贪心算法求解问题(优化版)

贪心算法求解问题(优化版)
贪心算法求解问题(优化版)

贪心算法求解问题

问题分析:

此问题为程序最优存储问题,问题要求最后存储的两个磁带上的长度差异就最小。若在最优解中去掉i个程序段,显然在(n-i)个程序段的存储中应仍是最优解,因为此问题存在最优子结构。

另外,由于每个程序的长度不同,每将一个程序存储到A或者B(用A和B来表示两个磁带上存储程序的集合)后,显然还与后续怎么存储程序有关,即当前结果依赖子问题的结果。这正是动态规划算法的基本特征,而贪心算法仅在当前状态下做出最好选择,然后再去做子问题的局部最优解最终就是问题的最优解,贪心算法不依赖于将来所做的子问题的解,显示,此问题是一个动态规划问题,是一个0-1背包问题。

虽然对有些问题,贪心算法并不能得到一个最优解,但往往能快速地得到一个近似最优解。下面就来讨论如何用贪心算法得到近似最优解。

贪心算法思路

为了使最后两个磁带的长度差异越小,就先将长度较大的程序优先放入到磁带(此处用A和B分别表示两个磁带)上。因此排序选择递减排序。

用p[ ]数组来存放第i个程序长度为p[i-1],首先将其按程序长度大小递减的顺序排序,将排好序的各程序下标记录到与与p[]等长的数组a[ ]中。

然后再根据a[]中记录的下标找到相应的程序p[a[i]]放到A或者B 中。

现在就接下就是如何存放来达到近似最优解的问题了

开始A和B中没有任何元素(本程序中采用vector动态定义A,B),如果用sumA和sumB来标记A和B中已存入程序的总长度,在存入当前最优解时,先比较sumA和sumB 的大小,将最优解存入到程序总长度较短的那个程序集合,如果长度一样,则存入到A或者B中(本程序是存入到A集合中),可以看到这样存入的话,就会尽量减小A和B长度的差异,从而尽量接近最优存储得到近似最优解

之前提交的贪心算法的思想是直接交叉存入到A和B中,那样得到的

解在一定程度能得利近似最优解,那种思想只对程序段长度相差小的情

况有比较好的结果,因为那种思想大概是将程序段平均到A和B中,在很多情况下不能得到近似最优解。这些优化最重要是核心思想上的优化,这次程序设计中,在放入A或者B前先比较A和B的长度,这样才更有针对性的存放,得到的效果比之前的好了很多,另外在,程序实现代码上也有了很大的优化,代码优化见“代码优化说明”

程序源代码(Microsoft Visual Studio 2010)

// 贪心算法求解问题.cpp : 定义控制台应用程序的入口点。

//

#include"stdafx.h"

#include

#include

usingnamespace std;

//将各程序按长度的递减顺序排序,用a[ ]来记录排好序程序的下标

void Rank(vectorp,vector&a,int n)

{

int t;

for(int j =0;j

for(int i=0;i

if(p[i]

{

t=p[i];p[i]=p[i+1];p[i+1]=t;

t=a[i];a[i]=a[i+1];a[i+1]=t;

}

}

//采用贪心算法将程序长度最大的放入到A和B中

void

GreedySelector(vector&p,vector&A,vector&B,vector&a,i nt n)

{

int sumA=0; //定义A中程序的总长度

int sumB=0; //定义B中程序的总长度

int m=0,j=0; //用m标志A数组的长度,n标志B数组的长度

//将当前的最优解(最大长度)存入到A、B中总长度较短一个集合

for(int i=0;i

{

if(sumB>=sumA)

{

A.resize(++m); //当有数据存入时,动态将A数组长度加1

A[m-1]=a[i];

sumA+=p[A[m-1]]; //计算A中程度总长度

}

else

{

B.resize(++j);

B[j-1]=a[i];

sumB+=p[B[j-1]];

}

}

}

int _tmain(int argc, _TCHAR* argv[])

{

int n;

cout<<"请输入程序的数目:";

cin>>n;

vectorA,B; //定义动态数组A和B并初始化他要0

vectorp(n),a(n); //p(n)用来存放第(n-1)个程序的长度,a(n)存放排好序的元素下标

for(int i=0;i

{

cout<<"请输入第"<

cin>>p[i];

}

a[0]=0;

for(int i=1;i

a[i]=a[i-1]+1;

Rank(p,a,n); //调用排序函数

GreedySelector(p,A,B,a,n); //调用贪心算法将程序放入到A和B中

int sum1=0,sum2=0;

for(int i=0;i

sum1+=p[A[i]];

for(int i=0;i

sum2+=p[B[i]];

cout<

cout<<"-------------------贪心算法结果-------------------"<

cout<<"用贪心算法近似最优值为: "<

cout<<"用贪心算法近似最优解如下 :"<

cout<<"一磁带上的程序组合为:"<

for(int i=0;i

cout<

cout<<"另一磁带上的程序组合为:"<

for(int i=0;i

cout<

return 0;

}

实验结果

运行实例一

运行实例二

运行实例三

从上面的结果可以看到,用优化的的贪心算法基本上都能得到最优解

代码优化说明

1.为了一定的动态灵活性,程序要求由用户输入程序的个数n以及每个程序的长度p[i],并用vector动态定义相关数组。

2.此处为了节省内存空间,将每个数组下标为0的变量也利用起来,避免了对内存空间的浪费。

3.在定义A和B时,A和B的长度初始时为0,但需要存入一个一个数据时,通过A.resize(++m)和B.resize(++j)来动态为A和B数据增加长度并写入

相应的数据。这样大大节省了程序对内存的开销。

算法设计不足之处:

由于此问题本来不太适用于贪心算法,本程序只是在贪心算法中尽量选择一个比较好的贪心算法,让结果尽量近似最优值。可以看到,如果在这些程序中,存在一个最优解的情况是程序中最大长度的两个程序为一组,其余的程序为一组,那么这个程序就无法得到最优解,而只能得到近似最优解,虽然只能得到近似最优解,但实际中,往往也和最优解相差并不大。如果用动态规划算法,则不会出现这样的问题,本来想把之前动态规划算法的代码也加入到程序中来对比结果,但是为了代码的精简,就没有加进来。

贪心算法0-1背包问题(算法实验代码)

实验三、0-1背包问题(贪心算法) 实验代码: #include int max(int a,int b) { if(a>b) return a; else return b; } void Knapsack(int *v,int *w,int *x,int c,int n, int m[8][100]) { int i,j; for(j=0;j=1;i--) { for(j=w[i];j<=c;j++) m[i][j]=max(m[i+1][j],m[i+1][j-w[i]]+v[i]); } for(i=1;i

printf("物品总数为:7\n"); printf("物品重量和价值分别为:\n"); printf("\n重量价值\n"); for (i=1;i<=n;i++) printf("%d %d \n",w[i],v[i]); int m=15; int array[8][100]={0}; Knapsack(v,w,x,m,7,array); printf("背包能装的最大价值为: %d\n",array[1][m]); printf("贪心算法的解为: "); for(i=1;i<=n;i++) { if(i==1) printf("%d",x[i]); else printf(" %d",x[i]); } printf("\n"); return 0; } 测试截图为:

算法设计实验_贪心算法背包问题

《算法分析与设计》 课程实验 专业年级:信息与计算科学 学生学号: 学生姓名: 实验题目:用贪婪法求解背包问题 指导老师: 实验时间:20xx年xx月x日 一、实验内容 用贪婪法求解背包问题 要求:用非递归实现 二、实验步骤 2.1、理解算法思想和问题要求; 2.2、写出每个操作的算法 非递归算法: greedbag() { int N; int c;

int[] w; int[] v; Scanner scan=new Scanner(System.in); System.out.print("输入背包的容量:"); c=scan.nextInt(); System.out.print("输入物品的数量:"); N=scan.nextInt(); System.out.print("分别输入物品的价值:"); v=new int[N]; for(int i=0;i

贪心算法 会场安排问题 算法设计分析

贪心算法会场安排问题算法设计分析Description 假设要在足够多的会场里安排一批活动,并希望使用尽可能少的会场。设计一个有效的算法进行安排。(这个问题实际上是著名的图着色问题。若将每一个活动作为图的一个顶点,不相容活动间用边相连。使相邻顶点着有不同颜色的最小着色数,相应于要找的最小会场数。) 编程任务: 对于给定的k个待安排的活动,编程计算使用最少会场的时间表。 Input 输入数据是由多组测试数据组成。每组测试数据输入的第一行有1 个正整数k,表示有k个待安排的活动。接下来的k行中,每行有2个正整数,分别表示k 个待安排的活动开始时间和结束时间。时间以0 点开始的分钟计。 Output 对应每组输入,输出的每行是计算出的最少会场数。 Sample Input 5 1 23 12 28 25 35 27 80 3 6 50

Sample Output 3 程序: #include int fnPartition(int a[], int low, int high) { int i,j; int x = a[low]; i = low; j = high; while(i =a[i]) i++; if(i -1) { n = 1; for(; i <=e; i++) if(a[i]>=b[s]) s++; else n++; } return n; } int main(void) { int n,i; while(1 == scanf("%d",&n)) { int *st = new int [n]; int *et = new int [n]; for (i = 0; i

【精选】贪心算法的应用

贪心算法的应用 课程名称:算法设计与分析 院系:计算机科学与信息工程学院 学生姓名:**** 学号:********** 专业班级:********************************** 指导教师:****** 201312-27

贪心算法的应用 摘要:顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。贪心算法求问题一般具有两个重要性质:贪心选择性质和最优子结构性质。所谓贪心选择性是指所求问题的整体最优解可以通过一系列局部最优解的选择,即贪心选择达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法主要区别。当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 背包问题是一个经典的问题,我们可以采用多种算法去求解0/1背包问题,比如动态规划法、分支限界法、贪心算法、回溯法。在这里我们采用贪心法解决这个问题。 关键词:贪心法背包问题最优化

目录 第1章绪论 (3) 1.1 贪心算法的背景知识 (3) 1.2 贪心算法的前景意义 (3) 第2章贪心算法的理论知识 (4) 2.1 问题的模式 (4) 2.2 贪心算法的一般性描述 (4) 第3章背包问题 (5) 3.1 问题描述 (5) 3.2 问题分析 (5) 3.3算法设计 (5) 3.4 测试结果与分析 (10) 第4章结论 (12) 参考文献 (13) 附件 (13)

C语言版贪心算法背包问题

#include<> #define N 100 typedef struct bao{ int num; float w; float v; }; typedef struct avg{ int num; ( float val; float w; float v; }; struct bao b[N]; struct avg d[N]; int n; float c; ^ void Sort() { int i,j,k; struct avg temp[N]; for(i=0;i

float x[N],sum = 0; for(i=0;ic) break; x[d[i].num] = 1; sum += d[i].v; c -= d[i].w; } if(i

背包问题(贪心算法)

算法分析与设计实验报告 第 4 次实验

}

附录:完整代码 #include #include #include struct node{ float value; float weight; }; float Value,curvalue=0; float Weight,curweight=0; //按价重比冒泡排序 void sort(node Node[],int M){ int i,j; node temp; for(i=0;i

算法设计(eclipse编写贪心算法设计活动安排)

陕西师大计科院2009级《算法设计与分析》课程论文集 算法设计(贪心算法解决活动安排) 设计者:朱亚君 贪心算法的计算过程如下图所示。图中每行相应于算法的一次迭代。阴影长条表示的活动是已选入集合A的活动,而空白长条表示的活动是当前正在检查相容性的活动。 图1贪心算法的计算过程图 若被检查的活动i的开始时间Si小于最近选择的活动j的结束时间fi,则不选择活动i,否则选择活动i加入集合A中。 贪心算法并不总能求得问题的整体最优解。但对于活动安排问题,贪心算法却总能求得的整体最优解,即它最终所确定的相容活动集合A的规模最大。这个结论可以用数学归纳法证明。

运用贪心算法解决活动安排问题 附录: 贪心算法的实现具体程序如下: // 贪心算法实现代码 n为活动个数 s为活动开始起始时间队列 f 为活动结束队列 A为已选入集合 import java.util.Scanner; public class a { /** * @param args */ static void GreedySelector(int s[],int f[],boolean A[]) { //第一个活动为结束时间最早进入选入队列 int n=s.length; A[1]=true; int j=2; for(int i=2;i=f[j]) { A[i]=true; j=i; } else A[i]=false; } } static void paixu(int s[],int f[])//进行以结束时间的大小排序 { int n=s.length; int m; for(int i=0;if[j+1]) { m=f[j]; f[j]=f[j+1]; f[j+1]=m;//终止时间如果前一个大于后一个就交换位置

贪心算法背包问题

算法设计与分析实验报告 题目:贪心算法背包问题 专业:JA V A技术xx——xxx班 学号: 姓名: 指导老师:

实验三:贪心算法背包问题 一、实验目的与要求 1、掌握背包问题的算法 2、初步掌握贪心算法 二、实验题: 问题描述:与0-1背包问题相似,给定n种物品和一个背包。物品i的重量是wi,其价值为vi,背包的容量为c。与0-1背包问题不同的是,在选择物品i装入背包时,背包问题的解决可以选择物品i的一部分,而不一定要全部装入背包,1< i < n。 三、实验代码 import java.awt.*; import java.awt.event.*; import javax.swing.*; public class er extends JFrame { private static final long serialVersionUID = -1508220487443708466L; private static final int width = 360;// 面板的宽度 private static final int height = 300;// 面板的高度 public int M; public int[] w; public int[] p; public int length; er() { // 初始Frame参数设置 this.setTitle("贪心算法"); setDefaultCloseOperation(EXIT_ON_CLOSE); setSize(width, height); Container c = getContentPane(); c.setLayout(new BoxLayout(c, BoxLayout.Y_AXIS)); setLocation(350, 150); // 声明一些字体样式 Font topF1 = new Font("宋体", Font.BOLD, 28); Font black15 = new Font("宋体", Font.PLAIN, 20); Font bold10 = new Font("宋体", Font.BOLD, 15); // 声明工具栏及属性设置 JPanel barPanel = new JPanel(); JMenuBar topBar = new JMenuBar(); topBar.setLocation(1, 1); barPanel.add(topBar); // 面板1和顶部标签属性设置 JPanel p1 = new JPanel(); JLabel topLabel = new JLabel("背包问题");

0-1背包问题的算法设计策略对比与讲解

算法设计与分析大作业 班级:电子154 姓名:吴志勇 学号: 1049731503279 任课老师:李瑞芳 日期: 2015.12.25

算法设计与分析课程论文 0-1背包问题的算法设计策略对比与分析 0 引言 对于计算机科学来说,算法的概念是至关重要的。在一个大型软件系统的开发中,设计出有效的算法将起到决定性的作用。通俗的讲,算法是解决问题的一种方法。也因此,《算法分析与设计》成为计算科学的核心问题之一,也是计算机科学与技术专业本科及研究生的一门重要的专业基础课。算法分析与设计是计算机软件开发人员必修课,软件的效率和稳定性取决于软件中所采用的算法;对于一般程序员和计算机专业学生,学习算法设计与分析课程,可以开阔编程思路,编写出优质程序。通过老师的解析,培养我们怎样分析算法的“好”于“坏”,怎样设计算法,并以广泛用于计算机科学中的算法为例,对种类不同难度的算法设计进行系统的介绍与比较。本课程将培养学生严格的设计与分析算法的思维方式,改变随意拼凑算法的习惯。本课程要求具备离散数学、程序设计语言、数据结构等先行课课程的知识。 1 算法复杂性分析的方法介绍 算法复杂性的高低体现在运行该算法所需要的计算机资源的多少上,所需的资源越多,该算法的复杂性越高;反之,所需资源越少,该算法的复杂性越低。对计算机资源,最重要的是时间与空间(即存储器)资源。因此,算法的复杂性有时间复杂性T(n)与空间复杂性S(n)之分。 算法复杂性是算法运行所需要的计算机资源的量,这个量应集中反映算法的效率,并从运行该算法的实际计算机中抽象出来,换句话说,这个量应该只依赖要解决的问题规模‘算法的输入和算法本身的函数。用C表示复杂性,N,I和A表示问题的规模、算法的输入和算法本身规模,则有如下表达式: C=F(N,I,A) T=F(N,I,A) S=F(N,I,A) 其中F(N,I,A)是一个三元函数。通常A隐含在复杂性函数名当中,因此表达式中一般不写A。 即:C=F(N,I) T=F(N,I) S=F(N,I) 算法复杂性中时间与空间复杂性算法相似,所以以下算法复杂性主要以时间复杂性为例: 算法的时间复杂性一般分为三种情况:最坏情况、最好情况和平均情况。下面描述算法复杂性时都是用的简化的复杂性算法分析,引入了渐近意义的记号O,Ω,θ,和o。 O表示渐近上界Ω表示渐近下界: θ表示同阶即:f(n)= O(g(n))且 f(n)= Ω(g(n)) 2 常见的算法分析设计策略介绍 2.1 递归与分治策略 分治法的设计思想是,将一个难以直接解决的大问题,分割成一些规模较小的相同问题,以便各个击破,分而治之。 直接或间接地调用自身的算法称为递归算法。用函数自身给出定义的函数称为递归函数。 由分治法产生的子问题往往是原问题的较小模式,这就为使用递归技术提供了方便。在这种情况下,反复应用分治手段,可以使子问题与原问题类型一致而其规模却不断缩小,最终使子问题缩小到很容易直接求出其解。这自然导致递归过程的产生。 分治与递归像一对孪生兄弟,经常同时应用在算法设计之中,并由此产生许多高效算法。 递归算法举例: 共11页第1页

c应用贪心算法求解背包问题

实验五应用贪心算法求解背包问题 学院:计算机科学与技术专业:计算机科学与技术 学号:班级:姓名: 、 实验内容: 背包问题指的是:有一个承重为W的背包和n个物品,它们各自的重量和价值分别是n ,假设W w i和v i(1 i n)w i 1i,求这些物品中最有价值的一个子集。如果每次选择某一个物品的时候,只能全部拿走,则这一问题称为离散(0-1)背包问题;如果每次可以拿走某一物品的任意一部分,则这一问题称为连续背包问题。 二、算法思想: 首先计算每种物品单位重量的价值Vi/Wi,然后,依贪心选择策略,将尽可能多的单位重量价值最高的物品装入背包。若将这种物品全部装入背包后,背包内的物品总重量未超过C,则选择单位重量价值次高的物品并尽可能多地装入背包。依此策略一直地进行下去,直到背包装满为止。 三、实验过程: #in elude using n amespace std; struct goodi nfo

{ float p; // 物品效益 float w; // 物品重量 float X; // 物品该放的数量 int flag; // 物品编号 };// 物品信息结构体 void Insertionsort(goodinfo goods[],int n)// 插入排序,按pi/wi 价值收益进行排序,一般教材上按冒泡排序 { int j,i; for(j=2;j<=n;j++) { goods[0]=goods[j]; i=j-1; while (goods[0].p>goods[i].p) { } goods[i+1]=goods[0]; } }// 按物品效益,重量比值做升序排列goods[i+1]=goods[i]; i--; void bag(goodinfo goods[],float M,int n) { float cu; int i,j;

贪心算法详解分析

贪心算法详解 贪心算法思想: 顾名思义,贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。当然,希望贪心算法得到的最终结果也是整体最优的。虽然贪心算法不能对所有问题都得到整体最优解,但对许多问题它能产生整体最优解。如单源最短路经问题,最小生成树问题等。在一些情况下,即使贪心算法不能得到整体最优解,其最终结果却是最优解的很好近似。 贪心算法的基本要素: 1.贪心选择性质。所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素,也是贪心算法与动态规划算法的主要区别。 动态规划算法通常以自底向上的方式解各子问题,而贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。 2. 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。问题的 最优子结构性质是该问题可用动态规划算法或贪心算法求解的关键特征。 贪心算法的基本思路: 从问题的某一个初始解出发逐步逼近给定的目标,以尽可能快的地求得更好的解。当达到算法中的某一步不能再继续前进时,算法停止。 该算法存在问题: 1. 不能保证求得的最后解是最佳的; 2. 不能用来求最大或最小解问题; 3. 只能求满足某些约束条件的可行解的范围。 实现该算法的过程: 从问题的某一初始解出发; while 能朝给定总目标前进一步do 求出可行解的一个解元素; 由所有解元素组合成问题的一个可行解; 用背包问题来介绍贪心算法: 背包问题:有一个背包,背包容量是M=150。有7个物品,物品可以分割成任意大小。要 求尽可能让装入背包中的物品总价值最大,但不能超过总容量。

贪心算法实现背包问题算法设计与分析实验报告

算法设计与分析实验报告 实验名称贪心算法实现背包问题评分 实验日期年月日指导教师 姓名专业班级学号 一.实验要求 1. 优化问题 有n个输入,而它的解就由这n个输入满足某些事先给定的约束条件的某个子集组成,而把满足约束条件的子集称为该问题的可行解。可行解一般来说是不唯一的。那些使目标函数取极值(极大或极小)的可行解,称为最优解。 2.贪心法求优化问题 算法思想:在贪心算法中采用逐步构造最优解的方法。在每个阶段,都作出一个看上去最优的决策(在一定的标准下)。决策一旦作出,就不可再更改。作出贪心决策的依据称为贪心准则(greedy criterion)。 3.一般方法 1)根据题意,选取一种量度标准。 2)按这种量度标准对这n个输入排序 3)依次选择输入量加入部分解中。如果当前这个输入量的加入,不满足约束条件,则不把此输入加到这部分解中。 procedure GREEDY(A,n) /*贪心法一般控制流程*/ //A(1:n)包含n个输入// solutions←φ //将解向量solution初始化为空/ for i←1 to n do x←SELECT(A) if FEASIBLE(solution,x) then solutions←UNION(solution,x) endif repeat return(solution) end GREEDY 4. 实现典型的贪心算法的编程与上机实验,验证算法的时间复杂性函数。 二.实验内容 1. 编程实现背包问题贪心算法。通过具体算法理解如何通过局部最优实现全局最优,

并验证算法的时间复杂性。 2.输入5个的图的邻接矩阵,程序加入统计prim算法访问图的节点数和边数的语句。 3.将统计数与复杂性函数所计算比较次数比较,用表格列出比较结果,给出文字分析。 三.程序算法 1.背包问题的贪心算法 procedure KNAPSACK(P,W,M,X,n) //P(1:n)和W(1;n)分别含有按 P(i)/W(i)≥P(i+1)/W(i+1)排序的n件物品的效益值 和重量。M是背包的容量大小,而x(1:n)是解向量 real P(1:n),W(1:n),X(1:n),M,cu; integer i,n; X←0 //将解向量初始化为零 cu←M //cu是背包剩余容量 for i←1 to n do if W(i)>cu then exit endif X(i) ←1 cu←cu-W(i) repeat if i≤n then X(i) ←cu/ W(i) endif end GREEDY-KNAPSACK procedure prim(G,) status←“unseen” // T为空 status[1]←“tree node” // 将1放入T for each edge(1,w) do status[w]←“fringe” // 找到T的邻接点 dad[w] ←1; //w通过1与T建立联系 dist[w] ←weight(1,w) //w到T的距离 repeat while status[t]≠“tree node” do pick a fringe u with min dist[w] // 选取到T最近的节点 status[u]←“tree node” for each edge(u,w) do 修改w和T的关系 repeat repeat 2.Prim算法

0021算法笔记——【贪心算法】贪心算法与活动安排问题

0021算法笔记——【贪心算法】贪心算法与活动安排问题 1、贪心算法 (1)原理:在对问题求解时,总是做出在当前看来是最好的选择。也就是说,不从整体最优上加以考虑,他所做出的仅是在某种意义上的局部最优解。贪心算法不是对所有问题都能得到整体最优解,但对范围相当广泛的许多问题他能产生整体最优解或者是整体最优解的近似解。 (2)特性:贪心算法采用自顶向下,以迭代的方法做出相继的贪心选择,每做一次贪心选择就将所求问题简化为一个规模更小的子问题,通过每一步贪心选择,可得到问题的一个最优解,虽然每一步上都要保证能获得局部最优解,但由此产生的全局解有时不一定是最优的,所以贪婪法不要回溯。能够用贪心算法求解的问题一般具有两个重要特性:贪心选择性质和最优子结构性质。 1)贪心选择性质 所谓贪心选择性质是指所求问题的整体最优解可以通过一系列局 部最优的选择,即贪心选择来达到。这是贪心算法可行的第一个基本要素。贪心算法则通常以自顶向下的方式进行,以迭代的方式作出相继的贪心选择,每作一次贪心选择就将所求问题简化为规模更小的子问题。 对于一个具体问题,要确定它是否具有贪心选择性质,必须证明每一步所作的贪心选择最终导致问题的整体最优解。证明的大致过程为:

首先考察问题的一个整体最优解,并证明可修改这个最优解,使其以贪心选择开始。做了贪心选择后,原问题简化为规模更小的类似子问题。然后用数学归纳法证明通过每一步做贪心选择,最终可得到问题的整体最优解。其中,证明贪心选择后的问题简化为规模更小的类似子问题的关键在于利用该问题的最优子结构性质。 2)最优子结构性质 当一个问题的最优解包含其子问题的最优解时,称此问题具有最优子结构性质。 (3)贪心算法与动态规划算法的差异: 动态规划和贪心算法都是一种递推算法,均有最优子结构性质,通过局部最优解来推导全局最优解。两者之间的区别在于:贪心算法中作出的每步贪心决策都无法改变,因为贪心策略是由上一步的最优解推导下一步的最优解,而上一部之前的最优解则不作保留,贪心算法每一步的最优解一定包含上一步的最优解。动态规划算法中全局最优解中一定包含某个局部最优解,但不一定包含前一个局部最优解,因此需要记录之前的所有最优解。 (4)基本思路: 1)建立数学模型来描述问题。 2)把求解的问题分成若干个子问题。 3)对每一子问题求解,得到子问题的局部最优解。 4)把子问题的解局部最优解合成原来解问题的一个解。 2、活动安排问题

贪心算法实现01背包问题

贪心算法实现01背包问题 算法思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。 具体实现过程是:首先可以设置一个备份pvu类型的数组,在不破环原数据的情况下,对此备份数组按单位重量价值从大到小的排序。依次设立两个指针i,j(其中i表示当前应该参与最佳pv值的元素指针,j表示符合约束条件的指针(单位重量价值PV最大,重量最小,不超过最大承重量约束) 代码实现如下: #include using namespace std; typedef struct { int v; int w; float pv; }pvu; void sortByPv(pvu [],int ); int zeroneBags(pvu[],int,int,int * ); void print(pvu a[],int n) { for (int i=0;i

贪心算法解活动安排实验报告

实验3 贪心算法解活动安排问题 一、实验要求 1.要求按贪心法求解问题; 2.要求读文本文件输入活动安排时间区间数据; 3.要求显示结果。 二、实验仪器和软件平台 仪器:带usb接口微机 软件平台:WIN-XP + VC++6.0 三、源程序 #include "stdafx.h" #include #include #include #define N 50 #define TURE 1 #define FALSE 0 int s[N];/*开始时间*/ int f[N];/*结束时间*/ int A[N];/*用A存储所有的*/ int Partition(int *b,int *a,int p,int r); void QuickSort(int *b,int *a,int p,int r); void GreedySelector(int n,int *s,int *f,int *A); int main() { int n=0,i; while(n<=0||n>50) { printf("\n"); printf("请输入活动的个数,n="); scanf("%d",&n); if(n<=0) printf("请输入大于零的数!"); else if(n>50) printf("请输入小于50的数!"); } printf("\n请分别输入开始时间s[i]和结束时间f[i]:\n\n"); for(i=1;i<=n;i++) { printf("s[%d]=",i,i); scanf("%d",&s[i]);

2贪心算法解决部分背包问题

2贪心算法解决部分背包问题 一、实验目的 学习掌贪心算法法思想。 二、实验内容 用贪心法解决部分背包问题。给定n种物品和一个背包。物品i的重量是Wi,其价值为pi,背包的容量为M,将物品i的一部分xi放入背包会得到pi xi的效益。应如何选择装入背包的物品,使得装入背包中物品的总价值最大?给出具体的装包方案。在选择装入背包的物品时,对每种物品i,可以整件装入背包、不装入背包或部分装入背包。但不能将物品i装入背包多次。 四、需求分析 对于给定n种物品和一背包。在容量最大值固定的情况下,要求装入的物品价值最大化。 五、基本思想: 贪婪法是解决最优化问题时的一种简单但适用范围有限的策略。总是对当前的问题作最好的选择,也就是局部寻优。最后得到整体最优。总是选择单位价值最高的物品。 六、详细设计 #include using namespace std; struct _Object//物品结构体 { int Value;//物品价值 int Weight;//物品重量 int AveValue;//物品单位价值 float Num;//物品可以放入的数量

void knaspsack(int n,float M,_Object object[]) { //n为物品个数,M为背包容量 int i; float C=M; for(i=0;iC)break;//当物品重量大于背包容量时 else//小于时 { object[i].Num=1;//物品i放入一件 C-=object[i].Weight;//背包容量减小 } } if(i<=n)//当不能放入整个物品时,选取物品一部分放入 object[i].Num=C/object[i].Weight; for(i=0;i0) cout<<"重量为: "<

01背包问题不同算法设计、分析与对比

实验三01背包问题不同算法设计、分析与对比 一.问题描述 给定n种物品和一背包。物品i的重量是w i,其价值为v i,背包的容量为c。 问题:应如何选择装入背包中的物品,使得装入背包中物品的总价值最大。 说明:在选择装入背包的物品时,对每种物品i只有两个选择,装入背包或不装入背包,也不能将物品装入背包多次。 二.实验内容与要求 实验内容: 1.分析该问题适合采用哪些算法求解(包括近似解)。 动态规划、贪心、回溯和分支限界算法。 2.分别给出不同算法求解该问题的思想与算法设计,并进行算法复杂性分析。 动态规划: 递推方程: m(i,j) = max{m(i-1,j),m(i-1,j-wi)+vi} j >= wi; m(i-1,j) j < wi; 时间复杂度为O(n). 贪心法: 算法思想:贪心原则为单位价值最大且重量最小,不超过背包最大承重量为约束条件。也就是说,存在单位重量价值相等的两个包,则选取重量较小的那个背包。但是,贪心法当在只有在解决物品可以分割的背包问题时是正确的。贪心算法总是作出在当前看来最好的选择。也就是说贪心算法并不从整体最优考虑,它所作出的选择只是在某种意义上的局部最优选择。 用贪心法设计算法的特点是一步一步地进行,根据某个优化测度(可能是目标函数,也可能不是目标函数),每一步上都要保证能获得局部最优解。每一步只考虑一个数据,它的选取应满足局部优化条件。若下一个数据与部分最优解连在一起不再是可行解时,就不把该数据添加到部分解中, 直到把所有数据枚举完,或者不能再添加为止。

回溯法: 回溯法:为了避免生成那些不可能产生最佳解的问题状态,要不断地利用限界函数(bounding function)来处死那些实际上不可能产生所需解的活结点,以减少 问题的计算量。这种具有限界函数的深度优先生成法称为回溯法。 对于有n种可选物品的0/1背包问题,其解空间由长度为n的0-1向量组成,可用子集数表示。在搜索解空间树时,只要其左儿子结点是一个可行结点,搜索就进入左子树。当右子树中有可能包含最优解时就进入右子树搜索。 时间复杂度为:O(2n) 空间复杂度为:O(n) 分支限界算法: 首先,要对输入数据进行预处理,将各物品依其单位重量价值从大到小进行排列。在优先队列分支限界法中,节点的优先级由已装袋的物品价值加上剩下的最大单位重量价值的物品装满剩余容量的价值和。 算法首先检查当前扩展结点的左儿子结点的可行性。如果该左儿子结点是可行结点,则将它加入到子集树和活结点优先队列中。当前扩展结点的右儿子结点一定是可行结点,仅当右儿子结点满足上界约束时才将它加入子集树和活结点优 先队列。当扩展到叶节点时为问题的最优值。 3.设计并实现所设计的算法。 4.对比不同算法求解该问题的优劣。 这动态规划算法和贪心算法是用来分别解决不同类型的背包问题的,当一件背包物品可以分割的时候,使用贪心算法,按物品的单位体积的价值排序,从大到小取即可。当一件背包物品不可分割的时候,(因为不可分割,所以就算按物品的单位体积的价值大的先取也不一定是最优解)此时使用贪心是不对的,应使用动态规划。

背包问题的贪心算法

贪心方法:总是对当前的问题作最好的选择,也就是局部寻优。最后得到整体最优。 应用:1:该问题可以通过“局部寻优”逐步过渡到“整体最优”。贪心选择性质与“动态规划”的主要差别。 2:最优子结构性质:某个问题的整体最优解包含了“子”问题的最优解。 代码如下: #include struct goodinfo { float p; //物品效益 float w; //物品重量 float X; //物品该放的数量 int flag; //物品编号 };//物品信息结构体 void Insertionsort(goodinfo goods[],int n) { int j,i; for(j=2;j<=n;j++) { goods[0]=goods[j]; i=j-1; while (goods[0].p>goods[i].p) { goods[i+1]=goods[i]; i--; } goods[i+1]=goods[0]; } }//按物品效益,重量比值做升序排列 void bag(goodinfo goods[],float M,int n) { float cu;

for(i=1;i<=n;i++) goods[i].X=0; cu=M; //背包剩余容量 for(i=1;icu)//当该物品重量大与剩余容量跳出 break; goods[i].X=1; cu=cu-goods[i].w;//确定背包新的剩余容量 } if(i<=n) goods[i].X=cu/goods[i].w;//该物品所要放的量 /*按物品编号做降序排列*/ for(j=2;j<=n;j++) { goods[0]=goods[j]; i=j-1; while (goods[0].flag

相关文档
最新文档