [k][k-4]δ=; d) 4f [k]2[k+2][k-4]δδ=-。

源程序: k=-10:10; f1k=[zeros(1,10),1,zeros(1,10)]; subplot(2,2,1) stem(k,f1k) title('f1[k]') f2k=[zeros(1,8),1,zeros(1,12)]; subplot(2,2,2) stem(k,f2k) title('f2[k]') f3k=[zeros(1,14),1,zeros(1,6)]; subplot(2,2,3) stem(k,f3k) title('f3[k]') f4k=2*f2k-f3k; subplot(2,2,4) stem(k,f4k) title('f4[k]') ⑶ 在 k [0:31]=范围内产生并画出以下信号: a) ()()k k 144f [k]sin cos π π=; b) ()2k 24f [k]cos π =; c) ()()k k 348f [k]sin cos π π=。 请问这三个信号的基波周期分别是多少? 源程序: k=0:31; f1k=sin(pi/4*k).*cos(pi/4*k); subplot(3,1,1) stem(k,f1k) title('f1[k]') f2k=(cos(pi/4*k)).^2; subplot(3,1,2) stem(k,f2k) title('f2[k]') f3k=sin(pi/4*k).*cos(pi/8*k); subplot(3,1,3) stem(k,f3k) title('f3[k]') 其中f1[k]的基波周期是4, f2[k]的基波周期是4, f3[k]的基波周期是16。

四川大学信号与系统第一次实验报告(题目二)

周期信号? ??<<-≤<-=21,5.110,5.0)(t t t t t x ,周期T=2. (1)写出x(t)的复指数形式和三角函数形式傅里叶级数表示; ?????=∴-=-+-===-+-=====? ?????---为奇,为偶,k 20)1(-1])5.1()5.0([21)(x 10])5.1()5.0([21)(x 12 22222221102110000π ππππωππωk k a k dt e t dt e t dt e t T a dt t dt t dt t T a T k k t jk t jk T t jk k T ) k cos(2)(x )(x 1jk t a t e a t n k t n k ππ∑∑+∞=+∞-∞=== , (2)利用“分析公式”或傅里叶级数性质求出谱系数; 由(1)知,?????=为奇,为偶,k 2022πk k a k (3)编程,对x(t)进行频谱分析,具体要求: 程序如下: set(gcf,'color','w') %设置背景颜色为白色 fs=128; %采样频率fs=128Hz tp = 1/fs; %采样时间间隔 N = fs*6*4; %采样点数,总采样时常为4秒 n = -N:N-1; %采样点序列 t = n * tp; %采样点时间序列 x=-0.5*sawtooth(pi*t,0.5); % 产生信号x(t) subplot(311); plot(t,x); %画信号的时域波形

axis([-6,6,-0.5,0.5]); %规定坐标轴的取值范围 xlabel('时间(s)'); %横轴的名称、单位 ylabel('时域'); %纵轴的名称、单位 title('x(t)'); %图的名称 %%%%%%以下对信号进行FFT变换%%%%%% Nf = 512; %做512点的FFT y=fft(x,Nf)/Nf; %进行fft变换——复指数形式谱系数mag=abs(y); %求幅度谱 theta = angle(y)/pi*180; %求相位谱 %%%%%%修正幅度谱(三角函数形式谱系数)%%%%%% delta_1 = [1, 2*ones(1,length(y)-1)]; mag = mag.*delta_1; %修正后的幅度谱 %%%%%%修正相位谱%%%%%% delta_2= (mag>0.01); %判别式,利用逻辑运算实现 % 将幅值为0的频率分量的相位置为0” theta = theta.*delta_2; %修正后的相位谱 f=(0:Nf-1)'*fs/Nf; %进行对应的频率转换 subplot 312 bar(f, mag, 0.1); %画幅度谱 axis([0,5,0,0.5]);xlabel('频率(Hz)');ylabel('幅值'); subplot 313 bar(f, theta, 0.1); %画相位谱 axis([0,20,-200,200]);xlabel('频率(Hz)');ylabel('相位'); %%%%%%以下将主要频谱分量叠加,实现信号的重建%%%%%% i=2; %定义循环变量

信号与系统实验一

实验一 基本运算单元 一、 实验目的 1.熟悉由运算放大器为核心元件组成的基本运算单元; 2.掌握基本运算单元的测试方法。 二、 实验设备与仪器 1.THKSS-A/B/C/D/E 型信号与系统实验箱; 2.实验模块SS12; 3.双踪示波器。 三、 实验内容 1.设计加法器、比例运算器、积分器、微分器四种基本运算单元电路; 2.测试基本运算单元特性。 四、 实验原理 1.运算放大器 运算放大器实际就是高增益直流放大器,当它与反馈网络连接后,就可实现对输入信号的求和、积分、微分、比例放大等多种数学运算,运算放大器因此而得名。运算放大器的电路符号如图1-1所示: 图1-1 运算放大器的电路符号 由图可见,它具有两个输入端和一个输出端:当信号从“-”端输入时,输出信号与输入信号反相,因此称“-”端为反相输入端;而从“+”端输入时,输出信号与输入信号同相,因此称“+”端为同相输入端。运算放大器有以下的特点: (1)高增益 运算放大器的电压放大倍数用下式表示: )1(0 + --= u u u A 式中,u o 为运放的输出电压;u +为“+”输入端对地电压;u -为“-”输入端对地电压。不加反馈(开环)时,直流电压放大倍数高达104~106。 (2)高输入阻抗 运算放大器的输入阻抗一般在106Ω~1011Ω范围内。 (3)低输出阻抗 运算放大器的输出阻抗一般为几十到一、二百欧姆。当它工作于深度负反馈状态时,其闭环输出阻抗更小。 为使电路的分析简化,人们常把上述的特性理想化,即认为运算放大器的电压放大倍数和输入阻抗均为无穷大,输出阻抗为零。据此得出下面两个结论: 1)由于输入阻抗为无穷大,因而运放的输入电流等于零。

答案-信号与系统实验报告.

大连理工大学 本科实验报告 课程名称:___信号与系统实验学院:信息与通信工程学院专业:电子信息工程 班级: 学号: 学生姓名: 2012年12月11日

信号与系统实验 项目列表 信号的频谱图 Signals Frequency Spectrum 连续时间系统分析 Analysis for Continuous-time System 信号抽样 Signal Sampling 离散时间LTI系统分析 Analysis for Discrete-time LTI System 语音信号的调制解调 Modulation and Demodulation for Audio Signals Simulink?模拟信号的调制解调 Modulation and Demodulation for Analog Signals in Simulink ?

实验1信号的频谱图 一、实验目的 1. 掌握周期信号的傅里叶级数展开; 2. 掌握周期信号的有限项傅里叶级数逼近; 3. 掌握周期信号的频谱分析; 4. 掌握连续非周期信号的傅立叶变换; 5. 掌握傅立叶变换的性质。 二、实战演练(5道题) 1.已知周期三角信号如下图1-5所示,试求出该信号的傅里叶级数,利用MA TLAB编程 实现其各次谐波的叠加,并验证其收敛性。 解: 调试程序如下: clc clear t=-2:0.001:2; omega=pi; y=-(sawtooth(pi*t,0.5)/2+0.5)+1; plot(t,y),grid on; xlabel('t'),ylabel('周期三角波信号'); axis([-2 2 -0.5 1.5]) n_max=[1 3 5 11 47]; N=length(n_max); for k=1:N n=1:2: n_max(k); c=n.^2; b=4./(pi*pi*c); x=b*cos(omega*n'*t)+0.5; figure; plot(t,y,'b'); hold on; plot(t,x,'r'); hold off; xlabel('t'),ylabel('部分和的波形'); axis([-2 2 -0.5 1.5]);grid on; title(['最大谐波数=',num2str(n_max(k))]) end 运行结果如下:

信号与系统综合实验项目信号与系统综合实验项目竞

信号与系统综合设计实验项目 实 验 指 导 项目一 用MATLAB 验证时域抽样定理 目的: 通过MATLAB 编程实现对时域抽样定理的验证,加深抽样定理的理解。同时训练应用计算机分析问题的能力。 任务: 连续信号f(t)=cos(8*pi*t)+2*sin(40*pi*t)+cos(24*pi*t),经过理想抽样后得到抽样信号fs(t),通过理想低通滤波器后重构信号f(t)。 方法: 1、确定f(t)的最高频率fm 。对于无限带宽信号,确定最高频率fm 的方法:设其频谱的模降到10-5左右时的频率为fm 。 2、确定Nyquist 抽样间隔T N 。选定两个抽样时间:T S T N 。 3、MATLAB 的理想抽样为 n=-200:200;nTs=n*Ts; 或 nTs=-0.04:Ts:0.04 4、抽样信号通过理想低通滤波器的响应 理想低通滤波器的冲激响应为 )()()()(2ωωωπωωj H G T t Sa T t h C S C C S +?= 系统响应为 )()()(t h t f t y S *= 由于 ∑∑∞-∞=∞-∞=-=-=n S S n S S nT t nT f nT t t f t f )()()() ()(δδ 所以 )] ([)()()()()(S C n S C S C C S n S S nT t Sa nT f T t Sa T nT t nT f t y -=*-=∑∑∞-∞=∞-∞=ωπωωπωδ MATLAB 计算为 ft=fs*Ts*wc/pi*sinc((wc/pi)*(ones(length(nTs),1)*t-nTs'*ones(1,length(t)))); 要求(画出6幅图): 当T S T N 时同样可画出3幅图。

信号与系统实验1

7.1利用matlab的向量表示法,给出下列连续信号的时域波形。t=0:0.01:5; f=(1-exp(-2*t)).*Heaviside(t); plot(t,f) t=-5:0.01:5; f=exp(-2*abs(t)); plot(t,f)

7.3利用matlab绘出下列离散序列的时域波形先构建函数文件function x=lsxl(n) x=(n>=0) 然后调用函数画离散波形 n=0:8; x=lsxl(n-4); stem(n,x,'filled') title('离散序列时域波形') xlabel('n')

此题仍然要调用函数function x=lsxl(n) x=(n>=0) n=0:8; x=(-3/4).^n.*lsxl(n); stem(n,x,'filled') title('离散序列时域波形') xlabel('n')

7.6已知连续时间信号,试用matlab编程绘出下列信号的时域波形(1) function f=ncg(t) f=pi*sinc(t) t=-10:0.01:10; f1=2*ncg(t-1); plot(t,f1)

(3) function f=ncg(t) f=pi*sinc(t) t=-20:0.01:20; f1=-ncg(0.25*t); plot(t,f1)

7.9已知离散序列如图7-28所示,试用MATLAB编程绘出满足下列要求的离散序列波形。 题图:略 (2) function [x,n]=xlfz(x1,n1) x=-fliplr(x1) n=-fliplr(n1) stem(n,x,'filled') axis([min(n)-1,max(n)+1,min(x)-0.5,max(x)+0.5]) x1=[0,3,3,3,3,2,1,0,0]; n1=-4:4; [x,n]=xlfz(x1,n1)

信号与系统实验二的题目及答案

第二个信号实验题目 1(1)用数值法求门函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。 (2)用符号法给出函数5()2()()3 t f t e u t -=的傅里叶变换。 (3)已知系统函数为34 2 1()3 s s H s s s ++=++,画出该系统的零极点图。 2 (1)用数值法给出函数5(2)2()(2)3 t f t e u t --=-幅频特性曲线和相频特性曲线。 (2)对函数5(2)2()(2)3 t f t e u t --=-进行采样,采样间隔为0.01。 (3)已知输入信号为()sin(100)f t t =,载波频率为1000Hz ,采样频率为5000 Hz ,试产生输入信号的调幅信号。 3(1)用符号法实现函数4()G t 的傅里叶变换,并给出门函数的幅频特性曲线和相频特性曲线。 (2)已知系统函数为34 2 1()3 s s H s s s ++= ++,输入信号为()sin(100)f t t =,求该系统的 稳态响应。 (3)已知输入信号为()sin(100)f t t =,载波频率为100Hz ,采样频率为400 Hz ,试产生输入信号的调频信号。 4(1)已知系统函数为23 1()3 s s H s s s ++= ++,画出该系统的零极点图。 (2)已知函数5()2()()3 t f t e u t -=用数值法给出函数(3)f t 的幅频特性曲线和相频特性曲线。 (3)实现系统函数3421 ()3 s s H s s s ++= ++的频率响应。 (4)已知输入信号为()cos(100)f t t =,载波频率为100Hz ,采样频率为400 Hz , 试产生输入信号的调相信号。 5(1)用数值法给出函数5(2)2 ()(2)3 t f t e u t -+=+幅频特性曲线和相频特性曲线。 (2)用符号法实现函数 2 2i ω +的傅里叶逆变换。 (3)已知输入信号为()5sin(200)f t t =,载波频率为1000Hz ,采样频率为5000 Hz , 试产生输入信号的调频信号。

相关文档
最新文档