材料成型论文-塑性成形新技术概况

材料成型论文-塑性成形新技术概况
材料成型论文-塑性成形新技术概况

塑性成形新技术概况

摘要:文章介绍了当前塑性成形加工中的微成形、超塑成型、柔性加工、半固态加工等各种新技术,并分别阐述了各新技术的相关概念、特点、发展趋势等。这些相关介绍及发展概况对理解塑性成形技术及推广和运用高新技术,推动塑性成形的进一步发展具有一定参考意义。

关键词:塑性成形;新技术;发展概况

The Overview About Plastic forming technology

Abstract:The paper introduces all kinds of new technology such as Micro Molding ,Sup-erplastic Forming Technology ,Flexible Machining, Semi-Solid Processing in the plastic for -ming process nowadays and expounds the new technology’s related concepts ,characteristic s ,development tendency and so on.The related introduction and development situation has certain reference significance for understanding the plastic forming technology and promo-ting and using the advanced technology, promoting the further development of Plastic For-ming.

Keywords:Plastic forming; The new technology; Development situation

1 引言

塑性成形就是利用材料的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。塑性成形技术可分为板材成形和体积成形两大类。板材成形是使用成型设备通过模具对金属板料在室温下加压以获得所需形状和尺寸零件的成形方法,习惯上也称为冲压或冷冲压。板料成形可分为分离工序和成形工序。分离工序俗称冲裁,包括落料、冲孔、修边等。成形工序包括弯曲、拉伸、胀形、翻边等。体积成形是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要包括锻造、轧制、挤压或拉拔等。

塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,到21世纪,机械制造工业零件粗加工的75%和精加工的5 0%都采用塑性成形的方式实现。工业部门的广泛需求为塑性成形新技术的发展提供了原动力和空前的机遇。[1]

2 塑性成形新技术

随着科学技术的迅速发展,通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术发展速度之快,学科领域交叉之广泛是过去任何时代无法比拟的,塑性成形新工艺和新设备不断地涌现,出现了高速高能成形、少无切削、超塑成型、柔性加工、半固态加工等多种塑性加工新技术。掌握塑性成形技术的现状和发展趋势,有助于及时研究、推广和应用高新技术,推动塑性成形技术的持续发展。

2.1 高速高能成形

高速高能成形是一种在极短时间内释放高能量而使金属变形的成形方法。

高速高能成形的历史可追溯到一百多年前。但由于成本太高及当时工业发展的局限,该工艺并未得到应用。随着航空及导弹技术的发展,高速高能成形方法才进入到实际应用。

与常规成形方法相比,高速高能成形具有以下特点:

1)模具简单:仅需要凹模即可成形。可节省模具材料,缩短模具制造周期,降低模具成本。

2)零件精度高:成形时,零件以很高的速度贴模,在零件与模具之间发生很大的冲击力,这不但有利于提高零件的贴模性。而且可以有效地减少零件弹复现象。

3)表面质量好:毛坯变形是在液体、气体等传力介质作用下实现(电磁成形则无需传力介质)。因此,毛坯表面不受损伤,而且可提高变形的均匀性。

4)可提高材料的塑性变形能力:与常规成形方法相比,高速高能成形可提高材料的塑性变形能力。因此,对于塑性差的难成形材料,高速高能成形是一种较理想的工艺方法。

5)利于采用复合工艺:用常规成形方法需多道工序才能成形的零件,采用高速高能成形方法可在一道工序中完成。因此,可以有效地缩短生产周期,降低成本。

2.2少无切削成形

机械制造中用精确成形方法制造零件的工艺,也称少无切屑加工。少无切削加工工艺包括精密锻造、冲压、精密铸造、粉末冶金、工程塑料的压塑和注塑等。

传统的生产工艺最终多应用切削加工方法来制造有精确的尺寸和形状要求的零件,生产过程中坯料质量的30%以上变成切屑。这不仅浪费大量的材料和能源,而且占用大量的机床和人力。采用精确成形工艺,工件不需要或只需要少量切削加工即可成为机械零件,可大大节约材料、设备和人力。

锻压少无切削的发展,使锻压加工突破了毛坯生产的范畴,能生产某些成品零件。锻压少无切削件除具有一般锻件的特点外,还具有材料消耗低,加工工序简化,节约加工工时,成本低等优点。近几年来出现的各种新型、专用的少无切削锻压设备,如多工位冷挤压机、嫩锻机、精冲压力机、特种轧机、精密锻轴机等,都具有生产率高、机械化自功化程度高等特点。[2]

与传统工艺相比,少无切削加工具有显著的技术经济效益,能实现多种冷、热工艺综合交叉、多种材料复合选用,把材料与工艺有机地结合起来,是机械制造技术的一项突破。2.3 超塑性成形

超塑性成形指金属或合金在特定条件下,即低的变形速(=10-2~10-4s-1)一定的变形温度(约为熔点的一半)和均匀的细晶粒度(平均直径为0.2~5μm),其相对伸长率δ超过100%以上的特性。例如钢可超过500%、纯钛超过300%、锌铝合金超过1000%。

超塑性状态下的金属在拉伸变形过程中不产生缩颈现象,也不会断裂,金属的变形应力可比常态下降低几倍至几十倍。因此,超塑性金属极易成形,可采用多种工艺方法制出复杂零件。

目前超塑成形技术最广泛的应用是与扩散连接技术组合而成的超塑成形/扩散连接组合工艺技术,利用金属材料在一个温度区间内兼具超塑性与扩散连接性的特点,一次成形出带有空间夹层结构的整体构件。按照成形构件初始毛坯数量不同可以分为单层、两层、三层及四层结构形式。采用超塑成形/扩散连接工艺成形的空心夹层结构零件具有成形性好、设计自由度大、成形精度高、没有回弹、无残应力、刚性大、周期短、减少零件数量等优点。[3] 2.4 微成形

微成形指以塑性加工的方式生产至少在二维方向上尺寸处于亚毫米量级的零件或结构的工艺技术。

随着科技的提高,微型机电系统有了飞速的发展,而微成形技术是微型机电系统的灵魂,世界上各工业先进国家对微机械的研究重点都放在了微成形技术的研发上。到目前为止,涌现出了多种成熟的微成形技术,以德国为代表LIGA技术和以日本为代表的超精密机械家加工技术,此外还有高能束加工技术、微注塑成形技术、微粉末注射成形技术及微铸造技术等一些方兴未艾的微成形技术。[4]

微成形技术主要源于电子工业的兴起,随着大规模集成电路制造技术和以计算机为代表的微电子工艺的发展,而且还来自技术的需要,例如医疗器械、传感器及电子器械的发展。

越来越多的电子元件、电器组件及计算机配件等相关零件开始采用这一工艺方法进行生产。随着制造领域中微型化趋势的不断发展,微型零件的需求量越来越大,特别是在微型机械和微型机电系统中。

微成形具有极高的生产效率、最小或零材料损失、最终产品优秀的力学性能和紧公差等特点,所以适合于近净成形或净成形产品的大批量生产。

2.5 内高压成形

内高压成形是近10 多年来迅速发展起来的一种成形方法,它是结构轻量化的一种成形方法。是以管材为毛坯在内压和轴向补料联合作用下将管材成形为所需形状的先进制造技术。内高压成形件实现以空心替代实心、以变截面取代等截面、以封闭截面取代焊接截面,比冲焊件的质量减少 15%~30%,且可大幅提高零件的刚度和疲劳强度。20 世纪 80 年代初,德国和美国的研究机构系统地开展了内高压成形基础理论、工艺及应用研究,并从 20 世纪

90 年代中期开始在汽车工业领域大批量应用。[5]

与传统的冲压焊接工艺相比,内高压成形具有以下优点:

(1) 减轻质量,节约材料对于空心轴类零件可以减轻40%~50% ,有些件可达75%。

(2) 减少零件和模具数量,降低模具费用内高压件通常仅需要一套模具,而冲压件多需要多套模具

(3) 可减少后续机械加工和组装焊接量以散热器支架为例,散热面积增加43%,焊点

由174个减少到20个,工序由13道减少到6道,生产率提高66%。

(4) 提高强度与刚度,尤其疲劳强度仍以散热器支架为例,垂直方向提高39% ,水平方向提高50%。

(5) 降低生产成本根据统计,内高压件比冲压件平均降低成本15%~20% ,模具费用

降低20%~30%。

2.6 可变轮廓模具成形(柔性加工)

柔性制造技术也称柔性集成制造技术,是现代先进制造技术的统称。柔性制造技术集自动化技术、信息技术和制造加工技术于一体,把以往工厂企业中相互孤立的工程设计、制造、经营管理等过程,在计算机及其软件和数据库的支持下,构成一个覆盖整个企业的有机系统。

采用柔性制造技术的企业,平时能满足品种多变而批量很小的生产需求,战时能迅速扩大生产能力,而且产品质优价廉。柔性制造设备可在无需大量追加投资的条件下提供连续采用新技术、新工艺的能力,也不需要专门的设施,就可生产出特殊的军用产品。[6]对于小批量多品种板料件成形,例如舰艇侧面的弧形板、航空风洞收缩体板、飞机的蒙皮都是三维曲面,但批量很小甚至是单件生产,由于工件尺寸大,这样模具成本很高,何况即使模具加工完成,也有一个需要修模与调节的过程,因此用可变轮廓模具成形一直是塑性加工界及模具界的研究方向之一。

2.7 半固态成形

半固态成形是20世纪70年代发展起来的金属成形新技术,指对经过特殊处理的固体坯料加热,或在液态金属凝固过程中加以搅拌等处理而得到的具有非枝晶结构的固相、液相组织共存的半固态坯料进行成形加工,得到所需形状和性能的制品的加工方法。它主要包括半固态锻造、半固态挤压、半固态轧制、半固态压铸等工艺类型,在汽车、通讯、航空、航天、国防等领域得到了越来越广泛的应用,被称为21世纪新兴的金属制造关键技术之一。

从半固态自身发展看,研究不同制浆方法下的形核和长大机理、制浆过程的精确控制以及发展适合半固态成形的新型合金是该技术的主要发展方向;从拓展半固态研究领域看,在近液相附近实现成分场和温度场的精确控制,将推动该项技术向高合金化金属的近终成形以及纯金属的晶粒细化的研究与应用方向发展。[7]

3 结束语

材料成型技术基础复习重点

1.常用的力学性能判据各用什么符号表示它们的物理含义各是什么 塑性,弹性,刚度,强度,硬度,韧性 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 工程材料的发展趋势

据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固组织是由合金的成分和铸造条件决定的。 铸件的宏观组织一般包括三个晶区:表面的细晶粒区、柱状晶粒区和内部等轴晶区。 金属塑性成形指利用外力使金属材料产生塑性变形,使其改变形状、尺寸和改善性能,从而获得各种产品的加工方法。 主要应用: (1)生产各种金属型材、板材、线材等; (2)生产承受较大负荷的零件,如曲轴、连杆、各种工具等。 金属塑性成形特点

金属塑性成形工艺

有色金属塑性加工趋势 冶金 金属塑性成形工艺有着悠久的历史,4000多年前(青铜器时代),金属的塑性加工与金属的熔炼与铸造同时出现,可加工铜、铁、银、金、铅、锌、锡等,所采用的工艺包括热锻、冷锻、板材加工、旋压、箔材和丝材拉拨。 近代第一次技术革命开始于18世纪中叶,以蒸汽机的发明和广泛使用为标志,从而实现了手工工具到机械工具的转变。塑性加工也从手工自由锻向机械压力机(蒸汽锤、自由锻锤及蒸汽轧钢机)进步。 近代第二次技术革命以电力技术为主导,电磁理论的建立,为电力取代蒸汽动力的革命奠定了基础。金属塑性加工设备以蒸汽向电力驱动进步。机械制造业的进一步发展,提高了塑性加工设备的制造水平,出现了轧钢机、挤压机、锻造机、拉拨机和压力机。 现代科技革命开始于上世纪40年代,其主要标志为电子技术的发展,电控和电子计算机的应用,塑性加工设备和技术向全流程自动化进步。现在可以做到配料、熔炼、铸造、轧制及随后处理全线自动化。 目前,金属材料在日常生活和高科技中占有相当大的比例,其加工技术是其它加工的基础。材料加工成形工艺通常有液态金属成形、塑性成形、连接成形等。塑性成形主要是利用金属在塑性状态下的体积转移因而材料的利用率高流线分布合理高了制品的强度, 可以达到较高的精度, 具有较高的生产率. 坯料在热变形过程中可能发生了再结晶或部分再结晶,粗大的树枝晶组织被打破,疏松和孔隙被压实、焊合,内部组织和性能得到了较大的改善和提高。有色金属塑性加工的基本方法:轧制、挤压、拉拔、锻造、冲压等。 近年来,随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到随着科学技术整体的飞速进步,金属塑性加工技术也取得了迅速发展。人们充分认识到最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。最终决定材料及产品结构和控制性能的关键是合成与加工。因此,材料科学与材料工程学紧密结合成为开发新材料和提高传统材料性能的必然途径。有色金属材料加工技术向高精度、高性能、低消耗、低成本、优化生产过程和自动化方向发展。目前金属塑性加工技术现状与总的发展趋势是主要体现在以下一些方面:(1)生产方法、工艺技术向着节能降耗、综合连续、优化精简、高速高效的方向发展。如实行冶炼、铸造与加工的综合一体化,采用连铸连轧,连续铸轧、连续铸挤,半固态加工等新工艺技术;尽量生产最终和接近最终形状产品;利用余热变形、热变形与温变形配合,冷加工与热加工变形量之间的优化匹配,变形与热处理的配合,省略或减少加热与中间退火次数等。(2)工艺装备更新换代加快,设备更趋大型、精密、成套、连续,自动化水平更加提高。生产线更趋大型化、专业化。产品单重大大增加。(3)产品向多品种、高质量、高精度发展,产品结构不断调整,新材料新产品不断被开发。轻型薄壁材料、复合材料、镀层涂层材料等不断发展,产品注重深度加工,有色材料的产品综合性能和使用效能大大提高。(4)工模具结构、材质,加工工艺、热处理工艺和表面处理工艺不断改进和完善。模具的质量和使用效果、寿命得到极大的提高。(5)在加工辅助工序和其他环节,开发新型辅助设备,采取先进技术和多种

先进材料成型技术及理论

华中科技大学博士研究生入学考试 《先进材料成形技术与理论》考试大纲 一、《先进材料成形技术及理论》课程概述 编号:MB11001 学时数:40 学分:2.5 教学方式:讲课30、研讨6、实验参观4 二、教学目的与要求: 材料的种类繁多,其加工方法各异,近年来随同科学技术的发展,新材料、材料加工新技术不断出现。本课程将概述材料的分类及其加工方法的选择;重点介绍液态金属精密成形、金属材料塑性精确成形及金属连接成形等研究与应用领域的新技术、新理论;阐述材料加工中的共性与一体化技术。本课程作为材料加工工程专业的学位课,将使研究生对材料加工的新技术与新理论有个全面的了解,引导研究生在大材料学科领域进行思考与分析,为从事材料加工工程技术的研究与发展奠定基础。 三、课程内容: 第一章材料的分类及其加工方法概述 1.1材料的分类及加工方法概述 1.2材料加工方法的选择(不同材料)及不同加工方法的精度比较(同一种材料) 1.3材料加工中的共性(与一体化)技术 1.4材料加工技术的发展趋势 第二章液态金属精密成形理论及应用 2.1 材料液态成形的范畴及概述 2.2 消失模精密铸造原理及应用(原理、关键技术、应用实例、缺陷与防治) 2.3 Corsworth Process新技术(精密砂型铸造:锆英(砂)树脂砂型、电磁浇注、热法旧砂再生) 2.4 半固态铸造成形原理与技术(流变铸造、触变成形、注射成形) 2.5 铝、镁合金的精确成形技术(金属型铸造、压铸、反重力精密铸造、精密熔模铸造等) 2.6 特殊凝固技术(快速凝固、定向凝固、振动凝固) 2.7 金属零件的数字化铸造(铸件三维造型、工艺模拟及优化、样品铸件快速铸造、工业化生产及 其设计) 2.8 高密度粘土砂紧实机理及其成形技术(高压造型、气冲造型、静压造型) 第三章金属材料塑性精密成形工艺及理论 3.1 金属塑性成形种类与概述 3.2金属材料的超塑性及超塑成形(概念、条件、成形工艺) 3.3 复杂零件精密模锻及复杂管件的精密成形(精密模锻、复杂管件成形) 3.4 板料精密成形(精密冲裁、液压胀形、其它板料精密成型) 3.5 板料数字化成形(点(锤)渐进成形、线渐进(快速)成形、无模(面、液压缸作顶模)成形)

浅谈铸造成型与塑性成形的新发展

浅谈铸造成型与塑性成形的新发展摘要:经过了三个多月的金属工艺学学习,课程也将要接近尾声了,在杨老师的课程中,我学到了很多关于金属铸造、成型的各种原理和发展过程和发展前景,随着我国的科学技术和工业化的发展,也大大的促进了制造业和制造工艺的发展,推动了铸造成型和塑性成形的新工艺的开发和创新,使得铸造成型和塑性成形的工艺朝着批量化、工艺化、精细化、轻量化的方向有了长足的进步,接下来我就铸造成型和塑性成形的一些了解的进行一下简单的论述。 关键词:铸造成型铸造工艺新工艺塑性成形缺点技术发展 随着科学技术在各个领域的突破,尤其是计算机的广泛应用,促进了铸造技术塑性成形的飞速发展,各种工艺技术与铸造技术的相互渗透和结合,也促进了铸造新工艺、新方法的发展。通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术的发展大大的促进了塑性成形的飞速发展。 一、铸造成型 铸造种类很多,按造型方法习惯上分为:①普通砂型铸造,包括湿砂型、干砂型和化学硬化砂型3类。②特种铸造,按造型材料又可分为以天然矿产砂石为主要造型材料的特种铸造(如熔模铸造、泥型铸造、铸造车间壳型铸造、负压铸造、实型铸造、陶瓷型铸造等)和以金属为主要铸型材料的特种铸造(如金属型铸造、压力铸造、连续铸造、低压铸造、离心铸造等)两类。 铸造工艺通常包括: ①铸型(使液态金属成为固态铸件的容器)准备,铸型按所用材料可分为砂型、金属型、陶瓷型、泥型、石墨型等,按使用次数可分为一次性型、半永久型和永久型,铸型准备的优劣是影响铸件质量的主要因素; ②铸造金属的熔化与浇注,铸造金属(铸造合金)主要有铸铁、铸钢和铸造有色合金; ③铸件处理和检验,铸件处理包括清除型芯和铸件表面异物、切除浇冒口、铲磨毛刺和披缝等凸出物以及热处理、整形、防锈处理和粗加工等。 近年来基于汽车轻量化的要求,越来越多的汽车零件正逐步由钢、铁改为铝、镁、塑料等轻质材料,其中以铝代钢铁是当前汽车轻量化的主要发展方向。而由于效率、成本、性能的综合考虑,目前采用压铸成形的零件越来越多,零件结构越来越复杂。 压铸合金材料也从常规的亚共晶Al-Si-Cu系(ADC12,A380)或共晶Al-Si系(YL102)合金向特殊的合金材料发展,如过共晶的Al-Si-Cu系合(ADC14A390)、亚共晶的Al-Si-Mg 系(AlSi10MgFe)以及Al-Mg系(AlMg5)合金等也正逐步大量应用于压铸零件中。过共晶Al-Si合金由于具有热膨胀系数小、密度小、耐磨及高温性能好、铸造性能优良等特点,是高强度、耐磨、低膨胀零件如汽车活塞汽缸体、斜盘、离合器齿轮等的理想材料但是目前国内外有关Al-Si合金的压铸件开发及应用的报道很少。 铸造成型的新工艺主要有三个方向 一是凝固理论推动的铸造技术的发展,主要的成就是定向凝固和单晶、细晶铸造、半固态铸造、快速凝固铸造和其他凝固铸造、差压铸造等通过控制凝固过程而提高材料性能,减少缩松缩孔,从而获得优质的铸件。 二是造型技术的新发展,主要有气体冲压造型,静压造型,真空密封造型,冷冻造型。 三是计算机技术推动的铸造新发展,计算机技术是21世纪的核心技术,是改造传统铸造产业的必由之路。运用计算机对铸造生产过程进行设计、仿真、模拟,可以帮助工程技术人员优化工艺设计,缩短产品制造周期,降低生产成本,确保铸件质量。现代的计算机技术在铸造方面的应用主要有铸造过程的数值模拟和制造工艺CAD两方面。

材料成形工艺基础

《材料成形工艺基础》自学指导书 一、课程名称:材料成形工艺基础 二、自学学时:50课时 三、教材名称:《材料成形工艺基础》柳秉毅编 四、参考资料:材料成形技术基础陶冶主编机械工业出版社 五、课程简介:《材料成形工艺基础》是材料成型及控制工程专业的主干课程之一,其任务是阐明液态成型、塑性成型和焊接形成等成型技术在内的内在基本规律和物质本质,揭示材料成型过程中影响产品性能的因素及缺陷产生的机理。 六、考核方式:闭卷考试 七、自学内容指导: 绪论第1章金属材料的力学性能 一、本章内容概述: 绪论:1.材料成形工艺的发展历史2.材料成形加工在国民经济中的地位 3.材料成形工艺基础课程的内容 4.本课程的学习要求与学习方法。 第一章:1)铸造成形基本原理;2)塑性成形基本原理; 3)焊接成形基本原理 二、自学学时安排:8学时 三、知识点: 1.合金的铸造性能 2.合金的收缩性; 3.铸件的缩孔和缩松 2合金的充型能力是指液态合金充满铸型型腔,获得尺;3影响合金的充型能力的因素1)合金的流动性2)浇;4合金的收缩概念液态合金从浇注温度逐渐冷却、凝固;5铸造内应力分热应力和机械应力;6顺序凝固,是使铸件按递增的温度梯度方向从一个部;7顺序凝固可以有效地防止缩孔和宏观缩松,主要适用;8缩孔和缩松的防止方法:顺序凝固 四、难点:

1)强度、刚度、弹性及塑性 2)硬度、冲击韧性、断裂韧度、疲劳。 五、课后思考题与习题:P40 1.1 区分以下名词的含义: 逐层凝固与顺序凝固糊状凝固与同时凝固 液态收缩与凝固收缩缩孔与缩松 答:逐层凝固:纯金属和共晶成分的合金是在恒温下结晶的,铸件凝固时其凝固区宽度接近于零,随着温度的下降,液相区不断减小,固相区不断增大而向中心推进,直至到达铸件中心。顺序凝固:是指在铸件上建立一个从远离冒口的部分到冒口之间逐渐递增的温度梯度,从而实现由远离冒口处向冒口方向顺序地凝固,即远离冒口的部位先凝固,靠近冒口的部位后凝固,冒口本身最后凝固。 糊状凝固:如果合金的结晶温度范围很宽,或者铸件断面上温度梯度较小,则在凝固的某段时间内,其固相和液相并存的凝固区会贯穿铸件的整个断面。 同时凝固:是指采取一定的工艺措施,尽量减小铸件各部分之间的温度差,使铸件的各部分几乎同时进行凝固。 液态收缩:从浇注温度冷却至凝固开始温度(液相线温度)期间发生的收缩。凝固收缩:从凝固开始温度到凝固终了温度(固相线温度)期间发生的收缩。 铸件在凝固过程中,由于合金的液态收缩和凝固收缩所造成的体积缩减,如果未能获得补充(称为补缩),则会在铸件最后凝固的部位形成孔洞。大而集中的孔洞称为缩孔,细小而分散的孔洞称为缩松。 1.3拟生产一批小型铸铁件,力学性能要求不高,但壁厚较薄,试分析如何提高合金液的充型能力。 答:1)尽可量提高浇注温度。由于壁厚较薄,铸铁可取1450左右2)增大充型压力(即增大推动力)。3)选用蓄热能力强的材料作铸型。4)提高铸型温度。5)选用发气量小而排气能力强的铸型。 1.4冒口补缩的原理是什么? 冷铁是否可以补缩? 冷铁的作用与冒口有何不同? 答:在铸件厚壁处和热节部位(即铸件上热量集中,内接圆直径较大的部位)设置冒

塑性成形方法

第五节其它塑性成形方法 随着工业的不断发展,人们对金属塑性成形加工生产提出了越来越高的要求,不仅要求生产各种毛坯,而且要求能直接生产出更多的具有较高精度与质量的成品零件。其它塑性成形方法在生产实践中也得到了迅速发展和广泛的应用,例如挤压、拉拔、辊轧、精密模锻、精密冲裁等。 一、挤压 挤压:指对挤压模具中的金属锭坯施加强大的压力作用,使其发生塑性变形从挤压模具的模口中流出,或充满凸、凹模型腔,而获得所需形状与尺寸制品的塑性成形方法。 挤压法的特点: (1)三向压应力状态,能充分提高金属坯料的塑性,不仅有铜、铝等塑性好的非铁金属,而且碳钢、合金结构钢、不锈钢及工业纯铁等也可以采用挤压工艺成形。在一定变形量下,某些高碳钢、轴承钢、甚至高速钢等也可以进行挤压成形。对于要进行轧制或锻造的塑性较差的材料,如钨和钼等,为了改善其组织和性能,也可采用挤压法对锭坯进行开坯。 (2)挤压法可以生产出断面极其复杂的或具有深孔、薄壁以及变断面的零件。 (3)可以实现少、无屑加工,一般尺寸精度为IT8~IT9,表面粗糙度为Ra3.2~0.4μ m,从而 (4)挤压变形后零件内部的纤维组织连续,基本沿零件外形分布而不被切断,从而提高了金属的力学性能。 (5)材料利用率、生产率高;生产方便灵活,易于实现生产过程的自动化。 挤压方法的分类: 1.根据金属流动方向和凸模运动方向的不同可分为以下四种方式:

(1)正挤压金属流动方向与凸模运动方向相同,如图2-69所示。 (2)反挤压金属流动方向与凸模运动方向相反,如图2-70所示。 (3)复合挤压金属坯料的一部分流动方向与凸模运动方向相同,另一部分流动方向与凸模运动方向相反,如图2-71所示。 (4)径向挤压金属流动方向与凸模运动方向成90°角,如图2-72所示。 图2-69 正挤压 图2-70 反挤压

无模成形技术简介

无模成形技术简介 1.引言 无模成形是以计算机为主要手段,利用多点成形或增量成形的方法,实现板料的无模具塑性成形的先进智能化制造技术。 金属板料成形在制造业中有着十分重要的地位,该技术广泛应用于航空航天、船舶工业、汽车覆盖件和家电等生产行业,但传统的金属板料加工工艺都离不开模具,采用模具成形生产周期长,而且缺乏柔性,产品变化时就需要重新更换模具,这就延长了新产品的开发周期。而现代社会产品的更新换代非常迅速,如何快速、低成本和高质量地开发出新产品,是企业生存和发展的关键。为此,国内外许多学者都在致力于板料塑性成形新技术的研究,努力实现金属板料快速高效的柔性冲压和无模成形,以适应现代制造业产品快速更新的市场竞争需要。 2.研究概况 国内外许多学者都对板料塑性成形新技术进行了大量的研究,从无模多点成形和数字化渐进成形到喷丸成形、爆炸成形、激光热应力成形和激光冲击成形等,并取得了一定的成果。 2.1无模多点成形 无模多点成形是利用高度可调节的数控液压加载单元(基本群体)形成离散曲面,来替代传统模具进行三维曲面成形的方法,是一种多点压延加工技术。此法特别适合于多品种小批量生产,体现了敏捷制造的理念。目前已在高速列车流线型车头制作、船舶外板成形、建筑内外饰板成形及医学工程等领域,得到广泛应用。与传统模具成形方法相比,其主要区别就是他具有“柔性”,可以在成形前也可在成形过程中改变基本体的相对位移状态,从而改变被成形件的变形路径及受力状态,以达到不同的成形效果。图2-1为传统模具成形与多点成形的比较。图2-2为多点模具成形的过程。

图2-1模具成形与多点成形的比较 图2-2多点模具成形过程 20世纪70年代,日本造船界开始研究多点成形压力机,并成功应用于船体外板的曲面成形。此后许多学者为开发多点成形技术进行了大量的探讨与研究,制作了不同的样机,但大多只能进行变形量较小的整体变形。吉林大学李明哲等人对无模多点成形技术进行了较为系统的研究,已自主设计并制造了具有国际领先水平的无模多点成形设备,2002年底,李教授组建了产学研实体:长春瑞光科技有限公司。目前,公司已有的多台产品投入到工程使用中,表2-1给出了产品的具体型号。 表2-1长春瑞光科技有限公司产品具体型号 YAM-4型1000KN多点成形压力机 1.总成形力:1000KN 2.基本体调整量:100mm 3.有效成形尺寸:500x400mm 4.可加工板材厚度:2~8mm

塑性成形新技术的发展趋势

塑性成形新技术的发展趋势 班级:机制学号:姓名:周祯 张涛 朱越 一、历史沿革 从人类社会的发展和历史进程的宏观来看,材料是人类赖以生存和发展的物质基础,也是社会现代化的物质基础和先导。而材料和材料技术的进步和发展,首先应归功于金属材料制备和成型加工技术的发展。人类从漫长的石器时代进化到青铜时代(有学者称之为“第一次材料技术革命”),首先得益于铜的熔炼以及铸造技术进步和发展,而由铜器时代进入到铁器时代,得益于铁的规模冶炼技术、锻造技术的进步和发展(所谓“第二次材料技术革命”)。直到世纪中叶,冶金(金属材料的制备与成型加工)才由“技艺”逐渐发展成为“冶金学”,人类开始注重从“科学”的角度来研究金属材料的组成、制备与加工工艺、性能之间的关系,迎来了所谓的“第三次材料技术革命”——人类从较为单一的青铜、铸铁时代进入到合金化时代,催生了人类历史的第一次工业革命,推动了近代工业的快速发展。 进入世纪以后,材料合成技术、符合技术的出现和发展,推动了现代工业的快速发展,而电子信息、航天航空等尖端技术的发展,反过来对高性能先进材料的研究开发提出了更高的要求,起到了强大的促进作用,促成了一系列新材料和新材料技术的出现和发展。 一般而言,材料需要经历制备、成型加工、零件或结构的后处理等工序才能进入实际应用,因此,材料制备与成型加工技术,与材料的成分和结构、材料的性质一起,构成了决定材料使用性能的最基本的三大要素。 先进工业国家对材料制备与成型加工技术的研究开发十分重视。美国制定了“为了工业材料发展计划”,其核心是开放先进的制备与成型加工技术,提高材料性能,降低生产成本,满足未来工业发展对材料的需求。德国开展的“世纪新材料研究计划”将材料制备与成型加工技术列为六个重点内容之一。在欧盟的“第六框架”计划中,先进制备技术时新材料领域的研究重点之一。日本在世纪年代后期,先后实施了“超级金属”、“超钢铁”计划,重点是发展先进的制备加工技术,精确控制组织,大幅度提高材料的性能,达到减少材料用量、节省资源和能源的目的。 新材料的研究、开发与应用,综合反应了一个国家的科学技术与工业化水平,而先进制备与成型加工技术的发展,对于新材料的研制、应用和产业化具有决定性的作用。先进制备与成型加工技术的出现与应用,加上了新材料的研究开发、生产和应用进程,促成了诸如微电子和生物医用材料等新兴产业的形成,促进了现代航天航空,交通运输,能源环保等高技术产业的发展。 传统结构材料向高性能“,复合化,结构功能一体化发展,尤其需要先进制备与成型加工技术及装备,可使材料的生产过程更加高效,节能和洁净,从而提高传统材料产业的国际竞争力。 另一方面,开展本科学领域色前沿和基础研究,并综合利用相关学科基础理论和科技发展成果,提供预备新材料的新原理新方法,也是材料科学与工程学科自身发展的需求。 因此,材料先进制备与成型加工技术发展,对提高国家综合实力,突破先进工业国家的技术

材料成型工艺

. 问答题 1、吊车大钩可用铸造、锻造、切割加工等方法制造,哪一种方法制得的吊钩承载能力大?为什么? 2、什么是合金的流动性及充形能力,决定充形能力的主要因数是什么? 3、铸造应力产生的主要原因是什么?有何危害?消除铸造应力的方法有哪些? 4.试讨论什么是合金的流动性及充形能力? 5. 分别写出砂形铸造,熔模铸造的工艺流程图并分析各自的应用范围. 6.液态金属的凝固特点有那些,其和铸件的结构之间有何相联关系? 7.什么是合金的流动性及充形能力,提高充形能力的因素有那些? 8.熔模铸造、压力铸造与砂形铸造比较各有何特点?他们各有何应用局限性? 9.金属材料固态塑性成形和金属材料液态成形方法相比有何特点,二者各有何适用范围? 10. 缩孔与缩松对铸件质量有何影响?为何缩孔比缩松较容易防止? 11. 什么是定向凝固原则?什么是同时凝固原则?各需采用什么措施来实现?上述两种凝固原则各适用于哪种场合? 12. 手工造型、机器造型各有哪些优缺点?适用条件是什么? 13.从铁-渗碳体相图分析,什么合金成分具有较好的流动性?为什么? 14. 铸件的缩孔和缩松是怎么形成的?可采用什么措施防止? 15. 什么是顺序凝固方式和同时凝固方式?各适用于什么金属?其铸件结构有何特点? 16. 何谓冒口,其主要作用是什么?何谓激冷物,其主要作用是什么? 17. 何谓铸造?它有何特点? 18. 既然提高浇注温度可提高液态合金的充型能力,但为什么又要防止浇注温度过高? 19.金属材料的固态塑性成形为何不象液态成形那样有广泛的适应性? 20..冷变形和热变形各有何特点?它们的应用范围如何? 21. 提高金属材料可锻性最常用且行之有效的办法是什么?为何选择? 22. 金属板料塑性成形过程中是否会出现加工硬化现象?为什么? 23. 纤维组织是怎样形成的?它的存在有何利弊? 24.许多重要的工件为什么要在锻造过程中安排有镦粗工序? 25. 模锻时,如何合理确定分模面的位置? 26. 模锻与自由锻有何区别? . . 27.板料冲压有哪些特点?主要的冲压工序有哪些? 28. 间隙对冲裁件断面质量有何影响?间隙过小会对冲裁产生什么影响? 29. 分析冲裁模与拉深模、弯曲模的凸、凹模有何区别? 30. 何谓超塑性?超塑性成形有何特点? 31、落料与冲孔的主要区别是什么?体现在模具上的区别是什么? 32、比较落料或冲孔与拉深过程凹、凸模结构及间隙Z有何不同?为什么?

塑性成形新技术概况

材料成形设备小论文 塑性成形新技术概况 系名 专 学号 学生姓名 指导教师 2016年 4 月12 日

摘要:文章介绍了当前塑性成形加工中的微成形、超塑成型、柔性加工、半固态加工等各种新技术,并分别阐述了各新技术的相关概念、特点、发展趋势等。这些相关介绍及发展概况对理解塑性成形技术及推广和运用高新技术,推动塑性成形的进一步发展具有一定参考意义。 关键词:塑性成形;新技术;发展概况 1 引言 塑性成形就是利用材料的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。塑性成形技术可分为板材成形和体积成形两大类。板材成形是使用成型设备通过模具对金属板料在室温下加压以获得所需形状和尺寸零件的成形方法,习惯上也称为冲压或冷冲压。板料成形可分为分离工序和成形工序。分离工序俗称冲裁,包括落料、冲孔、修边等。成形工序包括弯曲、拉伸、胀形、翻边等。体积成形是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要包括锻造、轧制、挤压或拉拔等。 塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,到21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。工业部门的广泛需求为塑性成形新技术的发展提供了原动力和空前的机遇。[1] 2 塑性成形新技术 随着科学技术的迅速发展,通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术发展速度之快,学科领域交叉之广泛是过去任何时代无法比拟的,塑性成形新工艺和新设备不断地涌现,出现了高速高能成形、少无切削、超塑成型、柔性加工、半固态加工等多种塑性加工新技术。掌握塑性成形技术的现状和发展趋势,有助于及时研究、推广和应用高新技术,推动塑性成形技术的持续发展。 3.1 高速高能成形 高速高能成形是一种在极短时间内释放高能量而使金属变形的成形方法。 高速高能成形的历史可追溯到一百多年前。但由于成本太高及当时工业发展的局限,该工艺并未得到应用。随着航空及导弹技术的发展,高速高能成形方法才进入到实际应用。 与常规成形方法相比,高速高能成形具有以下特点: 1)模具简单:仅需要凹模即可成形。可节省模具材料,缩短模具制造周期,

材料成型技术基础复习重点.

1.1 1.常用的力学性能判据各用什么符号表示?它们的物理含义各是什么? 塑性,弹性,刚度,强度,硬度,韧性 1.2 金属的结晶:即液态金属凝固时原子占据晶格的规定位置形成晶体的过程。 细化晶粒的方法:生产中常采用加入形核剂、增大过冷度、动力学法等来细化晶粒,以改善金属材料性能。 合金的晶体结构比纯金属复杂,根据组成合金的组元相互之间作用方式不同,可以形成固溶体、金属化合物和机械混合物三种结构。 固溶强化:通过溶入某种溶质元素形成固溶体而使金属的强度、硬度升高的现象。1.3 铁碳合金的基本组织有铁素体、奥氏体、渗碳体、珠光体和莱氏体 1.4 钢的牌号和分类 影响铸铁石墨化的因素主要有化学成分和冷却速度 1.5 塑料即以高聚物为主要成分,并在加工为成品的某阶段可流动成形的材料。 热塑性塑料:即具有热塑性的材料,在塑料整个特征温度范围内,能反复加热软化和反复加热硬化,且在软化状态通过流动能反复模塑为制品。 热固性塑料:即具有热固性的塑料,加热或通过其他方法,能变成基本不溶、不熔的产物。 橡胶橡胶是可改性或已被改性为某种状态的弹性体。 1.6 复合材料:由两种或两种以上性质不同的材料复合而成的多相材料。 通常是其中某一组成物为基体,而另一组成物为增强体,用以提高强度和韧性等。 1.8工程材料的发展趋势 据预测,21世纪初期,金属材料在工程材料中仍将占主导地位,其中钢铁仍是产量最大、覆盖面最广的工程材料,但非金属材料和复合材料的发展会更加迅速。 今后材料发展的总趋势是:以高性能和可持续发展为目标的传统材料的改造及以高度集成化、微细化和复合化为特征的新一代材料的开发。 2.0材料的凝固理论 凝固:由液态转变为固态的过程。 结晶:结晶是指从原子不规则排列的液态转变为原子规则排列的晶体状态的过程。 粗糙界面:微观粗糙、宏观光滑; 将生长成为光滑的树枝; 大部分金属属于此类 光滑界面:微观光滑、宏观粗糙; 将生长成为有棱角的晶体; 非金属、类金属(Bi、Sb、Si)属于此类 偏析:金属凝固过程中发生化学成分不均匀的现象 宏观偏析通常指整个铸锭或铸件在大于晶粒尺度的大范围内产生的成分不均匀的现象2.1 铸件凝固组织:宏观上指的是铸态晶粒的形态、大小、取向和分布等情况,铸件的凝固

塑性成型工艺及设备

塑性成型工艺及设备实验指导书 班级: 姓名: 学号: 南京农业大学工学院机械工程系 机械制造工艺教研室 2006年10月

目录 实验一双动液压机装配精度检验 (2) 一、实验目的 (2) 二、实验用工具及设备 (2) 三、实验内容及方法 (4) 四、实验数据整理 (7) 五、实验报告要求 (7) 实验二冷冲压模具安装及工艺参数实验 (8) 一、实验目的 (8) 二、实验内容 (8) 三、实验用设备、工具和材料 (8) 四、实验步骤 (8) 五、实验报告要求 (9) 实验三曲柄压力机拆装实验 (10) 一、实验目的 (10) 二、实验用工具及设备 (10) 三、实验内容及方法 (10) 四、实验报告要求 (10) 实验四塑料注塑成型实验 (11) 一、实验目的 (11) 二、实验用工具及设备 (11) 三、实验内容及其步骤 (11) 四、实验报告要求 (11)

实验一双动液压机装配精度检验 一、实验目的 1、了解双动液压机的结构及动作原理; 2、掌握双动液压机制造及装配精度检测内容及检验方法。 二、实验用工具及设备 1、工具:百分表、百分表架、检验平尺、直角尺等。 2、设备:YX28-300/500A框架液压机。 YX28-300/500A框架式液压机主要用于薄板拉深、弯曲、成形等工艺,也可以用于整形、较平、压装、落料、挤压等。适用于航空、汽车、拖拉机、机床、仪表、家电等制造行业。 该液压机包括:机身、拉伸滑块、拉伸缸、压边滑块、压边缸、液压垫、液压垫缸、润滑装置、液压控制系统、电气控制系统等部分。 结构简图见图1 图1-1 框架式液压机结构简图 1.压边缸 2.拉伸滑块 3.拉伸缸 4.压边滑块 5.机身 6.液压垫及液压垫缸 (1)机身 机身为闭式组合框架结构,上横梁、底座分别由四根方立柱支撑,通过四根拉杆和八个锁紧螺母紧固。机身中间设有拉伸滑块和压边滑块,每根方立柱上布置两条可调导轨,八条导轨分别做拉伸滑块及压边滑块导向用,通过推拉螺钉来调节导轨间隙和滑块运动精度。立柱和上横梁、底座用方键定位、上横梁开有一个拉伸缸安装孔和四个压边缸安装孔。拉伸滑块和压边滑块的下平面设有T型槽以固定模具用,底座中间孔内设有液压垫,并有导向板导向。

材料成形技术基础答案_第1版_施江澜_赵占西主编

第一章金属液态成形 1. ①液态合金的充型能力是指熔融合金充满型腔,获得轮廓清晰、形状完整的优质铸件的能力。 ②流动性好,熔融合金充填铸型的能力强,易于获得尺寸准确、外形完整的铸件。流动性不好,则充型能力差,铸件容易产生冷隔、气孔等缺陷。 ③成分不同的合金具有不同的结晶特性,共晶成分合金的流动性最好,纯金属次之,最后是固溶体合金。 ④相比于铸钢,铸铁更接近更接近共晶成分,结晶温度区间较小,因而流动性较好。 2.浇铸温度过高会使合金的收缩量增加,吸气增多,氧化严重,反而是铸件容易产生缩孔、缩松、粘砂、夹杂等缺陷。 3.缩孔和缩松的存在会减小铸件的有效承载面积,并会引起应力集中,导致铸件的力学性能下降。 缩孔大而集中,更容易被发现,可以通过一定的工艺将其移出铸件体外,缩松小而分散,在铸件中或多或少都存在着,对于一般铸件来说,往往不把它作为一种缺陷来看,只有要求铸件的气密性高的时候才会防止。 4 液态合金充满型腔后,在冷却凝固过程中,若液态收缩和凝固收缩缩减的体积得不到补足,便会在铸件的最后凝固部位形成一些空洞,大而集中的空洞成为缩孔,小而分散的空洞称为缩松。 浇不足是沙型没有全部充满。冷隔是铸造后的工件稍受一定力后就出现裂纹或断裂,在断口出现氧化夹杂物,或者没有融合到一起。 出气口目的是在浇铸的过程中使型腔内的气体排出,防止铸件产生气孔,也便于观察浇铸情况。而冒口是为避免铸件出现缺陷而附加在铸件上方或侧面的补充部分。 逐层凝固过程中其断面上固相和液相由一条界线清楚地分开。定向凝固中熔融合金沿着与热流相反的方向按照要求的结晶取向进行凝固。 5.定向凝固原则是在铸件可能出现缩孔的厚大部位安放冒口,并同时采用其他工艺措施,使铸件上远离冒口的部位到冒口之间建立一个逐渐递增的温度梯度,从而实现由远离冒口的部位像冒口方向顺序地凝固。 铸件相邻各部位或铸件各处凝固开始及结束的时间相同或相近,甚至是同时完成凝固过程,无先后的差异及明显的方向性,称作同时凝固。 定向凝固主要用于体收缩大的合金,如铸钢、球墨铸铁等。同时凝固适用于凝固收缩小的合金,以及壁厚均匀、合金结晶温度范围广,但对致密性要求不高的铸件。 6. 不均匀冷却使铸件的缓冷处受拉,快冷处受压。零件向下弯曲。 10. 铸件的结构斜度指的是与分型面垂直的非加工面的结构斜度,以便于起模和提高铸件精度。 结构斜度是零件原始设计的结构;拔模斜度是为了造型拔模(起模)方便,而在铸件上设计的斜度。 无法起模,结构可改为下图所示;

材料成型论文-塑性成形新技术概况

塑性成形新技术概况 摘要:文章介绍了当前塑性成形加工中的微成形、超塑成型、柔性加工、半固态加工等各种新技术,并分别阐述了各新技术的相关概念、特点、发展趋势等。这些相关介绍及发展概况对理解塑性成形技术及推广和运用高新技术,推动塑性成形的进一步发展具有一定参考意义。 关键词:塑性成形;新技术;发展概况 The Overview About Plastic forming technology Abstract:The paper introduces all kinds of new technology such as Micro Molding ,Sup-erplastic Forming Technology ,Flexible Machining, Semi-Solid Processing in the plastic for -ming process nowadays and expounds the new technology’s related concepts ,characteristic s ,development tendency and so on.The related introduction and development situation has certain reference significance for understanding the plastic forming technology and promo-ting and using the advanced technology, promoting the further development of Plastic For-ming. Keywords:Plastic forming; The new technology; Development situation 1 引言 塑性成形就是利用材料的塑性,在工具及模具的外力作用下来加工制件的少切削或无切削的工艺方法。塑性成形技术可分为板材成形和体积成形两大类。板材成形是使用成型设备通过模具对金属板料在室温下加压以获得所需形状和尺寸零件的成形方法,习惯上也称为冲压或冷冲压。板料成形可分为分离工序和成形工序。分离工序俗称冲裁,包括落料、冲孔、修边等。成形工序包括弯曲、拉伸、胀形、翻边等。体积成形是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要包括锻造、轧制、挤压或拉拔等。 塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,到21世纪,机械制造工业零件粗加工的75%和精加工的5 0%都采用塑性成形的方式实现。工业部门的广泛需求为塑性成形新技术的发展提供了原动力和空前的机遇。[1] 2 塑性成形新技术 随着科学技术的迅速发展,通过与计算机的紧密结合,数控加工、激光成型、人工智能、材料科学和集成制造等一系列与塑性成形相关联的技术发展速度之快,学科领域交叉之广泛是过去任何时代无法比拟的,塑性成形新工艺和新设备不断地涌现,出现了高速高能成形、少无切削、超塑成型、柔性加工、半固态加工等多种塑性加工新技术。掌握塑性成形技术的现状和发展趋势,有助于及时研究、推广和应用高新技术,推动塑性成形技术的持续发展。 2.1 高速高能成形 高速高能成形是一种在极短时间内释放高能量而使金属变形的成形方法。 高速高能成形的历史可追溯到一百多年前。但由于成本太高及当时工业发展的局限,该工艺并未得到应用。随着航空及导弹技术的发展,高速高能成形方法才进入到实际应用。 与常规成形方法相比,高速高能成形具有以下特点: 1)模具简单:仅需要凹模即可成形。可节省模具材料,缩短模具制造周期,降低模具成本。

金属塑性成形综述

金属塑性成形 摘要:金属塑性成形技术是机械冶金、汽车拖拉机、电工仪表、宇航军工、五金日用品等制造业最基本,最古老,亦是极重要的加工手段之一。文章主要对塑性成形的基本方法、主要研究内容,发展趋势做了综合介绍。 一、引言 塑性成形技术具有高产、优质、低耗等显著特点,已成为当今先进制造技术的重要发展方向。据国际生产技术协会预测,21世纪,机械制造工业零件粗加工的75%和精加工的50%都采用塑性成形的方式实现。【1】 在现代制造技术中,人们广泛的利用金属材料生产各种零件和产品。金属加工方法多种多样,包括成型、切削等。金属塑性成形是其中一种重要的加工方法,是利用金属在外力作用下产生的塑性变形来获得具有一定形状、尺寸和力学性能的原材料、毛坯或零件的生产方法,因此也称为金属塑性加工或金属压力加工。 图1 传统金属塑性成形工艺 二、金属塑性成形的主要形式 金属塑性成形工艺的种类有很多,包括轧制、挤压、拉拔、锻造和冲压等基本工艺类型。随着技术的发展,也有很多新的成型方式出现,它们具备精密、高效、节能、节材、清洁等优点,得到广泛关注。

2.1 体积成型 金属体积成型是指对金属块料、棒料或厚板在高温或室温下进行成形加工的方法,主要分为热态金属体积成型和冷温态金属体积成型。热态金属变形过程可分为热锻、轧制、挤压、拉拔、辗压等工艺技术;冷温态变形过程可分为冷锻、冷精轧、冷挤压、冷拔、冷辗扩等工艺。 2.2 板材成型 所谓板材成型是指用板材、薄壁管、薄型材等作为原材料进行塑性加工的成形方法。在忽略板厚的变化时,可视为平面变形问题来处理,板材成型可分为:冲裁、弯曲、拉延、胀形、翻边、扩孔、辊压等工艺技术。 2.3 粉末态金属成形 随着制粉技术的发展,其应用领域不断扩展,对于复杂形状的机械零件来说,它具有高效、精密成形的特点,但成本较高,机械性能不如整体金属材料。粉末态金属成形的工艺过程为制粉、造型、压实、烧结、精锻。 2.4半固态金属材料成形 70年代开发研究的新技术,原金属材料作过特殊前处理,当材料加热到一定温度时可使30%的金属材料处于融溶状态,其余70%的金属材料呈均匀细颗粒组织的固态。在此状态加压变形,其流动性特好,可成形结构形状特别复杂的零件,而变形杭力很小。 2.5 复合成形技术 现代的科学越来越相互交叉、渗透,出现许多边缘学科、交叉学科一样,材料成形技术也逐渐突破原有铸、锻、焊、粉末冶金等技术相互独立的格局,相互融合、渗透,产生了种类繁多的“复合成形技术”。【2】金属塑性的复合成型技术主要有两个方面 (1)各种成形工艺的组合优化达到优化工艺和产品的目的。 (2)铸、锻、焊、热处理等不同加工方法的组合。 三、金属塑性成形技术主要研究内容 由于压力加工中,少、无切屑的特点和精密加工技术的发展,使金属塑性成型理论的研究受到日益广泛的重视而进入工程应用的前列.一般认为,研究金属塑性科学的历史开始于Tresa在1864年提出的屈服准则,至今不过100多年,而首

塑性成型工艺

目录 第1章工艺分析.......................................................... - 1 - 1.1设计任务书 ........................................................ - 1 - 1.2结构形状 .......................................................... - 1 - 1.3尺寸精度与粗糙度 .................................................. - 1 - 1.4 10钢材料性能 ..................................................... - 2 - 1.5工序 .............................................................. - 2 - 第2章生产方案制定...................................................... - 3 - 第3章模具类型与结构形式................................................ - 4 - 3.1 送料方式:........................................................ - 4 - 3.2 定位方式.......................................................... - 4 - 3.2.1 横向定位方式.................................................. - 4 - 3.2.2 纵向定位装置.................................................. - 4 - 3.3 出料方式.......................................................... - 5 - 3.4卸料方式 .......................................................... - 5 - 3.5推件装置 .......................................................... - 5 - 3.6导向装置 .......................................................... - 5 - 第4章工艺计算.......................................................... - 6 - 4.1排样设计 .......................................................... - 6 - 4.1.1.方案一直排式.................................................. - 6 - 4.1.2 方案二多排.................................................... - 9 - 4.2压力中心的确定 ................................................... - 10 - 4.3冲压力与压力机的选择 ............................................. - 11 - 4.3.1冲裁力的计算.................................................. - 11 - 4.3.2压力机的选取.................................................. - 12 - 4.4刃口尺寸的计算 .................................................. - 12 -

相关文档
最新文档