我国复合材料学会生物医用复合材料分会清单

我国复合材料学会生物医用复合材料分会清单
我国复合材料学会生物医用复合材料分会清单

中国复合材料学会生物医用复合材料分会名单

(以姓氏字母为序)

顾问(2人):

戴尅戎院士上海第二医科大学

张兴栋院士四川大学

名誉主任(1人):

万怡灶教授华东交通大学

主任委员(1人):

沈健教授南京师范大学/江苏省教育厅

副主任委员(7人):

陈晓峰教授华南理工大学材料学院生物材料研究所

冯庆玲教授清华大学

王勤研究员山东省医疗器械研究所

王士斌教授华侨大学

徐可为教授西安交通大学

尹光福教授四川大学材料科学与工程学院

郑裕东教授北京科技大学材料学院

秘书长(1人):

刘平生教授南京师范大学

秘书(1人):

章日超讲师华东交通大学

常务委员(16人):

胡剑教授华东交通大学

李斌教授苏州大学骨科研究所

李利教授南京师范大学

李星逸教授佳木斯大学

梁春永教授河北工业大学

潘浩波研究员中国科学院深圳先进枝术研究院

齐锦刚教授辽宁工业大学材料学院

汤亭亭教授上海第二医科大学

王琳教授华中科技大学附属协和医院

王胜岚总经理中山生物工程有限公司

王小祥教授浙江大学

吴爱国教授中科院宁波材料所

于振涛教授西北有色金属研究院

张灿教授中国药科大学

章培标研究员中国科学院长春应用化学研究所

郑学斌研究员中国科学院上海硅酸盐研究所

委员(46人):

敖海勇副教授华东交通大学材料学院

陈爱政教授华侨大学化工学院

陈强院长南京大学常州高新技术研究院

戴红莲副研究员武汉理工大学生物材料与工程研究中心董骧副院长北京纳通研究院

何莉萍教授湖南大学

何炜教授大连理工大学

洪枫研究员东华大学

黄跃生教授陆军军医大学西南医院

黄忠兵教授四川大学

孔祥东教授浙江理工大学

李强教授辽宁工业大学材料学院

李晓明副教授北京航空航天大学

李玉萍教授江西科技师范大学

刘芳教授华南理工大学材料学院材料科学研究所

刘玲蓉研究员中国医学科学院生物医学工程研究所

刘源岗讲师华侨大学材料学院

吕强教授苏州大学

莫秀梅教授东华大学

南开辉教授南方医科大学南方医院创伤骨科实验室

聂洪鑫理事长中国外科植入物行业协会

牛旭锋副教授北京航空航天大学

齐民教授大连理工大学

屈树新教授西南交通大学材料学院

佘振定董事长/总经理深圳兰度生物材料有限公司

史新立主任技师/处长国家食品药品监督管理总局医疗器械技术审评中心王传栋教授/副所长山东省医疗器械研究所

王德平教授同济大学

王国杰教授北京科技大学材料学院

王香教授/系主任哈尔滨工程大学生物医学材料与工程研究中心王小磊研究员南昌大学

王秀梅教授清华大学

魏杰教授华东理工大学材料学院

谢幼专主任医师/教授上海交通大学医学院附属第九人民医院

熊党生教授南京理工大学

熊光耀教授华东交通大学

熊信柏教授深圳大学

许鑫华教授天津大学材料学院

杨帮成研究员四川大学生物材料工程研究中心

杨春喜副主任医师上海交通大学医学院附属同济医院

杨飞副教授中科院化学所

杨军教授南开大学生命学院

杨磊教授苏州大学骨科研究所

姚芳莲教授天津大学化工学院

臧东勉副教授华东交通大学

张天柱教授东南大学生物科学与医学工程学院

生物医用复合材料的发展和应用综述

生物医用复合材料的发展和应用 班级:材料科学与工程1103班 姓名:李海涛(2011010400)史赛赛(2011010410) 吴海泉()董朝力() 李昂() 摘要:生物医用复合材料(biomedical composite materials)是由两种或两种以上的不同材料复合而成的生物医用材料它主要用于人体组织的修复、替换和人体器官的制造。长期临床应用发现,传统医用金属材料和高分子材料不具生物活性,与组织不易牢固结合,在生理环境中或植入体内后受生理环境的影响,导致金属离子或单体释放,造成对机体的不良影响。而生物陶瓷材料虽然具有良好的化学稳定性和相容性、高的强度和耐磨、耐蚀性,但材料的抗弯强度低、脆性大,在生理环境中的疲劳与破坏强度不高,在没有补强措施的条件下,它只能应用于不承受负荷或仅承受纯压应力负荷的情况。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,生物医用复合材料必将成为生物医用材料研究和发展中最为活跃的领域。 关键词: 陶瓷基;、金属基、高分子基;、碳纤维、生物相容性、医用高分子材料、医用金属材料、医用无机材料、医用复合材料 一、生物医用复合材料概述: 1、发展状况: 随着社会文明进步、经济发展和生活水平日益提高,人类对自身的医疗康复事业格外重视。与此同时,社会人口剧增,交通工具大量涌现,生活节奏加快,疾病、自然灾害、交通事故、运动创伤和工伤等的频繁发生等,造成人们意外伤害剧增。因此,发展用于人体组织和器官再生与修复的生物医用材料具有重大社

中国复合材料工业协会第六届理事会常务理事

中国复合材料工业协会第六届理事会常务理事 序 姓名单位职务号 1李新华中材科技集团公司董事长 2薛忠民北京玻钢院复合材料有限公司董事长 3郭玉明航天材料及工艺研究所所长 4张定金中国复合材料集团有限公司董事长 5吕琴中国复合材料工业协会秘书长 6孙巍北京汽车玻璃钢有限公司副总经理 7曹正华航空制造工程研究所主任 8张思成北京科拉斯化工技术有限公司总经理 9罗慧敏上海玻璃钢研究院院长 10杨桂生上海杰事杰新材料股份有限公司董事长 11龙友焜上海元龙玻璃钢有限公司董事长 12刘坐镇华东理工大学华昌聚合物有限公司总经理 13胡显奇横店集团上海俄金玄武岩纤维有限公司总经理 14林定多天和树脂有限公司总经理 15洪钊城长兴合成树脂(常熟)有限公司总经理 16王吉群天津滨海天联集团有限公司董事长 17李杰天津市金锚集团有限责任公司董事长 18唐志尧重庆国际复合材料有限公司总经理 19凌静重庆益鑫复合材料制品有限责任公司总经理 20赵连明昊华中意玻璃钢有限公司总经理 21郜东河河北可耐特玻璃钢有限公司董事长 22刘世根中国枣强玻璃钢城管理委员会主任 23宋建国恒润集团有限公司董事长 24郑振营河北省枣强玻璃钢集团有限公司董事长 25傅秀君秦皇岛耀华玻璃钢股份公司总经理 26杜善义哈尔滨工业大学院士 27陈辉哈尔滨玻璃钢研究院院长 28张兵哈尔滨斯达玻璃钢有限公司经理 29解桂福常州天马集团有限公司董事长

30朱建勋南京玻璃纤维研究设计院院长31任桂芳中复连众玻璃钢集团有限公司董事长32顾清波江苏九鼎新材料股份有限公司董事长33马大华南京费隆复合材料有限责任公司总经理34唐航初金陵帝斯曼树脂有限公司经理35毛坚伟常州华日新材有限公司总经理36马越群江苏富菱化工有限公司副总经理37张文俊江苏亚邦涂料股份有限公司董事长38张志贤江阴市前进化工有限公司总经理39吴锋中材科技(苏州)有限公司副总经理40赵敏海无锡新宏泰电器有限责任公司总经理41宋晓良宜兴市化学成套设备厂厂长42艾迁安徽金城汽车科技有限公司董事长43苏芳志山东金光玻璃钢集团公司董事长44陈亮威海光威集团有限责任公司董事长45张志法泰山玻璃纤维股份有限公司董事长46马建国威海环球玻璃钢有限公司总经理47管印贵山东格瑞德集团有限公司总裁48王庆华山东双一集团有限公司董事长49张毓强巨石集团有限公司董事长50王伯华浙江东方豪博管业有限公司总经理51金深洋浙江联丰股份有限公司总经理52吴志刚浙江嘉善三方塑胶有限责任公司董事长53张宵华宁波华缘玻璃钢电器制造有限公司董事长 54 陈元国营第五七二七厂(江西长江化工有限责任公 司) 总工程师 55张剑湖南远大铃木住房设备有限公司总经理56王继辉武汉理工大学(复合材料系)教授57李卓球武汉理工大学理学院院长58任太平河南永威集团公司董事长59王满昌中国船舶重工集团公司第725研究所主任60郭晓时广州市纤力玻璃钢有限公司董事长61陈敏深圳市华达玻璃钢通信制品有限公司总工程师

生物医用高分子材料研究进展及趋势

生物医用高分子材料研究进展及趋势

J I A N G S U U N I V E R S I T Y 医用材料学课程学习总结及结课论文生物医用高分子材料的研究及发展趋势

学院名称:材料科学与工程 专业班级:金属1302 学生姓名:钱振 指导教师姓名:王宝志 2016年 10 月 生物医用高分子材料的研究及发展趋势 钱振 学号:63 班级:金属1302 材料科学与工程学院 摘要:随着我国经济发展水平的不断提高,分子材料在各领域得到了显著应用,在医用领域应用更多,本文综述了生物医用高分子材料的分类、特点及基本条件,概述了医用高分子材料的研究现状及其用途,并浅谈了医用高分子材料的发展及展望。通过介绍医用高分子材料在人工脏器、药剂及医疗器械方面的应用,以及我国近年来的研究情况和存在的问题,形成对生物医用功能高分子的认识和其重要性的认识。 关键词:生物材料,生物医用高分子材料,现状,应用,展望 1.引言 生物医用材料是生物医学科学中的最新分支学科,它是生物学、医学、化学、 物理学和材料学交叉形成的边缘学科,是用于人工组织或器官制备、高性能医疗

器械的研制、药物新剂型的开发和和仿生效应研究的基础[1] 。 生物医用材料,简称生物材料(BiomaterialS),是一类具有特殊性能或功能,用于与生物组织接触以形成功能的无生命的材料]2[。主要包括生物医用高分子材料、生物医用陶瓷材料、生物医用金属材料和生物医用复合材料等。研究领域涉及材料学、化学、医学、生命科学]3[,生物医用高分子材料是一门介于现代医学和高分子科学之间的新兴学科。目前医用高分子材料的应用已遍及整个医学领域(如:人工器官、外科修复、理疗康复、诊断治疗、心血管、骨修复、神经传递、皮肤、器官、药物控释等)。 2.研究现状 生物医用高分子材料是一类可对有机体组织进行修复、替代与再生,具有特殊功能作用的高分子材料。在功能高分子材料领域,生物医用高分子材料取得了长足的进展,目前已成为发展最快的一个重要分支。随着医用高分子产业的发展,出现了大量的医用新材料和人工装置,如人工心脏瓣膜、人工血管、人工肾用透析膜、心脏起博器及骨生长诱导剂等。近10年来,由于生物医学工程、材料科学和生物技术的发展,医用高分子材料及其制品正以其特有的生物相容性、无毒性等优异性能而获得越来越多的医学临床应用。 生物医用高分子材料是生物材料的重要组成部分,它发展最早、应用最广泛、用量最大、品种繁多,主要包括:塑料、橡胶、纤维、粘合剂等。随着医学的发展,这些材料在医学领域得到广泛的应用。如:膨体聚四氟乙烯人造血管、聚矾中空纤维人工肾、硅橡胶医用导管、介入栓塞材料、介入诊疗导管以及护理方面使用的一次性医疗用品等,都是由高分子材料制成的。这些产品在临床诊断、治疗、护理等方面起着越来越重要的作用。正是由于高分子材料在医学上的独特作用,因而在高分子化学上出现了一个新的分支—医用高分子(Medical highpolymers)。它是把高分子化学的理论、研究方法、临床医学的需要结合起来,用于研究生物体的结构、生物体器官的功能及医用材料的应用等的一门年轻而边缘性的学科]4[。

材料科学科普:《中国材料工程大典》

材料科学科普:《中国材料工程大典》 导读:原文是师昌绪老师写的《材料科学与工程的提出与内涵》,读后获益良多。由于文章篇幅过长,总结了一个浓缩精华版。 《中国材料工程大典》简介: 它是关于材料制备和测试、材料成形与加工工程的大型工具书,由中国机械工程学会、中国材料研究学会组织编写,中国科学院路甬祥院长担任编委会主任,师昌绪院士等做顾问,39位院士、1200余位专家教授共同执笔。《中国材料工程大典》共26卷,近7000万字,是我国当前规模最大、内容最全面的材料工程工具书。 主编:中国机械工程学会、中国材料研究学会、中国材料工程大典编委会 参编:中国金属学会、中国化工学会、中国硅酸盐学会、中国有色金属学会、中国复合材料学会 支持单位:中华人民共和国科学技术部、国防科学技术工业委员会、国家自然科学基金委员会、中国科学技术协会文章如下:材料是人类用于制造物品、器件、构件、机器或其他产品的那些物质。材料是物质,但不是所有物质都可以称为材料,如食物和药物,一般都不算是材料。但是这个定义并不那么严格,如炸药、固体火箭推进剂,一般称之为“含能

材料”,因为它属于火炮或火箭的组成部分。 材料是人类赖以生存和发展的物质基础。20世纪70年代人们把信息、材料和能源誉为当代文明的三大支柱。80年代以高技术群为代表的新技术革命,又把新材料、信息技术和生物技术并列为新技术革命的重要标志。 材料具有多样性。从物理化学属性来分,可分为金属材料、无机非金属材料、有机高分子材料和不同类型材料组成的复合材料。从用途来分,又分为电子材料、航天航空材料、核材料、建筑材料、能源材料、生物材料等。更常见的两种分类方法则是结构材料与功能材料,传统材料(基础材料)与新型材料。 结构材料是以力学性能为基础,以制造受力构件所用材料,当然,结构材料对物理或化学性能也有一定要求,如光泽、热导率、抗辐照、抗腐蚀、抗氧化等。功能材料则主要是利用物质的独特物理、化学性质或生物功能等而形成的一类材料。一种材料往往既是结构材料又是功能材料,如铁、铜、铝等。传统材料是指那些已经成熟且在工业中已批量生产并大量应用的材料,如钢铁、水泥、塑料等。这类材料由于其量大、产值高、涉及面广泛,又是很多支柱产业的基础,所以又称为基础材料。新型材料是指那些正在发展,且具有优异性能和应用前景的一类材料。新型材料与传统材料之间并没有明显的界限,传统材料通过采用新技术,提高技术含量,

中国各大学对复合材料的研究介绍

中国各大学对复合材料的研究介绍 中国各大学对复合材料的研究介绍塑料知识10月15日讯,天津科技大学采用自制甲基丙烯酸缩水甘油酯接枝高密度聚乙烯(HDPE-g-GMA)作为增容剂来增容PA6/超高分子量聚乙烯(UHMWPE)共混物。HDPE-g-GMA对PA6/UHMWPE增容作用明显,使其冲击强度提高1倍,断裂伸长率提高3%。 MC尼龙/玻纤复合材料 东北大学将磨碎玻纤与浇铸(MC)尼龙制成MC尼龙/玻纤复合材料。当加入10%的玻纤后,制品收缩率降低,热变形温度提高20度、,将该材料制成制品后的拉伸强度提高26%,弯曲强度提高13%,压缩强度提高36%。 PA6/水镁石共混物 大连理工大学等将大分子界面改性剂加入到PA6/水镁石共混物中。共混物断裂伸长率提高12%以上,冲击强度提高1.5kJ/m2,当大分子界面改性剂的用量为8份,水镁石添加量为40%时,阻燃效果最佳,氧指数高达37%。 PA6/改性MMT纳米复合材料北京理工大学等以自行合成的NJ¢1型插层剂对MMT进行改性。加入12%改性MMT,PA6/改性MMT纳米复合材料的拉伸强度、弯曲强度及弯曲弹性模量较PA6分别提高了14%、16.2%和38.1%。 超细滑石粉改性MC尼龙 宁波职业技术学院将超细滑石粉加人MC尼龙中,以改性MC尼龙。超细滑石粉的加人使MC尼龙的收缩率、吸水率都有所改善,热变形温度提高24度,冲击强度较纯MC尼龙

提高11%。 MC尼龙/纳米氧化铝复合材料 河北工程学院等采用原位聚合技术制备了纳米氧化铝增强MC尼龙复合材料。当纳米氧化铝含量为4%时,MC尼龙/纳米氧化铝复合材料的拉伸强度、冲击强度和弯曲强度均达到最大值,分别比纯MC尼龙提高19%、33%和11%。 PA11/MMT纳米复合材料 华北工学院采用熔体插层法制备PA11/MMT纳米复合材料。MMT含量为5%时,复合材料的冲击强度达最大值.是纯PA11冲击强度的2.5倍。 新型增韧刑增韧PA6 辽宁大学等采用新型双官能化增韧剂SWR¢3C对PA6进行增韧。室温下SWR¢3C的质量分数为20%时,PA6的冲击强度达94.5KJ/m2,接近纯PA6的10倍,达到超韧PA的性能指标。 玻纤增强PA66 北京理工大学采用自制的新型膨胀型阻燃剂聚磷酸三聚氰胺(MPP)对玻纤增强PA66阻燃。当添加25%MPP时,阻燃材料的氧指数为38.o%,达到UL94v-O级。 高阻隔性可吹塑PA6复合材料 上诲交通大学将(聚烯烃热塑性弹性体/丙烯酸酯类)共聚物(MST)与pA6进行共混,制得高阻隔性可吹塑PA6复合材料。当MST含量为10%时,可得到综合性能优于PA6的可吹塑

生物医用复合材料

生物医用复合材料 生物医用复合材料(biomedical composite materials) 是由两种或两 种以上的不同材料复合而成的生物医用材料,它主要用于人体组织的修复、 替换和人工器官的制造[1]。长期临床应用发现,传统医用金属材料和高分 子材料不具生物活性,与组织不易牢固结合,在生理环境中或植入体内后受生理环境的影响,导致金属离子或单体释放,造成对机体的不良影响。而生物陶瓷材料虽然具有良好的化学稳定性和相容性、高的强度和耐磨、耐蚀性,但材料的抗弯强度低、脆性大,在生理环境中的疲劳与破坏强度不高,在没有补强措施的条件下,它只能应用于不承受负荷或仅承受纯压应力负荷的情况。因此,单一材料不能很好地满足临床应用的要求。利用不同性质的材料复合而成的生物医用复合材料,不仅兼具组分材料的性质,而且可以得到单组分材料不具备的新性能,为获得结构和性质类似于人体组织的生物医学材料开辟了一条广阔的途径,生物医用复合材料必将成为生物医用材料研究和发展中最为活跃的领域。 1. 生物医用复合材料组分材料的选择要求 生物医用复合材料根据应用需求进行设计,由基体材料与增强材料或功能材料组成,复合材料的性质将取决于组分材料的性质、含量和它们之间的界面。常用的基体材料有医用高分子、医用碳素材料、生物玻璃、玻 璃陶瓷、磷酸钙基或其他生物陶瓷、医用不锈钢、钻基合金等医用金属材料;增强体材料有碳纤维、不锈钢和钛基合金纤维、生物玻璃陶瓷纤维、陶瓷纤维等纤维增强体,另外还有 氧化锆、磷酸钙基生物陶瓷、生物玻璃陶瓷等颗粒增强体。 植入体内的材料在人体复杂的生理环境中,长期受物理、化学、生物电等因素的影响,同时各组织以及器官间普遍存在着许多动态的相互作用,因此,生物医用组分材料必须满足下面几项要求:(1)具有良好的生物相容 性和物理相容性,保证材料复合后不出现有损生物学性能的现象;(2)具有 良好的生物稳定性,材料的结构不因体液作用而有变化,同时材料组成不引起生物体的生物反应;(3)具有足够的强度和韧性,能够承受人体的机械作用力,所用材料与组织的弹性模量、硬度、耐磨性能相适应,增强体材料还必须具有高的刚度、弹性模量和抗冲击性能;(4)具有良好的灭菌性能, 保证生物材料在临床上的顺利应用。此外,生物材料要有良好的成型、力卩工性能,不因成型加工困难而使其应用受到限制。 2. 生物医用复合材料的研究现状与应用 陶瓷基生物医用复合材料 陶瓷基复合材料是以陶瓷、玻璃或玻璃陶瓷基体,通过不同方式引入颗粒、晶片、晶须或纤维等形状的增强体材料而获得的一类复合材料。目

改性塑料粒子复合材料项目计划书(项目投资分析)

第一章项目概述 一、项目概况 (一)项目名称 改性塑料粒子复合材料项目 (二)项目选址 xxx工业园 场址选择应提供足够的场地用以满足项目产品生产工艺流程及辅助生产设施的建设需要;场址应具备良好的生产基础条件而且生产要素供应充裕,确保能源供应有可靠的保障。节约土地资源,充分利用空闲地、非耕地或荒地,尽可能不占良田或少占耕地;应充分利用天然地形,选择土地综合利用率高、征地费用少的场址。项目建设方案力求在满足项目产品生产工艺、消防安全、环境保护卫生等要求的前提下尽量合并建筑;充分利用自然空间,坚决贯彻执行“十分珍惜和合理利用土地”的基本国策,因地制宜合理布置。 (三)项目用地规模 项目总用地面积26833.41平方米(折合约40.23亩)。 (四)项目用地控制指标 该工程规划建筑系数74.85%,建筑容积率1.56,建设区域绿化覆盖率5.39%,固定资产投资强度196.17万元/亩。

(五)土建工程指标 项目净用地面积26833.41平方米,建筑物基底占地面积20084.81平 方米,总建筑面积41860.12平方米,其中:规划建设主体工程28573.71 平方米,项目规划绿化面积2257.41平方米。 (六)设备选型方案 项目计划购置设备共计132台(套),设备购置费2233.56万元。 (七)节能分析 1、项目年用电量1124478.12千瓦时,折合138.20吨标准煤。 2、项目年总用水量22801.52立方米,折合1.95吨标准煤。 3、“改性塑料粒子复合材料项目投资建设项目”,年用电量1124478.12千瓦时,年总用水量22801.52立方米,项目年综合总耗能量(当量值)140.15吨标准煤/年。达产年综合节能量44.26吨标准煤/年, 项目总节能率23.09%,能源利用效果良好。 (八)环境保护 项目符合xxx工业园发展规划,符合xxx工业园产业结构调整规划和 国家的产业发展政策;对产生的各类污染物都采取了切实可行的治理措施,严格控制在国家规定的排放标准内,项目建设不会对区域生态环境产生明 显的影响。 (九)项目总投资及资金构成

中国先进复合材料现状分析

中国先进复合材料现状分析 国内复合材料装备水平不断提升,陆续建成一批具有国际先进水平 的生产线。复合材料用主要原材料已基本配套,玻璃纤维与树脂的品质不少 已经达到国际水准,价格具有竞争力。以下对中国复合材料的现状分析。 复合材料主要用于制造航空器的外饰和内饰部件,包括座椅、肋板、 内部装饰、舷窗、引擎罩盖、机翼、机身和导流罩等,目前在航空航天领域 运用最多的复合材料为碳纤维复合材料。复合材料行业产品种类多、工艺差 异大、生产季节性强及产品销售半径短的特点,尤其适合民营企业发展。当 前国内复合材料企业绝大多数企业为私人控股企业。在纳入国家统计范围的422 家规模以上企业中,私人控股企业达到371 家,约占规模以上企业总数的87.9%;港澳台及外商控股企业32 家,约占规模以上企业总数的7.6%;国有及集体控股企业19 家,约占规模以上企业总数的4.5%。民营企业已经成为中国复合材料行业发展的中坚力量。 中国复合材料的现状分析 当前我国先进复合材料的发展现状 我国从20 世纪70 年代开始进行复合材料研究工作,经过40 年的发展,我国的先进复合材料科技水平不断提升,取得了令世人瞩目的成绩。随 着科学技术的持续更新,树脂与玻璃纤维的使用技术也在持续发展,部分生 产厂家为适应产品需求不断提升自身的生产能力,让部分复合材料的价格成 本被业内同行接受。但由于玻璃纤维的符合强度还不能媲美金属。因而碳纤维、硼纤维等也开始逐步应用和普及,完善高分子复合材料家族,并逐步成 为部分产业必备的材料。世界范围内复合材料年均产量已经达到550 万吨,其中年均产值是1300 亿美元。若将这些复合材料应用到军事领域内,其产生

中国复合材料行业市场分析与发展趋势研究报告-灵核网

中国行业研究门户[灵动核心产业研究院] 2015-2020年中国复合材料产业发展现状与 投资分析报告 报告编号:A00030515

行业研究是进行资源整合的前提和基础,属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,以下通常行业市场研究思路及方法。 》行业市场研究 》》目标市场研究 国际市场上,客户需求截然不同,当面临着不同需求和欲望的客户群体,目标市场细分能有效的选择并进入目标市场。从中选择自己的目标客户群,并明确定位。因此,企业必须重视市场细分和目标市场的选择。

》》》市场监测研究 市场运行监测是市场管理、宏观调控、资源配置的基础性工作。而市场监测工作的最重要环节之一是市场监测数据的转化和分析。如何统计和分析好市场监测数据对于企业的发展和指导流通业至关重要。 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 灵核网(https://www.360docs.net/doc/7c3492979.html,)基于多年来对客户需求的深入了解,对产品的长期监测及定位,了解行业本身所处的发展阶段,判断行业投资价值,揭示行业投资风险,全面系统地研究该行业市场现状及发展前景,注重信息的时效性,从而更好地预测并引导行业的未来发展趋势,为投资者提供依据。

复合材料,是由两种或两种以上不同性质的材料,通过物理或化学的方法,在宏观(微观)上组成具有新性能的材料。各种材料在性能上互相取长补短,产生协同效应,使复合材料的综合性能优于原组成材料而满足各种不同的要求。复合材料的基体材料分为金属和非金属两大类。金属基体常用的有铝、镁、铜、钛及其合金。非金属基体主要有合成树脂、橡胶、陶瓷、石墨、碳等。增强材料主要有玻璃纤维、碳纤维、硼纤维、芳纶纤维、碳化硅纤维、石棉纤维、晶须、金属丝和硬质细粒等。 灵动核心对复合材料整个行业有着多年的市场监测及调研,灵动核心实时掌握复合材料行业市场发展规律及最新动态,大量收集复合材料行业市场及企业发展的最新信息,准确及时的整合出复合材料行业目前发展的现状。结合多年复合材料行业的发展规律,中心专家及研究团队综合大量的信息依据,整合出《2015-2020年中国复合材料产业发展现状与投资分析报告》,对复合材料行业未来发展的趋势及投资的前景作出明确的分析及预测。 正文目录 第一章复合材料产业基本概述 第一节复合材料的概念及分类 一、复合材料的概念 二、复合材料的分类 三、树脂基复合材料的分类 四、纳米复合材料及其分类 第二节复合材料的性能及应用 一、复合材料的性能 二、复合材料的主要应用领域 三、复合材料的发展和应用 四、复合材料发展的意义 第二章 2014-2015年世界复合材料行业运行状况分析 第一节 2014-2015年世界复合材料行业整体概况 一、世界复合材料市场发展现状 二、世界复合材料市场发展预测 三、国际复合材料发展呈两大趋势 第二节 2014-2015年亚洲复合材料产业分析 一、亚洲复合材料市场快速增长 二、亚洲复合材料产业格局分析 三、亚洲复合材料市场潜力分析 第三节 2015-2020年世界复合材料市场预测分析 第三章 2014-2015年世界复合材料产业主要国家及地区运行动态分析

生物医用材料

生物医学材料指的是一类具有特殊性能、特种功能,用于人工器官、外科修复、理疗康复、诊断、治疗疾患,而对人体组织不会产生不良影响的材料。现在各种合成材料和天然高分子材料、金属和合金材料、陶瓷和碳素材料以及各种复合材料,其制成产品已经被广泛地应用于临床和科研。生物医用材料是用来对于生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料,它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,生物材料己成为各国科学家竞相进行研究和开发的热点。 二关键词: 生物,医学,材料,医疗器械,创伤,组织,植入 biomedical material, new materials 三文献综述 1生物医用材料定义 生物医用材料(biomedical material)是用于对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的新型高技术材料。它是研究人工器官和医疗器械的基础,己成为材料学科的重要分支,尤其是随着生物技术的莲勃发展和重大突破,己成为各国科学家竞相进行研究和开发的热点。当代生物材料已处于实现重大突破的边缘,不远的将来,科学家有可能借助于生物材料设计和制造整个人体器官,生物医用材料和制品产业将发展成为本世纪世界经济的一个支柱产业. 由生物分子构成生物材料,再由生物材料构成生物部件。生物体内各种材料和部件有各自的生物功能。它们是“活”的,也是被整体生物控制的。生物材料中有的是结构材料,包括骨、牙等硬组织材料和肌肉、腱、皮肤等软组织;还有许多功能材料所构成的功能部件,如眼球晶状体是由晶状体蛋白包在上皮细胞组成的薄膜内而形成的无散射、无吸收、可连续变焦的广角透镜。在生物体内生长有不同功能的材料和部件,材料科学的发展方向之一是模拟这些生物材料制造人工材料。它们可以做生物部件的人工代替物,也可以在非医学领域中使用。前者如人工瓣膜、人工关节等;后者则有模拟生物黏合剂、模拟酶、模拟生物膜等

复合材料与工程专业人才培养方案

复合材料与工程专业人才培养方案 (专业代码:) 一、专业简介 复合材料与工程专业是济南大学的特色专业,山东省品牌专业,具有余年的办学历史。年开始招收本科学生,年获得工学硕士学位授予权,年获得材料科学与工程一级学科硕士学位授予权和材料工程领域工程硕士专业学位授予权,年获博士学位授予权,年获批博士后流动站年入选山东省高水平应用型立项建设专业。山东复合材料学会依托专业。复合材料与工程专业已毕业本科生近二千人,目前每年招生人。本专业具备优良的理论和实践教学条件,目前拥有山东建筑材料制备与测试技术重点实验室、山东省无机功能材料重点实验室、教育部先进建筑材料工程研究中心等多个省部级实验室,实验室总面积达多平方米,配置各种先进的教学和科研仪器设备。专业建有校外实践教学基地个,个国家级实践教学基地,为学生生产实习实训、毕业(论文)设计、就业提供强有力的支撑。 复合材料与工程专业现有专任教师人,其中教授人,副教授人,具有博士学位人,形成了一支学术水平高,年龄结构合理,以中青年教师为骨干力量的教学科研队伍。近三年,本专业教师先后承担“”项目、“”项目和国家自然科学基金等国家级项目以及多项省部级科技项目;服务地方经济社会发展的能力不断增强,累计承担横向项目余项。 近年来,复合材料与工程专业的毕业生就业率均在以上,培养的毕业生遍布全国复合材料各大中型企业与相关领域科研院所,为中国复合材料工业的发展做出重要贡献,现已发展成为中国复合材料行业中具有较大影响力的特色专业。 二、培养目标 本专业培养德、智、体、美全面发展,具备良好的人文素质与科学素养,扎实的材料类专业基础,较强的实践能力和工程能力,良好的创新能力和国际化视野的高素质、高层次、全面发展的科学研究与工程技术人才。毕业生既能从事复合材料与工程领域的生产、研究与开发工作,也能从事相关领域的教学、管理和经营等工作。 三、培养要求 本专业学习关于复合材料的制备、加工成型、结构与性能调控、应用、性能检测及材料生产设备等方面的基础科学理论知识和专业实践工作技能。专业培养的毕业生须达到如下知识、能力和素质的培养要求: (1)能够将数学、自然科学知识以及相关的工程基础理论和专业知识用于解决复合材料生产中出 现的一般技术、工艺、质量等工程问题。 (2)能够应用数学、自然科学和材料科学的基本原理和专业知识用于复合材料的制备、合成、加 工成型、结构表征与性能测试,并能通过资料分析等研究复合材料与工程中的复杂问题,得 出有效结论。 (3)能够针对材料应用的特定需求和复杂工程问题设计解决方案,开展相关设计(原材料、工艺 流程等)和计算,并能够在设计环节中体现创新意识,考虑社会、健康、安全、法律、文化 以及环境等因素。 (4)掌握复合材料材料制备、加工、测试与分析的操作技能,分析与解释数据并通过信息综合得 到合理有效的结论。 (5)能够针对复合材料应用的复杂工程需求,开发或选择适当的文献检索、资料查询方式和材料 设计、制备、检测、分析工具,使用有效的方法进行理论和模拟分析并能够理解其适用范围。 (6)能够基于复合材料与工程的相关知识进行合理分析和评价本专业工程实践和复杂工程问题的 解决方案对社会、健康、安全、法律以及文化的影响,并理解应承担的责任。 (7)能够理解和评价满足材料应用特定需求的材料设计和制备工艺等复杂工程问题对环境、社会 1 / 10

生物材料

生物材料的起源 生物材料的概念 生物材料又称生物工艺学或生物技术。应用生物学和工程学的原理,对生物材料、生物所特有的功能,定向地组建成具有特定性状的生物新品种的综合性的科学技术 生物材料的好处 生物材料是与人体组织、体液或血液相接触或作用而对人体无毒、副作用,不凝血,不溶血,不引起人体细胞突变、畸变和癌变,不引起免疫排异和过敏反应的特殊功能材料。 生物材料的类型 生物材料种类繁多,到目前为止,被详细研究过的生物材料已经超过一千种,在医学临床上广泛应用的也有几十种,涉及材料学科各个领域! 2.1 高分子材料 生物医用高分子材料耐生物老化,作为长期植入材料具有良好的生物稳定性和物理、机械性能,易加工成型,原料易得,便于消毒灭菌,因此受到人们的普遍关注。人体组织修补最理想的是用一种与之完全相同的材料,而生物降解和可吸收高分子材料的发现使这种理想变为可能。因此,可降解和可吸收高分子材料是当前生物材料研究最多、进展最快的一个领域。目前对高分子材料研究主要集中在以下几个方面:(1)提高材料对人体的安全性;(2)提高组织相容性和血液相容性; (3)改善生物学性能; (4)改善、提高力学、机械、物理性能。 2.2 生物陶瓷材料 生物陶瓷材料因具有与生物组织良好的相容性,耐腐蚀,无毒副作用而受到人们的普遍关注,是近年来研究较多且进展较快的领域,无机生物陶瓷与人体硬组织的组成,结构差异很大。因此模拟人体硬组织的成分结构,利用骨胶原,纤维蛋白以及骨形成因子等与生物陶瓷材料结合,改善现有材料性能,设计研究新型材料是生物陶瓷材料研究的热点。目前国外在生物陶瓷领域的研究集中在如下几个课题:(1)具有特异性生物活性材料;(2)力学相容性好又有促进组织生长功能的材料;(3)带电性材料;(4)含生物活性物质和微量元素的材料;(5)半降解材料; (6)具有人体组织结构的复合材料。 2.3 生物医用金属材料 生物医用金属材料是用作生物医学材料的金属或合金,又称外科用金属材料或医用金属材料,是一类惰性材料,这类材料具有高的机械强度和抗疲劳性能,是临床应用最广泛的承力植入材料" 该类材料的应用非常广泛,遍及硬组织、软组织、人工器官和外科辅助器材等各个方面" 除

EI收录国内期刊

EI收录国内期刊 EI收录国内期刊(2005)在线访问EI中国网站提供的期刊列表EI核心版(《Ei Compendex》)收录的中国期刊 ISSN期刊刊名 0567-7718Acta Mechanica Sinica/Lixue Xuebao 1006-7191Acta Metallurgica Sinica (English Letters) 0253-4827Applied Mathematics and Mechanics (English Edition) 1004-5341China Welding (English Edition) 1004-9541Chinese Journal of Chemical Engineering 1022-4653Chinese Journal of Electronics 1000-9345Chinese Journal of Mechanical Engineering (English Edition) 1671-7694Chinese Optics Letters 1006-6748High Technology Letters 1004-0579Journal of Beijing Institute of Technology (English Edition) 1005-9784Journal of Central South University of Technology (English Edition) 1553-9105Journal of Computational Information Systems 1000-1484Journal of Dong Hua University (English Edition) 1005-9113Journal of Harbin Institute of Technology (New Series) 1001-6058Journal of Hydrodynamics 1548-7741Journal of Information and Computational Science 1005-0302Journal of Materials Science and Technology 1002-0721Journal of Rare Earths 1003-7985Journal of Southeast University (English Edition) 1004-4132Journal of Systems Engineering and Electronics 1003-2169Journal of Thermal Science 1005-8850Journal of University of Science and Technology Beijing: Mineral Metallurgy Materials (Eng Ed) 1009-3095Journal of Zhejiang University: Science 1001-0521Rare Metals 1006-9291Science in China, Series B: Chemistry 1003-6326Transactions of Nonferrous Metals Society of China 1006-4982Transactions of Tianjin University 1007-0214Tsinghua Science and Technology 0253-4177半导体学报 1001-1455爆炸与冲击 1001-5965北京航空航天大学学报 1001-053X北京科技大学学报 1001-0645北京理工大学学报 1000-1522北京林业大学学报 1007-5321北京邮电大学学报

粒子填充型导电复合材料的导电机理

万方数据

万方数据

万方数据

万方数据

万方数据

粒子填充型导电复合材料的导电机理 作者:周静, 孙海滨, 郑昕, 刘俊成, Zhou Jing, Sun Haibin, Zheng Xin, Liu Juncheng 作者单位:周静,孙海滨,刘俊成,Zhou Jing,Sun Haibin,Liu Juncheng(山东理工大学,淄博,255091), 郑昕,Zheng Xin(金晶玻璃集团,淄博,255200) 刊名: 陶瓷学报 英文刊名:JOURNAL OF CERAMICS 年,卷(期):2009,30(3) 被引用次数:0次 参考文献(20条) 1.张佐光功能复合材料 2004 2.贾向明.李光宪.陆玉本本证导电复合高分子材料的研究与进展 2003(154) 3.Fish D.Zhou G.Smid J Ring opening polymerization of cyclotetrasiloxanes with large substituents 1990(01) 4.Kirkpatrick S Electrical conduction in a nonconjugated polymer doped with SnCl4 and SbCl5 1973 5.Aharoni S M ElectricaI resistivity of a composite of conducting particles in an insulating matrix 1972(05) 6.Janzen J On the critical conductive filler loading in antistatic composites 1975(02) 7.Stauffer D.Ahamoy A Introduction to percolation theory 1991 8.樊中云论两相材料中结构与性能的关系 1996(zk) 9.Sumita M.Takenaka K Characterization of dispersion and percolation of filled polymers; molding time and temperature dependence of percolation time on carbon black filled low density polyethylene 1995 https://www.360docs.net/doc/7c3492979.html,ndauer R Electrical conductivity in inhomogeneous media 1978 11.Mclachlan D S Measurement and analysis of a model dual-conductivity medium using a generalized effective medium theory 1988(08) 12.Mclachlan D S.Blaszkiewicz M.Newnham R E Electrical resistivity of composites 1990(08) 13.Rajagopal C.Stayam M Studies on electrical conductivity of insulator-conductor composites 1978(11) 14.Asada T Two-step percolation in polymer blends filled with CB PTC effect in CB/epoxy polymer composites 1987(04) 15.Medalia A I Electrical conduction in carbon black composites 1986(03) 16.Shklovskii B I.Efros A L Electronic processes of doped semiconductors 1984 17.Simmons J G Generalized formula for the electric tunnel effect between similar electrodes separated by a thin insulating film 1963(06) 18.Ezquerra T A.Kulescza M.Cruz C S Charge transport exponents 1990(12) 19.雷忠利.成长谋.孟雅新导电复合材料中的双逾渗行为及其应用 2002(06) 20.Van Beck L K.Van Pul B I Internal field emission in carbon black-loaded natural rubber vulcanizates 1962

我国复合材料行业发展概况

我国复合材料行业发展概况 (一)行业现状 1、全球复合材料行业发展分析 复合材料作为一种新材料诞生于二十世纪30 年代。第二次世界大战期间,玻璃钢首先被用于军工产品,并先后在美国、英国、德国、法国、前苏联及日本等国家发展起来。到二十世纪60 年代以后,由于玻璃钢的优异特性,其逐步被应用于民用领域,截止到80 年代初期,玻璃钢品种已经达到35000种以上。此外,从70年代后期,随着高新技术的发展,高硅氧纤维、碳纤维、芳纶纤维等高性能纤维及其复合材料先后得到开发和应用。 此后,全球复合材料工业经历了长期的向上发展,复合材料制品先后进入建筑、化工、航空航天、汽车、风电等重要市场。尤其是进入21 世纪以来,全球复合材料市场快速增长。 2、2012-2015 年全球复合材料市场规模 据JEC 测算,2015 全球复合材料行业总产值约为780亿美元,2016年达到820 亿美元,预计到2021将达到1,030 亿美元。与此同时,2015 年全球复合材料总产量1,040 万吨,2016 达到1,080 万吨,预计到2021 年将达到1,290 万吨,年均增长4%左右。 近年来受全球经济危机及世界各国经济发展进程不同的影响,全球复合材料市场结构正在逐步发生变化,美、日、欧等发达国家和地区复合材料市场相对饱和,增速较为缓慢,而亚太地区长期以来人均复合材料消费水平相对较低,市场潜力巨大,因此近年来保持稳定增长。据中国复合材料工业协会测算,截至到2016年,全球复合材料市场价值总规模约为810亿美元,产量规模约为1,139 万吨,具体市场规模变化情况如下:

3、2016 年全球复合材料市场规模区域分布 根据2016 年3 月法国JEC 集团公布的最新评估报告,2016 全球复合材料市场价值规模约为820 亿美元,其中:亚洲地区产值占比43%(中国大陆地 区产值占比25%);北美地区产值占比30%;欧洲地区产值占比21%;非洲和中 东地区产值占比4%;南美地区产值占比2%。 北美地区虽然在产量上与欧洲基本持平,但由于其应用市场主要为航空航天、交通运输等领域,产品附加值相对较高,市场规模也大于欧洲地区。而亚洲地区虽然复合材料总产量已达全球总产量的50%,但市场份额却只占全球复合材料市场份额的43%。相对欧美地区而言,亚洲复合材料产值不高,应用领域相对低端,未来发展需要进行产业结构调整,不断提升复合材料产品质量和档次水平。 4、我国复合材料行业发展概况 我国复合材料行业诞生于1958 年,前期发展以北京玻璃钢研究设计院、哈尔滨玻璃钢研究院、上海玻璃钢研究院等一批国家科研院所为主。改革开放之后,我国复合材料产业链上下游不断健全,行业迅速发展壮大,尤其是民营复合材料生产企业如雨后春笋般快速成长。当前复合材料产业特征如下: 产业链整体发展完善。截至到2016 年,我国大陆地区玻璃纤维纱年产量达到362 万吨,占世界总产量的50%以上。在三大玻纤生产企业的带领下,玻璃纤维行业技术实力及产品质量不断提升,玻纤品种已经由普通中碱和无碱纱为主,转变为以无氟无硼高性能玻纤纱为主,并能根据市场和客户需求实现差异化生产和供应。除此之外,国内碳纤维、芳纶纤维生产技术和产量规模正在不断提升,酚醛树脂、不饱和聚酯树脂、环氧树脂及乙烯基树脂等基体树脂的质量以及工艺

2019-2023年中国复合材料行业影响因素

2019-2023年中国复合材料行业影响因素 一、有利因素 (一)政策支持 2017年1月23日,工业和信息化部联合发改委、科技部、财政部编制了《新材料产业发展指南》,《指南》从突破重点应用领域急需的新材料、布局一批前沿新材料、强化新材料产业协同创新体系建设、加快重点新材料初期市场培育、突破关键工艺与专用装备制约、完善新材料产业标准体系、实施“互联网+”新材料行动、培育优势企业与人才团队、促进新材料产业特色集聚发展等九个方面提出了重点任务。作为“十三五”时期指导新材料产业发展的专项指导政策,《指南》为复合材料的发展创造了更好的环境,将引导复合材料行业健康有序发展。 2017年4月28日,国家科技部正式印发《“十三五”材料领域科技创新专项规划》。明确了“十三五”时期材料领域科技创新的思路目标、任务布局和重点方向:材料领域将围绕创新发展的指导思想和总体目标,紧密结合经济社会发展和国防建设的重大需求,重点发展基础材料技术提升与产业升级、战略性先进电子材料、材料基因工程关键技术与支撑平台、先进结构与复合材料等。 按照《规划》要求,以高性能纤维及复合材料、高温合金为核心,以轻质高强材料、金属基和陶瓷基复合材料、材料表面工程、3D打印材料为重点,解决材料设计与结构调控的重大科学问题,突破结构与复合材料制备及应用的关键共性技术,提升先进结构材料的保障能力和国际竞争力。该规划将积极推动我国材料领域科技创新和产业化发展,有效发挥其规范和指导国家材料科技发展的重要作用。 (二)应用领域广泛、应用前景广阔 复合材料具有比强度高、比模量高、抗疲劳性好、减震性能强、耐热性高、断裂安全性高等特点,还具有特殊的振动阻尼特性,优异的力学性能和不吸收X射线特性,可以获得高精度的复杂形状,并且耐腐蚀能力强,广泛应用于航空航天、汽车工业、化工纺织、机械制造、医疗器械以及制造体育运动器材和建筑材料等众多领域,复合材料对现代科学技术的发展有着十分重要的作用。 尤其是在汽车轻量化领域,汽车行业迫切需要轻量化的解决方案来对抗燃油费上涨的成本压力。目前汽车轻量化技术主要有两个方向,一是汽车结构和材料加工工艺的优化设计,二是使用能够满足要求的更轻质的替代材料。其中,轻量化的替代性材料是业内普遍认同且前景最为可观的轻量化技术,复合材料作为其中的主要材料之一,将是迈进汽车轻量化市场的绝佳机会,且发展潜力巨大。 (三)机械自动化助推复材产业发展 近年来,为解决用工成本增加、环保督察及转型发展等问题,很多企业逐步增加生产装备和辅助生产装备,提升机械化、自动化生产水平。福建海源、胜利新大、苏州科逸等部分企业,更是积极寻求自动化、智能化生产线建设。展望未来,生产机械化自动化水平的提升,不仅仅为企业解决用工成本增加、生产现场规范管理等问题,更为行业带来新的生机。随着机械化自动化生产水平的提升,企业生产效率大幅提升,产品质量稳定性也更有保证。因而,有助于复合材料制品企业积极拓展汽车及轨道交通、建筑业、能源环保等较大规模的中高端应用市场。机械化、自动化的发展应用将为复合材料制品行业带来新的生机。 二、不利因素 (一)回收再利用问题突显 随着近年来复合材料行业的蓬勃发展,其废弃物的回收问题日渐突出、不容忽视,研究和发

相关文档
最新文档