济南大学概率论与数理统计A大作业答案2015新

济南大学概率论与数理统计A大作业答案2015新
济南大学概率论与数理统计A大作业答案2015新

济南大学概率论2015答案

第一章 概率论的基本概念

一、填空题

;

)3(;)2(;)1.(1C B A C B A C B A C B A C AB

)()4(C B C A B A C B A C B A C B A C B A 或

2. 2181,; 3.6.0; 4. 733.0,; 5. 8.0,7.0; 6. 8

7

; 7. 85;

8. 996.01211010

12或A -; 9. 2778.0185

6

446==A ;10. p -1. 二、选择题 D ;C ; B ; A ; D ; C ; D ;C ;C ;B . 三、解答题 1.解:).()()()(),((AB P B P AB P A P A B P B A P -=-∴=)

相互独立,又)B A B A P B P A P ,,9

1

)(),((==∴

.3

2

)(,91)](1[)()()()(22=∴=-===∴A P A P A P B P A P B A P

2.解: 设事件A 表示“一个是女孩”,事件B 表示“一个是男孩”,则所求为

).|(A B P 法1:样本空间},,,{BB BA AB AA =Ω,由条件概率的含义知:.3

2)|(=A B P 法2:在样本空间},,,{BB BA AB AA =Ω内,,2

1)(,43)(==

AB P A P .3

2

)()()|(==

∴A P AB P A B P

3.解:设A i =“飞机被i 人击中”,i =1,2,3 , B =“飞机被击落”, 则由全概率

公式:

)()()()((321321B A P B A P B A P B A B A B A P B P ++== )

)()()()()()(332211A B P A P A B P A P A B P A P ++= (1)

设1H =“飞机被甲击中”,2H =“飞机被乙击中”,3H =“飞机被丙击中”, 则: =)(1A P 321(H H H P 321(H H H P 321(H H H P ) =+)(321H H H P +)(321H H H P )(321H H H P ) 由于甲、乙、丙的射击是相互独立的,

=∴)(1A P +)()()(321H P H P H P )()()(321H P H P H P

+)()()(321H P H P H P )

=36.07.05.06.03.05.06.03.05.04.0=??+??+?? 同理求得41.0)(2=A P , 14.0)(3=A P .

代入(1)式458.0114.06.041.02.036.0)(=?+?+?=∴B P .

4.解:设事件A 表示“知道正确答案”,事件B 表示“答对了”,则所求为).|(B A P

)|()()|()()

|()()()()()()()|(A B P A P A B P A P A B P A P B A P AB P AB P B P AB P B A P +=

+==

∴ .755

1321311

31=?+??=

5.解:设A =“顾客买下所查看的一箱玻璃杯”,=B “箱中恰有i 件残次品”

2,1,0=i , 由题意1.0)()(,8.0)(210===B P B P B P . 19

12

)|(,

5

4

)|(,

1)|(420418242041910=====C C B A P C C B A P B A P

(1)由全概率公式:94.0)|()()(2

≈=

∑=i

i i

B A P B P A P

(2)由贝叶斯公式:85.0)

()

()|()|(000≈=

A P

B P B A P A B P .

第二章 随机变量及其分布

一、填空题

1. )](1[2a F -;

2.

21-

;3. 9974.0; 4. 21;5. 27

19; 6. 7. 42

1;8. 4; 9. 3

.0-e ; 10. )21(-y F .

;D ;C ;B ;B ;C ;A . 三、 解答题

1.解:(1) 因为1}{2

1

==∑-=k k X P ,所以1913113=??????

+++A , 得409=A .

(2) ???????????≥<≤<≤<≤--<=2,

121,403910,109

01,4027

1,

0)(x x x x x x F .

(3) 311{12}{1}{2}404010≤≤==+==+=P X P X P X .

(4) 1+=X Y 的分布律为: 3,2,10,31409}{1

=??

?

??==-k k Y P k . 2. 解:且右连续,单调不减,并,为随机变量的分布函数)()(x F x F ∴

.0)(1)(=-∞=+∞F F ,

.0lim )(1])

1([lim )(2===-∞==++=+∞∴-∞→+∞→c c F a x b

a F x x , 右连续,得由)(x F :.1])1([lim 2

0-=-=∴=+=+++→a b c b a x b

a x ,

.0,1,1=-==∴c b a

3. 解:可知,及)由(8

5

}21{1)(1=>=?+∞∞-X P dx x f

???????=+=+??85)(1)(12110dx B Ax dx B Ax 解得:???????=+=+8528312B A B A 即???

??==211B A . ???

??≤<+=其他得:由,

010,2

1)()1()2(x x x f , ????

???>≤<+≤=≤=∴?1,110,

)21(0,

0}{)(0x x dx x x x X P x F x

????

???>≤<+≤=1

,

110,

212

10,02x x x x x .32

7

)

2121()21()(}2141{)3(21

4

1221

4

121

41=

+=+==≤

)2

1

(}21{}12{}{)(+=+≤

=≤-=≤=y F y X P y X P y Y P y F X Y , 两边求导得: )2

1

(21)21)(21()(+='++=y f y y f y f X X Y , 的表达式得:代入)(x f ???

??≤+<++=其他)(,012

10,21

2121)(y y y f Y ,

?????≤<-+=其他

,

011,21

4y y .

4.解:,则的分布函数为记)(y F Y Y :

}1{}1{}{)(22y e P y e P y Y P y F X X Y -≥=≤-=≤=--,

;0)(101=≥≤-y F y y Y 时,即当;0)(011=≤≥-y F y y Y 时,即当

所以)}1ln(2

1{}1{)(102y X P y e

P y F y X

Y --≤=-≥=<<-时,当 ))1ln(2

1

(y F X --=.

两边求导得:y y f y f X Y -??--

=1121))1ln(21()( 的表达式得:

代入)(x f .1)(=y f Y ??

?<<=∴其他

,

010,

1)(y y f Y , 即)1,0(U Y 服从的均匀分布.

四、应用题

1. 解:设考生的外语成绩为X ,则),72(~2

σN X . 因为 0.023=??

?

??Φ-=??????≤--=≤-=>σσσ24124721}96{1}96{X P X P X P , 即977.024=??

?

??Φσ,查表得:224=σ,即12=σ.于是)12,72(~2N X . 所以6826.01)1(2112721}8460{=-Φ=?

?????

≤-≤-=≤≤X P X P .

2. 解:由)10,5.7(~2

N X ,得一次测量中误差不超过10米的概率为

5586.0105.710105.710}1010{≈??

?

??--Φ-??? ??-Φ=≤≤-X P .

设需要进行n 次独立测量,A 表示事件“在n 次独立测量中至少有一次误差不超 过10米”, 则 : 39.0)5586.01(1)(≥?>--=n A P n

即至少需要进行3次独立测量才能达到要求.

第三、四章 多维随机变量、数字特征

一、填空题:

1.1

-e ; 2. 4.18; 3. N (-3,25); 4. 9

8

;5.4.0,1.0; 6.6,6;7.9.0;8.

9

1;9. e 21;10. e 211-.

二、选择题: A ;B ;C ; D ;A ;B ;C ;C ;D ;A .

三、解答题:

1.解:21

}0{}1,0{}01{=+=======b a b X P Y X P X Y P ①

3

1

}0{}0,1{}01{=+=======c a c Y P Y X P Y X P ②

5.0,15.01=++=+++∴=∑c b a c b a p

i

即,又

由①得, ;b a = 由②得, ;2c a =

代入将c b a 2==③式得:.2.0,1.0===b a c

2. 解:(1)先求出X 、Y 的边缘分布律:

6.06.014.00)(=?+?=X E , 6.06.014.00)(222=?+?=X E , 24.06.06.0)()()(222=-=-=X E X E X D ,2.0)(=Y E ,5.0)(2=Y E ,

46.02.05.0)()()(222=-=-=Y E Y E Y D . (2)求XY 的数学期望:

法一:先求XY 的分布律:08.0}1{21==-=p XY P ,

72.0}0{22131211=+++==p p p p XY P ,2.0}1{23===p XY P . XY 的分布律为:

故12.02.0172.0008.0)1()(=?+?+?-=XY E

法二:直接用公式:

12

.02.01132.00108.0)1(115.01018.0007.0)1(0)(213

1

=??+??+?-?+??+??+?-?==∑∑==i j ij

ij p x XY E (3)X 与Y 的相关系数为:

046

.024.02.06.012.0)

()()

()()()

()(),(=??-=

-=

=

Y D X D Y E X E XY E Y D X D Y X Cov XY ρ.

3. 解:(1)由,

3

1

),(1010k kxdy dx dxdy y x f x ===

??

??∞+∞-∞

+∞

-得3=k .

(2)?????<<++==????∞

+∞-∞

+∞

-其他,

01

0,030),()(00x dy xdy dy dy y x f x f x

x X ???<<=其它,01

0,32x x ;

同理:??

???<<-=其他,01

0),1(23

)(2y y y f Y .

由于),()()(y x f y f x f Y X ≠,故X 与Y 不是相互独立的.

(3)==>+??>+1

),(}1{y x dxdy y x f Y X P 85

31211=??-x x xdy dx .

4. 解:),(,21

2

1Y X dx x S D e D ∴==

?的面积为的联合概率密度为:

?????∈=其他,

0),(,

2

1

),(D y x y x f 从而?????<<===??∞+∞

-其他,01,2121),()(2

1

0e x x dy dy y x f x f x X , .4

1

)2()(2===∴X X f x f x 处,在

5. 解:(1)由已知得:.2

1

)()()|(,21)()()|(====

B P AB P B A P A P AB P A B P .8

1

)(,41)()(===∴AB P B P A P

).1,1(),0,1(),1,0(),0,0(),(的所有可能取值为Y X

.8

5

)]()()([1)()(}0,0{=-+-=====AB P B P A P B A P B A P Y X P

.81

)()()(}1,0{=-====AB P B P B A P Y X P

.8

1

)()()(}0,1{=-====AB P A P B A P Y X P

.8

1

)(}1,1{====AB P Y X P

的联合分布律为:),(Y X ∴

(2) ,4)(=

X E ,4)(=Y E ,8

)(=XY E .16

1

414181)()()(),(=?-=-=Y E X E XY E Y X Cov

6. 解:=??????

>3πX P ?=ππ3,212cos 2

1dx x ).21,4(~B Y ∴

,2214)(=?=∴Y E ,12

1

214)(=??=Y D

.541)()()(22=+=+=∴Y E Y D Y E

7. 解:(1)?????≤>==

??

-∞

+∞

-00

0),()(0x x dy e dy y x f x f x x X ??

?≤>=-0

00x x xe

x

?

??

??<<==

其他

01

)(),()|(|x y x x f y x f x y f X X Y ;

(2)???≤>=-0,

00

,)(y y e y f y Y

)

1()

1,1()11(≤≤≤=

≤≤Y P Y X P Y X P 1

2

11

1

--=

-=

--?

?e e e dy

e dx x

x 8.解:(1)dxdy y x f Y X P Y

X ??>=>2),()2(24

7)2(20

10

=

--=??x dy y x dx . (2)利用公式dx x z x f z f Z ?

+∞

--=

),()(,

??

?<-<<<---=-其他

10,10)

(2),(x z x x z x x z x f

???<<-<<-=其他

1,102z

x z x z .

① 当0≤z 或2≥z 时,0)(=z f Z ;

② 当10<

)2()2()(0z z dx z z f z Z -=-=?;

③ 当21<≤z 时,211

)2()2()(z dx z z f z Z -=-=?

-.

故 Y X Z +=.的概率密度为??

???<≤-<<-=其他

021)

2(10)

2()(2

z z z z z z f Z . 注:本题也可利用分布函数的定义求.

第六、七章 样本及抽样分布、参数估计

一、填空题

1.),

(2n N σμ,∑=-n i i X X n 12

)(1,=2?σ∑=-n i i X X n 1

2)(1; 2. 8; 3.)4(t ; 4. ))

1()1(,)1()1((22

1222

2-----n S n n S n ααχχ;

5. X -23 ; 6. 1?2+θ; 7. )1,0(N ; 8. 131;,Y Y Y .

二选择题 B ;C ;C ;D ;B ;A ;C ;D ; D .

三、解答题

1.解:设来自总体X 、Y 的样本均值分别为Y X 、,

,3,202

22121====σσμμ15,1021==n n ,

则)2

1

,0(),

(~22

2

12

121N n n N Y X =+

--σσμμ,故:

)]2

10

3.0()2103.0([1}3.0{1}3.0{--Φ--Φ-=≤--=>-Y X P Y X P

674.0)]4242.0(1[2=Φ-=

2.解:.43)21(32)1(210)()1(2

2θθθθθθ-=-?+?+-?+?=X E

,34

1?.43,)()(的矩估计量为:故得即令X X X X E -==-=θθθ

的矩估计量为故而θ,2)32130313(81=+++++++=x .41?=θ 4

2

6

8

1

)

21()1(4}{)()2(θθθθ--===∏=i i x X P L 然函数为

由给定的样本值,得似

取对数:),21ln(4)1ln(

2ln 64ln )(ln θθθθ-+-++=L 求导:.)

21)(1(24286218126)(ln 2θθθθθθθθθθ--+-=----=d L d

,12

1370)(ln 2,1±==θθθ,解得:令

d L d

的最大似然估计值为

故由于θ,2

112137>+:.12137?-=θ

3.解: (1) 2d )(6d )()(0

3

2

θθθ

=-==

?

?

+∞

x x x x x xf X E , ∑==n

i i X n X 1

1

X =2

θ,得θ的矩估计量为X 2?=θ

. (2))1(2)2()?(1

∑===n

i i

X n E X E E θ )(2)(12X E X nE n i =??= ,2

2θθ

=?=所以θ?是θ的无偏估计量.

4.解:似然函数为:

)()1()1(),()(211

1

θ

θθθθθθθn n n

i i n i i x x x x x f L +=+==∏∏==

取对数:∑=++=n

i i x n L 1

ln )1ln()(ln θθθ,0ln 1)(ln 1=++=∑=n

i i x n

d L d θθθ,

解得: ∑=--=n i i x n 1

ln 1?θ,所以θ 的最大似然估计量为∑=--=n i i

X n 1

ln 1?θ. 5.解: 由于2

σ未知,故用随机变量)1(~--=

n t n

S X T μ

7531.1)15()1( 0.1, ,90.01 ,1605.02

==-==-=t n t n ααα

由样本值得 01713.0 ,125.2==s x . 计算得 1175.216

01713.07531.1125.2)

15(05.0=?-=-n

s t x 1325.216

01713

.07531.1125.2)

15(05.0=?+

=+n

s

t x

故所求置信区间为)1325.2,1175

.2(. 6.解:1.0,15.5,38.6,15,252

22

121=====αs s n n )1,1(~2122

2122

21--=

n n F S S F σ

σ,

置信区间为:))

1,1(1

,)1,1(1

(212

12

221212

2221-----

n n F

S S n n F S S αα

2388.115.538.62

2

21==s s ,35.2)14,24()1,1(05.0212

==--F n n F α 4717.012.21

)24,14(1)1,1(1)1,1(05.0122

212

1===--=---F n n F n n F αα.

所以置信区间为:(0.5271,2.6263).

第八章 假设检验

一、填空题

1. >μ5% ,α ;

2. 概率很小的事件在一次试验中是不可能发生的;

3. {}γ>T P ,{}

γ

S X T /0

μ-=

,n X U /0

σμ-=

5. 0H :=μ 3.25,1H :≠μ 3.25;5

/25

.3S X T -=;)4(t ;6041.4>T ;

6. 0H :21μμ≤,1H :21μμ>;2

22

1212

1n n X X U σσ+-=;)1,0(N ;

645.105.0=>z U .

二、选择题 B ; A ; D ; D ; B ; B ;C. 三、解答题

1.解:假设,:,55.4:0100μμμμ≠==H H

在假设0H 为真时,统计量),1,0(~0

N n

X Z σμ-=

对01.0=α查标准正态分布表,得临界值:,58.2005.02

==z z α

,6,108.0,452.461

6

1

====

∑=n x x i i σ

,223.26

108.055.4452.40

=-=

-=

∴n

x z σμ

由于,58.2223.2<=z ,所以在显著性水平01.0=α下,接受假设0H , 即认为这天的铁水含碳量无显著变化。

2.解:这是单一正态总体均值未知时检验方差的问题;

假设0H :642

02

==σσ

,1H :642>σ,

则0H 为真时,统计量 )1(~)1(22

02

--=

n S n K χσ,

由于是单边检验,故拒绝域为 )9()1(2

05.02χχα=->n K =16.92,

计算可得: 882.4=s , 代入得 92.16352.364

882.492

<=?=

K , ∴ 没有理由拒绝0H ,经检验应认为这批元件寿命的方差是合格的.

3.解:这是两正态总体均值差的检验问题;

假设0H :21μμ≤,1H :21μμ>,

因两总体的方差相同,故0H 成立时, 统计量 )2(~1

1212

121-++-=

n n t n n S X X T ω

又因是单边检验问题,故拒绝域为

)15()2(05.021t n n t t =-+>α=1.753, 计算知:

2)1()1(212

22211-+-+-=

n n s n s n S ω242.015

026

.08096.07=?+?=,

87.19

181242.089.1411.15=+?

-=

t > 1.753 , ∴ 拒绝0H ,

即应认为乙厂的产品袋重显著小于甲厂的.

4.解:这是一个总体分布的检验问题,用-2

χ分布拟合检验法;

假设 0H :)(~λπX ,

首先计算样本均值的 260

120==?=

∑n

x 总频数频数呼叫次数.

以2==x λ

作为总体参数λ的估计值,则有

2!2}{-===e i i X P p i i , ,2,1,0=i ∴理论频数 2

!

260-?=e i np i i ,

按照5≥i np 的原则,将数据分为五组,作表如下:

查表可得临界值 815.7)3()1(05.0==--αk m ,

∑=2χi i i np np f /)(2- = 0.1261 < 7.815.

∴ 我们接受0H ,认为总体X 确实服从泊松分布.

最新大学物理活页作业答案及解析((全套))

1.质点运动学单元练习(一)答案 1.B 2.D 3.D 4.B 5.3.0m ;5.0m (提示:首先分析质点的运动规律,在t <2.0s 时质点沿x 轴正方向运动;在t =2.0s 时质点的速率为零;,在t >2.0s 时质点沿x 轴反方向运动;由位移和路程的定义可以求得答案。) 6.135m (提示:质点作变加速运动,可由加速度对时间t 的两次积分求得质点运动方程。) 7.解:(1))()2(22 SI j t i t r -+= )(21m j i r += )(242m j i r -= )(3212m j i r r r -=-=? )/(32s m j i t r v -=??= (2))(22SI j t i dt r d v -== )(2SI j dt v d a -== )/(422s m j i v -= )/(222--=s m j a 8.解: t A tdt A adt v t o t o ωω-=ωω-== ?? sin cos 2

t A tdt A A vdt A x t o t o ω=ωω-=+=??cos sin 9.解:(1)设太阳光线对地转动的角速度为ω s rad /1027.73600 *62 /5-?=π= ω s m t h dt ds v /1094.1cos 3 2 -?=ωω== (2)当旗杆与投影等长时,4/π=ωt h s t 0.31008.144=?=ω π = 10.解: ky y v v t y y v t dv a -==== d d d d d d d -k =y v d v / d y ??+=- =-C v ky v v y ky 2 22 121, d d 已知y =y o ,v =v o 则2020 2 121ky v C --= )(22 22y y k v v o o -+=

概率论与数理统计习题集及答案

* 《概率论与数理统计》作业集及答案 第1章 概率论的基本概念 §1 .1 随机试验及随机事件 1. (1) 一枚硬币连丢3次,观察正面H ﹑反面T 出现的情形. 样本空间是:S= ; (2) 一枚硬币连丢3次,观察出现正面的次数. 样本空间是:S= ; 2.(1) 丢一颗骰子. A :出现奇数点,则A= ;B :数点大于2,则B= . (2) 一枚硬币连丢2次, A :第一次出现正面,则A= ; B :两次出现同一面,则= ; C :至少有一次出现正面,则C= . ? §1 .2 随机事件的运算 1. 设A 、B 、C 为三事件,用A 、B 、C 的运算关系表示下列各事件: (1)A 、B 、C 都不发生表示为: .(2)A 与B 都发生,而C 不发生表示为: . (3)A 与B 都不发生,而C 发生表示为: .(4)A 、B 、C 中最多二个发生表示为: . (5)A 、B 、C 中至少二个发生表示为: .(6)A 、B 、C 中不多于一个发生表示为: . 2. 设}42:{},31:{},50:{≤<=≤<=≤≤=x B x x A x x S :则 (1)=?B A ,(2)=AB ,(3)=B A , (4)B A ?= ,(5)B A = 。 \ §1 .3 概率的定义和性质 1. 已知6.0)(,5.0)(,8.0)(===?B P A P B A P ,则 (1) =)(AB P , (2)()(B A P )= , (3))(B A P ?= . 2. 已知,3.0)(,7.0)(==AB P A P 则)(B A P = . §1 .4 古典概型 1. 某班有30个同学,其中8个女同学, 随机地选10个,求:(1)正好有2个女同学的概率, (2)最多有2个女同学的概率,(3) 至少有2个女同学的概率. 2. 将3个不同的球随机地投入到4个盒子中,求有三个盒子各一球的概率. — §1 .5 条件概率与乘法公式 1.丢甲、乙两颗均匀的骰子,已知点数之和为7, 则其中一颗为1的概率是 。 2. 已知,2/1)|(,3/1)|(,4/1)(===B A P A B P A P 则=?)(B A P 。 §1 .6 全概率公式 1. 有10个签,其中2个“中”,第一人随机地抽一个签,不放回,第二人再随机地抽一个 签,说明两人抽“中‘的概率相同。

《概率论与数理统计》期末考试试题及解答

一、填空题(每小题3分,共15分) 1. 设事件B A ,仅发生一个的概率为0.3,且5.0)()(=+B P A P ,则B A ,至少有一个不发 生的概率为__________. 答案:0.3 解: 3.0)(=+B A B A P 即 )(25.0)()()()()()(3.0AB P AB P B P AB P A P B A P B A P -=-+-=+= 所以 1.0)(=AB P 9.0)(1)()(=-==AB P AB P B A P . 2. 设随机变量X 服从泊松分布,且)2(4)1(==≤X P X P ,则==)3(X P ______. 答案: 161-e 解答: λλ λ λλ---= =+==+==≤e X P e e X P X P X P 2 )2(, )1()0()1(2 由 )2(4)1(==≤X P X P 知 λλλ λλ---=+e e e 22 即 0122 =--λλ 解得 1=λ,故 16 1)3(-= =e X P 3. 设随机变量X 在区间)2,0(上服从均匀分布,则随机变量2 X Y =在区间)4,0(内的概率 密度为=)(y f Y _________. 答案: 04,()()0,. Y Y X y f y F y f <<'===? 其它 解答:设Y 的分布函数为(),Y F y X 的分布函数为()X F x ,密度为()X f x 则 2 ()()())))Y X X F y P Y y P X y y y y y =≤=≤ =≤- - 因为~(0,2)X U ,所以(0X F = ,即()Y X F y F = 故

概率论与数理统计A卷

山东管理学院 2017-2018学年秋季学期期末考试试卷A 课程代码:B070750507005 课程名称:《概率论与数理统计》 一、选择题(本题总计20分,每小题4分,共5题) 1.若事件表示,事件表示,则表示含义为 ( )。 A {}甲来听课 B {}乙来听课A B U ()A 甲乙都来听课()B 甲乙都不来听课 ()C 甲乙有一人不来听课()D 甲乙至少一人不来听课2.设随机变量分布函数为,已知,,则( )。 X ()F x (7)0.8F ={}70.1P X =={}7P X ≥= 0.3 0.2 0.9 0.8 )(A )(B )(C )(D 3.设二维随机变量密度函数为,则( )。 (,)X Y 1, 01,01(,)0,x y f x y ≤≤≤≤?=??其它 {}+1P X Y < 0.5 0 1 0.25 )(A )(B )(C )(D 4.设随机变量,,且相互独立,则( ) 。 ~N(1,4)X -Y ~N(2,9)X Y ,D(+Y+1)X = 5 6 13 14 )(A )(B )(C )(D 5.设是来自总体的样本,其中,均为未知参数, ,下列结论错误123,,X X X 2(,)N μσμσ1=X μ21=X μ的是( )。 是的无偏估计量 是的无偏估计量 )(A 1=X μμ)(B 21=X μμ 比更有效 的无偏估计量是唯一的 )(C 1=X μ21=X μ)(D μ二、填空题(本题总计20分,每小题2分,共10题) 1.已知, 若,则_________________。 ()0.5P A =()1/8P AB =(B)P A =2.一电话总机每分钟收到呼唤的次数服从,求某一分钟恰有2次呼唤的概率_____________。 (2)π3.设随机变量的概率密度 则_________________。 X ,0()0,x e x f x -?≥=??其它 {}2P X >=4.设随机变量,,则的概率密度函数为_____________。 X ~U(0,2)2Y X =Y 5.设二维随机变量具有概率密度,则为_____________。 ()X Y ,,0(,)0,y e x y f x y -?≤≤=??其它 ()Y f y 6.某车间生产的圆盘直径在区间服从均匀分布,则圆盘面积的期望值为___________ 。 (0,1)

概率论与数理统计练习题

概率论与数理统计练习题 一、填空题 1、设A 、B 为随机事件,且P (A)=,P (B)=,P (B A)=,则P (A+B)=__ __。 2、θθθ是常数21? ,?的两个 无偏 估计量,若)? ()?(21θθD D <,则称1?θ比2?θ有效。 3、设A 、B 为随机事件,且P (A )=, P (B )=, P (A ∪B )=,则P (B A )=。 4. 设随机变量X 服从[0,2]上的均匀分布,Y =2X +1,则D (Y )= 4/3 。 5. 设随机变量X 的概率密度是: ?? ?<<=其他 103)(2 x x x f ,且{}784 .0=≥αX P ,则α= 。 6. 已知随机向量(X ,Y )的联合密度函数 ?????≤≤≤≤=其他 , 010,20, 2 3 ),(2y x xy y x f ,则 E (Y )= 3/4 。 7. 若随机变量X ~N (1,4),Y ~N (2,9),且X 与Y 相互独立。设Z =X -Y +3,则Z ~ N (2, 13) 。 * 8. 设A ,B 为随机事件,且P (A)=,P (A -B)=,则=?)(B A P 。 9. 设随机变量X ~ N (1, 4),已知Φ=,Φ=,则{}=<2X P 。 10. 随机变量X 的概率密度函数1 22 1 )(-+-= x x e x f π ,则E (X )= 1 。 11. 已知随机向量(X ,Y )的联合密度函数 ?? ?≤≤≤≤=其他 , 010,20, ),(y x xy y x f ,则 E (X )= 4/3 。 12. 设A ,B 为随机事件,且P (A)=, P (AB)= P (B A ), 则P (B )= 。 13. 设随机变量),(~2σμN X ,其密度函数6 4 4261)(+-- = x x e x f π ,则μ= 2 。 14. 设随机变量X 的数学期望EX 和方差DX >0都存在,令DX EX X Y /)(-=,则D Y= 1 。 15. 随机变量X 与Y 相互独立,且D (X )=4,D (Y )=2,则D (3X -2Y )= 44。 16. 三个人独立地向某一目标进行射击,已知各人能击中的概率分别为3 1 ,41,51,则目标能被击中 的概率是3/5 。 17. 设随机变量X ~N (2,2σ),且P {2 < X <4}=,则P {X < 0}= 。 ! 18. 设随机变量X 的概率分布为5.0)3(,3.0)2(,2.0)1(======X P X P X P ,则X 的期望

概率论与数理统计试题库

《概率论与数理统计》试题(1) 一 、 判断题(本题共15分,每小题3分。正确打“√”,错误打“×”) ⑴ 对任意事件A 和B ,必有P(AB)=P(A)P(B) ( ) ⑵ 设A 、B 是Ω中的随机事件,则(A ∪B )-B=A ( ) ⑶ 若X 服从参数为λ的普哇松分布,则EX=DX ( ) ⑷ 假设检验基本思想的依据是小概率事件原理 ( ) ⑸ 样本方差2n S = n 121 )(X X n i i -∑=是母体方差DX 的无偏估计 ( ) 二 、(20分)设A 、B 、C 是Ω中的随机事件,将下列事件用A 、B 、C 表示出来 (1)仅A 发生,B 、C 都不发生; (2),,A B C 中至少有两个发生; (3),,A B C 中不多于两个发生; (4),,A B C 中恰有两个发生; (5),,A B C 中至多有一个发生。 三、(15分) 把长为a 的棒任意折成三段,求它们可以构成三角形的概率. 四、(10分) 已知离散型随机变量X 的分布列为 2101 31111115651530 X P -- 求2 Y X =的分布列. 五、(10分)设随机变量X 具有密度函数|| 1()2 x f x e -= ,∞< x <∞, 求X 的数学期望和方差. 六、(15分)某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤. x 0 0.5 1 1.5 2 2.5 3 Ф(x) 0.500 0.691 0.841 0.933 0.977 0.994 0.999 七、(15分)设12,,,n X X X 是来自几何分布 1 ()(1) ,1,2,,01k P X k p p k p -==-=<< , 的样本,试求未知参数p 的极大似然估计.

概率论与数理统计A知识点

使用说明:本知识点参照盛骤等编写,高等教育出版社出版的《概率论与数理统计》制订,适用理工类本科专业,不同的专业可根据需要适当删节处理。带“*”部分内容可根据不同的专业作选讲。教学要求由低到高分三个层次,有关定义、定理、性质、概念的内容为“知道、了解、理解”;有关计算、解法、公式、法则等方法的内容按“会、掌握、熟练掌握”。 概率论与数理统计A 知识点 第一章 随机事件与概率 基本要求:了解样本空间的概念,理解随机事件的概念,掌握事件的关系与运算。理解概率,条件概率的概念,熟练掌握概率的基本性质,会计算古典型概率,熟练掌握概率的加法公式、乘法公式、全概率公式以及贝叶斯公式。理解事件的独立性的概念,熟练掌握用事件独立性进行概率计算;理解独立重复试验的概念,熟练掌握计算有关事件概率的方法。 重点:概率的计算。 难点:概率的计算。 教学知识点: 第1、2节:了解随机试验、样本空间,理解随机事件,掌握事件的关系和运算,特别是互斥(也称为互不相容)、对立关系,事件之间的并、交、补运算及其运算规律。 第3节:理解频率与概率的关系,熟练掌握概率的性质,特别是常用的加法公式(特殊的加法公式和一般的加法公式)和减法公式(特殊的减法公式和一般的减法公式)。 第4节:熟练掌握古典概率的计算,难点在于样本空间和所求事件中包含的基本事件个数的计算。 第5节:理解条件概率和由此引申出来的一般的乘法公式,熟练掌握条件概率的计算,会用全概率公式和贝叶斯公式解决概率问题。 第6节:理解事件的独立性,区分事件间的独立关系和互斥、对立关系,掌握特殊的乘法公式,理解独立试验序列概型。 第二章 随机变量及其分布 基本要求:理解随机变量及其概率分布的概念。理解分布函数)()(x X P x F ≤=的概念及性质。会计算与随机变量有关的事件的概率。理解离散型随机变量及其概率分布的概念,熟练掌握0-l 分布、二项分布、泊松(Poisson )分布及其应用。理解连续型随机变量及其概率密度的概念,掌握概率密度与分布函数之间的关系,熟练掌握正态分布、均匀分布和指数分布及其应用。会求简单随机变量函数的概率分布。 重点:一维随机变量的概率分布及相关的计算。 难点:一维连续型随机变量的概率分布及相关的计算。 教学知识点: 第1、2节:了解随机变量、离散型随机变量及其概率分布,掌握常见离散型随机变量的分布律。 第3节:理解随机变量的分布函数,熟练掌握分布函数的性质,掌握离散型随机变量的分布律和分布函数之间的关系及相互转化。

大学物理大作业

荷兰物理学家安德烈·吉姆(Andre Geim)曾经做过一个有关磁悬浮的著名实验,将一只活的青蛙悬浮在 空中的技术 迈纳斯效应—完全抗磁性 零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。是否 转变为超导态,必须综合这两种测量结果,才能予以确定。 如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的 表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场, 使超导体内部的磁场为零。根据公式和,由于超导体=-1,所以超导体具有完全抗磁性。 内部B=0,故 m 超导体与理想导体在抗磁性上是不同的。若在临界温度以上把超导样品放 入磁场中,这时样品处于正常态,样品中有磁场存在。当维持磁场不变而降低 温度,使其处于超导状态时,在超导体表面也产生电流,这电流在样品内部产 生的磁场抵消了原来的磁场,使导体内部的磁感应强度为零。超导体内部的磁 场总为零,这一现象称为迈纳斯效应。 超导体的抗磁性可用下面的动画来演示,小球是用超导态的材料制成的, 由于小球的抗磁性,小球被悬浮于空中,这就是所说的磁悬浮。 下图是小磁铁悬浮在Ba-La-Cu-O超导体圆片(浸在液氮中)上方的照片。

零电阻是超导体的一个基本特性,但超导体的完全抗磁性更为基本。是否转变为超导态,必须综合这两种测量结果,才能予以确定。 如果将一超导体样品放入磁场中,由于样品的磁通量发生了变化,样品的表面产生感生电流,这电流将在样品内部产生磁场,完全抵消掉内部的外磁场,使超导体内部的磁场为零。根据公式和,由于超导体内部B=0,故cm=-1,所以超导体具有完全抗磁性。 超导材料必须在一定的温度以下才会产生超导现象,这一温度称为临界温度。

《概率论与数理统计》在线作业

第一阶段在线作业 第1题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:对立不是独立。两个集合互补。第2题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:A发生,必然导致和事件发生。第3题

您的答案:B 题目分数:0.5 此题得分:0.5 批注:分布函数的取值最大为1,最小为0. 第4题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:密度函数在【-1,1】区间积分。第5题

您的答案:A 题目分数:0.5 此题得分:0.5 批注:A答案,包括了BC两种情况。 第6题 您的答案:A 题目分数:0.5 此题得分:0.5 批注:古典概型,等可能概型,16种总共的投法。第7题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:几何概型,前两次没有命中,且第三次命中,三次相互独立,概率相乘。 第8题 您的答案:D 题目分数:0.5 此题得分:0.5 批注:利用随机变量单调性函数的概率密度求解公式公式。中间有反函数求导数,加绝对值。第9题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用概率密度的性质,概率密度在相应范围上的积分值为1.验证四个区间。 第10题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用分布函数的性质,包括分布函数的值域[0,1]当自变量趋向无穷时,分布函数取值应该是1.排除答案。 第11题

您的答案:C 题目分数:0.5 此题得分:0.5 批注:利用上分位点的定义。 第12题 您的答案:B 题目分数:0.5 此题得分:0.5 批注:利用和事件的公式,还有概率小于等于1.P(AB)小于等于P(C)。第13题

概率论与数理统计试卷及答案

概率论与数理统计 答案 一.1.(D )、2.(D )、3.(A )、4.(C )、5.(C ) 二.1.0.85、2. n =5、3. 2 ()E ξ=29、4. 0.94、5. 3/4 三.把4个球随机放入5个盒子中共有54=625种等可能结果--------------3分 (1)A={4个球全在一个盒子里}共有5种等可能结果,故 P (A )=5/625=1/125------------------------------------------------------5 分 (2) 5个盒子中选一个放两个球,再选两个各放一球有 302415=C C 种方法----------------------------------------------------7 分 4个球中取2个放在一个盒子里,其他2个各放在一个盒子里有12种方法 因此,B={恰有一个盒子有2个球}共有4×3=360种等可能结果.故 125 72625360)(== B P --------------------------------------------------10分 四.解:(1) ?? ∞∞-==+=3 04ln 1,4ln 1)(A A dx x A dx x f ---------------------3分 (2)? ==+=<10 212ln 1)1(A dx x A P ξ-------------------------------6分 (3)3 300()()[ln(1)]1Ax E xf x dx dx A x x x ξ∞-∞= ==-++?? 13(3ln 4)1ln 4ln 4 =-=-------------------------------------10分 五.解:(1)ξ的边缘分布为 ??? ? ??29.032.039.02 1 0--------------------------------2分 η的边缘分布为 ??? ? ??28.034.023.015.05 4 2 1---------------------------4分 因)1()0(05.0)1,0(==≠===ηξηξP P P ,故ξ与η不相互独立-------5分 (2)ξη?的分布列为

大学物理实验报告答案大全(实验数据)

U 2 I 2 大学物理实验报告答案大全(实验数据及思考题答案全包括) 伏安法测电阻 实验目的 (1) 利用伏安法测电阻。 (2) 验证欧姆定律。 (3) 学会间接测量量不确定度的计算;进一步掌握有效数字的概念。 实验方法原理 根据欧姆定律, R = U ,如测得 U 和 I 则可计算出 R 。值得注意的是,本实验待测电阻有两只, 一个阻值相对较大,一个较小,因此测量时必须采用安培表内接和外接两个方式,以减小测量误差。 实验装置 待测电阻两只,0~5mA 电流表 1 只,0-5V 电压表 1 只,0~50mA 电流表 1 只,0~10V 电压表一 只,滑线变阻器 1 只,DF1730SB3A 稳压源 1 台。 实验步骤 本实验为简单设计性实验,实验线路、数据记录表格和具体实验步骤应由学生自行设计。必要时,可提示学 生参照第 2 章中的第 2.4 一节的有关内容。分压电路是必须要使用的,并作具体提示。 (1) 根据相应的电路图对电阻进行测量,记录 U 值和 I 值。对每一个电阻测量 3 次。 (2) 计算各次测量结果。如多次测量值相差不大,可取其平均值作为测量结果。 (3) 如果同一电阻多次测量结果相差很大,应分析原因并重新测量。 数据处理 (1) 由 U = U max ? 1.5% ,得到 U 1 = 0.15V , U 2 = 0.075V ; (2) 由 I = I max ? 1.5% ,得到 I 1 = 0.075mA , I 2 = 0.75mA ; (3) 再由 u R = R ( 3V ) + ( 3I ) ,求得 u R 1 = 9 ? 101 &, u R 2 = 1& ; (4) 结果表示 R 1 = (2.92 ± 0.09) ?10 3 &, R 2 = (44 ± 1)& 光栅衍射 实验目的 (1) 了解分光计的原理和构造。 (2) 学会分光计的调节和使用方法。 (3) 观测汞灯在可见光范围内几条光谱线的波长 实验方法原理

概率论与数理统计习题解答

第一章随机事件及其概率 1. 写出下列随机试验的样本空间: (1)同时掷两颗骰子,记录两颗骰子的点数之和; (2)在单位圆内任意一点,记录它的坐标; (3)10件产品中有三件是次品,每次从其中取一件,取后不放回,直到三件次品都取出为止,记录抽取的次数; (4)测量一汽车通过给定点的速度. 解所求的样本空间如下 (1)S= {2,3,4,5,6,7,8,9,10,11,12} (2)S= {(x, y)| x2+y2<1} (3)S= {3,4,5,6,7,8,9,10} (4)S= {v |v>0} 2. 设A、B、C为三个事件,用A、B、C的运算关系表示下列事件: (1)A发生,B和C不发生; (2)A与B都发生,而C不发生; (3)A、B、C都发生;

(4)A、B、C都不发生; (5)A、B、C不都发生; (6)A、B、C至少有一个发生; (7)A、B、C不多于一个发生; (8)A、B、C至少有两个发生. 解所求的事件表示如下 3.在某小学的学生中任选一名,若事件A表示被选学生是男生,事件B表示该生是三年级学生,事件C表示该学生是运动员,则 (1)事件AB表示什么? (2)在什么条件下ABC=C成立? ?是正确的? (3)在什么条件下关系式C B (4)在什么条件下A B =成立? 解所求的事件表示如下 (1)事件AB表示该生是三年级男生,但不是运动员. (2)当全校运动员都是三年级男生时,ABC=C成立. ?是正确的. (3)当全校运动员都是三年级学生时,关系式C B

(4)当全校女生都在三年级,并且三年级学生都是女生时,A B =成立. 4.设P (A )=,P (A -B )=,试求()P AB 解 由于 A ?B = A – AB , P (A )= 所以 P (A ?B ) = P (A ?AB ) = P (A )??P (AB ) = , 所以 P (AB )=, 故 ()P AB = 1? = . 5. 对事件A 、B 和C ,已知P(A) = P(B)=P(C)=1 4 ,P(AB) = P(CB) = 0, P(AC)= 1 8 求A 、B 、C 中至少有一个发生的概率. 解 由于,()0,?=ABC AB P AB 故P(ABC) = 0 则P(A+B+C) = P(A)+P(B)+P(C) –P(AB) –P(BC) –P(AC)+P(ABC) 6. 设盒中有α只红球和b 只白球,现从中随机地取出两只球,试求下列事件的概率: A ={两球颜色相同}, B ={两球颜色不同}. 解 由题意,基本事件总数为2a b A +,有利于A 的事件数为2 2a b A A +,有利于B 的事件数为111111 2a b b a a b A A A A A A +=, 则 2 2 11 2 22()()a b a b a b a b A A A A P A P B A A +++==

概率论与数理统计试题与答案

概率论与数理统计试题 与答案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5 )1(= ≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度 =L 。(按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

概率论与数理统计(A)卷

商学院课程考核试卷(A)卷 课程名称:概率论与数理统计A 学分: 4

=),(y x F 。 8.随机变量X 服从区间],0[π上的均匀分布,则(2)D X = . 9.总体?? ?<<=-其他 1 0);(~1 x x x f X θθθ,其中θ是未知参数,对给定样本观察值 n x x x ,,,21 要求θ的最大似然估计, 则似然函数为=);,,,(21θn x x x L 10.设随机变量~(10,0.2)X b ,则应用契比雪夫不等式得{} 22P X -≥≤ 二、选择题(每小题3分,共15分) 1.设8.0)(=A P ,7.0)(=B P ,8.0)|(=B A P ,则以下结论正确的是( ). (A)事件A 与B 互斥 (B)事件A 与B 相互独立 (C)事件A 与B 互为对立事件 (D))()()(B P A P B A P += 2.设随机变量X 、Y 相互独立且同分布.已知{}{}3 1 11= ===Y P X P ,{}{}32 22= ===Y P X P ,则有( )。 (A){}31==Y X P (B){}32==Y X P (C){}1==Y X P (D){}9 5 ==Y X P 3.随机变量??? ??<<--=其他0 111)(~2x x A x f X ,则系数A =( ). (A)2π (B)π2 (C)π 1 (D)π 4.简单随机样本n X X X ,,,21 取自标准正态总体)1,0(N ,X 和S 分别为样本均 值和样本标准差,则有 ( ). (A) )(~21 2n X n i i χ∑= (B))1,0(~N X n (C))1,0(~N X (D) )1(~-n t S X 5. 总体),(~2 σμN X ,n X X X ,,,21 是简单随机样本,下列总体均值μ的估计量中,最有效的是 ( ) (A)321X X X +- (B) 312 121X X +

西工大大学物理 大作业参考答案-真空中的静电场2009

第九章 真空中的静电场 一、选择题 ⒈ C ; ⒉B ;⒊ C ; ⒋ B ; ⒌ B ; 6.C ; 7.E ; 8.A,D ; 9.B ;10. B,D 二、填空题 ⒈ 2 3 08qb R πε,缺口。 ⒉ 0 q ε,< ; ⒊ 半径为R 的均匀带电球面(或带电导体球); ⒋ 12 21 E E h h ε--; 2.21?10-12C/m 3; ⒌ 100N/C ;-8.85×10-9C/m 2 ; ⒍ -135V ; 45V ; ⒎ 006q Q R πε;0;006q Q R πε- ;006q Q R πε ; ⒏ 1 2 22 04() q x R πε+; 32 22 04() qx x R πε+ ; 2 R ;432.5 V/m ; 9.有源场;无旋场 (注意不能答作“保守场”,保守场是针对保守力做功讲的)。 三、 问答题 1. 答: 电场强度0E F q =r r 是从力的角度对电场分布进行的描述,它给出了一个矢量场分布的图像;而电势V =W /q 是从能量和功的角度对电场分布进行的描述,它给出了一个标量场分布的图像。 空间任意一点的电场强度和该点的电势之间并没有一对一的关系。二者的关系是: "0"p d grad ,d d P V E V V E l n =-=-=??r r r 。即空间任一点的场强和该点附近电势的空间变化率相联 系;空间任一点的电势和该点到电势零点的整个空间的场强分布相联系。 由于电场强度是矢量,利用场叠加原理计算时,应先将各电荷元产生的电场按方向进行分解,最后再合成,即: d d d d ;x y z E E i E j E k =++r r r r , d ,d ,d x x y y z z E E E E E E ===??? 而电势是标量可以直接叠加,即:V dV =?。但用这种方法求电势时,应注意电势零点的选择。

概率论与数理统计习题答案

习题五 1.一颗骰子连续掷4次,点数总和记为X .估计P {10

【解】令1,,0,i i X ?? ?若第个产品是合格品其他情形. 而至少要生产n 件,则i =1,2,…,n ,且 X 1,X 2,…,X n 独立同分布,p =P {X i =1}=. 现要求n ,使得 1 {0.760.84}0.9.n i i X P n =≤ ≤≥∑ 即 0.80.9n i X n P -≤≤≥∑ 由中心极限定理得 0.9,Φ-Φ≥ 整理得0.95,Φ≥?? 查表 1.64,10≥ n ≥, 故取n =269. 3. 某车间有同型号机床200部,每部机床开动的概率为,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能 才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m ,而m 要满足200部机床中同时开动的机床数目不超过m 的概率为95%,

概率论与数理统计试题与答案()

概率论与数理统计试题与答案(2012-2013-1) 概率统计模拟题一 一、填空题(本题满分18分,每题3分) 1、设,3.0)(,7.0)(=-=B A P A P 则)(AB P = 。 2、设随机变量p)B(3,~Y p),B(2,~X ,若9 5)1(=≥X p ,则=≥)1(Y p 。 3、设X 与Y 相互独立,1,2==DY DX ,则=+-)543(Y X D 。 4、设随机变量X 的方差为2,则根据契比雪夫不等式有≤≥}2EX -X {P 。 5、设)X ,,X ,(X n 21 为来自总体)10(2 χ的样本,则统计量∑==n 1 i i X Y 服从 分布。 6、设正态总体),(2σμN ,2σ未知,则μ的置信度为α-1的置信区间的长度=L 。 (按下侧分位数) 二、选择题(本题满分15分,每题3分) 1、 若A 与自身独立,则( ) (A)0)(=A P ; (B) 1)(=A P ;(C) 1)(0<

济南大学大学物理大作业完整答案

济南大学 大学物理大作业答案完整版

第1章 质点运动学 §1.3 用直角坐标表示位移、速度和加速度 一.选择题和填空题 1. (B) 2. (B) 3. 8 m 10 m 4. ()[] t t A t ωβωωωββsin 2cos e 22 +-- ()ωπ/122 1 +n (n = 0, 1, 2,…) 5. h 1v /(h 1-h 2) 二.计算题 1解: (1) 5.0/-==??t x v m/s (2) v = d x /d t = 9t - 6t 2 v (2) =-6 m/s (3) S = |x (1.5)-x (1)| + |x (2)-x (1.5)| = 2.25 m 2解: =a d v /d t 4=t , d v 4=t d t ? ?=v v 0 0d 4d t t t v=2t 2 v=dx/dt=2t 2 t t x t x x d 2d 0 20 ?? = x 2=t 3 /3+x 0 (SI) §1.5 圆周运动的角量描述 角量与线量的关系 一.选择题和填空题 1. (D) 2. (C) 3. 16R t 2 4rad /s 2 4. -c (b -ct )2/R 二.计算题 1. 解: ct b t S +==d /d v c t a t ==d /d v ()R ct b a n /2 += 根据题意: a t = a n 即 ()R ct b c /2 += 解得 c b c R t -=

§1.6 不同参考系中的速度和加速度变换定理简介 一.选择题和填空题 1. (C) 2. (B) 3. (A) 4.0321=++v v v 二.计算题 1.解:选取如图所示的坐标系,以V 表示质点的对地速度,其x 、y 方向投影为: u gy u V x x +=+=αcos 2v , αsin 2gy V y y = =v 当y =h 时,V 的大小为: () 2cos 2222 2 2αgh u gh u y x ++= +=V V V V 的方向与x 轴夹角为γ, u gh gh x y +==--ααγcos 2sin 2tg tg 1 1 V V 第2章 牛顿定律 §2.3 牛顿运动定律的应用 一.选择题和填空题 1. (C) 2. (C) 3. (E) 4. l/cos 2 θ 5. θcos /mg θ θ cos sin gl 二.计算题 1. 解:质量为M 的物块作圆周运动的向心力,由它与平台间的摩擦力f 和质量为m 的物块 对它的拉力F 的合力提供.当M 物块有离心趋势时,f 和F 的方向相同,而当M 物块有 向心运动趋势时,二者的方向相反.因M 物块相对于转台静止,故有 F + f max =M r max ω2 2分 F - f max =M r min ω2 2分 m 物块是静止的,因而 F = m g 1分 又 f max =μs M g 1分 故 2.372 max =+= ωμM Mg mg r s mm 2分 4.122 min =-=ωμM Mg mg r s mm 2分 γ v

概率论与数理统计复习题--带答案

概率论与数理统计复习题--带答案

;第一章 一、填空题 1.若事件A?B且P(A)=0.5, P(B) =0.2 , 则P(A -B)=(0.3 )。 2.甲、乙各自同时向一敌机炮击,已知甲击中敌 机的概率为0.7,乙击中敌机的概率为0.8.求 敌机被击中的概率为(0.94 )。 3.设A、B、C为三个事件,则事件A,B,C中 不少于二个发生可表示为(AB AC BC ++)。 4.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.9,0.8,0.7,则这三台机器中至少有一台发生故障的概率 为(0.496 )。 5.某人进行射击,每次命中的概率为0.6 独立 射击4次,则击中二次的概率为 ( 0.3456 )。 6.设A、B、C为三个事件,则事件A,B与C都 不发生可表示为(ABC)。 7.设A、B、C为三个事件,则事件A,B,C中 不多于一个发生可表示为(AB AC BC I I); 8.若事件A与事件B相互独立,且P(A)=0.5, P(B) =0.2 , 则P(A|B)=(0.5 );

9.甲、乙各自同时向一敌机炮击,已知甲击中敌机 的概率为0.6,乙击中敌机的概率为0.5.求敌机被击中的概率为(0.8 ); 10.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A-)=(0.5 ) 11.三台机器相互独立运转,设第一,第二,第三 台机器不发生故障的概率依次为0.8,0.8,0.7,则这三台机器中最多有一台发生故障的概率为(0.864 )。 12.若事件A?B且P(A)=0.5, P(B) =0.2 , 则 P(B A)=(0.3 ); 13.若事件A与事件B互不相容,且P(A)=0.5, P(B) =0.2 , 则P(B A)=(0.5 ) 14.A、B为两互斥事件,则A B= U(S )15.A、B、C表示三个事件,则A、B、C恰 有一个发生可表示为 (ABC ABC ABC ++) 16.若()0.4 P AB A B= U P AB=0.1则(|) P B=,() P A=,()0.2 ( 0.2 ) 17.A、B为两互斥事件,则AB=(S ) 18.保险箱的号码锁定若由四位数字组成,则一次 )。 就能打开保险箱的概率为(1 10000

概率论与数理统计考试试卷与答案

0506 一.填空题(每空题2分,共计60 分) 1、A、B 是两个随机事件,已知p(A) 0.4,P(B) 0.5,p(AB) 0.3 ,则p(A B) 0.6 , p(A -B) 0.1 ,P(A B)= 0.4 , p(A B) 0.6。 2、一个袋子中有大小相同的红球6只、黑球4只。(1)从中不放回地任取2 只,则第一次、第二次取红色球的概率为:1/3 。(2)若有放回地任取 2 只,则第一次、第二次取红色球的概率为:9/25 。( 3)若第一次取一只球观查球颜色后,追加一只与其颜色相同的球一并放入袋中后,再取第二只,则第一次、第二次取红色球的概率为:21/55 。 3、设随机变量X 服从B(2,0.5)的二项分布,则p X 1 0.75, Y 服从二项分 布B(98, 0.5), X 与Y 相互独立, 则X+Y 服从B(100,0.5),E(X+Y)= 50 , 方差D(X+Y)= 25 。 4、甲、乙两个工厂生产同一种零件,设甲厂、乙厂的次品率分别为0.1、 0.15.现从由甲厂、乙厂的产品分别占60%、40%的一批产品中随机抽取 一件。 ( 1)抽到次品的概率为:0.12 。 2)若发现该件是次品,则该次品为甲厂生产的概率为:0.5 6、若随机变量X ~N(2,4)且(1) 0.8413 ,(2) 0.9772 ,则P{ 2 X 4} 0.815 , Y 2X 1,则Y ~ N( 5 ,16 )。

7、随机变量X、Y 的数学期望E(X)= -1,E(Y)=2, 方差D(X)=1 ,D(Y)=2, 且 X、Y 相互独立,则:E(2X Y) - 4 ,D(2X Y) 6 。 8、设D(X) 25 ,D( Y) 1,Cov( X ,Y) 2,则D(X Y) 30 9、设X1, , X 26是总体N (8,16)的容量为26 的样本,X 为样本均值,S2为样本方 差。则:X~N(8 ,8/13 ),25S2 ~ 2(25),X 8 ~ t(25)。 16 s/ 25 10、假设检验时,易犯两类错误,第一类错误是:”弃真” ,即H0 为真时拒绝H0, 第二类错误是:“取伪”错误。一般情况下,要减少一类错误的概率,必然增大另一类错误的概率。如果只对犯第一类错误的概率加以控制,使之

相关文档
最新文档