侧扫声呐原理及识图

侧扫声呐原理及识图
侧扫声呐原理及识图

侧扫声呐

基本原理及识图

目录

1.侧扫声呐基本原理和概念 (1)

1.1.侧扫声呐 (1)

1.2.侧扫声呐相关概念 (1)

2.侧扫声呐主要参数指标概念 (1)

2.1.侧扫声呐 (1)

2.2.侧扫声呐测量 (2)

2.3.水平波束角 (2)

2.4.垂直波束角 (2)

2.5.纵向分辨率 (2)

2.6.横向分辨率 (2)

2.7.最大斜距 (2)

2.8.声源级 (2)

2.9.增益 (3)

https://www.360docs.net/doc/7c6104391.html,G (3)

2.11.扩展损失 (3)

2.12.吸收损失 (3)

3.侧扫声呐重点指标及特性 (3)

3.1.波束角 (3)

3.2.脉冲长度 (4)

3.3.距离相关术语 (4)

3.4.侧扫声呐图像 (5)

3.5.基本识图 (7)

4.实例识图 (9)

4.1.水下地貌 (9)

4.1.1.沙纹 (9)

4.1.2.海底基岩、岩石 (11)

4.1.3.锚沟 (13)

4.1.4.珊瑚礁 (15)

4.2.水下目标 (16)

4.2.1.桥墩 (16)

4.2.2.锚绳 (16)

4.2.3.三脚架 (17)

4.2.4.脚手架 (17)

4.2.5.铺排 (18)

4.2.6.沉船 (19)

4.2.7.抛石 (21)

4.2.8.人工鱼礁 (23)

4.2.9.管线 (24)

4.2.10.轮胎 (26)

4.2.11.人体 (27)

4.2.12.水下桩体 (28)

4.2.13.飞机残骸 (29)

4.2.14.自行车 (31)

1.侧扫声呐基本原理和概念

1.1.侧扫声呐

侧扫声呐是通过向侧方发射声波来探知水体、海面、海底(包括上部地层)声学结构和物质性质的仪器设备。

如上图,黄色圆圈位置代表侧扫声呐设备,它在向一侧发生声波后,不管是水面、水中的物体还是水底的地物都会将声波返回并接收和探测到。

1.2.侧扫声呐相关概念

2.侧扫声呐主要参数指标概念

2.1.侧扫声呐

采用声学换能器发射与航向正交的声波,对海底或水底进行扫描,接收海底回波信号,获得海底声学影像的一种主动声呐。

2.2.侧扫声呐测量

利用侧扫声呐对水底或海底进行扫描,搜寻障碍物或获得海底声学影像数据记录的一种测量方法。

2.3.水平波束角

沿水平航迹方向,侧扫声呐换能器在-3dB波束宽度下声波波束的张角。与纵向分辨率有关,水平波束角越小,则纵向分辨率越高。

2.4.垂直波束角

垂直航迹方向,侧扫声呐换能器在-3dB波束宽度下声波波束的张角。

2.5.纵向分辨率

纵向分辨率即为沿航迹向分辨率,纵向分辨率的大小取决于声呐的水平波束宽度(水平波束角)。

2.6.横向分辨率

横向分辨率即为垂直航迹向分辨率,声呐的横向分辨率一般与声呐的工作频率和数据采样率有一定的关系。一般而言,频率越高,横向距离分辨率越高,声呐采样率越高,有效的探测分辨率越高。

2.7.最大斜距

最大斜距一般值声呐的最大有效探测距离,最大斜距一般和声呐的工作频率有关,频率越低,探测距离越大,频率越高,探测距离越小。

2.8.声源级

在换能器声轴上,距有效声中心1m处的最大均方根声压级,参考声压为1μPa,在远场测量时,其值用dB表示;

教你学会看手机电路图轻松修手机

第一篇、教你学会看电路图轻松修手机 一、一套完整的主板电路图,是由主板原理图和主板元件位置图组成的。 1.主板原理图,如图: 2.主板元件位置图,如图:

主板元件位置图的作用:是方便用户找到相应元件所在主板的正确位置。而主板原理图是让用户对主板的电路原理有所了解,知道各个芯片的功能,及其线路的连接。 二、相关名词解释 电路图中会涉及到许多英文标识,这些标识主要起到了辅助解图的作用,如果不了解它们,根本不知道他们的作用,也就根本不可能看得懂原理图。所以在这里我们会将主要的英文标识进行解释。希望大家能够背熟记熟,同时希望大家多看电路图,对不懂的英文及时查找记熟。 如图:

以上英文标识在电路图上会灵活出现,比如“扬声器”是“SPEAKER” ,它的缩写就是“SPK”,“正极”是“positive” ,缩写是“P” ,那么如果在图中标记SPKP,那么就证明它是扬声器正极。所以当有英文不明白的时候,可以将它们拆开后再进行理解,请大家灵活运用。

第二节主板元件位置图 一、元件编号 每一个元件在主板元件位置图中,都有一个唯一的编号。这个编号由英文字母和数字共同组成。编号规则可以分成以下几类: 芯片类:以U 为开头,如CPU U101 接口类:以J 为开头,如键盘接口J1202 三极管类:以Q 为开头,如三极管Q1206 二级管类:以D 为开头,如二极管D1102 晶振类:以X 为开头,如26M 晶体X901 电阻类:以R 或VR(压敏电阻)为开头,如电阻R32 VR211 电容类:以C 为开头,如电容C101 电感类:以L 为开头,如电感L1104 侧键类:以S 为开头,如侧键S1201 电池类:以 B 为开头,如备用电池B201 屏蔽罩:以SH 为开头,如屏蔽罩SH1 振动器:以M 为开头,如振子M201 还有一部分标号是主板上的测试点,以TP 为开头。 二、查找元件功能 用户可以根据相应的元件编号去查找主板原理图,从而了解此元件的作用。随便拿块主板作为示例。 如果想了解某一个元件的主要功能(图中红圈内元件) 如图:

侧扫声呐概述

侧扫声呐概述 侧扫声呐是由Side-Scan Sonar一词意译而来,国内也叫旁扫声呐、旁视声呐。国外从五十年代起开始应用,到七十年代已在海洋开发等方面得到了广泛的使用,我国从七十年代开始组织研制侧扫声呐,经历了单侧悬挂式、双侧单频拖曳式、双侧双频拖曳式等发展过程。由中科院声学所研制并定型生产的CS-1型侧扫声呐,其主要性能指标已达到了世界先进水平。 侧扫声呐有许多种类型,根据发射频率的不同,可以分为高频、中频和低频侧扫声呐;根据发射信号形式的不同,可以分为CW脉冲和调频脉冲侧扫声呐;另外,还可以划分为舷挂式和拖曳式侧扫声呐,单频和双频侧扫声呐,单波束和多波束等。 波束平面垂直于航行方向,沿航线方向束宽很窄,开角一般小于2?,以保证有较高分辨率;垂直于航线方向的束宽较宽,开角约为20?,60?,以保证一定的扫描宽度。工作时发射出的声波投射在海底的区域呈长条形,换能器阵接收来自照射区各点的反向散射信号,经放大、处理和记录,在记录条纸上显示出海底的图像。回波信号较强的目标图像较黑,声波照射不到的影区图像色调很淡,根据影区的长度可以估算目标的高度。 侧扫声呐的工作频率通常为几十千赫到几百千赫,声脉冲持续时间小于1毫秒,仪器的作用距离一般为300,600米,拖曳体的工作航速3,6节,最高可达16节。侧扫声呐近程探测时仪器的分辨率很高,能发现150米远处直径 5厘米的电缆。用于深海地质调查的远程侧扫声呐工作频率为数千赫,探测距离超过20公里。进行快速大面积测量时,仪器使用微处理机对声速、斜距、拖曳体距海底高度等参数进行校正,得到无畸变的图象,拼接后可绘制出准确的海底地形图。从侧扫

Edgetech 4200FS 侧扫声呐简明操作手册

Edgetech 4200FS 侧扫声纳 简明操作手册 美国劳雷工业有限公司 2005,6

Edgetech 4200FS 侧扫声呐简明操作手册 一、系统组成 Edgetech 4200FS 测扫声呐系统由以下部分组成: 1.4200FS 拖鱼 2.4200FS甲板处理器 3.拖缆及磁力仪拖曳电缆 4.G882磁力探头 4200FS甲板处理器 4200FS拖鱼

4200FS拖鱼和G882磁力仪

二、Edgetech 4200FS测扫声呐系统操作步骤 (一)系统连接及启动 1.打开包装箱,取出甲板单元处理器及显示器,将处理器及显示器安放在平稳的地方; 2.连接处理器、显示器、轨迹球(鼠标)、键盘; 3.打开4200FS拖鱼包装箱,将拖鱼轻轻放在垫有塑料泡沫的平地上; 4.取出拖鱼的两片尾翼(共有4片,2片为备用),呈十字交叉互相插入;用厂家提供的内六角螺丝起子松开4200FS拖鱼尾部的尾翼固定螺丝,将呈十字交叉的2片尾翼插入拖鱼尾部的十字槽中,尾翼到位后,将固定螺丝拧紧,注意不要死拧,感觉一般拉力不会使尾翼脱落就行了。这样,当尾翼在拖曳中被渔网等海底鄣碍物挂住时,尾翼会脱落从而保证拖鱼能安全拉出水面。 5.将拖缆的航空插头端插入甲板处理器后面的Sea Cable接头(见下图)。

6.将拖缆的另一端插入拖鱼的防水接头中。如果侧扫声呐和磁力仪要同时拖曳使用,应使用带“Y ”型接头的拖缆。“Y ”型缆的一端(6针脚)插入4200FS 拖鱼中,另一端(8针脚)插入磁力仪的9m 拖缆中,磁力仪9m 缆的另一端插入G882磁力仪的防水接头中(见上图)。 7.用卸扣将主拖缆的承重扣和拖鱼的拖曳孔相连,若磁力仪和侧扫同时使用,则将磁力仪的9m 缆的拖曳终端固定在4200FS 拖鱼的拖把中(见下图)。 6针脚插头 8针脚插头

侧扫声纳在海域使用动态监测中的应用

侧扫声纳在海域使用动态监测中的应用 杨仁辉 (中交广州航道局有限公司,广州,510220) 内容摘要:侧扫声纳为海域使用动态监测提供水域面皆界址,在实施过程中有两个方面的重点,一是判别水域界限边界,二是确定边界地理坐标位置。根据动态监测的技术特点,细致安排测量方案,灵活改变测量方式,获得高清晰度和分辨率的水下图像。往复测量数据比对,获得平均坐标值,并与RTK坐标数据比对,其坐标误差范围完全满足规范要求。 关键词:动态监测;侧扫声纳;旁挂式;中误差 1前言 近年国家加强了对工程建设中海域使用的监测力度,改变了以往只在工程竣工时进行面积界址界定的做法,实行了海域使用的动态监测做法。根据《南海区填海项目海域使用与海洋环境动态监测技术大纲》的要求,对审批的工程项目填海海域使用区向海外扩100m的范围进行海域使用范围动态监测。这样做的目的是为了更好地动态掌握工程项目建设期间填海的实际界址及面积,防止超填、越界围填等非法用海行为的发生,为海洋行政主管部门在该项目海域使用填海竣工验收时提供项目施工期间、施工后(竣工验收前)填海用海区状态的科学依据。

海域使用动态监测过程中陆域部分使用全站仪、RTK等设备进行测量,水域部分是使用测深仪进行水深测量,绘制水下地形图,使用侧扫声纳进行声纳扫测,获得水下地貌图,根据水深变化和水下地貌特征界定实际使用面积界址。而水域部分是海域使用面积组成中最重要的部分,是界定海域使用合法性的关键,由此可见侧扫声纳的使用在海域使用动态监测中有着非常重要的作用。 2侧扫声纳的工作原理 侧扫声纳是由side scan sonar一词意译而来,是利用回声测深原理探测海底地貌和水下物体的设备,又称旁侧声呐或地貌仪。声呐向水中发射声波,通过接收水下物体反射回波发现目标,并测量其参量。目标距离可通过发射脉冲和回波到达时间差估计。一般情况下,硬的、粗糙的、凸起的海底回波强;软的、平滑的、凹陷的海底回波弱,被遮挡的海底产生回波,距离越远回波越弱[1]。利用接收机和计算机对脉冲信号进行处理,最终变成数学参量显示在屏幕上,每一次发射的回波数据显示在屏幕的一条横线上,每一点显示的位置和回波到达的时刻对应,每一点的亮度和回波幅度有关。将每一发射周期的接收数据按线形纵向排列,就构成了二维海底地貌声像图[2]。

XTF格式侧扫声呐数据格式解析

本文简介:本文首先对侧扫声呐作了简单介绍,详细可参考https://www.360docs.net/doc/7c6104391.html,/publish/portal7/tab675/info4827.htm,其次对XTF格式进行详细说明,主要参照Xtf File Format_X37.pdf文档,并贴出自己所用xtf数据画的海底地貌图。 一、侧扫声呐介绍 侧扫声纳左右各安装一条换能器线阵,首先发射一个短促的声脉冲,声波按球面波方式向外传播,碰到海底或水中物体会产生散射,其中的反向散射波(也叫回波)会按原传播路线返回换能器被换能器接收,经换能器转换成一系列电脉冲。 一般情况下,硬的、粗糙的、凸起的海底,回波强;软的、平滑的、凹陷的海底回波弱,被遮挡的海底不产生回波,距离越远回波越弱。 利用接收机和计算机对这一脉冲串进行处理,最后变成数字量,并显示在显示器上,每一次发射的回波数据显示在显示器的一横线上,每一点显示的位置和回波到达的时刻对应,每一点的亮度和回波幅度有关。下图是自己所用xtf数据中某一ping的回波强度图。 图1. 某一ping回波强度图 将每一发射周期的接收数据一线接一线地纵向排列,显示在显示器上,就构成了二维海底地貌声图。声图平面和海底平面成逐点映射关系,声图的亮度包涵了海底的特征。下图是自己所用xtf数据最终生成的海底地貌图。

图2. 海底地貌图 得到海底地貌图之后,还可以对它进行各种图像处理,包括图像锐化、浮雕功能、伪彩色处理等。 二、XTF格式解读 侧扫声纳数据的处理是获得海底信息的重要步骤,格式转换是数据处理的基础。现有的声纳数据主要有Qmips和XTF两种文件格式,二者均为二进制格式存储。本文所研究的数据格式是XTF格式。 XTF文件格式是一种可扩展的数据格式,它的伸缩性和可扩展性很强,可保存声纳、航行、遥测、测深等多种类型的信息。它可以很容易地扩展成将来所遇到的不同数据类型。每个文件都包括不同的数据包,根据数据包的标识信息识别数据包的类型。这样可以仅读取所需要的可认识数据包,而跳过其它不需要或不认识的数据包。 1.XTF文件格式: 其中,XTF文件格式数据包主要有声纳、测深、姿态和注释四种类型。 1.1 xtf头文件 头文件数据存储在XTFFILEHEADER结构体中,该结构体中包含六条信道空间,信道数据存储在CHANINFO结构体中。XTFFILEHEADER结构体包含了该款侧扫声呐的一些基本信息,包括侧扫声呐名称、类型,记录软件的名称、版本,声呐的通道数,当前坐标等等。 下图是我的xtf数据所读到的头文件部分信息:

侧扫声纳使用操作规定

侧扫声纳使用安全操作规程 1.日常维护 1.1 作为一种精密的测量仪器,磁力仪应该放在干燥阴凉的仪器房内,以确保仪器的电子不受潮。 1.2 仪器通电前注意电源电压,保证电源电压的正常。 1.3 仪器下水前注意检查各接头的连接,特别是水下探头接头要严格密封。一定要注意连接在绞车上的接头,防止接头被绞车擦坏,收放电缆时务必断开仪器电源。 2.扫测准备 2.1 搜集有关资料。扫测海区的水深和地貌,障碍物,潮流的流速和流向扫测期间的气象,扫测船吃水深度,扫测船最低速度等。 2.2 设计扫测方案。依据测区环境和扫测要求确定扫测方法、重叠带宽度、分辨率、船速、拖鱼高度及拖缆长度等;设计测线布设方向和间距;拟订扫测实施要求, 资料整理要求。 2.3 检查系统的完整性;在陆上进行电测试,确定各分机的工作是否正常;检查水密部件,确保不漏水;保证侧扫声纳处于正常工作状态。 2.3 扫测实施前应进行静态和动态试验。静态试验要求声图灰度适中且均匀,声图清晰而无噪声图象。动态试验要求扫测船以设计方案实施扫测,检查试验设计各参 数是否符合实际情况,调试施测参数,使声图灰度适中,海底地貌轮廓清晰。系 统状态符合技术指标要求方可实施扫测。 3.扫测实施 3.1 扫测实施方法有两种:粗扫测和精扫测。对大面积扫测海区,应先进行粗扫测,当发现可疑目标时,再进行精扫测。精扫测证实目标存在,并可疑在声图上分辨 目标类型和性质,位置和高度,最后应用测深仪加密探测,或潜水员下潜作业, 以得到更精确的目标信息。 3.1.1 扫要求全覆盖扫测海区。扫测趟的取向应一致,而且要相互平行;扫测趟的有 效作用距离应有重叠带,不能在相邻产生遗漏区域。当探测海底微地貌时,相 邻扫测趟可采用2倍有效作用距离,而无需设计重叠带。 3.1.2 精扫测应根据粗扫测声图上目标图象确定其位置,高度,并确定扫测频率,发 射脉宽,有效作用距离,扫测船船速,拖鱼入水深度,再进行扫测。精扫测取 向应尽量平行于目标走向,或于目标走向的舷角小于30或大于150。有效作用 距离应依据目标图象能反映在声图的单侧中间部分最佳。 3.2 扫测实施应遵循下列要求: 3.2.1 扫测实施过程不得对设计确定的数据随意变动;仅当水深变化时,可以及时调 整拖鱼入水深度。 3.2.2 经常检查船速,使之保持在设计船速之内。当水深、流速和风速变化时,可以 改变扫测船船速,但不得大于设计船速。 3.2.3 脱羽电缆长度大于扫测区水深时,在换扫测趟或转向时,应使用小舵角大旋徊 圈,根据扫测船旋徊半径大小来选择合适的扫测趟,继续进行扫测。 3.2.4 扫测船应保持航向和航速稳定,不得使用大舵角修正航向,风流压角不得大于 3°。

手机电路原理,通俗易懂

第二部分原理篇 第一章手机的功能电路 ETACS、GSM蜂窝手机是一个工作在双工状态下的收发信机。一部移动电话包括无线接收机(Receiver)、发射机(Transmitter)、控制模块(Controller)及人机界面部分(Interface)和电源(Power Supply)。 数字手机从电路可分为,射频与逻辑音频电路两大部分。其中射频电路包含从天线到接收机的解调输出,与发射的I/Q调制到功率放大器输出的电路;逻辑音频包含从接收解调到,接收音频输出、发射话音拾取(送话器电路)到发射I/Q调制器及逻辑电路部分的中央处理单元、数字语音处理及各种存储器电路等。见图1-1所示 从印刷电路板的结构一般分为:逻辑系统、射频系统、电源系统,3个部分。在手机中,这3个部分相互配合,在逻辑控制系统统一指挥下,完成手机的各项功能。 图1-1手机的结构框图 注:双频手机的电路通常是增加一些DCS1800的电路,但其中相当一部分电路是DCS 与GSM通道公用的。 第二章射频系统 射频系统由射频接收和射频发射两部分组成。射频接收电路完成接收信号的滤波、信号放大、解调等功能;射频发射电路主要完成语音基带信号的调制、变频、功率放大等功能。手机要得到GSM系统的服务,首先必须有信号强度指示,能够进入GSM网络。手机电路中不管是射频接收系统还是射频发射系统出现故障,都能导致手机不能进入GSM网络。 对于目前市场上爱立信、三星系列的手机,当射频接收系统没有故障但射频发射系统有故障时,手机有信号强度值指示但不能入网;对于摩托罗拉、诺基亚等其他系列的手机,不管哪一部分有故障均不能入网,也没有信号强度值指示。当用手动搜索网络的方式搜索网络时,如能搜索到网络,说明射频接收部分是正常的;如果不能搜索到网络,首先可以确定射频接收部分有故障。 而射频电路则包含接收机射频处理、发射机射频处理和频率合成单元。 第一节接收机的电路结构 移动通信设备常采用超外差变频接收机,这是因为天线感应接收到的信号十分微弱,而鉴频器要求的输人信号电平较高,且需稳定。放大器的总增益一般需在120dB以上,这么大的放大量,要用多级调谐放大器且要稳定,实际上是很难办得到的,另外高频选频放大器的通带宽度太宽,当频率改变时,多级放大器的所有调谐回路必须跟着改变,而且要做到统一调谐,

手机常用的充电控制原理电路图

上图1是三星手机中比较常用的充电控制原理电路图: 根据电路原理分析,可能存在的故障现象有: 1、电池电量不显示或显示电量不准确:R510、R512阻值发生变化,C504轻微漏电; 2、自动充电或不会提示充电结束:END-OF-CHG控制信号异常,R511电阻异常,U502损坏; 3、不能充电:U502输入充电电压异常,TA502坏,U502损坏; 4、充不进电(有提示充电中,但充不进电量):U502损坏,R514或R515阻值异常, 5、USB不能充电:U502#2输入电压不正常(正常应为5V),主要是由U502损坏造成 6、电池电量正常也会提示低电报警:R510、R512阻值发生变化 7、加电池按开机键后提示充电中并不能开机:AUX-ON控制信号异常,U502或电源IC损坏; 8、电量充不满:R510、R512阻值发生变化,C504轻微漏电; 9、加电开机后显示“请充电”,几秒后手机便自动关机:R510到电池正极断线 具体实例分析: 1、C208手机进水充不进电 处理方法:插上充电器显示充电,但是充不进电,此故障应该是充电电路问题,清洗后发现充电电路R116(10K)腐蚀断裂,更换R116后测试故障排除。 图2

2、C218手机不充电(无充电电流) 处理方法:拆机后发现卡座下面一个黄电容(C324)有点变色,更换C324后无效。用万用表测ZD703开路,更换ZD703后故障有所改善(显示充电,但是充不进电)。分析原因应是CPU检测到充电信号,但是 充电IC没有完成充电电路中供电输出信号,更换充电IC(U301)后故障排除。 图3 3、D508手机装电池显示自动充电状态 处理方法:因为手机CPU检测到充电信号导致,先检查尾插正常,装电池测充电IC(U503)#7电压为低电平(正常2.6V左右)。查找电路图,发现U503#7与Q500相连,拆除Q500测量电压正 常,更换Q500故障排除。D508手机装电池显示自动充电的比较常见,有部份是充电IC或尾插 损坏导致,部分是由于Q500导致,但有部分Q500本身没有坏,但摘除Q500也可以解决。 图4 4、E738手机装电池按开机键即显示充电状态,不开机 处理方法:因为手机CPU检测到充电信号导致,先检查尾插正常,装电池测充电IC(U502)#3电压为低电平(正常2.6V左右)。查找电路图,发现U502#3与电源IC(U400)#1相连,更换电源IC后故障排除。(原理分析参照图1) 5、E368手机充电时会提示"USB不能充电" 处理方法:插入充电器,测量U502#2(USB充电输入)有2.2V(正常为0V,只有采用USB充电时才会有5.0V输入),测U502#1与#2阻值偏低,更换充电控制管U502后故障排除。(原理分析参照图1)

Blueprint Subsea侧扫声呐中文

所有的系统都是专为个人部署和浅水勘测所设计,测量深度可达30m(100英尺),这使得它们适用于港口港湾勘测和安全工作,包括河流、运河、湖泊等内陆水质检测,探测沉船的位置以及搜寻复原任务。 海远程地区。 StarFish系统被设计为“即插即用”,通过机顶盒上的USB接口连接到您的PC /笔记本电脑。机顶盒使得声呐的电源可以由来自交流电源(市电电源)或直流电源(蓄电池,发电组)提供,并且每一个系统均有多个适配器电缆提供,使其可以直接应用现有的电源条件。 专为Windows操作系统所设计的StarFish扫描软件非常直观,具有易于使用的用户界面。通过帮助向导开始,你很快就可以上手运行。 一架双引擎霍克斯利飞机残骸,沉没在15米深。 芬兰海湾深度为33米的蒸汽轮船-由Ari Kapenen提供 混凝土排放在海港泊位-由Marek Szatan,Hydrograf提供 在10米处潜水员和救援假人 澳大利亚Blackwall Reach河上的货运 驳船和划艇—由Jesse Rodocker提供 StarFish是使用最新的声学技术和信号处理技术的侧扫声呐系统,性价比高,能带来高质量的水下图像。 StarFish拖曳系统易于携带,每个声呐小于15 英寸长。 这使它们能够在需要的时候共享用户组和水上船只之间的信息,尤其是在其他侧扫系统难以执行的浅

声呐 StarFish 990F StarFish 452F StarFish 450F StarFish 450H StarFish 453OEM BP00181 BP00184 BP00017 BP00090(20m) or BP00066 (5m) BP00755 StarFish的选择 高清晰度系统,结合了1MHz的无线信号与0.3°水平波束宽度,适用于搜索和救援的应用。450kHz无线信号操作与0.8°水平波束宽度,高达200米的宽度范围。适用于调查应用。入门级的声纳系统,结合450kHz无线信号操作与1.7°水 450F系统的船载版本,适合小型近海船艇在浅水中操作。 StarFish 452应用在ROV/AUV的OEM集成性版本,降低了水平波束宽度(0.5°)来改善图像质量。技术参数

怎样看手机电路图

一,手机原理图的种类: 手机电路图共分四类:1,方框图;2,整机电原理图;3,元件排列图;4,彩图。 1,方框图: 利用方块形式粗略概述手机的结构与工作原理,方便初学者掌握手机的结构与工作原理,为初学者读懂电原理图打下基础。 2,整机电原理图: 利用电子原件符号清楚表示手机中各元器件的连接和工作原理,方便维修时分析电路原理及故障分析。 3,元件排列图: 利用元件编号在板位图上标明元件所在位置,方便维修时寻找元件在板上的位置。 4,彩图: 即手机照片,方便维修时对照板元件缺损,错位,元件方向。 二,手机电路图的读解原则: 1,读图前要打好电子基础,熟悉各种电子元器件符号,特性和用途;电子元器件在电路中的接法;电路中的电流,电压,电阳之间的关系(欧姆定律)。 2,先读懂方框图,大根了解本机的结构(如那种电源结构,那种时钟结构);然后按所学的原理去分析原理图。 3,读图时先弄懂直流供电电路,后弄懂交流信号通路。 4,手机电路图是有规律的,一般电源居左下;控制居右下。左射频右逻辑;上收下发中本振。三,手机电路图的读解方法: 1,电源电路读图要点: 1),先了解本机属那种电源结构(分三种)以电源集成为核心。 2),从尾插或电池脚开始,找出电池电压(VBATT,B+)输入线;电池电压一般直接供到电源集成块,充电集成块,功放,背光灯,振铃,振动等电路;也可从上述电路回找。 3),在电源集成块,键盘,内联座处找到开机触发线(ON/OFF或标有开关符号)。 4),在电源集成块上找出各路电压输出线(包括电压走向,电压值多少,是恒定的还是跳变的,在那个单元上可以测到该电压)。 1)VDD--逻辑电压给CPU,字库,暂存等电路(1。8V/2。8V) 2)SYN-VCC(XVCC)时钟电压,使13M电路工作(2。8V) 3)AVCC--音频电压(2。8V) 4)VREF--中频电压(2。8V跳变) 5)3VTX--发射电压(3V跳变) 6)SYN-VCC---频合电压(2。8V) 7)VRTC--实时时钟电压(3V) 8)SIM-VCC--SIM卡电路电压(3V/5V跳变) 9)RST(PURX)--复位信号(0-2。8V) 4),在CPU与电源集成块间找到开机维持线(WD-CP,WATCCH DOG)。 5),从键盘,电源集成块旁边的开关符号到CPU找到关机检测线。 2),充电电路读图要点: 1),以电源集成块或充电集成为核心,找到充电电路。 2),从充电接口(尾插)到电源集成块或充电集成块找出外电输入线

手机供电电路与工作原理

手机供电电路结构和工作原理 一、电池脚的结构和功能。 目前手机电池脚有四脚和三脚两种:(如下图) 正温类负正温负 极度型极极度极 脚脚脚 (图一)(图二) 1、电池正极(VBATT)负责供电。 2、TEMP:电池温度检测该脚检测电池温度;有些机还参与开机,当用电池能开机,夹正负极不能开机时,应把该脚与负极相接。 3、电池类型检测脚(BSI)该脚检测电池是氢电或锂电,有些手机只 认一种电池就是因为该电路,但目前手机电池多为锂电,因此,该脚省去便为三脚。 4、电池负极(GND)即手机公共地。 二、开关机键: 开机触发电压约为2.8-3V(如下图)。 内圆接电池正极外圆接地;电压为0V。 电压为2.8-3V。 触发方式 ①高电平触发:开机键一端接VBAT,另一端接电源触发 脚。 (常用于:展讯、英飞凌、科胜讯芯片平台) ①低电平触发:开机键一端接地,另一端接电源触发脚。 (除以上三种芯片平台以外,基本上都采用低电平触发。如:MTK、AD、TI、飞利浦、杰尔等。) 三星、诺基亚、moto、索爱等都采用低电平触发。

三、手机由电池直接供电的电路。 电池电压一般直接供到电源集成块、充电集成块、功放、背光灯、振铃、振动等电路。在电池线上会并接有滤波电容、电感等元件。该电路常引起发射关机和漏电故障。 四、手机电源供电结构和工作原理。 目前市场上手机电源供电电路结构模式有三种; 1、 使用电源集成块(电源管理器)供电;(目前大部分手机都使用该电路供电) 2、 使用电源集成块(电源管理器)供电电路结构和工作原理:(如下图) 电池电压 逻辑电压(VDD) 复位信号(RST) 射频电压(VREF) VTCXO 26M 13M ON/OFF AFC 开机维持 关机检测 (电源管理器供电开机方框图) 1)该电路特点: 低电平触发电源集成块工作; 把若干个稳压器集为一个整体,使电路更加简单; 把音频集成块和电源集成块为一体。 2)该电路掌握重点: 电 源 管 理 器 CPU 26M 中频 分频 字库 暂存

两小时学会看懂手机电路图

两小时学会看懂手机电路图 电路图的种类 常见手机维修中的电子电路图有原理图、方框图、元件分布图、装配图和机板图等 (1)原理图 原理图就是用来体现电子电路的工作原理的一种电路图,又被叫做"电原理图"。这种图,由于它直接体现了电子电路的结构和工作原理,所以一般用在设计、分析电路中。分析电路时,通过识别图纸上所画的各种电路元件符号,以及它们之间的连接方式,就可以了解电路的实际工作时情况。原理图又可分为整机原理图,单元部分电路原理图,整机原理图是指手机所有电路集合在一起的分部电路图。 (2)方框图(框图) 方框图是一种用方框和连线来表示电路工作原理和构成概况的电路图。从根本上说,这也是一种原理图,不过在这种图纸中,除了方框和连线,几乎就没有别的符号了。它和上面的原理图主要的区别就在于原理图上详细地绘制了电路的全部的元器件和它们的连接方式,而方框图只是简单地将电路 (3)元件分布图 它是为了进行电路装配而采用的一种图纸,图上的符号往往是电路元件的实物的外形图。我们只要照着图上画的样子,这种电路图一般是供原理和实物对照时使用的。 (4)机板图 机板图的是"印刷电路板图"或"印刷线路板图",它和元件分布图其实属于同一类的电路图,都是供原理图联系实际电路使用的。 印刷电路板是在一块绝缘板上先覆上一层金属箔,再将电路不需要的金属箔腐蚀掉,剩下的部分金属箔作为电路元器件之间的连接线,然后将电路中的元器件安装在这块绝缘板上,利用板上剩余的金属箔作为元器件之间导电的连线,完成电路的连接。由于铜的导电性能不错,加上相关技术很成熟,所以在制作电路板时,大多用铜。所以,印刷电路板又叫"覆铜板"。但是大家也要注意到:机板图的元件分布往往和原理图中大不一样。这主要是因为,在印刷电路板的设计中,主要考虑所有元件的分布和连接是否合理,要考虑元件体积、散热、抗干扰、抗耦合等等诸多因素,综合这些因素设计出来的印刷电路板,从外观看很难和原理图完全一致;而实际上却能更好地实现电路的功能。 随着科技发展,现在印刷线路板的制作技术已经有了很大的发展;除了单面板、双面板外,还有多面板,

C3d侧扫声纳综述

C3d侧扫声纳综述 一:C3d侧扫声纳的简介 ?它是能成功地制作了一种融合高清晰度侧扫声呐图像和高精度测深数据而生成精确的海床地形、地貌的声呐系统(简称侧扫声呐C3D成像系统)。该系统集侧扫声呐和多波束测深系统优点于一体,既可得到高清晰的图像数据、又可取得高精度的测深数据,而且测量幅度宽探测效率高。 干涉声呐一般使用二个水听器,随着测量范围的增大,相位差测角的精度降低,导致测深精度降低。虽增大水听器间隔可改善远程测深精度。但是,当水听器间隔超过波长的一半时,会出现相位多值性问题。此外,干涉声呐不能求出同时来自多个目标的回波方向,如图所示的海底和垂直壁面的回波方向。侧扫声呐C3D成像系统,与干涉声呐不同,使用6单元水听器阵列,利用CAATI专利技术,从6个接受信号的相位和振幅计算出多个(最多5个)同时到来的回波方向。该系统在这方面个好地解决相关问题

二:侧扫声纳工作的原理 1、侧扫声纳是水下搜索、水下考察等一项重要的有力的工 具,它能不受水体可见度的影响而快速覆盖大面积水域“看”到水下情况。每边旁扫通过向水底发射声纳,反射后被拖鱼接收形成声纳影象来发现水下物体。接收到的信号通过拖缆传到甲板上的显示单元。[2] 2、显示单元显示的是高分辨率的海底或湖底或河底或 位于底部其他物体的声纳影像。声纳的声波是通过安装在两边的拖鱼发射并接收的。换能器的分辨率决定于发射声波的频率。 3、旁扫是以较低的频率来得到较大的扫描范围,但是 精度要低。高频系统可以得到较高的精度,但是扫描范围较小。双频旁扫同时拥有高频和低频换能器,这样可以得到较大范围同时分辨率较高的图像。 4,侧扫声纳左右各安装一条换能器线阵,首先发射一短促的声脉冲,声波按球面波方式向外传播,碰到海底或水中物体会产生散射,其中的反向散射波(也叫回波)会按原传播路线返回换能器被换能器接收,经换能器转换成一系列电脉冲.

手机基本电路工作原理

第一章 第一节T18机型逻辑电路原理 T18是一款支持双卡单待,实现G网双号转换待机,可以自由选用号码拨打电话,电路采用MTK 6226方案平台。(图1) (图1) 由于T18是采用MTK方案,在电路上原理有很多是与前期MTK电路相似,在这里不再一一讲解,具体介绍一下双卡待机电路的原理。 1、双卡电路工作原理电路 T18的双卡待机是指由用户选择性进行手动进行切换两张不同的SIM卡,其与前期A280双卡双待不同的,T18只有一个射频一个基带电路,其双卡转换主要是由软件和SIM转换控制器来完成,具体电路见图2

(图2) 其工作原理: 当手动切换时,控制中心会发出一个SIM-SWITCH的转换开关指令给到U505转换芯片,经内部的电子开关把VSIM与VSIM1、VSIM2,IO-SIM与SIMDA1、SIMDA2,CLK-SIM与SIMCLK1、SIMCLK2,RST-SIM与SIMRST1、SIMRST2进行转换连接,实现控制SIM卡的数据总线来控制SIM卡的正常工作。 2、充电电路 当外部充电器接到DC 插孔时,CHANGE电源分三路提供,第一路经R12、R14分压取得ADC3-VCH充电检测信号,第二路提供给U400的第1脚,第三路提供给U401经R413到电池正极。 其工作原理:当CPU检测到连接充电模式时候,CPU会输送CHG-CNTL控制信号给电源管理模块U400,电源管理模块从2# GATEDRV输出控制信号,控制充电控制管的导通,充电电压将通过R413限流给电池正极充电,同时CPU通过提供的ADC0-、ADC1+电量反馈信号,经电源管理模块U400(4#)ISENSE检测实现对充电过程进行监控,经U400(6#)CHRDET送到CPU,当检测充电完成后,CPU 将撤销U400(5#)CHG-CNT的控制信号,从而导致充电管U401截止,停止充电。关机充电和开机充电原理相同,只是在关机状态下,CPU未执行其它程序,使手 机仍处于关机状态。如图3

手机充电器电路原理图分析

专门找了几个例子,让大家看看。自己也一边学习。 分析一个电源,往往从输入开始着手。220V交流输入,一端经过一个4007半波整流,另一端经过一个10欧的电阻后,由10uF电容滤波。这个10欧的电阻用来做保护的,如果后面出现故障等导致过流,那么这个电阻将被烧断,从而避免引起更大的故障。右边的4007、4700pF电容、82KΩ电阻,构成一个高压吸收电路,当开关管13003关断时,负责吸收线圈上的感应电压,从而防止高压加到开关管13003上而导致击穿。13003为开关管(完整的名应该是MJE13003),耐压400V,集电极最大电流1.5A,最大集电极功耗为14W,用来控制原边绕组与电源之间的通、断。当原边绕组不停的通断时,就会在开关变压器中形成变化的磁场,从而在次级绕组中产生感应电压。由于图中没有标明绕组的同名端,所以不能看出是正激式还是反激式。 不过,从这个电路的结构来看,可以推测出来,这个电源应该是反激式的。左端的510KΩ为启动电阻,给开关管提供启动用的基极电流。13003下方的10Ω电阻为电流取样电阻,电流经取样后变成电压(其值为10*I),这电压经二极管4148后,加至三极管C945的基极上。当取样电压大约大于1.4V,即开关管电流大于0.14A时,三极管C945导通,从而将开关管13003的基极电压拉低,从而集电极电流减小,这样就限制了开关的电流,防止电流过大而烧毁(其实这是一个恒流结构,将开关管的最大电流限制在140mA左右)。 变压器左下方的绕组(取样绕组)的感应电压经整流二极管4148整流,22uF电容滤波后形成取样电压。为了分析方便,我们取三极管C945发射极一端为地。那么这取样电压就是负的(-4V左右),并且输出电压越高时,采样电压越负。取样电压经过6.2V稳压二极管后,加至开关管13003的基极。前面说了,当输出电压越高时,那么取样电压就越负,当负到一定程度后,6.2V稳压二极管被击穿,从而将开关13003的基极电位拉低,这将导致开关管断开或者推迟开关的导通,从而控制了能量输入到变压器中,也就控制了输出电压的升高,

侧扫声呐系统技术规格及要求

侧扫声呐系统技术规格及要求 一、主要技术要求和指标: 1侧扫声呐系统硬件(1套) 1.1侧扫声呐成像显示系统 侧扫声呐系统需具备水下声呐3D成像功能,能够获取水下地形的高清视图,能够直观的显示声呐成像数据和3D成像数据,并能够切换原始成像数据和3D成像视图。 侧扫声呐系统支持历史数据回放及声呐成像数据导出。 1.2水下声波发射和接收换能器 水下声波发射和接收换能器能够向两侧和底部发送宽角度声波波束,采集成像深度大于60米,测深深度大于250米。 1.3声呐信号示波器 侧扫声呐系统需具备NMEA0183接口及NMEA2000接口,能够对声呐数据原始数据进行采集,最大采样率1GSa/s。 2声呐数据管理软件(1套) 能够将声呐成像数据从声呐成像显示系统中导出,包括导出水下声呐3D成像数据和平面成像数据。 二、项目实施要求 1项目实施周期要求 中标方需在合同签订后60日内,完成设备采购、安装、调试,并且配合完成所有“侧扫声呐系统”的联合安装调试。 2项目实施工作要求 2.1供货 中标人须在不迟于合同签订后的60个工作日内完成所有招标设备到指定地点的供货。投标人应确保其技术建议以及所提供的设备的完整性、实用性,保证系统及时投入正常运行。本技术规格书所规定的技术细节是对设计方案的建议,卖方应该保证最终的效果达到规格书上的主要技术要求和指标,若出现因投标人提供的设备不满足要求、不合理,或者其所提供的技术支持和服务不全面,而导致系统无法实现或不能完全实现的状况,达不到规格书规定技术指标时,投标人负相应责任。

2.2安装调试 中标单位必须提供安装、配线以及测试和调整,施工过程由专业的调试人员进行安装、检测和排除故障。 2.3验收 设备到货后,用户单位与中标单位共同配合有关部门对所有设备进行开箱检查,出现损坏、数量不全或产品不符等问题时,由中标单位负责解决。根据标书要求对本次所有采购设备的型号、规格、数量、外型、外观、包装及资料、文件(如装箱单、保修单、随箱介质等)进行验收。设备安装完成,由中标单位制定测试方案并经用户确认后,对产品的性能和配置进行测试检查,并形成测试报告,包括负载测试。 2.4验收内容及标准 侧扫声呐系统需具备水下声呐3D成像功能,能够获取水下地形的高清视图,能够直观的显示声呐成像数据和3D成像数据,并能够切换原始成像数据和3D成像视图。侧扫声呐系统支持历史数据回放及声呐成像数据导出。水下声波发射和接收换能器能够向两侧和底部发送宽角度声波波束,采集成像深度大于60米,测深深度大于250米。侧扫声呐系统需具备NMEA0183接口及NMEA2000接口,能够对声呐数据原始数据进行采集,最大采样率1GSa/s。声呐数据管理软件能够将声呐成像数据从声呐成像显示系统中导出,包括导出水下声呐3D成像数据和平面成像数据。 三、付款条件: 货到付款。 四、售后服务要求 在保修期内,如有产品故障问题,投标方需免费提供上门协助服务。在保修期结束前,需由投标方工程师和用户代表进行一次全面检查,任何缺陷必须由投标方负责修理,在修理后,投标方应将缺陷原因、修理内容、完成修理及恢复正常的时间和日期等报告给用户。免费维护期满后,投标方必须继续提供7*24应急响应,费用另行协商。

侧扫声纳

侧扫声纳技术。 侧扫声纳技术起源于20 世纪50 年代末,现在已成为广泛应用的海底成像技术。自60 年代英国海洋研究所推出第一个实用型侧扫声纳系统以来,各种类型的侧扫声纳系统(魏建江等, 1997 ; Flemming , 1982 ; Asplin et al. , 1998 ; Klein , 1985 ; Reedl et al. , 1989) 纷纷问世。侧扫声纳技术运用海底地物对入射声波反向散射的原理来探测海底形态,侧扫声呐技术能直观地提供海底形态的声成像,在海底测绘、海底地质勘测、海底工程施工、海底障碍物和沉积物的探测,以及海底矿产勘测等方面得到广泛应用。根据声学探头安装位置的不同,侧扫声纳可以分为船载和拖体两类。船载型声学换能器安装在船体的两侧,该类侧扫声纳工作频率一般较低(10 kHz 以下),扫幅较宽。探头安装在拖体内的侧扫声纳系统根据拖体距海底的高度还可分为两种:离海面较近的高位拖曳型和离海底较近的深拖型。高位拖曳型侧扫系统的拖体在水下100 m 左右拖曳,能够提供侧扫图像和测深数据,航速较快(8 kn) 。多数拖体式侧扫声呐系统为深拖型,拖体距离海底仅有数十米,位置较低,航速较低,但获取的侧扫声纳图像质量较高,侧扫图像甚至可分辨出十几厘米的管线和体积很小的油桶等,最近有些深拖型侧扫声纳系统也开始具备高航速的作业能力,10 kn 航速下依然能获得高清晰度的海底侧扫图像。 现在的侧扫声纳技术有两个缺点,首先它的横向分辨率取决于声纳阵的水平角宽,分辨率随距离的增加而线性增大,其次它给不出海底的准确深度。当前只有两种声纳可做海底三维成像,即等深线成像和反向散射声成像,前一种是多波束测深声纳(如Multi -beam Sonar System) ,后一种是测深侧扫声纳。总体说来,前者适宜于安装在船上做大面积测量,后者适宜于安装在各类水下载体上,包括拖体、水下机器人(AUV) 、遥控潜水器( ROV ) 和载人潜水器(HUV) ,进行细致的测量。侧扫声成像技术是一种重要的声成像技术。声纳线阵向左右两侧发射扇型波束,在水平面内波束角宽比较窄,一般1~2°,垂直平面内的波束角宽比较宽, 一般为40 ~60°。海底反向散射信号依时间的先后被声纳阵接收。有目标时信号较强,目标后面声波难以到达, 产生影区。声纳阵随水下载体不断前进,在前进过程中声纳不断发射,不断接收,记录逐行排列,构成声像,这就是目前在海底探测中广泛使用的侧扫声纳的声成像,称为二维声成像,它给不出海底的高度。这种声像只能由目标影子长度等参数估计目标的高度,精度不高。在水下载体每侧布设两个以上的平行线阵,估计平行线阵间的相位差以获得海底的高度,称之为海底的三维声成像。一般的三维声成像是以付氏变换为基础的,它的分辨率比较低,不能区分从不同方向同时到达的回波。测深侧扫声纳技术经历了三个发展阶段,第一阶段的技术为声干涉技术,它的分辨率低;第二阶段的技术为差动相位技术,它的分辨率高,但只能同时测量一个目标,因此不能测量复杂的海底,不能在出现多途信号的情况下工作;第三阶段的技术即为高分辨率三维声成像技术,应用子空间拟合法,它的分辨率高,能同时测量多个目标,可以在复杂的海底和多途信号严重的情况下工作,并能同时获得信号的幅度和相位。侧扫声纳技术进一步发展的方向有两个,一个是发展测深侧扫声纳技术,它可以在获得海底形态的同时获得海底的深度;另一个是发展合成孔径声纳技术,它的横向分辨率理论上等于声纳阵物理长度的一半,不随距离的增加而增大。

手机万能充电器电路原理与维修

手机万能充电器电路原 理与维修 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

手机万能充电器电路原理与维修 由于各型号手机所附带的充电器插口不同,以造成各手机充电器之间不能通用。当用户手机充电器损坏或丢失后,无法修复或购不到同型号充电器,使手机无法使用。万能充电器厂家看到这样的商机,就开发生产出手机万能充电器,该充电器由于其体积小、携带方便,操作简单,价格便宜,适合机型多,深受用户的欢迎。下面以深圳亚力通实业有限公司生产的四海通S538型万能充电器为例,介绍其工作原理和维修方法。该充电器在市场上占有率较高,又没有随机附带电路图,给维修带来一定的难度,本文根据实物测绘出其工作原理图,见附图,供维 修时参考。 四海通S538型万能充电器在外观设计上比较独特,面板上采用透明塑料制作的半椭圆形夹子,透明塑料面板上固定有两个距离可调节的不锈钢簧片作为充电电极。面板的尾部并排有1个测试开关(极性转换开关)和4个状态指示灯,用户根据需要可以调节充电器电极距离和输出电压极性,并通过状态指示灯可方便看出电池的充电情况。 一、工作原理 该充电器电路主要由振荡电路、充电电路、稳压保护电路等组成,其输入电压AC220V、50/60Hz、40mA,输出电压DC4.2V、输出电流在150mA~180mA。在充电之前,先接上待充电池,看充电器面板上的测试指示灯是否亮若亮,表示极性正确,可以接通电源充电;否则,说明电池的极性和充电器输出电压的极性是相反的,这时需要按一下极性转换开关AN1(测试键) 才行。具体电路原理如下。 1.振荡电路 该电路主要由三极管VT2及开关变压器T1等组成。接通电源后,交流220V经二极管VD2半波整流,形成100V左右的直流电压。该电压经开关变压器T的1-1初级绕组加到了三极管VT2的c极,同时该电压经启动电阻R4为VT2的b极提供一个正向偏置电压,使VT2导通。此时,三极管VT2和开关变压器T1组成的间歇振荡电路开始工作,开关变压器T的1-1初级绕组中有电流通过。由于正反馈作用,在变压器T的1-2绕组感应的电压通过反馈电阻R1和电容C1加到VT2的b极,使三极管VT2的b极导通电流加大,迅速进人饱和区。随着电容C1两端电压不断升高,VT1的b极电压逐渐降低,使三极管VT2逐渐退出饱和区,其集电极电流开始减少,变压器T的1-1初级绕组中产生的磁通量也开始减少。在变压器T的1-2绕组感应的负反馈电压,使VT2迅速截止,完成一个振荡周期。在VT2进入截止期间,变压器T的1-3绕组就感应出一个5.5V左右的交流电压,作为后级的充电电压。 2.充电电路

相关文档
最新文档