限流保护电路

限流保护电路
限流保护电路

.

1、限流的大小I=U/RX 其中U为三极管的开启电压,电阻RX最好选用线绕电阻,减少温度对需要限制的电流大小的影响。温度系数不好的电阻会影

响限流的效果。

2、工作原理:1当输入电流Iin小于限流I时,电阻RX上的压降小于三极管9012的开启电源Uon。此时三极管9012是处于截止状态的。输入电压通过

电阻R1和R2分压,使场效应管Q1的源极S和栅极G产生足够的压差。从而使Q1管导通。使电路正常工作。2当输入电流Iin大于限流电流I时,电阻RX上的压降大于三极管9012的开启电源Uon。此时三极管9012是处于导通状态的。输入电压就直接加在Q1管的栅极,此时Q1管的源极和栅极电压大致相等。从而使Q1管截止。断开电路,使电路处于保护状态。从而避免电流过大,毁坏负载。

3、Q1和Q2具有相同的功能,给电路提供双重保护。

4、电路中的各个元件参数是根据限流350毫安设定的。9012的开启电压约为0.55伏。所以可确定RX=0.55V/0.35A=1.57欧姆。

5、Z1和Z2为瞬态抑制二极管。防止输出电压异变,保护负载电压不受尖峰电压的影响,如雷击等。

6、如有侵权请联系告知删除,感谢你们的配合!

7、

8、

9、

精品

过流保护电路原理

过流保护电路原理过流保护电路图 过流保护电路原理 本电路适用于直流供电过流保护,如各种电池供电的场合。 如果负载电流超过预设值,该电子保险将断开直流负载。重置电路时,只需把电源关掉,然后再接通。该电路有两个联接点(A、B标记),可以连接在负载的任意一边。 负载电流流过三极管T4、电阻R10和R11。A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。当电源刚刚接通时,全部电源电压加在保险上。三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。保险导电,负载有电流流过。当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。 保险上的电压(VAB)通常小于2V,具体值取决于负载电流。当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。 C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。因此,改变C1的值可以改变延迟时间的长短。该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。对于电路中给出的元件值,负载电流限制为

1A。通过改变元件值,负载电流可以达到10mA~40A。选择合适额定值的元件,电路的工作电压可以达到6~500V。通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。电容器C2提供保险端的瞬时电压保护。二极管D2避免当保险上的电压很低时,C1经过负载放电。 过流保护电路图 带自锁的过流保护电路 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平...

限流电路和分压电路

WORD 格式可编辑 限流电路和分压电路 1. 限流和分压接法的比较 ( 1)限流电路: 如图 2 所示,实际上滑动变阻器的右边部分并没 有电流流过。该电路的特点是:在电源电压不变的情况下, R 用两端的 电压调节范围: U ≥U 用≥UR 用/(R 0+R 用),电流调节范围: U/R 用≥I 用 ≥U/(R 0+R 用 )。即电压和电流不能调至零,因此调节范围较小。要使 限流电路的电压和电流调节范围变大, 可适当增大 R 0。另外, 使用该电 路时,在接通电前, R 0 应调到最大。 ( 2)分压电路: 如图 3 所示,实质上滑动变阻器的左边部分与 R 用 并联后再与滑动变阻器的右边串联。 注意滑动变阻器的两端都有电流流 过,且不相同。该电路的特点是:在电源电压不变的情况下, R 用 两端 的电压调节范围为 U ≥U 用≥0,即电压可调到零,电压调节范围大。电 流调节范围为 E/R 用≥ I 用≥ 0。 使用分压电路,在当 R 0

过流保护电路设计

过流保护电路如上图所示。此电路是过流保护电路,其中100kΩ电阻用来限流,通过比较器LM311 对电流互感器采样转化的电压进行比较,LM311的3脚接一10kΩ电位器来调比较基准电压,输出后接一100Ω的电阻限流它与后面的220μF的电容形成保护时间控制。当电流过流时比较器输出是高电平产生保护,使SPWM不输出,控制场效应管关闭,等故障消除,比较器输出低电平,逆变器又自动恢复工作。 1.第一个部分是电阻取样...负载和R1串联...大家都知道.串联的电流相等...R2上的电压随着负载的电流变化而变化...电流大,R2两端电压也高...R3 D1组成运放保护电路...防止过高的电压进入运放导致运放损坏...C1是防止干扰用的... 2.第二部分是一个大家相当熟悉的同相放大器...由于前级的电阻取样的信号很小...所以得要用放大电 路放大.才能用...放大倍数由VR1 R4决定... 3.第三部分是一个比较器电路...放大器把取样的信号放大...然后经过这级比较...从而去控制后级的动作...是否切断电源或别的操作...比较器是开路输出.所以要加上上位电阻...不然无法输出高电平... 4.第四部分是一个驱动继电器的电路...这个电路和一般所不同的是...这个是一个自锁电路... 一段保护 信号过来后...这个电路就会一直工作...直到断掉电源再开机...这个自锁电路结构和单向可控硅差不多. 1 采用电流传感器进行电流检测过流检测传感器的工作原理如图1所示。通过变流器所获得的变流器次级电流经I/V转换成电压,该电压直流化后,由电压比较器与设定值相比较,若直流电压大于设定值,则发出辨别信号。但是这种检测传感器一般多用于监视感应电源的负载电流,为此需采取如下措施。由于感应电源启动时,启动电流为额定值的数倍,与启动结束时的电流相比大得多,所以在单纯监视电流电瓶的情况下,感应电源启动时应得到必要的输出信号,必须用定时器设定禁止时间,使感应电源启动结束前不输出不必要的信号,定时结束后,转入预定的监视状态。 2 启动浪涌电流限制电路开关电源在加电时,会产生较高的浪涌电流,因此必须在电源的输入端安装防止浪涌电流的软启动装置,才能有效地将浪涌电流减小到允许的范围内。浪涌电流主要是由滤波电容充电引起,在开关管开始导通的瞬间,电容对交流呈现出较低的阻抗。如果不采取任何保护措施,浪涌电流可接近数百A。 开关电源的输入一般采用电容整流滤波电路如图2所示,滤波电容C可选用低频或高频电容器,若用低频电容器则需并联同容量高频电容器来承担充放电电流。图中在整流和滤波之间串入的限流电阻Rsc是为了防止浪涌电流的冲击。合闸时Rsc限制了电容C的充电电流,经过一段时间,C上的电压达到预置值或电容C1上电压达到继电器T动作电压时,Rsc被短路完成了启动。同时还可以采用可控硅等电路来短接Rsc。当合闸时,由于可控硅截止,通过Rsc对电容C进行充电,经一段时间后,触发可控硅导通,从而短接了限流电阻Rsc。 3 采用基极驱动电路的限流电路在一般情况下,利用基极驱动电路将电源的控制电路和开关晶体管隔离开。控制电路与输出电路共地,限流电路可以直接与输出电路连接,工作原理如图3所示,当输出过载或者短路时,V1导通,R3两端电压增大,并与比较器反相端的基准电压比较。控制PWM信号通断。 4 通过检测IGBT的Vce 当电源输出过载或者短路时,IGBT的Vce值则变大,根据此原理可以对电路采取保护措施。对此通常使用专用的驱动器EXB841,其内部电路能够很好地完成降栅以及软关断,并具有内部延迟功能,可以消除干扰产生的误动作。其工作原理如图4所示,含有IGBT过流信息的Vce不直接发送到EXB841 的集电极电压监视脚6,而是经快速恢复二极管VD1,通过比较器IC1输出接到EXB841的脚6,从而消除正向压降随电流不同而异的情况,采用阈值比较器,提高电流检测的准确性。假如发生了过流,驱动器:EXB841的低速切断电路会缓慢关断IGBT,从而避免集电极电流尖峰脉冲损坏IGBT器件。 为避免在使用中因非正常原因造成输出短路或过载,致使调整管流过很大的电流,使之损坏。故需有快速保护措施。过流保护电路有限流型和截流型两种。 限流型:当调整管的电流超过额定值时,对调整管的基极电流进行分流,使发射极电流不至于过大。图4-2为其简要电路图。图中R为一小电阻,用于检测负载电流。当IL不超过额定值时,T1、截止;当IL 超过额定值时,T'1导通,其集电极从T1的基极分流。从而实现对T1管的保护

直流电源过电压过流保护电路

直流电源过电压、欠电压及过流保护电路 该保护电路在直流电源输入电压大于30V或小于18V或负载电 流超过35A时,晶闸管都将被触发导 通,致使断路器QF跳闸。图中,YR 为断路器QF的脱扣线圈;KI为过电 流继电器。 带过流保护的电动自行车无级调速电路

图中,RC为补偿网络,以改善电动机的力矩特性。具体数值由实验决定。 电路如图16-91所示。它适用于电动自行车或电动三轮车。调节电位器RP,可改变由555 时基集成电路A组成的方波发生器的方波占空比,达到调速的目的。Rs是过电流取样电 阻,当电动机过载时,Rs上的压降增大,使三极管VTz导通,触发双向晶闸管V导通,分 流了部分负载,从而保护了功率管VTi。 过流保护用电子保险的制作电路图 本电路适用于直流供电过流保护,如各种电池供电的场合。 如果负载电流超过预设值,该电子保险将断开直流负载。重置电路时,只需把电源关掉,然后再接通。该电路有两个联接点(A、B标记),可以连接在负载的任意一边。 负载电流流过三极管T4、电阻R10和R11。A、B端的电压与负载电流成正比,大多数的电压分配在电阻上。当电源刚刚接通时,全部电源电压加在保险上。三极管T2由R4的电流导通,其集电极的电流值由下式确定:VD4=VR7+0.6。因为D4上的电压(VD4)和R7上的电压(VR7)是恒定的,所以T2的集电极电流也是恒定。该三极管提供稳定的基极电流给T3,因而使其导通,接着又提供稳定的基极电流给T4。保险导电,负载有电流流过。当电源刚接通时,电容器C1提供一段延时,从而避免T1导电和保持T2断开。

保险上的电压(VAB)通常小于2V,具体值取决于负载电流。当负载电流增大时,该电压升高,并且在二极管D4导通时,达到分流部分T2的基极电流,T2的集电极电流因而受到限制。由此,保险上的电压进一步增大,直到大约4.5V,齐纳二极管D1击穿,使T1导通,T2便截止,这使得T3和T4也截止,此时保险上的电压增大,并且产生正反馈,使这些三极管保持截止状态。 C1的作用是给出一段短时延迟,以便保险可以控制短时过载,如象白炽灯的开关电流,或直流电机的启动电流。因此,改变C1的值可以改变延迟时间的长短。该电路的电压范围是10~36V的直流电,延迟时间大约0.1秒。对于电路中给出的元件值,负载电流限制为1A。通过改变元件值,负载电流可以达到10mA~40A。选择合适额定值的元件,电路的工作电压可以达到6~500V。通过利用一个整流电桥(如下面的电源电路),该保险也可以用于交流电路。电容器C2提供保险端的瞬时电压保护。二极管D2避免当保险上的电压很低时,C1经过负载放电。 过压过流保护器电路图 当电源供给电压或负载吸取的电流太大时,下图电路可断开负载给出故障指示。 正常工作时,Tr1和Tr2均截止,555复位,555中的放电晶体管导通,它从Tr3基极吸取电流,使Tr3处开饱和,电源5~12V便直接送主负载。当负载吸取电流超过规定值时,Rsc上压降增加,使Tr1导通,555被触发,于是内部放电晶体管截止,跟着Tr3也截止,将电源与负载隔离,这时555处于单稳状态,单稳时间一到,只要负载过流现象不排除,555又重新触发,Tr3继续将负载隔离。

锂电池结构与原理

锂电池原理和结构 1、锂离子电池的结构与工作原理:所谓锂离子电池是指分别用二个能可逆地嵌入与脱嵌锂离子的化合物作为正负极构成的二次电池。人们将这种靠锂离子在正负极之间的转移来完成电池充放电工作的,独特机理的锂离子电池形象地称为“摇椅式电池”,俗称“锂电”。以LiCoO2为例:⑴电池充电时,锂离子从正极中脱嵌,在负极中嵌入,放电时反之。这就需要一个电极在组装前处于嵌锂状态,一般选择相对锂而言电位大于3V且在空气中稳定的嵌锂过渡金属氧化物做正极,如LiCoO 2、LiNiO2、LiMn2O4、LiFePO4。⑵为负极的材料则选择电位尽可能接近锂电位的可嵌入锂化合物,如各种碳材料包括天然石墨、合成石墨、碳纤维、中间相小球碳素等和金属氧化物,包括SnO、SnO2、锡复合氧化物SnBxPyOz(x=0.4~0.6,y=0.6~0.4,z=(2+3x+5y)/2)等。 2、电池一般包括:正极(positive)、负极(negative)、电解质(electrolyte)、隔膜(separator)、正极引线(positivelead)、负极引线(negativeplate)、中心端子、绝缘材料(insulator)、安全阀(safetyvent)、密封圈(gasket)、PTC(正温度控制端子)、电池壳。一般大家较关心正极、负极、电解质

锂电池的详细介绍 1、锂离子电池 锂离子电池目前由液态锂离子电池(LIB)和聚合物锂离子电池(PLB)两类。其中,液态锂离子电池是指Li +嵌入化合物为正、负极的二次电池。正极采用锂化合物L iC oO2或LiMn2O4,负极采用锂-碳层间化合物。锂离子电池由于工作电压高、体积小、质量轻、能量高、无记忆效应、无污染、自放电小、循环寿命长,是21世纪发展的理想能源。 2、锂离子电池发展简史 锂电池和锂离子电池是20世纪开发成功的新型高能电池。这种电池的负极是金属锂,正极用MnO2,SOCL2,(CFx)n等。70年代进入实用化。因其具有能量高、电池电压高、工作温度范围宽、贮存寿命长等优点,已广泛应用于军事和民用小型电器中,如移动电话、便携式计算机、摄像机、照相机等、部分代替了传统电池。 3、锂离子电池发展前景 锂离子电池以其特有的性能优势已在便携式电器如手提电脑、摄像机、移动通讯中得到普遍应用。目前开发的大容量锂离子电池已在电动汽车中开始试用,预计将成为21世纪电动汽车的主要动力电源之一,并将在人造卫星、航空航天和储能方面得到应用。 4、电池的基本性能 (1)电池的开路电压 (2)电池的内阻 (3)电池的工作电压 (4)充电电压 充电电压是指二次电池在充电时,外电源加在电池两端的电压。充电的基本方法有恒电流充电和恒电压充电。一般采用恒电流充电,其特点时在充电过程中充电电流恒定不变。随着充电的进行,活性物质被恢复,电极反应面积不断缩小,电机的极化逐渐增高。

限流和分压电路的选取(新)

图3 图 2 限流和分压电路的选取 在测量待测电阻以及电学实验的创新设计类问题中,常常涉及到滑动变阻器的分压式或限流式接法,这类问题常常困绕着老师们的教与学生们的学。笔者在此问题上有一点粗浅的认识,现提出来与同仁、专家们商榷。 一、两种接法 1、限流式 如图1所示的电流中变阻器起限流作用,待测电阻R x 的电压可调范围为εε~R R R x x +(电源内阻不计)。在合上开关前要使变阻器所使用的阻值最大,因此,在闭合开关s 前一定要检查滑动触头p 是否在B 端。 2、分压式 如图2所示的电路中变压器起分压作用,待测电阻R x 的电压可调范围为0~ε(电源内阻不计),显然比限流时电压调节范围大。在合上开关s 前滑动触头p 应在A 端,此时对R x 的输出电压为0,滑动触头p 向B 滑动过程,使待测电阻R x 的电压、电流从最小开始变化。 限流和分压电路的选取,总的来说,应从测量的要求和电路的调节两个方面考虑。 二、测量要求 若题目中明确要求电压从0开始测量,电路的连接一定用分压式。 例1:(1999广东卷)用图3中所给的实验器材测量一个“12V ,5W ”的小灯泡在不同电压下的功率,其中电流表有3A 、0.6A 两档,内阻可忽略,电压表有15V 、3V 两档,内阻很大。测量时要求加在灯泡两端的电压可连续地从0V 调到12V 。 ⑴按要求在实物图上连线(其中部分线路已连好)。 ⑵其次测量时电流表的指针位置如下图(b )所示,其读数为 A 5W ”的小灯泡其额定电流大约是I= 12 5<0.6A ,故安培表的量程分析:对于“12V 、应选0~0.6A 。根据测量要求,电压连续地从0V 调到12V ,应接成分压电路,而不应接限流电路。又因为电流表内阻可忽略,电压表内阻很大,对电路无影响,电流表内接或外接都可以。 4所示 ⑵0.36A (或0.360) 解法指导 实物连接图的画法,要先画出原理图,其中涉及的电学元件按实物图位置排放,便于实物连接。 图4 X R 图1

过流保护电路原理 过流保护电路图

過流保護電路原理過流保護電路圖 過流保護電路原理 本電路適用於直流供電過流保護,如各種電池供電的場合。 如果負載電流超過預設值,該電子保險將斷開直流負載。重置電路時,只需把電源關掉,然後再接通。該電路有兩個聯接點(A、B標記),可以連接在負載的任意一邊。

負載電流流過三極管T4、電阻R10和R11。A、B端的電壓與負載電流成正比,大多數的電壓分配在電阻上。當電源剛剛接通時,全部電源電壓加在保險上。三極管T2由R4的電流導通,其集電極的電流值由下式確定:VD4=VR7+0.6。因為D4上的電壓(VD4)和R7上的電壓(VR7)是恒定的,所以T2的集電極電流也是恒定。該三極管提供穩定的基極電流給T3,因而使其導通,接著又提供穩定的基極電流給T4。保險導電,負載有電流流過。當電源剛接通時,電容器C1提供一段延時,從而避免T1導電和保持T2斷開。 保險上的電壓(VAB)通常小於2V,具體值取決於負載電流。當負載電流增大時,該電壓升高,並且在二極體D4導通時,達到分流部分T2的基極電流,T2的集電極電流因而受到限制。由此,保險上的電壓進一步增大,直到大約4.5V,齊納二極體D1擊穿,使T1導通,T2便截止,這使得T3和T4也截止,此時保險上的電壓增大,並且產生正回饋,使這些三極管保持截止狀態。 C1的作用是給出一段短時延遲,以便保險可以控制短時超載,如象白熾燈的開關電流,或直流電機的啟動電流。因此,改變C1的值可以改變延遲時間的長短。該電路的電壓範圍是10~36V的直流電,延遲時間大約0.1秒。對於電路中給出的元件值,負載電流限制為1A。通過改變元件值,負載電流可以達到10mA~40A。選擇合適額定值的元件,電路的工作電壓可以達到6~500V。通過利用一個整流電橋(如下面的電源電路),該保險也可以用於交流電路。電容器C2提供保險端的暫態電壓保護。二極體D2避免當保險上的電壓很低時,C1經過負載放電。

简易锂电池保护IC 测试电路的设计

简易锂电池保护IC测试电路的设计 作者:中国地质大学蔡欢欢 由于锂电池的体积密度、能量密 度高,并有高达4.2V的单节电池 电压,因此在手机、PDA和数码相机等便携式电子产品中获得了广泛的应用。为了确保使用的安全性,锂电池在应用中必须有相应的电池管理电路来防止电池的过充电、过放电和过电流。锂电池保护IC超小的封装和很少的外部器件需求使它在单节锂电池保护电路的设计中被广泛采用。 然而,目前无论是正向(独立开发)还是反向(模仿开发)设计的国产锂电池保护IC由于技术、工艺的原因,实际参数通常都与标准参数有较大差别,在正向设计的IC中尤为突出,因此,测试锂电池保护IC的实际工作参数已经成为必要。目前市场上已经出现了专用的锂电池保护板测试仪,但价格普遍偏高,并且测试时必须先将IC焊接在电路板上。因此,本文中设计了一个简单的测试电路,借助普通的电子仪器就可以完成对锂电池保护IC的测试。 锂电池保护IC的工作原理 单节锂电池保护IC的应用电路很简单,只需外接2个电阻、2个电容和2个MOSFET,其典型应用电路如图1所示。 图1 锂电池保护IC的典型应用电路 锂电池保护IC测试电路设计

图2 锂电池保护IC测试电路 根据锂电池保护IC的工作原理设计的测试电路如图2所示,图3详细说明了图2中模块B 的电路。模块A在测试过流保护时为CS引脚提供电压,模拟图1中的CS引脚所探测到的电压。调整模块中的可变电位器可为CS引脚提供可变电源,控制其中的跳变开关可为CS 提供突变电压。模块B为电源,模拟为IC提供工作电压。调整电路中的可变电位器R7可为整个电路提供一个可变电压,在测试过充电保护电压和过放电保护电压时使用。控制模块中的开关S1的闭合为测试电路提供一个跳变电源,在测试IC的过充、过放和过流延迟时使用。跳线端口P1、P2在测试IC工作电流时使用,在测试其他参数时将开关S2导通即可。测试IC工作电流时,将电流表接在P1、P2上,将开关S2断开。模块C是用2个MOSFET 做成的微电流源,在测试OD、OC输出高、低电平时向该引脚吸、灌电流,只要MOSFET 选择恰当,可以满足测试需要。模块D是2片MOSFET集成芯片,相当于图1中的M1、M2,其中的两个端口在测试MOSFET漏电流时使用,在测试其他参数时要将这两个端口短接。模块E是一个IC插座,该插座用于放置待测IC,最多可以放置4片IC(测试时只能放一片IC),测试完以后可以将IC取出,不留任何痕迹,不影响IC的销售和再次测试。

锂电池保护电路

锂电池保护电路 锂电池过充电,过放电,过流及短路保护电路 下图为一个典型的锂离子电池保护电路原理图。该保护回路由两个 MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能. 锂电池保护工作原理: 1、正常状态 在正常状态下电路中N1的“CO”与“DO”脚都输出高电压,两个MOSFET都处于导通状态,电池可以自由地进行充电和放电,由于MOSFET的导通阻抗很小,通常小于30毫欧,因此其导通电阻对电路的性能影响很小。 此状态下保护电路的消耗电流为μA级,通常小于7μA。 2、过充电保护 锂离子电池要求的充电方式为恒流/恒压,在充电初期,为恒流充电,随着充电过程,电压会上升到4.2V(根据正极材料不同,有的电池要求恒压值为4.1V),转为恒压充电,直至电流越来越小。

电池在被充电过程中,如果充电器电路失去控制,会使电池电压超过4.2V后继续恒流充电,此时电池电压仍会继续上升,当电池电压被充电至超过4.3V时,电池的化学副反应将加剧,会导致电池损坏或出现安全问题。 在带有保护电路的电池中,当控制IC检测到电池电压达到4.28V(该值由控制IC决定,不同的IC有不同的值)时,其“CO”脚将由高电压转变为零电压,使V2由导通转为关断,从而切断了充电回路,使充电器无法再对电池进行充电,起到过充电保护作用。而此时由于V2自带的体二极管VD2的存在,电池可以通过该二极管对外部负载进行放电。 在控制IC检测到电池电压超过4.28V至发出关断V2信号之间,还有一段延时时间,该延时时间的长短由C3决定,通常设为1秒左右,以避免因干扰而造成误判断。 3、过放电保护 电池在对外部负载放电过程中,其电压会随着放电过程逐渐降低,当电池电压降至2.5V时,其容量已被完全放光,此时如果让电池继续对负载放电,将造成电池的永久性损坏。 在电池放电过程中,当控制IC检测到电池电压低于2.3V(该值由控制IC决定,不同的IC有不同的值)时,其“DO”脚将由高电压转变为零电压,使V1由导通转为关断,从而切断了放电回路,使电池无法再对负载进行放电,起到过放电保护作用。而此时由于V1自带的体二极管VD1的存在,充电器可以通过该二极管对电池进行充电。 由于在过放电保护状态下电池电压不能再降低,因此要求保护电路的消耗电流极小,此时控制IC会进入低功耗状态,整个保护电路耗电会小于0.1μA。

有自恢复功能的过流保护电路设计与制作

有自恢复功能的过流保护电路设计与制作 (姓名:黄丽琳) (学号:20101041101) 2012年12月28日

有自恢复功能的过流保护电路设计与制作 摘要:针对过流保护问题,提出了有自恢复功能的过流保护电路。文中给出了该过流保护电路的设计原理及电路工作原理的说明,并分析了其特点。 关键字:过流保护电路;自动恢复输出。 1引言 随着科学技术的发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源。电源的可靠性对于电子设备来说是非常重要的。电源常常因负载损坏而导致电源过流或短路,轻则烧毁保险管和直流稳压电路,重则因直流稳压电路损坏而导致较高的整流电压串入到负载上,把更多昂贵的电路模块烧毁[1-2]。因此,有必要设计更可靠、更安全的过流保护电路来避免更大的损失。本文针对过流保护问题,提出了有自恢复功能的过流保护电路。 2系统的功能描述 这款无电流取样的过流保护电路具有短路点撤除后能自动恢复输出的特点[3],保护时较工作时电流要小得多,即使长时间短路也不会损坏电源。 3 设计原理 3.1 电路工作原理说明: 电路正常时,T3饱和,T1工作在导通状态,所以T1的C、E两端电压较低,稳压管不能导通,故T2截止,电源输出正常。 当输出端由于某种原因过流或短路,使T1的C、E之间的压差大于稳压管和LED的导通值时,T2的基极有电流流过,T2由截止转为导通,T4导通,使T3、T1截止,电源无输出。LED是过流指示灯。T1截止后,R7对C1进行充电,为 T3的下次启动创造了条件。但短路点还没有撤除时,电流经R7、R4、T4流入地,故T1仍然截止,电路无输出。如果短路点此时撤除,从R7上流过的电流就流进T3的基极,T3导通,使T1正常闭合,电路输出恢复正常。根据具体需要,更换不同稳压值的DZ可获得不同的保护点。 3.2 电路元件 三极管:T1 TIP42C T2 9012 T3、T4 9014 二极管:发光二极管、稳压二极管 电阻:R1、R2 512 Ω R3 681 Ω R4 821 Ω R5、R7 103 Ω

锂电池保护电路原理分析

锂离子电池保护电路原理分析 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。 与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些

第二章 3 课时1 串联、并联电路 限流和分压电路(答案附后面)

3 电阻的串联、并联及其应用 课时1 串联、并联电路 限流和分压电路 一、串联电路和并联电路 1.串联电路:把几个导体或用电器依次首尾连接构成的电路,如图1甲所示. 2.并联电路:把几个导体或用电器并列地连接在一起构成的电路,如图乙所示. 二、电阻的串联和并联 1.串联电路的特点: (1)电流关系:I =I 1=I 2=I 3=…=I n ,串联电路各处的电流相等. (2)电压关系:U =U 1+U 2+U 3+…+U n ,串联电路两端的总电压等于各部分电路电压之和. (3)电阻关系:R =R 1+R 2+R 3+…+R n ,串联电路的总电阻等于各部分电路电阻之和. (4)电压分配规律:U R =U 1R 1=U 2R 2=…=U n R n ,串联电路中各电阻两端的电压跟它的电阻成正比. 2.并联电路的特点: (1)电流关系:I =I 1+I 2+I 3+…+I n ,并联电路的总电流等于各支路电流之和. (2)电压关系:U =U 1=U 2=U 3=…=U n ,并联电路的总电压与各支路电压相等. (3)电阻关系:1R =1R 1+1R 2+1R 3+…+1 R n ,并联电路的总电阻的倒数等于各部分电路电阻的倒 数之和. (4)电流分配规律关系:IR =I 1R 1=I 2R 2=…=I n R n =U ,并联电路中通过各支路电阻的电流跟它们的阻值成反比. 三、限流电路和分压电路 1.限流电路:如图2甲所示限流电路中,器件D(电阻为R )两端电压的变化范围是R R 0+R U ~ U . 图2 2.分压电路:如图乙所示分压电路中,器件D(电阻为R )两端电压的变化范围是 .

开关电源中几种过流保护方式的电路比较分析

找电源工作上----------------------------电源英才网 开关电源中几种过流保护方式的电路比较分析 引言 电源作为一切电子产品的供电设备,除了性能要满足供电产品的要求外,其自身的保护措施也非常重要,如过压、过流、过热保护等。一旦电子产品出现故障时,如电子产品输入侧短路或输出侧开路时,则电源必须关闭其输出电压,才能保护功率MOSFET和输出侧设备等不被烧毁,否则可能引起电子产品的进一步损坏,甚至引起操作人员的触电及火灾等现象,因此,开关电源的过流保护功能一定要完善。 1开关电源中常用的过流保护方式 过电流保护有多种形式,如图1所示,可分为额定电流下垂型,即フ字型;恒流型;恒功率型,多数为电流下垂型。过电流的设定值通常为额定电流的110%~130%。一般为自动恢复型。 图1中①表示电流下垂型,②表示恒流型,③表示恒功率型。 图1过电流保护特性 1.1用于变压器初级直接驱动电路中的限流电路 在变压器初级直接驱动的电路(如单端正激式变换器或反激式变换器)的设计中,实现限流是比较容易的。图2是在这样的电路中实现限流的两种方法。 图2电路可用于单端正激式变换器和反激式变换器。图2(a)与图2(b)中在MOSFET的源极均串入一个限流电阻Rsc,在图2(a)中,Rsc提供一个电压降驱动晶体管S2导通,在图2(b)中跨接在Rsc上的限流电压比较器,当产生过流时,可以把驱动电流脉冲短路,起到保护作用。 图2(a)与图2(b)相比,图2(b)保护电路反应速度更快及准确。首先,它把比较放大器的限流驱动的门槛电压预置在一个比晶体管的门槛电压Vbe更精确的范围内;第二,它把所预置的门槛电压取得足够小,其典型值只有100mV~200mV,因此,可以把限流取样

电池保护板工作原来

锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1) 封装 2) 过充电压 3) 过充释放电压 4) 过放电压 5) 过放释放电压 6) 耐压 (2) MOSFET主要参数 1) N沟、P沟 2) 内阻 3) 封装(TSSOP8 <简称薄片> 、SOP8<简称厚片>、SOT23-6等) 4) 耐电流 5) 耐电压 6) 内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以D W01 配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使

电池保护电路工作原理

电池保护电路工作原理 随着科技进步与社会发展,象手机、笔记本电脑、MP3播放器、PDA、掌上游戏机、数码摄像机等便携式设备已越来越普及,这类产品中有许多是采用锂离子电池供电,而由于锂离子电池的特性与其它可充电电池不同,内部通常都带有一块电路板,不少人对该电路的作用不了解,本文将对锂离子电池的特点及其保护电路工作原理进行阐述。 锂电池分为一次电池和二次电池两类,目前在部分耗电量较低的便携式电子产品中主要使用不可充电的一次锂电池,而在笔记本电脑、手机、PDA、数码相机等耗电量较大的电子产品中则使用可充电的二次电池,即锂离子电池。与镍镉和镍氢电池相比,锂离子电池具备以下几个优点: 1.电压高,单节锂离子电池的电压可达到3.6V,远高于镍镉和镍氢电池的1.2V 电压。 2.容量密度大,其容量密度是镍氢电池或镍镉电池的1.5-2.5 倍。 3.荷电保持能力强(即自放电小),在放置很长时间后其容量损失也很小。 4.寿命长,正常使用其循环寿命可达到500 次以上。 5.没有记忆效应,在充电前不必将剩余电量放空,使用方便。 由于锂离子电池的化学特性,在正常使用过程中,其内部进行电能与化学能相互转化的化学正反应,但在某些条件下,如对其过充电、过放电和过电流将会导致电池内部发生化学副反应,该副反应加剧后,会严重影响电池的性能与使用寿命,并可能产生大量气体,使电池内部压力迅速增大后爆炸而导致安全问题,因此所有的锂离子电池都需要一个保护电路,用于对电池的充、放电状态进行有效监测,并在某些条件下关断充、放电回路以防止对电池发生损害。 下页中的电路图为一个典型的锂离子电池保护电路原理图。 如图中所示,该保护回路由两个MOSFET(V1、V2)和一个控制IC(N1)外加一些阻容元件构成。控制IC负责监测电池电压与回路电流,并控制两个MOSFET的栅极,MOSFET在电路中起开关作用,分别控制着充电回路与放电回路的导通与关断,C3为延时电容,该电路具有过充电保护、过放电保护、过电流保护与短路保护功能,其工作原理分析如下: 1、正常状态

高二物理限流电路和分压电路(完整资料)

图3 限流电路和分压电路 1. 限流和分压接法的比较 (1)限流电路:如图2所示,实际上滑动变阻器的右边部分并没 有电流流过。该电路的特点是:在电源电压不变的情况下,R 用两端的 电压调节范围:U ≥U 用≥UR 用/(R 0+R 用),电流调节范围:U /R 用≥I 用 ≥U /(R 0+R 用 )。即电压和电流不能调至零,因此调节范围较小。要使 限流电路的电压和电流调节范围变大,可适当增大R 0。另外,使用该电 路时,在接通电前,R 0 应调到最大。 (2)分压电路:如图3所示,实质上滑动变阻器的左边部分与R 用并联后再与滑动变阻器的右边串联。注意滑动变阻器的两端都有电流流 过,且不相同。该电路的特点是:在电源电压不变的情况下,R 用两端 的电压调节范围为U ≥U 用≥0,即电压可调到零,电压调节范围大。电 流调节范围为E /R 用≥I 用≥0。 使用分压电路,在当R 0

过流保护电路!

过1流1保护电路 过流保护用PTC热敏电阻是一种对异常温度及异常电流自动保护、自动恢复的保护元件,俗称"自复保险丝""万次保险丝"。它取代传统的保险丝,可广泛用于马达、变压器、开关电源、电子线路等的过流过热保护,过流保护用PTC热敏电阻通过其阻值突变限制整个线路中的消耗来减少残余电流值。传统的保险丝在线路熔断后无法自行恢复,而过流保护用PTC热敏电阻在故障撤除后即可恢复到预保护状态,当再次出现故障时又可以实现其过流过热保护功能。 2.20.1 原理电路 当电路处于正常状态时,通过过流保护用PTC热敏电阻的电流小于额定电流,过流保护用PTC热敏电阻处于常态,阻值很小,不会影响被保护电路的正常工作。当电路出现故障,电流大大超过额定电流时,过流保护用PTC热敏电阻陡然发热,呈高阻态,使电路处于相对"断开"状态,从而保护电路不受破坏。当故障排除后,过流保护用PTC热敏电阻亦自动回复至低阻态,电路恢复正常工作。 javascript:resizepic(this) border=0>

图2.20.1 过流保护电路 2.20.2 主要元器件选择 1.最大工作电压 PTC热敏电阻器串联在电路中,正常工作时仅有一小部分电压保持在PTC热敏电阻器上,当PTC热敏电阻器启动呈高阻态时,必须承受几乎全部的电源电压,因此选择PTC 热敏电阻器时,要有足够高的最大工作电压,同时还要考虑到电源电压可能产生的波动。 2.不动作电流和动作电流 为得到可靠的开关功能,动作电流至少要超过不动作电流的两倍。 由于环境温度对不动作电流和动作电流的影响极大(见图2.20.2),因此要把最坏的情况考虑进去,对不动作电流来说,选应用在允许的最高环境温度时的值,对动作电流来说,选应用在较低环境温度下的值。 图2.20.2 环境温度对不动作电流和动作电流的影响

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

分压与限流地的研究实验报告材料

分压与限流的研究实验报告 【实验目的】 1.熟悉分压电路和限流电流,并比较分压电路和限流电路的性能; 2.研究滑线变阻器的有关参数; 【实验原理】 (1) 1.分压电路 如图(1)所示,滑动触头P 从a 移动到b ,电阻箱的电阻为R ,由于调解滑动变阻器,电路中总电阻发生变化,使电阻箱R 的电压也发生变化,即电压表的示数有变化,设电路的电源电动势为E ,忽略电源的内阻,由欧姆定律可得出变阻器两端的电压的计算公式,推导过程如下: 电路中总电阻为: 21 1R R R RR R ++=总 (1) 根据欧姆定律得电路中总电流为: 21 1R R R RR E R E I ++==总 (2)

所以在此根据欧姆定律得出电阻箱的电压为: 2 121111)(R R R R R ERR R R RR I U ++=+?= (3) 又因为滑动变阻器的最大电阻为210R R R += 带入(3)式,并化简可得: 2 10101R RR R R ERR U -+= (4) 设0R R X = 01R R Y = (5) 联立(4)、(5),消去R ,1R ,可得: 2Y Y X XYE U -+= (6) 所以: 2 Y Y X XY E U -+= (7) 由式(7)可知,当X 一定时,E U 与Y 值存在一定的函数关系,可以多测几组数据,得出函数图像,分析分压电路的性能。 2. 限流电路 如图2所示,滑动触头P 移动到a ,负载电阻R 上的电压最大,为电源电压E ,相应的电流此时也是最大的,由欧姆定律可得此时电路中的最大电流为: R E I =max (8) 在滑动触头不在a 或者b 位置时,电路中的电流大小为: 1 R R E I += (9) 联立式(5)、(8)、(9),消去E ,R ,1R ,并化简整理可得: Y X X I I +=max (10)

相关文档
最新文档