(完整版)飞思卡尔智能车光电组技术报告

(完整版)飞思卡尔智能车光电组技术报告
(完整版)飞思卡尔智能车光电组技术报告

第十届全国大学生“飞思卡尔”杯华

北赛

智能汽车竞赛

技术报告

目录

目录 (1)

第一章方案设计 (1)

1.1系统总体方案的选定 (1)

1.2系统总体方案的设计 (1)

1.3 小结 (2)

第二章智能汽车机械结构调整与优化 (3)

2.1智能汽车车体机械建模 (3)

2.2 智能汽车传感器的安装 (4)

2.2.1速度传感器的安装 (4)

1

2.2.2 线形CCD的安装 (5)

2.2.3车模倾角传感器 (5)

2.3重心高度调整 (5)

2.3.1 电路板的安装 (6)

2.3.2 电池安放 (6)

2.4 其他机械结构的调整 (6)

2.5 小结 (6)

第三章智能汽车硬件电路设计 (7)

3.1主控板设计 (7)

3.1.1电源管理模块 (7)

3.1.2 电机驱动模块 (8)

3.1.3 接口模块 (9)

3.2智能汽车传感器 (10)

3.2.1 线性CCD传感器 (10)

3.2.2 陀螺仪 (10)

3.2.3 加速度传感器 ...............................................................错误!未定义书签。

3.2.3 编码器 (11)

3.3 键盘,数码管..........................................................................错误!未定义书签。

3.4液晶屏 (12)

3.5 小结 (12)

第四章智能汽车控制软件设计 (13)

4.1线性CCD传感器路径精确识别技术 (13)

4.1.1新型传感器路径识别状态分析 (14)

4.1.2 线性CCD传感器路径识别算法 (15)

4.2弯道的处理 (15)

4.2.1弯道策略分析 (15)

4.3 对速度的闭环控制 (16)

4.4障碍的处理 (17)

4.5小结 (17)

第五章开发工具、制作、安装、调试过程 (18)

5.1 开发工具 (18)

5.2 调试过程 (18)

第六章模型车主要参数 (18)

6.1 智能汽车外形参数 (18)

6.2 智能汽车技术参数 (18)

结论 (20)

参考文献 ...................................................................................错误!未定义书签。

3

第一章方案设计

本章主要介绍智能汽车系统总体方案的选定和总体设计思路,在后面的章节中将整个系统分为机械结构、控制模块、控制算法等三部分对智能汽车控制系统进行深入的介绍和分析。

1.1系统总体方案的选定

本届智能汽车大赛光电组比赛对传感器有着严格的规定,用到了线性ccd,但是由于需要镜头成像,所以会带来成像失真,静电干扰严重等问题。由于平衡车的特殊性,车身在循迹前进的过程中,必须保持车身的平衡。根据最基本保持车身平衡的基本原理,我们需要知道车身当前的角度和角速度。因此在保持车身平衡方面,我们确定以加速度计作为角度传感器,陀螺仪作为角速度传感器。另外,车身转向控制方面,我们组没有使用陀螺仪作为转向反馈。这样会让车转弯不连续和平滑,最重要的是限制了车模的速度,不用转向陀螺仪车模的极限速度大概率在一米三左右。有了转向的陀螺仪可以2米以上。

1.2系统总体方案的设计

遵照本届竞赛规则规定,智能汽车系统采用飞思卡尔的32位微控制器MK60DN256ZVLL10单片机作为核心控制单元用于智能汽车系统的控制。线性CCD采集赛道明暗信息,返回到单片机作为转向控制的依据。加速度计&陀螺仪返回的模拟信号作为车身当前角度的信号。主控输出PWM波控制电机的转速以保持车身的平衡和锁定赛道。同四轮车不同,平衡组需要使用左右轮的差速来转弯。为了控制的准确性和快速性,我们使用编码器作为速度传感器。编码器返回的信号可以形成闭环,使用PID控制电机的转速。平衡组强烈的加减速会导致车身的倾角剧烈的变化,这并不利于车

1

身保持平衡。因此整个调试过程就是要保证车身稳定的前提下不断提高车模前进的平均速度。

根据以上系统方案设计,赛车共包括六大模块:MK60DN256ZVLL10主控模块、传感器模块、电源模块、电机驱动模块、速度检测模块和辅助调试模块。各模块的作用如下:

MK60DN256ZVLL10主控模块,作为整个智能汽车的“大脑”,将采集CCD传感器、陀螺仪,加速度计和光电编码器等传感器的信号,根据控制算法做出控制决策,驱动两个直流电机完成对智能汽车的控制;

传感器模块,是智能汽车的“眼睛”,可以通过一定的前瞻性,提前感知前方的赛道信息,为智能汽车的“大脑”做出决策提供必要的依据和充足的反应时间,同时使用陀螺仪和加速度计计算车模行进过程中的实时角速度和加速度信息,用以保持车模稳定行进;

电源模块,为整个系统提供合适而又稳定的电源;

电机驱动模块,驱动直流电机和伺服电机完成智能汽车的加减速控制和转向控制;

速度检测模块,检测反馈智能汽车轮的转速,用于速度的闭环控制;

辅助调试模块,主要用于智能汽车系统的功能调试、赛车状态监控。

1.3 小结

本章重点分析了智能汽车系统总体方案的选择,并介绍了系统的总体设计和总体结构,简要地分析了系统各模块的作用。在今后的章节中,将对整个系统的各个模块进行详细介绍。

第二章智能汽车机械结构调整与优化

智能汽车各系统的控制都是在机械结构的基础上实现的,因此在设计整个软件架构和算法之前一定要对整个模型车的机械结构有一个全面清晰的认识,然后建立相应的数学模型,从而再针对具体的设计方案来调整赛车的机械结构,并在实际的调试过程中不断的改进优化和提高结构的稳定性。本章将主要介绍智能汽模型车型车的机械结构和调整方案。

2.1智能汽车车体机械建模

此次竞赛选用的智能车竞赛专用模型车(D型模型车),配套的电机型号为RN260-CN-2875。智能车的控制采用的是双后轮驱动方案。智能车的外形大致如下:

图2.1 智能汽车外形图

第八届全国大学生智能汽车邀请赛技术报告

2.2 智能汽车传感器的安装

车模中的传感器包括有:速度传感器,车模姿态传感器(陀螺仪、加速度计)以及线形CCD。下面分别介绍这些传感器的安装。

2.2.1速度传感器的安装

速度编码器我们采用了编码器,安装方法如下:

用十字扳手套筒将车的后轮拆卸后,安装编码器,固定编码器的固定件是根据车得尺寸及与编码器的相对位置手工制作的连接固定件。

在安装完后轮后,在利用十字扳手套筒将后轮装上。

安装时应注意调整好齿轮间隙。齿轮传动机构对车模的驱动能力有很大的影响。齿轮传动部分安装位置的不恰当,会大大增加电机驱动后轮的负载,会严重影响最终成绩。调整的原则是:两传动齿轮轴保持平行, 齿轮间的配合间隙要合适,过松容易打坏齿轮,过紧又会增加传动阻力,浪费动力;传动部分要轻松、顺畅,不能有迟滞或周期性振动的现象。判断齿轮传动是否良好的依据是,听一下电机带动后轮空转时的声音。声音刺耳响亮,说明齿轮间的配合间隙过大,传动中有撞齿现象;声音闷而且有迟滞,则说明齿轮间的配合间隙过小,或者两齿轮轴不平行,电机负载变大。调整好的齿轮传动噪音很小,并且不会有碰撞类的杂音,后轮减速齿轮机构就基本上调整好了,动力传递十分流畅。如图所示。

编码器安装完毕

第二章智能汽车机械结构调整与优化

2.2.2 线形CCD的安装

为了降低整车重心,需要严格控制CCD镜头的安装位置和重量,我们自行设计了轻巧的铝合金夹持组件并采用了碳纤维管作为安装CCD的主桅,这样可以获得最大的刚度质量比,整套装置具有很高的定位精度和刚度,使CCD镜头便于拆卸和维修,具有赛场快速保障能力。CCD镜头的安装如图2.4所示。

图2.4 CCD的安装

2.2.3车模倾角传感器

车模倾角传感器包括陀螺仪和加速度计。它们都是表贴元器件,单独固定在一块小电路板上,然后与车身相固定,从而保证检测数据的可靠性。

2.3重心高度调整

重心的高度是影响智能车稳定性的因素之一。当重心高度偏高时,智能车在转弯过程中会发生抬轮现象,严重时甚至翻车。因此,从小车稳定性出发,我们尽量降低重心高度,从而保证小车可靠稳定。

5

第八届全国大学生智能汽车邀请赛技术报告

2.3.1 电路板的安装

为了使小车具有较好的稳定性及转向性能,我们在搭建小车时尽量选择降低重心,因此也将电路板安装在了电机上方,从而实现降低重心,提高小车的稳定性。

2.3.2 电池安放

同样为实现降低重心,提高小车稳定性的目的,学长3D打印了符合参赛规则的电池支架,然后固定在电机下方,进而用于固定电池,最大程度的降低了小车的重心。

2.4 其他机械结构的调整

另外,在模型车的机械结构方面还有很多可以改进的地方,比如说车轮、传感器的保护等方面。由于直立小车的直立行驶及转向都是通过后轮实现的,因此当小车在转向时,模型车的轮胎与轮毂之间很容易发生相对位移,可能导致在加速时会损失部分驱动力,而且使小车的状态不稳。因此,我们在实际调试过程中对车轮进行了粘胎处理,可以有效地防止由于轮胎与轮毂错位而引起的驱动力损失的情况。

为了保护模型车传感器支架,在车模机械设计的时候,我们增添了防撞保护装置,使一旦车模倾倒或者失控,防撞保护装置可保护车模机械的安全性,保证小车状态的稳定性。

2.5 小结

模型车的性能与机械结构有着非常密切的联系。良好的机械结构是模型车提高速度的关键基础。在同等的控制环境下,机械机构的好坏对其速度的影响十分显著。我们非常重视对智能汽车的机械结构的改进,经过大量的理论研究和实践,我们小车的大部分质量都集中在两轮前后,达到降低重心的目的,从而提高了小车整体的稳定性和可靠性。

第三章智能汽车硬件电路设计

3.1主控板设计

3.1.1电源管理模块

首先了解一下不同电源的特点,电源分为开关电源和线性电源,线性电源的电压反馈电路是工作在线性状态,开关电源是指用于电压调整的管子工作在饱和和截至区即开关状态的。线性电源一般是将输出电压取样然后与参考电压送入比较电压放大器,此电压放大器的输出作为电压调整管的输入,用以控制调整管使其结电压随输入的变化而变化,从而调整其输出电压,但开关电源是通过改变调整管的开和关的时间即占空比来改变输出电压的。

从其主要特点上看:线性电源技术很成熟,制作成本较低,可以达到很高的稳定度,波纹也很小,而且没有开关电源具有的干扰与噪音,开关电源效率高、损耗小、可以降压也可以升压,但是交流纹波稍大些。

电源模块对于一个控制系统来说极其重要,关系到整个系统是否能够正常工作,因此在设计控制系统时应选好合适的电源模块。竞赛规则规定,比赛使用智能汽车竞赛统一配发的标准车模用7.2V 2000mAh Ni-cd供电,而单片机系统、路径识别的CCD传感器、陀螺仪和加速度传感器均使用的是3.3V的电源。编码器需要5V电源,伺服电机工作电压范围为4V到6V (为提高伺服电机响应速度,采用7.2V 供电),直流电机可以使用7.2V 2000mAh Ni-cd蓄电池直接供电,智能汽车电压调节电路示例见图3.1。

第八届全国大学生智能汽车邀请赛技术报告

图3.1 电源管理模块原理图

电源的纹波将影响传感器的性能。减小电源的纹波的大小可以保证传感器的可靠性。

3.1.2 电机驱动模块

第三章智能汽车硬件电路设计我们自己用软件划了驱动的图,并根据此焊接了4路PWM驱动,利用BTS7960可以大大提高电的驱动能力。

3.1.3 接口模块

1.CCD接口。

CCD的外围器件很少,输出信号经过滤波等处理后就可以直接连接到K60的AD端口上。接口极其简单,电路如下所示。

图3.7 CCD接口

2.陀螺仪接口

陀螺仪在保持车身的平衡方面极其重要,为了方便更换,我们并未将陀螺仪直接画在主板上。由于使用的是单片机本身的AD,所以陀螺仪的接口很简单。电路如下所示。

9

第八届全国大学生智能汽车邀请赛技术报告

图3.8 陀螺仪接口

3.2智能汽车传感器

由于今年比赛规则对光电平衡组的传感器有明确的规定,所以我们在传感器的选择上没有花费时间。对于的传感器的优化,我们也主要是传感器对环境的适应性方面。

3.2.1 线性CCD传感器

线性CCD内部包含128个光电二极管,相关的放大电路。其基本单元如图

图3.9 CCD内部感光单元

光照射到光电二极管上,产生光电流,光电流被积分电路积分。在采样期间,积分电容的一端被连接到输出端,积分后的输出电压与该点的光强和积分时间成正比。因此为了适应场地,CCD的积分时间应该是可变的。

3.2.2 陀螺仪

大赛规定了陀螺仪和加速度计的选用范围。经过挑选,陀螺仪使用ENC-03M,加速度计使用MMA7361。我们小组直接选用了大家常用的陀螺仪&加速度计成品,

第三章智能汽车硬件电路设计

效果一般。经过和获得一等奖的大神交流,其实选用相应的标贴原件并自己焊接效果会更好。其实是这样的,希望之后的学弟学妹可以自己探索不断超越。

3.2.3 编码器

为了使用闭环控制,我们在汽车模型上附加了编码器。和其他元件相比,选用编码器可以使电路更加完善,信号更加精确。编码器功耗低,重量轻,抗冲击抗震动,精度高,寿命长,非常实用。编码器内部无上拉电阻,因此编码器接口出需要设计上拉电阻。同时为了保证波形的稳定,主控板上使用了74HC14非门隔离。K60自身具有正交解码功能,因此这里无需使用任何外围计数辅助器件,只需要将接口连接到单片机上相应的接口即可。接口如图3.11和图3.12所示。

图3.11 编码器的接口部分

图3.12 上拉电阻和非门

11

第八届全国大学生智能汽车邀请赛技术报告

、3.4液晶屏

液晶屏相对于数码来说具有显示内容直观,可显示图像和汉字的优点。在车身添加液晶屏模块可以使调试更加方便,因此本次车身上我们添加了液晶屏模块。由于模块是直接购买的成品。所以电路在这里不做介绍了。

3.5 小结

硬件电路是模型汽车系统的必备部分。只有稳定的硬件电路才能保证程序的正确控制。为此,我们在设计电路之时,考虑了很多问题,采用了模拟部分与数字部分隔离等措施。我们的硬件电路的设计思想是在保证正确检测信号的前提下,尽可能精简电路。

第四章智能汽车控制软件设计

第四章智能汽车控制软件设计

主程序流程图:

图4.1 程序流程图

4.1线性CCD传感器路径精确识别技术

在本届大赛中,光电组的规则发生了翻天覆地的变化,不仅由传统的四轮小车变成了两轮直立车,而且对于光电传感器也做出了新的要求,不允许使用传统的激光头传感器,而要求选择使用线性CCD以及LED作为新一代的光电车的传感器,但由于LED的前瞻距离十分有限,所以线性CCD自然成为了较好的方案选择。

13

第八届全国大学生智能汽车邀请赛技术报告

4.1.1路径识别状态分析

在使用CCD进行赛道识别,传统的传感器搜索跳变沿算法可取之处不是很大,不过不缺乏借鉴之处。

图 4.2 CCD传感器返回值波形图

对于我们的模型车,CCD在赛道上可能的状态有:在普通的赛道处、在起点处、在十字交叉线处、小S虚线处、路障处。由于传感器的改变以及规则的变更,使得今年对于赛道识别的工作量变得更加复杂,难度大大增加,情况也显得错综复杂,矛盾点层出不穷。

我们的小车仅采用一路CCD对赛道信息进行识别,一个CCD包含128个像素点,但这128个点并不是所有的点都能够被准确获取灰度值,我们选择采用左右各48个像素点来对赛道信息进行采集。这些像素点中每个点的灰度值理论上都有0到255这28种状态(实际上我们只能取到不到50的返回值),我们分别把左右各48个像素点记为left 16~63和right 64~111。

在直道时,两侧都会检测到赛道边沿,且大体处于中间位置,左右较对称;在小弯道时,两侧都会检测到赛道边沿,但会有小幅地左右摆动;在其它弯道时,会出现左右侧跳变沿出赛道的状况,这时主要依靠一侧CCD 进行巡线;在十字的时候,回旋全白的时候,在传感器稳定的前提下,能出现全白的也只会在十字的时候出现,当然小S虚线位置也不排除会有全白的情况发生,虽说黑白线时左右对称的,但是黑白条的长度固定十公分,内侧长度远不及外侧长度,无可避免的会多次出现单侧全白的情况;终点

第四章智能汽车控制软件设计线依靠CCD返回值具有驼峰形状的赛道信息返回值来测得。

4.1.2 线性CCD传感器路径识别算法

路径识别算法是我们使用的是由CCD中心向两侧搜索提取跳变沿的算法,通过提取到的两侧跳变沿相加除二来得到小车转向需要的转向值。具体算法介绍如下:

(1)通过CCD返回的像素值,利用17阈值来找到跳变沿,计算black_center;

(2)当传感器检测到黑线时相应的传感器返回中线值。

(3)对于直立车来说,在控制过程中,不仅要考虑双电机差速转向问题,还要考虑直立与速控问题,这三个重要的量都是在两个车轮上完成,复杂度极高,我们采用线性相加的方式将其拟合在一起,并对其上下限做出限制,当超出这个限制时,强制到限制的最大值处。

4.2弯道的处理

4.2.1弯道策略分析

其中,切弯路径主要决定了车辆是选择内道过弯还是外道过弯。切内道,路经最短,但是如果地面附着系数过小会导致车辆出现侧滑的不稳定行驶状态,原因是切内道时,曲率半径过小,同时速度又很快,所以模型车需要的向心力会很大,而赛道本身是平面结构,向心力将全部由地面的摩擦力提供,因此赛道表面的附着系数将对赛车的运行状态有很大影响。切外道,路径会略长,但是有更多的调整机会,同时曲率半径的增加会使得模型车可以拥有更高的过弯速度。

15

第八届全国大学生智能汽车邀请赛技术报告

4.3 对速度的闭环控制

图4.9 PID控制工作原理

PID控制策略其结构简单,稳定性好,可靠性高,并且易于实现。其缺点在于控制器的参数整定相当繁琐,需要很强的工程经验。相对于其他的控制方式,在成熟性和可操作性上都有着很大的优势。所以最后我们选择了PID的控制方式。

在小车跑动中,因为不需要考虑小车之前走过的路线,所以,我们舍弃了I控制,将小车舵机的PID控制简化成PD控制。本方案中通过双电机的差速控制采用位置式的PD控制,速度闭环控制采用了增量式PID控制。在本方案中,使用试凑法来确定控制器的比例、积分和微分参数。

试凑法是通过闭环试验,观察系统响应曲线,根据各控制参数对系统响应的大致影响,反复试凑参数,以达到满意的响应,最后确定PID控制参数。试凑不是盲目的,而是在控制理论指导下进行的。在控制理论中已获得如下定性知识:比例调节(P)作用:是按比例反应系统的偏差,系统一旦出现了偏差,比例调节立即产生调节作用用以减少偏差。比例作用大,可以加快调节,减少误差,但是过大的比例,使系统的稳定性下降,甚至造成系统的不稳定。

积分调节(I)作用:是使系统消除稳态误差,提高无差度。因为有误差,积分调节就进行,直至无差,积分调节停止,积分调节输出一常值。积分作用的强弱取决与积分时间常数Ti,Ti越小,积分作用就越强。反之Ti大则积分作用弱,加入积分调节可使系统稳定性下降,动态响应变慢。积分作用常与另两种调节规律结合,组成PI调节器或PID调节器。

飞思卡尔智能汽车设计技术报告

第九届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:武汉科技大学队 伍名称:首安二队参赛 队员:韦天 肖杨吴光星带队 教师:章政 0敏

I

关于技术报告和研究论文使用授权的说明 本人完全了解第九届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

II

目录 第一章引言 (1) 1.1 概述 (1) 1.2 内容分布 (1) 第二章系统总体设计 (2) 2.1 设计概述 (3) 2.2 控制芯片的选择 (3) 2.3 线性 CCD 检测的基本原理 (3) 2.3 系统结极 (5) 第三章机械系统设计 (7) 3.1 底盘加固 (7) 3.2 轮胎处理 (7) 3.3 四轮定位 (8) 3.4 差速器的调整 (12) 3.5 舵机的安装 (13) 3.6 保护杆的安装 (15) 3.7 CCD的安装 (16) 3.8 编码器的安装 (17) 3.9 检测起跑线光电管及加速度计陀螺仪的安装 (18) 第四章硬件系统设计 (19) 4.1 最小系统版 (20) 4.2 电源模块 (21) 4.3 CCD模块 (22) 4.4 驱动桥模块 (23) 4.5 车身姿态检测模块 (24) 4.7 测速模块 (24) 4.8 OLED液晶屏及按键、拨码 (25) 第5章程序设计 (27)

智能车技术报告(新)

南京工业大学信息学院电子设计大 赛(智能车) 技术报告 学校:南京工业大学 专业:电子信息工程 参赛队员:沈春娟袁乐乐袁冯杰

引言 根据本次比赛规则的要求,结合“飞思卡尔”的一些要求,本队已经完成了智能车系统的设计、制作、安装和调试。该智能车的设计思路是:首先,通过路径识别传感器采集路径信息,经STC12C5A32S2单片机处理输出控制信号,通过电机驱动控制两个直流电机的转速,实现智能车快速寻迹的目的。 利用红外反射式传感器实现小车自动寻迹导航的设计与实现。使用红外反射式传感器感知与地面颜色有较大反差的引导线,从而实现自主式寻迹。利用PWM 技术对直流电机进行速度调节,两轮驱动,运用两个直流电机转速差异进行方向的控制调节。 本文所述智能车寻迹系统采用红外反射式传感器识别路径上的黑线,通过PWM技术对两个直流电机的速度进行控制,由速度差决定转向的角度,使用开环控制结合PD算法对速度进行简单修正实现直流电机的速度控制。该系统以STC公司的生产的单片机STC 12C5A32S2为控制核心,主要由电源模块、核心控制模块、路径识别模块、(车速检测模块)和直流驱动电机控制模块组成。为了使智能车更加快速、平稳、准确地行驶,本系统将路径识别,车速的快速检测与响应,电机和直流驱动电机的正确控制紧密地结合在一起。 技术报告共分为五个部分:第一部分为引言;第二部分是智能车系统设计,介绍智能车总体设计和软、硬件设计及实现方案;第三章是控制算法设计,详述智能车软件实现;第四章是实验验证;第五章是总结。

智能车系统设计 一. 硬件设计 本系统硬件部分由电源模块、主控制器模块、路径识别模块、(车速检测模块)和直流驱动电机控制模块组成,系统硬件结构如图所示。 1. 主控制器模块 本系统中,主控制器模块采用STC 12C5A32S2单片机。STC 公司的单片机STC 12C5A32S2主要特点就是功能高度的集中,并且易于扩展,超强抗干扰,超强抗静电,低功耗。拥有2个16位定时器(兼容普通8051定时器T0/T1),2路PCA 可再实现2个定时器,拥有8通道、10位高速ADC ,速度可达25万次/秒,2路PWM 还可当2路D/A 使用。该单片机的运算能力强,自由度大,软件编程灵活。支持C 语言程序设计、汇编语言程序设计以及C 语言与汇编语言的混合程序设计,在系统可编程,无需编程器,无需仿真器,极大地方便了用户的使用,提高了系统开发效率。我们选择这款单片机主要是因为该单片机集成了两路可编程计数器阵列(PCA)模块,可用于脉宽调制(PWM)输出,来控制车轮的转速。 2. 电源模块 本系统中,为满足智能车各部分正常工作的需要,本系统采用12V 25C 航模电池,通过外围电路的整定,电源被分配给各个模块。 电源模块分为两个部分,为了保证控制核心的稳定性,单独供电,主电路板供电采用7805集成稳压块,该集成电路输出电压稳定,加之直流供电,不需要复杂的滤波系统。缺点发热量大,电能利用率低,所以7805可以满足系统要求。电路如图所示: 主控制器模块 电源模块 路径识别模块 电机驱动模块 车速检测模块

飞思卡尔智能车比赛细则

2016

目录

第十一届竞赛规则导读 参加过往届比赛的队员可以通过下面内容了解第十一届规则主要变化。如果第一次参加比赛,则建议对于本文进行全文阅读。 相对于前几届比赛规则,本届的规则主要变化包括有以下内容: 1.本届比赛新增了比赛组别,详细请参见正文中的图1和第四章的“比赛任务” 中的描述; 2.第十届电磁双车组对应今年的A1组:双车追逐组。其它组别与新组别的对应 关系请参见图2; 3.为了提高车模出界判罚的客观性,规则提出了两种方法:路肩法和感应铁丝 法,详细请见赛道边界判定”; 4.改变了原有的光电计时系统,所有赛题组均采用磁感应方法计时,详细请参 见“计时裁判系统”; 5.取消了第十届的发车灯塔控制的方式; 6.赛道元素进行了简化,详细请参见“赛道元素”; 7.赛道材质仍然为PVC耐磨塑胶地板,但赛题组A2不再需要赛道。 8.对于车模所使用的飞思卡尔公司MCU的种类、数量不再限制。 9.比赛时,每支参赛队伍的赛前准备时间仍然为20分钟,没有现场修车环节。

一、前言 智能车竞赛是从2006开始,由教育部高等教育司委托高等学校自动化类教学指导委员会举办的旨在加强学生实践、创新能力和培养团队精神的一项创意性科技竞赛。至今已经成功举办了十届。在继承和总结前十届比赛实践的基础上,竞赛组委会努力拓展新的竞赛内涵,设计新的竞赛内容,创造新的比赛模式,使得围绕该比赛所产生的竞赛生态环境得到进一步的发展。 为了实现竞赛的“立足培养、重在参与、鼓励探索、追求卓越”的指导思想,竞赛内容设置需要能够面向大学本科阶段的学生和教学内容,同时又能够兼顾当今时代科技发展的新趋势。 第十一届比赛的题目在沿用原来根据车模识别赛道传感器种类进行划分的基础类组别之上,同时增加了以竞赛内容进行划分的提高类组别,并按照“分赛区普及,全国总决赛提高”的方式,将其中一个类别拓展出创意类组别。第十一届比赛的题目各组别分别如下: ●基础类包括B1光电组、B2摄像头组、B3电磁直立组、B4电轨组; ●提高类包括A1双车追逐组、A2信标越野组; ●创意类包括I1 电轨节能组。 图 1 不同组别,不同挑战度 每个组别在选用的车模、赛道识别方法、完成任务等方面存在差别,对于参赛选手不同学科知识和能力要求也不同,制作的挑战度也有较大的区别。相比较而言,

飞思卡尔智能车经验

RT,留下一点不算成功的经验吧。 先说说个人认为要取得好成绩的两个最重要的先决条件。 1. 人,这个是大前提,对于一个好的队伍,判别标准其实很简单,就是队员3个人是玩伴关系还是领导和下属关系。前者,大家都是来玩这个智能车的,自然主观能动性就会很高,能自主学习。不会总是“等着所谓队长分配任务”。这样效率就会很高。成绩自然不会低,后者,如果“队长”个人能力很强的话,就会出现到最后只有“队长”一个人在干。其他的队员就会因为自己技术不行,渐渐退出。而不会因为自己不会而去主动的学习。如果“队长”能力一般,再没有一些强力指导老师的情况下,这样的队伍一般会悲剧掉。所以,新人在参加这个智能车比赛的时就要明确动机。参加智能车确实是来学习知识的,但不会有人真正的来教你。一切都靠自己。 2.跑道,这个是客观条件中最重要的,一条污浊、破损、不符合规则的跑道,是不可能出成绩的。我们学校的赛道就是因为当初制作和后期保养不到位,导致赛道诸多永久性污浊、破损。一开始车刚能爬的时候,问题还不明显,后来在测试让车能平滑过S弯时问题就来了,由于赛道污浊,远处的跑道在CCD看了是错误,导致S弯和普通弯看起来一样,致使S弯策略根本没有启用,当时一直到修改S弯策略,到后来调出图像来看才发现是采集的问题。至于赛道污浊破损带来的干扰要不要处理,答案是肯定的,因为就算是比赛用的跑道也会有擦不掉,补不了的地方。但处理这些问题,应该是放在车辆原先行驶策略都调试正确的情况下,再人为的加入这些干扰。这样修改程序起来就有的放矢。 下面再以个人的观点介绍一下3个组别的特点,给新人选择做一个参考。 摄像头:有点像开卷考试,能得到的东西很多,但是如何把这些东西用好就是一个学问。摄像头的关键就是如何从采集回来的图像所包含的诸多信息中,选出一些高效方便的信息来控制车辆。至于控制策略,个人觉得一个能根据不同赛道类型而变化比例系数的比例控制器就能很好的满足控制需要。 光电组:想象起来很容易,其实很累的一个组,原理最简单,但是为了能有30CM以上的前瞻,和比较连续的偏差变化,就要下大功夫,先不说别的,让你装15个激光管,而且要保证不焊烧并要把光点打在一条线上,就是很繁琐的事情。总得来说,光电组拼的就是电路和传感器结构。不过对于看客来说,光电组是最好“看”的组,一排壮观的激光加上摆头的机械~ 电磁组:听起来有点复杂,其实比前两个组都轻松的组,电磁组又可分为数字和模拟两个类别。数字传感器就是和光电一样弄一排的传感器,看看哪个传感器接收到的信号最强以判断中线位置。模拟的就是比较两个传感器之间信号强度的差值来判断。电磁组好处就是不容易受到干扰,比赛上也见的,电磁车跑完的成功率是很高的,而且很容易判别起跑线。基本不用懂脑筋。而且如果选用是模拟传感器的话,能得到比较平滑的控制。 先说这些,想到再继续 关于摇头激光车的一点个人理解:为什么光电的车,要多花一个舵机去让传感器摇头呢?因为。为了能获得赛道上一个比较宽范围的信息,就必须把传感器做的很长。这样的后果 就是重量。折中的办法就是摇头,通过摇头,可以使一个小尺寸的传感器检测到大范围 DEMOK工作室淘宝小店

基于嵌入式STM32的飞思卡尔智能车设计



飞思卡尔智能车大赛是面向全国大学生举办的应用型比赛, 旨在培养创新精 神、协作精神,提高工程实践能力的科技活动。大赛主要是要求小车自主循迹并 在最短时间内走完整个赛道。针对小车所安装传感器的不同,大赛分为光电组、 电磁组和摄像头组。 本文介绍了本院自动化系第一届大学生智能汽车竟赛的智能车系统。 包括总 体方案设计、机械结构设计、硬件电路设计、软件设计以及系统的调试与分析。 机械结构设计部分主要介绍了对车模的改进,以及舵机随动系统的机械结构。硬 件电路设计部分主要介绍了智能车系统的硬件电路设计, 包括原理图和 PCB 设计 智能车系统的软、 硬件结构及其开发流程。该智能车车模采用学校统一提供的飞 思卡尔车模,系统以 STM32F103C8T6 作为整个系统信息处理和控制命令的核心, 使用激光传感器检测道路信息使小车实现自主循迹的功能
关键字:飞思卡尔智能车STM32F103C8T6
激光传感器
第一章 概述

1.1 专业课程设计题目
基于嵌入式 STM32 的飞思卡尔智能车设计
1.2 专业课程设计的目的与内容
1.2.1 目的 让学生运用所学的计算机、传感器、电子电路、自动控制等知识,在老师的 指导下,结合飞思卡尔智能车的设计独立地开展自动化专业的综合设计与实验, 锻炼学生对实际问题的分析和解决能力,提高工程意识,为以后的毕业设计和今 后从事相关工作打下一定的基础。 1.2.2 内容 本次智能车大赛分为光电组和创新做,我们选择光电组小车完成循迹功能。 该智能车车模采用学校统一提供的飞思卡尔车模, 系统以 STM32F103C8T6 作为整 个系统信息处理和控制命令的核心,我们对系统进行了创造性的优化: 其一, 硬件上采用激光传感器的方案, 软件上采用 keil 开发环境进行调试、 算法、弯道预判。 其二,传感器可以随动跟线,提高了检测范围。 其三,独立设计了控制电路板,充分利用 STM32 单片机现有模块进行编程, 同时拨码开关、状态指示灯等方便了算法调试。
1.3 方案的研讨与制定
1.3.1传感器选择方案 方案一:选用红外管作为赛道信息采集传感器。 由于识别赛道主要是识别黑白两种不同的颜色, 而红外对管恰好就能实现区 分黑白的功能,当红外光照在白色KT板上时,由于赛道的漫反射作用,使得一部 分红外光能反射回来, 让接收管接的输出引脚的电压发生变化,通过采集这个电 压的变化情况来区分红外光点的位置情况,以达到区分赛道与底板的作用。 红外管的优点在于价格便宜,耐用;缺点却用很多:1、红外光线在自然环 境中,无论是室内还是室外均比较常见,就使得其抗干扰能力不强,容易受环境 变化的影响。2、调试不方面,由于红外光是不可见光,调试的时候需要采用比 较麻烦的方法来判断光电的位置。3、由于红外管光线的直线性不好,就使得红 外传感器所能准确的判断的最远距离比较小,也就是通常所说的前瞻不够远。

飞思卡尔智能车竞赛光电组技术报告

第九届“飞思卡尔”杯全国大学生智能车竞赛光电组技术报告 学校:中北大学 伍名称:ARES 赛队员:贺彦兴 王志强 雷鸿 队教师:闫晓燕甄国涌

关于技术报告和研究论文使用授权的说明书本人完全了解第八届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:2014-09-15日

摘要 本文介绍了第九届“飞思卡尔杯全国大学生智能车大赛光电组中北大学参赛队伍整个系统核心采用飞思卡尔单片机MC9S12XS128MAA ,利用TSL1401线性CCD 对赛道的行扫描采集信息来引导智能小车的前进方向。机械系统设计包括前轮定位、方向转角调整,重心设计器件布局设计等。硬件系统设计包括线性CCD传感器安装调整,电机驱动电路,电源管理等模块的设计。软件上以经典的PID算法为主,辅以小规Bang-Bang 算法来控制智能车的转向和速度。在智能车系统设计开发过程中使用Altium Designer设计制作pcb电路板,CodeWarriorIDE作为软件开发平台,Nokia5110屏用来显示各实时参数信息并利用蓝牙通信模块和串口模块辅 助调试。关键字:智能车摄像头控制器算法。

目录 1绪论 (1) 1.1 竞赛背景 (1) 1.2国内外智能车辆发展状况 (1) 1.3 智能车大赛简介 (2) 1.4 第九届比赛规则简介 (2) 2智能车系统设计总述 (2) 2.1机械系统概述 (3) 2.2硬件系统概述 (5) 2.3软件系统概述 (6) 3智能车机械系统设计 (7) 3.1智能车的整体结构 (7) 3.2前轮定位 (7) 3.3智能车后轮减速齿轮机构调整 (8) 3.4传感器的安装 (8) 4智能车硬件系统设计 (8) 4.1XS128芯片介绍 (8) 4.2传感器板设计 (8) 4.2.1电磁传感器方案选择 (8) 4.2.2电源管理模 (9) 4.2.3电机驱动模块 (10) 4.2.4编码器 (11) 5智能车软件系统设 (11) 5.1程序概述 (11) 5.2采集传感器信息及处理 (11) 5.3计算赛道信息 (13) 5.4转向控制策略 (17) 5.5速度控制策略 (19) 6总结 (19)

飞思卡尔智能车电机资料

3.1.6驱动电机介绍 驱动电机采用直流伺服电机,我们在此选用的是RS-380SH型号的伺服电机,这是因为直流伺服电机具有优良的速度控制性能,它输出较大的转矩,直接拖动负载运行,同时它又受控制信号的直接控制进行转速调节。在很多方面有优越性,具体来说,它具有以下优点: (1)具有较大的转矩,以克服传动装置的摩擦转矩和负载转矩。 (2)调速范围宽,高精度,机械特性及调节特性线性好,且运行速度平稳。 (3)具有快速响应能力,可以适应复杂的速度变化。 (4)电机的负载特性硬,有较大的过载能力,确保运行速度不受负载冲击的 影响。 (5)可以长时间地处于停转状态而不会烧毁电机,一般电机不能长时间运行于 停转状态,电机长时间停转时,稳定温升不超过允许值时输出的最大堵转转矩称为连续堵转转矩,相应的电枢电流为连续堵转电流。 图3.1为该伺服电机的结构图。图3.2是此伺服电机的性能曲线。 图3.1 伺服电机的结构图

图3.2 伺服电机的性能曲线 3.1.7 舵机介绍 舵机是一种位置伺服的驱动器,适用于那些需要角度不断变化并可以保持的控制系统。其工作原理是:控制信号由接收机的通道进入信号调制芯片,获得直流偏置电压。它内部有一个基准电路,产生周期为20ms,宽度为1.5ms的基准信号,将获得的直流偏置电压与电位器的电压比较,获得电压差输出。最后,电压差的正负输出到电机驱动芯片决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,使得电压差为0,电机停止转动。舵机的控制信号是PWM信号,利用占空比的变化改变舵机的位置。一般舵机的控制要求如图3.3所示。图3.4为舵机的控制线。

飞思卡尔智能车光电组技术报告

第十届全国大学生“飞思卡尔”杯华 北赛 智能汽车竞赛 技术报告 目录 目录 (11) 第一章方案设计 (11) 1.1系统总体方案的选定 (11) 1.2系统总体方案的设计 (11) 1.3 小结 (22) 第二章智能汽车机械结构调整与优化 (33) 2.1智能汽车车体机械建模 (33) 2.2 智能汽车传感器的安装 (44) 2.2.1速度传感器的安装 (44) 1 / 26

2.2.2 线形CCD的安装 (55) 2.2.3车模倾角传感器 (55) 2.3重心高度调整 (55) 2.3.1 电路板的安装 (66) 2.3.2 电池安放 (66) 2.4 其他机械结构的调整 (66) 2.5 小结 (66) 第三章智能汽车硬件电路设计 (77) 3.1主控板设计 (77) 3.1.1电源管理模块 (77) 3.1.2 电机驱动模块 (88) 3.1.3 接口模块 (99) 3.2智能汽车传感器 (1010) 3.2.1 线性CCD传感器 (1010) 3.2.2 陀螺仪 (1010) 3.2.3 加速度传感器 ............................ 错误!未定义书签。错误!未定义书签。 3.2.3 编码器 (1111) 3.3 键盘,数码管....................................... 错误!未定义书签。错误!未定义书签。 3.4液晶屏 (1212) 3.5 小结 (1212) 第四章智能汽车控制软件设计 (1313) 4.1线性CCD传感器路径精确识别技术 (1313) 4.1.1新型传感器路径识别状态分析 (1414)

基于单片机的智能小车开题报告

毕业设计(论文) 开题报告 设计(论文)题目:基于单片机的智能小车 学院名称:电子与信息工程学院 专业:电子与信息工程 班级:电信092班 姓名:杨介派学号09401180228 指导教师:胡劲松职称教授 定稿日期:2013 年1 月26 日

基于单片机的智能小车 1.课题研究背景和意义 智能化作为现代社会的新产物,是以后的发展方向,他可以按照预先设定的模式在一个特定的环境里自动的运作,无需人为管理,便可以完成预期所要达到的或是更高的目标。它集中地运用了计算机、传感、信息、通信、导航、人工智能及自动控制等技术,是典型的高新技术综合体。智能车辆是目前世界车辆工程领域研究的热点和汽车工业增长的新动向。随着企业生产技术的不断提高以及对自动化技术要求的不断加深,智能车辆已在许多工业部门获得了广泛的应用。无论是从科学发展、理论研究的角度,还是从汽车工业发展以及市场竞争的角度看,对智能车辆的研究都是必要的。而智能小车的研究及相关产品开发也将有利于我国在此领域技术发展与进步。因此,研制一种智能,高效的智能小车控制系统具有重要的实际意义和科学理论价值。 2.国内外研究现状及发展趋势 2.1 国外智能车辆的现状研究 国外智能车辆的研究历史较长,始于上世纪50年代,它的发展历程大致可以分为三个阶段: 第一阶段:20世纪50年代是智能车辆研究的初始阶段。1954年美国Barrett Electronic 公司研究开发出了世界上第一台自主引导车系统,该系统只是一个运行在固定路线上的拖车式运货平台,但它却具有了智能车辆最基本的特征即无人驾驶。 第二阶段:从80年代中后期,世界主要发达国家对智能车辆开展可卓有成就的研究,在欧洲,普罗米修斯项目于1986年开始了在这个领域的探索,在美洲,美国于1995年成立了国家自动高速公路系统联盟,其目标之一就是研究发展智能车辆的可行性,并促进智能车辆技术进入实用化。 第三阶段:从90年代开始,智能车辆进入了深入、系统、大规模的研究阶段。最为突出的是,美国卡内基-梅陇大学机器人研究所一共完成了Navlab系列的自主车的研究,取得了显著的成就。 2.2 国内智能车辆的现状研究 国内的许多高校和科研院所都在进行ITS关键技术、设备的研究,随着ITS研究的兴起,我国已形成了一支ITS技术研究开发的专业技术队伍。交通部已将ITS研究列入“十五”科技发展计划和2010年长期规划。相信经过相关领域的共同努力,我国ITS及智能车辆的技术水平

智能循迹小车___设计报告

智能循迹小车设计 专业:自动化 班级:自动化132 姓名:罗植升莫柏源梁桂宾 指导老师: 2014年4月——2010年6月 摘要:

本课题是基于STC89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 STC89C52单片机为系统控制处理器;采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 引言

当今世界,传感器技术和自动控制技术正在飞速发展,机械、电气和电子信息已经不再明显分家,自动控制在工业领域中的地位已经越来越重要,“智能”这个词也已经成为了热门词汇。现在国外的自动控制和传感器技术已经达到了很高的水平,特别是日本,比如日本本田制作的机器人,其仿人双足行走已经做得十分逼真,而且具有一定的学习能力,还据说其智商已达到6岁儿童的水平。 作为机械行业的代表产品—汽车,其与电子信息产业的融合速度也显著提高,呈现出两个明显的特点:一是电子装置占汽车整车(特别是轿车)的价值量比例逐步提高,汽车将由以机械产品为主向高级的机电一体化方向发展,汽车电子产业也很有可能成为依托整车制造业和用车提升配置而快速成为新的增长点;二是汽车开始向电子化、多媒体化和智能化方向发展,使其不仅作为一种代步工具、同时能具有交通、娱乐、办公和通讯等多种功能。 无容置疑,机电一体化人才的培养不论是在国外还是国内,都开始重视起来,主要表现在大学生的各种大型的创新比赛,比如:亚洲广播电视联盟亚太地区机器人大赛(ABU ROBCON)、全国大学生“飞思卡尔”杯智能汽车竞赛等众多重要竞赛都能很好的培养大学生对于机电一体化的兴趣与强化机电一体化的相关知识。但很现实的状况是,国内不论是在机械还是电气领域,与国外的差距还是很明显的,所以作为机电一体化学生,必须加倍努力,为逐步赶上国外先进水平并超过之而努力。 为了适应机电一体化的发展在汽车智能化方向的发展要求,提出简易智能小车的构想,目的在于:通过独立设计并制作一辆具有简单智能化的简易小车,获得项目整体设计的能力,并掌握多通道多样化传感器综合控制的方法。所以立“智能循迹小车”一题作为尝试。 此项设计是在以杨老师提供的小车为基础上,采用AT89C52单片机作为控制核心,实现能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。

电磁组-华南理工大学-Crusader技术报告

第七届“飞思卡尔”杯全国大学生 智能汽车竞赛 技术报告 学校:华南理工大学 队伍名称:Crusader 参赛队员:施尚军 陈迪 王艺霖 带队老师:陈安

关于技术报告和研究论文使用授权的说明 本人完全了解第七届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期:

目录 第一章引言 (1) 1.1 概述 (1) 1.2 系统框架图及车模 (1) 第二章硬件设计 (3) 2.1 电源模块 (3) 2.2 K10最小系统模块 (4) 2.2.1 电源稳压电路 (4) 2.2.2 J-TAG调试接口 (4) 2.2.3 单片机外部接口 (5) 2.2.4 其他外围电路 (5) 2.3 加速度及陀螺仪模块 (6) 2.4 电磁传感器运放电路 (7) 2.5 电机驱动模块 (8) 2.6 速度检测模块 (9) 2.7 调试模块 (10) 2.7.1 无线调试模块 (10) 2.7.2 液晶调试模块 (10) 2.7.3 拨码开关 (11) 第三章软件设计 (12) 3.1 程序流程图 (12) 3.2 自平衡环节 (12) 3.3 赛道检测 (15) 3.4 软件滤波 (17) 3.5 PID控速 (18)

3.6 上位机分析数据 (19) 第四章车模主要技术参数 (21) 第五章结论 (22) 参考文献 (23)

智能小车实训报告

智能小车实训报告 摘要: 本课题是基于AT89C52单片机的智能小车的设计与实现,小车完成的主要功能是能够自主识别黑色引导线并根据黑线走向实现快速稳定的寻线行驶。小车系统以 AT89S52 单片机为系统控制处理器; 采用红外传感获取赛道的信息,来对小车的方向和速度进行控制。此外,对整个控制软件进行设计和程序的编制以及程序的调试,并最终完成软件和硬件的融合,实现小车的预期功能。 一、实验目的: 通过设计进一步掌握51单片机的应用,特别是在嵌入式系统中的应用。进一步学习51单片机在系统中的控制功能,能够合理设计单片机的外围电路,并使之与单片机构成整个系统。 二、设计方案 该智能车采用红外传感器对赛道进行道路检测,单片机根据采集到的信号的不同状态判断小车当前状态,通过电机驱动芯片L298N 发出控制命令,控制电机的工作状态以实现对小车姿态的控制。 三.报告内容安排 本技术报告主要分为三个部分。第一部分是对整个系统实现方法的一个概要说明,主要内容是对整个技术原理的概述;第二部分是对硬件电路设计的说明,主要介绍系统传感器的设计及其他硬件电路的设计原理等;第三部分是对系统软件设计部分的说明,主要内容是智

能模型车设计中主要用到的控制理论、算法说明及代码设计介绍等。 技术方案概要说明 本模型车的电路系统包括电源管理模块、单片机模块、传感器模块、电机驱动模块。 工作原理: 利用红外采集模块中的红外发射接收对管检测路面上的轨迹 将轨迹信息送到单片机 单片机采用模糊推理求出转向的角度,然后去控制 行走部分 最终完成智能小车可以按照路面上的轨迹运行。 硬件电路的设计 1、最小系统: 小车采用atmel公司的AT89C52单片机作为控制芯片,图1是其最小系统电路。主要包括:时钟电路、电源电路、复位电路。 其中各个部分的功能如下: 1、时钟电路:给单片机提供一个外接的16MHz的石英晶振。 2、电源电路:给单片机提供5V电源。 3、复位电路:在电压达到正常值时给单片机一个复位信号。

飞思卡尔智能车比赛个人经验总结

先静下心来看几篇技术报告,可以是几个人一起看,边看边讨论,大致了解智能车制作的过程及所要完成的任务。 看完报告之后,对智能车也有了大概的了解,其实总结起来,要完成的任务也很简单,即输入模块——控制——输出。 (1)输入模块:各种传感器(光电,电磁,摄像头),原理不同,但功能都一样,都是用来采集赛道的信息。这里面就包含各种传感器的原理,选用,传感器电路的连接,还有传感器的安装、传感器的抗干扰等等需要大家去解决的问题。 (2)控制模块:传感器得到了我们想要的信息,进行相应的AD转换后,就把它输入到单片机中,单片机负责对信息的处理,如除噪,筛选合适的点等等,然后对不同的赛道信息做出相应的控制,这也是智能车制作过程中最为艰难的过程,要想出一个可行而又高效的算法,确实不是一件容易的事。这里面就涉及到单片机的知识、C语言知识和一定的控制算法,有时为了更直观地动态控制,还得加入串口发送和接收程序等等。 (3)输出模块:好的算法,只有通过实验证明才能算是真正的好算法。经过分析控制,单片机做出了相应的判断,就得把控制信号输出给电机(控制速度)和舵机(控制方向),所以就得对电机和舵机模块进行学习和掌握,还有实现精确有效地控制,又得加入闭环控制,PID算法。 明确了任务后,也有了较为清晰的控制思路,接下来就着手弄懂每一个模块。虽然看似简单,但实现起来非常得不容易,这里面要求掌握电路的知识,基本的机械硬件结构知识和单片机、编程等计算机知识。最最困难的是,在做的过程中会遇到很多想得到以及想不到的事情发生,一定得细心地发现问题,并想办法解决这些问题。 兴趣是首要的,除此之外,一定要花充足的时间和精力在上面,毕竟,有付出就会有收获,最后要明确分工和规划好进度。

飞思卡尔智能车设计报告

飞思卡尔智能车设计报告

目录 1.摘要 (3) 2.关键字 (3) 3.系统整体功能模块 (3) 4.电源模块设计 (4) 5.驱动电路设计 (4) 6.干簧管设计 (5) 7.传感器模块设计 (6) 8.传感器布局 (6) 9.软件设计 (7) 9.1控制算法 (7) 9.2软件系统实现(流程图) (10) 10.总结 (11) 11.参考文献 (12)

1.摘要 “飞思卡尔”杯全国大学生智能汽车竞赛是由教育部高等自动化专业教学指导分委员会主办的一项以智能汽车为研究对象的创意性科技竞赛,是面向全国大学生的一种具有探索性工程实践活动,是教育部倡导的大学生科技竞赛之一。该竞赛以“立足培养,重在参与,鼓励探索,追求卓越”为指导思想,旨在促进高等学校素质教育,培养大学生的综合知识运用能力、基本工程实践能力和创新意识,激发大学生从事科学研究与探索的兴趣和潜能,倡导理论联系实际、求真务实的学风和团队协作的人文精神,为优秀人才的脱颖而出创造条件。该竞赛以汽车电子为背景,涵盖自动控制、模式识别、传感技术、电子、电气、计算机、机械等多个学科的科技创意性比赛。 本文介绍了飞思卡尔电磁组智能车系统。本智能车系统是以飞思卡尔32 位单片机K60为核心,用电感检测赛道导线激发的电磁信号, AD 采样获得当前传感器在赛道上的位置信息,通过控制舵机来改变车的转向,用增量式PID进行电机控制,用编码器来检测小车的速度,共同完成智能车的控制。 2.关键字 电磁、k60、AD、PID、电机、舵机 3.系统整体功能模块 系统整体功能结构图

4.电源模块设计 电源是一个系统正常工作的基础,电源模块为系统其他各个模块提供所需要的能源保证,因此电源模块的设计至关重要。模型车系统中接受供电的部分包括:传感器模块、单片机模块、电机驱动模块、伺服电机模块等。设计中,除了需要考虑电压范围和电流容量等基本参数外,还要在电源转换效率、噪声、干扰和电路简单等方面进行优化。可靠的电源方案是整个硬件电路稳定可靠运行的基础。 全部硬件电路的电源由7.2V,2A/h的可充电镍镉电池提供。由于电路中的不同电路模块所需要的工作电流容量各不相同,因此电源模块应该包含多个稳压电路,将充电电池电压转换成各个模块所需要的电压。 电源模块由若干相互独立的稳压电源电路组成。在本系统中,除了电机驱动模块的电源是直接取自电池外,其余各模块的工作电压都需要经电源管理芯片来实现。 由于智能车使用7.2V镍镉电池供电,在小车行进过程中电池电压会有所下降,故使用低压差电源管理芯片LM2940。LM2940是一款低压稳压芯片,能提供5V的固定电压输出。LM2940低压差稳压芯片克服了早期稳压芯片的缺点。与其它的稳压芯片一样,LM2940需要外接一个输出电容来保持输出的稳定性。出于稳定性考虑,需要在稳压输出端和地之间接一个47uF低等效电阻的电容器。 舵机的工作电压是6伏,采用的是LM7806。 K60单片机和5110液晶显示器需要3.3伏供电,采用的是LM1117。 5.驱动电路设计 驱动电路采用英飞凌的BTS7960,通态电阻只有16mΩ,驱动电流可达43A,具有过压、过流、过温保护功能,输入PWM频率可达到25KHz,电源电压5.5V--27.5V。BTS7960是半桥驱动,实际使用中要求电机可以正反转,故使用两片接成全桥驱动。如图下图所示。

第十一届智能车技术报告_上海交通大学

第十一届“恩智浦”杯全国大学生 智能汽车竞赛 技术报告 学校:上海交通大学 队伍名称:思源致远 参赛队员:张兆瑞 郭恒 于欣禾 带队教师:王冰 王春香

目录 目录.........................................................................................................................................V 第一章引言 (2) 1.1摘要 (2) 1.2章节安排 (2) 第二章整体方案设计 (3) 2.1车体结构 (3) 2.2硬件电路 (3) 2.3控制算法 (3) 第三章机械结构 (4) 3.1车模重心调节 (4) 3.2编码器安装 (4) 第四章电路设计 (5) 4.1总述 (5) 4.2电源模块 (5) 4.3主控模块 (6) 4.4驱动模块 (6) 4.5PCB图绘制 (7) 第五章算法设计 (8) 5.1概述 (8) 5.2赛道识别算法 (8) 5.3速度控制算法 (8) 第六章总结 (10) 第七章主要技术参数 (11)

第一章引言 1.1摘要 全国大学生智能汽车竞赛至今已举办十届,通过十年间全国各地参赛队员的不断探索,较为传统的光电组已经形成了一套较为完整的体系,各类识别及控制算法均已较为成熟。 本设计为“恩智浦”杯第十一届全国大学生智能汽车竞赛的循迹行驶的方案,赛题组别为光电组。本文主要介绍了从方案设计到硬件制作最后控制算法实现的过程,整个系统涉及硬件电路设计、控制方案、整车机械架构等多个方面。最后通过长期的算法改进及参数调试测试了方案的可行性,并提升了控制算法的鲁棒性及整套系统的稳定性。 1.2章节安排 在本文中,将详细介绍机械设计、硬件电路及软件设计的调试与实现过程。其中机械设计包括重心调节以及各部分的安装等影响,硬件电路则包括各个子模块的功能、设计与实现。而算法部分则系统的讲述了车模信息的采集、路径处理算法、舵机和电机控制策略等。 其中,第一章是讲述了智能车竞赛的背景和本文章节安排;第二章讲述了车模的整体设计;第三章分析硬件结构对于小车的影响;第四章是从各模块出发,详细讲述了硬件电路各部分功能;第五章讲述了车模的软件算法设计从基础训先控制和速度算法控制两个方面;第六章项目总结;第七章是车模的主要技术参数。

飞思卡尔智能车技术报告

第六届“飞思卡尔”杯全国大学生智能汽车邀请赛技术报告 学校: 队伍名称: 参赛队员: 带队教师:

关于技术报告和研究论文使用授权的说明 本人完全了解第六届“飞思卡尔”杯全国大学生智能汽车邀请赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。 参赛队员签名: 带队教师签名: 日期: 摘要 随着现代科技的飞速发展,人们对智能化的要求已越来越高,而智能化在汽车相关产业上的应用最典型的例子就是汽车电子行业,

汽车的电子化程度则被看作是衡量现代汽车水平的重要标志。同时,汽车生产商推出越来越智能的汽车,来满足各种各样的市场需求。本文以第六届全国大学生智能车竞赛为背景,主要介绍了智能车控制系统的机械及硬软件结构和开发流程。 机械硬件方面,采用组委会规定的标准 A 车模,以飞思卡尔半导体公司生产的80管脚16 位单片机MC9S12XS128MAA 为控制核心,其他功能模块进行辅助,包括:摄像头数据采集模块、电源管理模块、电机驱动模块、测速模块以及无线调试模块等,来完成智能车的硬件设计。 软件方面,我们在CodeWarrior IDE 开发环境中进行系统编程,使用增量式PD 算法控制舵机,使用位置式PID 算法控制电机,从而达到控制小车自主行驶的目的。 另外文章对滤波去噪算法,黑线提取算法,起止线识别等也进行了介绍。 关键字:智能车摄像头图像处理简单算法闭环控制无线调试 第一章引言 飞思卡尔公司作为全球最大的汽车电子半导体供应商,一直致力于为汽车电子系统提供全范围应用的单片机、模拟器件和传感器等器件产品和解决方案。飞思卡尔公司在汽车电子的半导体器件市场拥有领先的地位并不断赢得客户的

(毕业设计)飞思卡尔智能车及机器视觉

图像处理在智能车路径识别中的应用 摘要 机器视觉技术在智能车中得到了广泛的应用,这项技术在智能车的路径识别、障碍物判断中起着重要作用。基于此,依据飞思卡尔小车的硬件架构,研究机器视觉技术应用于飞思卡尔小车。飞思卡尔智能车处理器采用了MC9S12XS128芯片,路况采集使用的是数字摄像头OV7620。 由于飞思卡尔智能车是是一款竞速小车,因此图像采集和处理要协调准确性和快速性,需要找到其中的最优控制。因此本设计主要需要完成的任务是:怎样用摄像头准确的采集每一场的图像,然后怎样进行二值化处理;以及怎样对图像进行去噪处理;最后也就是本设计的难点也是设计的核心,怎样对小车的轨迹进行补线。 本设计的先进性,在众多的图像处理技术中找到了适合飞思卡尔智能车的图像处理方法。充分发挥了摄像头的有点。经过小车的实际测试以及相关的MATLAB 仿真,最终相关设计内容都基本满足要求。小车的稳定性和快速性得到显著提高。 关键词:OV7620,视频采集,图像处理,二值化

The Application of Image Processing in the Recognition of Intelligent Vehicle Path ABSTRACT CameraMachine vision technology in the smart car in a wide range of applications, the technology identified in the path of the smart car, and plays an important role in the obstacles to judge. Based on this, based on the architecture of the Freescale car, machine vision technology used in the Freescale car. Freescale smart car the processor MC9S12XS128 chip traffic collected using a digital camera OV7620. Freescale's Smart car is a racing car, so the image acquisition and processing to coordinate the accuracy and fast, you need to find the optimal control. This design need to complete the task: how to use the camera to accurately capture every image, and then how to binarization processing; and how to image denoising; last is the difficulty of this design is the design of the core, how to fill line on the trajectory of the car. The advanced nature of the design found in many image processing techniques of image processing methods for Freescale Smart Car. Give full play to the camera a bit. The actual testing of the car and MATLAB simulation, the final design content can basically meet the requirements. The car's stability and fast to get improved significantly. KEY WORDS:OV7620,Video Capture,PictureProcessing,Binarization

自动控制原理课程设计报告-北京科技大学

北京科技大学自动控制原理课程设计 学院: 班级: 学号: 指导教师: 姓名:

目录 一.引言 (3) 二.系统模型的建立 (3) 三.系统控制的优化 (7) 3.1 PID调节参数的优化 (7) 3.2 积分分离PID的应用 (10) 四,结语 (12)

双轮自平衡智能车行走伺服控制算法摘要:全国第八届“飞思卡尔”智能汽车大赛已经结束。光电组使用大赛提供的D车模,双轮站立前进,相对于以前的四轮车,双轮车的控制复杂度大大增加。行走过程中会遇到各种干扰,经过多次的实验,已经找到了一套能够控制双轮车的方法。双轮机器人已经广泛用于城市作战,排爆,反恐,消防以及空间消防等领域。实验使用单片机控制双电机的转速,达到了预期的效果。 关键词:自平衡;智能;控制算法 Motion Servo Control Algorithm for Dual Wheel Intelligent Car Abstract: The 8th freescale cup national Intelligent Car competition of has been end.The led team must used D car which has only 2tires.It is more difficult to control prefer to control A car which has 4tires.There is much interference on the track.A two-wheeled robots have been widely used in urban warfare, eod, counter-terrorism, fire control and space fire control and other fields。We has searched a good ways to control it.We used MCU to control the speed of motors and get our gates. Key Words: balance by self; intelligent; control algorithm 一.引言 双轮自平衡车是智能汽车中一个重要的组成部分。由于其是两轮站立,在很多场合有比四轮车更灵活,更方便控制的特点。基于双轮车的机器人已经用于在城市作战,排爆,反恐,消防,空间探测等领域。 双轮自平衡车的控制过程与倒立摆相似。本次研究主要是对双轮车直立的研究。由于车在前进过程中还可能遇到弯道和路障,所以本文还对整个系统的稳定性做了比较深入的研究。在理论证明正确的前提下,再次进行仿真验证,仿真验证的结果与实验结果相符合。二.系统模型的建立 智能汽车竞赛使用的是D车模。D 车模是双电机,双轮的车模。单电机控制双轮时可以满足车身保持平衡和前进的要求,而之所以使用双电机是为了前进过程中转弯的需要。本文只讨论跟直立和干扰有关的内容,鉴于此,本文余下内容默认是单电机控制的车模。自平衡车在没有电机控制的情况下属于不稳定系统,在极小的干扰下,就会偏离平衡位置而失去平衡。因此,控制系统必须使用反馈控制。图1是站立在赛道上的双轮车模。

相关文档
最新文档