海水法烟气脱硫排水水质的估算和分析

海水法烟气脱硫排水水质的估算和分析
海水法烟气脱硫排水水质的估算和分析

海水法烟气脱硫排水水质的估算和分析

骆锦钊

(厦门华夏电力公司,福建厦门361026)

摘要:对海水法烟气脱硫的排水水质进行定量估算,并讨论工艺排水对附近海域水质的影响。

关键词:海水脱硫;海域水质影响

The estimate and analysis on discharged water quality for flue gas de-sulfurization technology by sea-water

Luo jinzhao

(Xiamen Huaxia Electric Power Company,Xiamen China 361026)

Abstract:The paper estimates and analyzes the discharged water quality for flue gas de-sulfurization technology by sea-water, the effect of discharge water from FGD system on surrounding sea water quality also discussed. Key words:Flue gas seawater FGD;effect on surrounding sea water quality

1 海水脱硫原理

海水法烟气脱硫工艺是利用天然海水脱除烟

气中SO2的一种湿式脱硫方法。

天然海水中含有大量的可溶性盐类,其主要成份是氯化物和硫酸盐,此外,海水中还溶存着相当数量的HCO3-、CO32-、H2BO3-及H2PO4-、SiO3-等弱酸阴离子,其中主要为HCO3-,它们都是氢离子的接受体。这些氢离子接受体的浓度总和在海洋学上称为“碱度”(海水的碱度约为2mmol/L,其中的HCO3-的浓度约为1.8mmol/L),海水的pH值一般在8.0-8.2的范围内。因此,纯海水具有天然的弱碱性可用于吸收烟气中的酸性气体,从而达到烟气脱硫的目的。2004年7月厦门嵩屿电厂所在的河口海域的水质检测结果见表1。

表1 海水水质调查结果

嵩屿电厂利用凝气器排出的循环水(海水)进行脱硫,其工艺过程如图1所示。在吸收塔,烟气和喷淋海水强烈的传质,烟气中的SO 2溶解并转化成亚硫酸,亚硫酸水解生成大量氢离子,使海水的pH 下降。

22()()SO g SO l ?

3222)(SO H O H l SO ?+ -++?3322SO H SO H

生成的氢离子在吸收塔下部和曝气池中与海

水中的HCO 3-发生中和反应生成二氧化碳和水,氢离子被吸收后,脱硫海水的pH 值逐渐恢复,二氧化碳则在氧化和曝气过程中被吹脱排入大气:

O H l g CO H HCO 223),(+?++-

嵩屿电厂的海水法烟气脱硫采用两阶段氧化,即反应产生的亚硫酸根离子在吸收塔下部的海水 池和曝气池中被鼓入的空气氧化成稳定的硫酸根离子:

-

-?+

24

22

123SO O SO 通过上述一系列化学反应,烟气中90%以上的SO 2能被海水洗涤转移到水相中,使排放烟气中的SO 2总量大幅削减。同时,进入水相中的SO 2通过中和、氧化和曝气转化为在海洋中无害的硫酸根,并使脱硫排水的pH 值、DO 、COD 等指标达到排海标准。

图1 海水法烟气脱硫的工艺流程

2 排水中的污染因子及源强

从上面的工艺流程可知,脱硫排水的主要污染因子有:在收收塔中洗涤下来的烟尘及烟尘中的重金属排入海后引起海水悬浮物(SS )和重金属增加,喷淋水吸收烟气中的汞排入海里;脱硫生成的亚硫酸根离子在曝气阶段不完全氧化,排入海后继续消耗海水中的溶解氧;脱硫排水未能恢复到原海水的pH 值。

下面从理论并结合实验室的试验对污染物的源强进行预测计算。

2.1 排水悬浮物的浓度增量

脱硫排水的悬浮物源自喷淋海水洗脱烟气中的

烟尘。当吸收塔布置在除尘器和烟囱之间时,吸收塔的入口烟尘浓度即除尘器的出口烟尘浓度,可根据锅炉燃烧计算给出的出口参数和除尘效率算出。吸收塔对烟尘的洗脱率与吸收塔的结构(填料式、液柱式或喷淋式)、气液比等有关。由于烟气经过多电场除尘后,进入吸收塔的烟尘大多在10μm 以下的小颗粒,所以吸收塔的洗脱率要比一般的湿法除尘效率低。排水悬浮物浓度增量可由下式计算:

C ss =(Q y ×C y ×ηc )/Q

C ss -排水悬浮物浓度, μg /L

烟气

凝汽器来循环水

排向大海

Q y-烟气流量, Nm3/h

C y-吸收塔入口烟尘浓度,mg/m3

ηc-吸收塔对烟尘的洗脱率,%

Q-脱硫排水总量,m3/h

2.2 排水重金属浓度增量

海水吸收二氧化硫后,脱硫塔下部的海水呈酸性,洗脱的烟尘中的重金属易于溶出,从预测偏安全方面考虑,认为烟尘中的重金属全部溶出,因此根据悬浮物浓度和烟尘中重金属质量百分比(见表2),即可计算出脱硫排水的重金属浓度。

C zi= C ss×C i

C zi-排水中第i种重金属的浓度,μg/L

C i-烟尘的重金属含量, %

表2 嵩屿电厂除尘器出口烟尘重金属含量的化验均值mg/kg

Cd Cr Pb As Cu Ni Zn 1.10 74.5 115 40.0 128 117 336

2.3 排水汞浓度增量

在重金属中,汞是易气化的物质。不同产地的煤其汞含量差别很大。我国煤中汞的含量在0.02-1.59mg/kg的范围内。嵩屿电厂燃用的晋北煤汞含量为0.072-0.078mg/kg。

入炉煤中的汞在炉膛内高温燃烧,随炉底渣排出的汞量极微,几乎全部气化为单质汞Hg0(g) ,气态的单质汞随烟气流出炉膛后,随着烟温的降低,其部分被烟气中的含氯物质氧化,转化为气相二价汞Hg2+(g),部分被飞灰物理和化学吸附为颗粒汞Hg(P),剩余部分从烟囱排出。

上海电力学院和华东电力试验研究所对国产某300MW亚临界燃煤锅炉的测试表明,炉底渣中的汞只占煤中汞的0.9%。

又据清华大学的工程院院士徐旭常等人对美国13台发电机组的不同烟气处理系统研究、统计后得到的结论:选择性催化还原法脱硝+电除尘器能脱除烟气中的汞约50%;选择性催化还原法脱硝+电除尘器+湿法脱硫能脱除烟气中的汞约85%。由此可知湿法脱硫可脱除烟气中的汞约35%。

嵩屿电厂拟采用选择性催化还原法脱硝+电除尘器+海水法脱硫的烟气处理系统。因目前国内还没有海水法脱硫对汞脱除率的测试结果,由于气相二价汞易被水吸收,所以认为海水脱硫塔洗脱的汞量与(石灰石)湿法相同,为烟气中总汞量的35%。因此,脱硫排水的汞浓度为:

C Hg=(0.35G m×C’Hg)/Q

C Hg -排水汞浓度,μg/L

G m -锅炉燃煤量, kg/h

C’Hg-煤中的汞含量,mg/kg

2.4 排水COD增量

脱硫排水COD的大小取决于曝气过程中亚硫酸根的氧化率,氧化率的大小和鼓入的空气量及空气与海水的接触时间有关。设计上氧化率可以达到90%以上。

根据上面的化学反应式,1摩尔的二氧化硫生成 1摩尔亚硫酸根,消耗16克的氧后生成1摩尔的硫酸根。喷淋海水吸收的SO2量可以根据吸收塔入口烟气量、烟气中的二氧化硫浓度和脱硫塔的脱硫效率算出。因此排水的COD浓度增量可以根据下式计算:

COD = [16×Q y×C so2×ηs×(1-ηo)] /(64×Q)COD-化学耗氧量,μg/L

C so2-入口烟气的二氧化硫浓度,mg/Nm3

ηs -脱硫效率,%

ηo–亚硫酸根的氧化率,%

64-二氧化硫分子量

2.5 排水pH的分析

为计算排水pH值,须先行海水滴定和曝气实验。根据进入脱硫塔的水量约占循环水量的30%,设计如下实验步骤:

(1)测凝汽器出口海水的pH值,取水样150mL,采用已知浓度的硫酸滴定到甲基橙终点,记录

硫酸消耗的体积U。

(2)用量筒取凝汽器出口的水样500mL 。 (3)再从量筒中取水样150mL 于烧杯中,依次滴加0、0.25U 、0.50U 、0.75U 、1.00U 、1.25 U 、1.50 U 的已知浓度的硫酸体积,摇匀后测定pH 值。

(4)烧杯中的试样返回量筒依次搅拌、用氧气曝气5分钟和10分钟后,分别测定混合液的pH 值。

根据以上实验得出,凝汽器出口海水pH=7.98,用浓度[1/2(H 2SO 4)]=0.1078mol/l 的硫酸滴定150ml 海水到甲基橙终点时,消耗硫酸体积U=3.1ml ,滴定结果如表3。绘出海水的滴定曲线见图2:

表3:海水用硫酸滴定和曝气结果

滴入硫酸量/ml 0 0.25U 0.50U 0.75U 1.00U 1.25U 1.50U 混合搅拌PH 曝气5min 再曝气5min

海水吸收的[H +] /mmol L -1

0 0.557 1.114 1.671 2.228 2.785 3.342 / / / 海水的pH

7.98

6.73

6.19

5.71

4.17

3.36

3.08

6.48

7.02

7.58

1234567890

0.5571.1141.6712.2282.7853.342

图2 海水的滴定曲线

从反应式可知,海水吸收1mol 的SO 2,生成

2mol 的 H +。吸收塔吸收SO 2后排水中H +

浓度增量为:

[H +

]=(2×Q y ×C so2×ηs )/(1000×64×Q x ) [H +

]-氢离子浓度,mmol/L

Q x -进入吸收塔的水量,m 3

/h

嵩屿电厂300MW 机组设计的循环水量是43 200 m 3/h ,其中进入吸收塔的喷淋水量是13 520 m 3/h

(约占循环水量的1/3),干烟气量1082 000 Nm 3

/h ,

二氧化硫浓度为1305mg/Nm 3

,脱硫效率为90%,由

上式可算出脱硫塔排水的[H +

]=2.937 mmol/L 。用滴定曲线内插,可以得到脱硫塔排水的pH=3.28

脱硫塔排水与直接进入曝气池的循环水混合

后,同样可计算出[H +

]=0.919mmol/L ,用滴定曲线内插,可以得到脱硫塔排水的pH=6.38。

根据循环水量和曝气池流道长度及曝气流道断面积可以计算出曝气时间为6分钟,从上述的实验可知曝气6分钟后可望提高pH 约0.5个单位,因此曝气池的排水pH=6.9。

3 计算结果与海水本底值、标准值的比较

根据嵩屿电厂300MW 机组的设计煤质等参数,计算出的曝气池脱硫排水的污染物增量如表4所列。

表4 排水污染物增量与比较

项目 排水增量 本底值 一级排放标准

海水水质标准 二类

一类

悬浮物/mg/l 1.85 21.9~131.9 70 人为增量≤10

Hg/μgL -1 0.0771 0.007~0.017 50 0.2 0.05 Cd/μg L -1 0.00203 0.039~0.10 100 5 1 总Cr/μg L -1 0.138 0.064~0.12 1500 100 50 As/μg L -1

0.074

0.0~2.3

500

30

20

[H +] mmol/L

pH

Pb/μg L-10.211 0.041~0.35 1000 5 1 Ni/μg L-10.216 0.38~0.88 1000 10 5 Cu/μg L-10.236 0.5~1.1 500 10 5 Zn/μg L-10.619 0.8~2.1 2000 50 20 COD/mg L-10.735 0.43~2.13 100 3 2

排水pH=6.9 8.02~8.25 6~9 7.8~8.5,且不超出海域正常变动范围的0.2pH单位

计算依据:1)锅炉燃煤量为127t/h,煤的Sar=0.63% 、Aar=19.77% 、Qnet.ar=22441kJ/kg、汞含量0.075mg/kg 。2)除尘器效率99.4%,出口干烟气量1082 000 Nm3/h、烟尘浓度134mg/Nm3、SO2浓度1305mg/Nm3。3)脱硫排水总量43215t/h (其中循环水量43200t/h,排入循环水中的工业水15t/h)。4)脱硫塔的脱硫效率90%、烟尘洗脱率55%、脱汞率35%。5)SO32-的氧化率为90%。

4脱硫排水对海域水质影响的分析

将脱硫排水污染物的浓度增量与海域海水的

本底值、排放标准和海水水质标准进行比较后可知:

(1)上述所有污染物的浓度指标均符合一级排放标准。

(2)排入海中的重金属量,取决于除尘器的除尘效率和燃煤中重金属的含量。煤种不同,烟尘中的各种重金属元素的含量变化较大,但它们在烟尘中均为微量元素。而且烟尘通过除尘器以后,99%以上的重金属(Hg除外)被除尘器捕集,所以排入海的重金属极微。从表4可见,排水的重金属浓度(本底值与增量之和)符合一类海水水质标准,脱硫排水的重金属不会引起海水类别的变化。

(3)排水中悬浮物的增量与除尘器效率关系密切,当除尘效率不小于99%时,悬浮物增量远小于10 mg/L,可以符合一、二类海水水质的要求。

(4)由于汞易气化和二价汞易被水吸收,在吸收塔脱汞率35%的情况下,当煤的汞含量为0.075 mg/kg时,排水的汞浓度增量为0.0771 μg/L,远大于海水本底浓度值,超一类但满足二、三类海水水质标准。当煤的汞含量大于0.486mg/kg时,排水水质将超出四类海水水质标准(0.5μg/L)。所以海水法脱硫电厂燃煤中的汞含量应引起重视,以免脱硫排水引起局部海域水质类别的变化。

(5)排水COD占海水的本底值的比重较大,当曝气氧化不充分时将会引局部海域水质类别的变化。

(6)正是由于利用海水的碱性脱硫,所以排水的pH值会有较大的下降。该海域海水的pH正常变动范围在8.02-8.25之间, pH=6.9的排水已超出海水变动范围的下限8.02-6.9=1.12个pH单位,不但超出一、二类水质且超出三、四类水质允许的变动(0.5pH单位),造成排水口附近的水质pH超标。但由于天然海水对pH的变化有很大的缓冲作用,本工程通过数模计算,排水离开排水口50米后,海水的pH值就恢复到正常值。因此pH对海域环境的影响范围是有限的。

5. 结论

(1)燃煤电厂海水法脱硫的排水水质可以根据质量平衡和海水滴定曲线进行定量的计算,但由于脱硫塔对烟尘和汞的洗脱率在国内模拟和实测缺乏,需要加强这方面的研究和试验。

(2)海水法脱硫电厂不但要控制燃煤的含硫量,燃煤中的汞含量也应引起重视,以免脱硫排水引起局部海域水质类别的变化。

(3)为尽量减少脱硫排水的pH和COD对海域水质的影响,除了控制燃煤的含硫量和选用适可的脱硫效率外,海水恢复系统的曝气氧化设计至关重要。

参考文献:

[1]吴昊等.煤中汞在燃煤电站中的形态转化.电力环境保护.

[2]朱珍锦等.300WM煤粉锅炉燃烧产物中汞的分布特征研究.动力工程.

[3]徐旭常等. 汞的排放及治理.

________________

作者简介:骆锦钊(1946-),男,广东惠州人,中国电机工程学会高级会员,原厦门嵩屿电厂总工程师,现任二期扩建指挥部技术总监。2002年开始至今从事海水脱硫研究和建设工作。

妈湾发电总厂烟气海水脱硫工艺及运行分析

妈湾发电总厂 烟气海水脱硫工艺及运行分析 焦显峰 (妈湾发电总厂,广东深圳 518052) [摘 要] 介绍了深圳妈湾发电总厂4号机组烟气海水脱硫系统的组成、工艺特点及投产以来的运行情况和出现的问题。 [关键词] 烟气脱硫;海水脱硫工艺;吸收塔;烟气-烟气换热器 [中图分类号]X511 [文献标识码]B [文章编号]1002-3364(2002)01-0014-03 深圳妈湾发电总厂烟气海水脱硫工程引进挪威ABB环境公司的技术和关键设备,与4号机组300MW 锅炉相配套。1999年7月,完成了性能考核试验。结果表明,该脱硫系统的各项性能指标均达到了设计要求,符合该区域海水环保标准。 烟气海水脱硫系统主要包括:烟气系统、S O2吸收系统(吸收塔)、海水供排水系统、海水水质恢复系统、电气及仪表控制系统等。该系统的设计寿命为30年。当燃用煤的含硫量S ar小于0.63%时,能够保证S O2总脱除效率不低于90%;当燃用煤的含硫量S ar不大于0.75%时,能够保证S O2总脱除效率不低于70%。从烟气-烟气(烟-烟)换热器排入烟囱的烟气温度高于70℃。 1 工艺原理 天然海水含有大量的可溶性盐,其中主要成分是NaCl和硫酸盐以及一定量的可溶性碳酸盐。海水通常呈碱性,自然碱度约为1.2~2.5mm ol/L,这使得海水具有天然的酸碱缓冲能力及吸收S O2的能力。烟气海水脱硫技术就是利用海水的这种特性,不添加任何化学试剂,吸收烟气中的S O2。当海水吸收S O2后,经氧化处理为无害时流回海洋。 烟气中的S O2在吸收塔内被海水吸收后,形成亚硫酸盐和H+(S O2+H20→S O32-+2H+),吸收S O2后的酸性海水流入曝气池的前段与来自汽轮机侧虹吸井的偏碱性海水充分混合,水溶性气体S O2和偏碱性海水相遇,发生中和反应。在曝气池后段,通过曝气风机向混合后的海水中送入足够的空气,使有害的亚硫酸盐氧化成无害的硫酸盐(2S O32-+O2→2S O42-)。同时,海水中的HC O3-与H+反应(HC O3-+H+→C O2+ H2O),生成C O2并从海水中释放出来,使从曝气池排出的海水pH值大于6.5,满足三类海水水质标准。利用系统净化烟气再热装置,即烟-烟换热器,对净化后的烟气加热,以保证从吸收塔排出的烟气有足够的温升,防止烟气在烟囱内壁结露,产生腐蚀。 2 烟气海水脱硫系统设备概况及运行工艺流程 4号机组启动且电除尘器投入正常运行后才能将烟气海水脱硫系统投入运行。启动2台海水升压泵、2台曝气风机,烟-烟换热器,然后将增压风机的出、入口挡板门打开,启动增压风机并调节其出力,使其与锅炉运行负荷相匹配,关闭旁路挡板使烟气进入脱硫系 λψ 热力发电?2002(1)

氨法烟气脱硫脱硝的技术特征

氨法烟气脱硫脱硝的技术特征 The technical characteristics of the amm onia process for rem oving SO x and NO x from flue gas 雷士文1,雷世晓2,王德敏2 (11南京明斯顿能源化工有限公司,江苏南京 210037;21遵义师范学校,贵州遵义 563003)摘要:氨法烟气脱硫脱硝具有显著的技术优势:脱硫效率高,脱硫脱硝一举两得,不耗费热量不产生废渣,脱硫剂利用充分用量小,不损害设备有节能功效。 关键词:烟气脱硫脱硝;氨法 Abstract:Ammonia proce ss removing SO x and NO x from flue ga s po sse sse s many remarkable technical advantage s: de sulfurization efficient,simultaneously removing SO x and NO x,no heat consumption and no wa ste re sidue s,used de sulfurizer fewer and the utilization ratio higher,no equipment damaged and saving power. K ey words:SO x and NO x removed from flue ga s;ammonia proce ss 中图分类号:X701.3 文献标识码:B 文章编号:1009-4032(2006)02-0032-03 氨法脱硫脱硝,就是以氨(NH3)为吸收剂将工业废气中的气态硫化合物固定为铵盐或还原为单质硫、将氮氧化物转化为氮气而实现清洁排放的工程技术。自20世纪70年代以来,国外将氨法脱硫脱硝方法应用于大型电站锅炉的烟气治理。2000年鞍钢第二发电厂在220t/h煤粉炉上加装氨法脱硫脱硝装置获得成功,至今运行正常,取得了良好的技术经济效益。 1 氨法脱硫脱硝的技术原理 1.1 吸收二氧化硫、三氧化硫 液氨溶于水后喷入烟气中,吸收烟气中S O2和S O3而形成铵盐,具体反应如下: NH3+H2O→NH4OH(1) 2NH4OH+S O2→(NH4)2S O3+H2O(2) (NH4)2S O3+S O2+H2O→2NH4HS O3(3) NH4HS O3+NH4OH→(NH4)2S O3+H2O(4) 当废气中含有O2、C O和S O3时(如电厂烟气),还会发生如下反应; NH4OH+C O2→NH4HC O3(5) 2NH4OH+C O2→(NH4)2C O3(6) 2NH4OH+C O2→H2NC ONH2+3H2O(7) 2NH4HC O3+S O2→(NH4)2S O3+H2O+C O2(8) NH4HC O3+NH4HS O3→ (NH4)S O3?H2O+C O2(9) 2NH4OH+S O3→(NH4)2S O4+H2O(10) 2(NH4)2S O3+O2→2(NH4)2S O4(11) 2NH4HS O3+O2→2NH4HS O4(12) 在吸收液循环使用过程中,式(3)是吸收S O2最有效的反应。通过补充新鲜氨水(式4)或其他置换方法可保持亚硫酸铵的浓度。 1.2 对硫化氢的吸收 烟气中有H2S存在时,氨水吸收H2S,将其还原成单质S;反应如下: NH4OH+H2S→NH4HS+H2O(13) 经催化氧化,氨水再生,并得单质硫。 2NH4H2S+O2→2NH4OH+2S(14) 1.3 对氮氧化物的转化 氨水和烟气中的NO x发生反应生成氮气: 2NO+4NH4HS O3→ N2+(NH4)2S O4+S O2+H2O(15) 2NO+4NH4HS O3→ N2+4(NH4)2S O4+S O2+4H2O(16) 4NH3+4NO+O2→6H2O+4N2(17) 4NH3+2NO2+O2→6H2O+3N2(18) 4NH3+6NO→6H2O+5N2(19) 8NH3+6NO→12H2O+7N2(20) 2 氨法脱硫脱硝的技术优势 2.1 氨利用充分脱硫效率高 2.1.1 选择性反应 氨与硫氧化物、氮氧化物之间的反应是选择性 23 2006年4月 电 力 环 境 保 护 第22卷 第2期

海水烟气脱硫工艺

海水烟气脱硫工艺 摘要:本文论述我国海水烟气脱硫工艺、挪威ABB 公司的flakt-hydro 海水烟气脱硫工艺以及美国Bechtel 公司的海水烟气脱硫工艺,并系统讨论海水烟气脱硫工艺的应用与发展及其优缺点。 关键词:海水烟气脱硫工艺;海水脱硫装置;环保;二氧化硫 1 前言 我国是一个资源生产和消费大国,然而经济的快速发展的同时加速了对燃料的 需求,由燃料产生的环境问题已经越来越严重。据国家环保部门统计,每年各种煤及各种资源冶炼产生的二氧化硫高达2158.7万吨,居世界第一位,二氧化硫排放量占世界的15.1%,由二氧化硫污染造成的酸雨面积占全国总国土面积的30%,严重影响人们的身体健康和环境,造成了难以估计的经济损失和社会危害。因此有效地控制大气中的二氧化硫已成为刻不容缓的研究课题,高效率,高环保的脱硫技术更是成为了现阶段的环保领域关注的焦点。 2 海水烟气脱硫技术原理 天然海水中含有大量的可溶性盐,其主要成分是氯化物、硫酸盐及少量的可溶 性碳酸盐。海水呈现碱性,PH 值为7.8~8.3,具有天然的酸碱缓冲能力及吸收二氧化硫的能力,海水烟气脱硫工艺技术就是利用海水的这种特性来洗涤烟气中的二氧化硫,以达到烟气净化的效果。 海水脱硫工艺主要由烟气系统、供排海水系统、海水恢复系统以及工厂必备的 电气控制系统等组成。其主要流程是:锅炉排出的烟气经除尘器后,由烟气脱硫系统(FGD 系统)增压风机送入气-气热交换器(GGH)的热侧降温以提高吸收塔内的二氧化硫吸收效率,冷却后的烟气由吸收塔地步送入,在吸收塔中与由塔顶均匀喷洒的海水(利用电厂循环冷却水)逆向充分接触混合,经过净化后的烟气,通过GGH 升温后,经由烟囱派入大气。其脱硫流程图如图 1 所示: 海水脱硫的机理如下: -++→+23 222SO H O H SO (1) --→+24 22322SO O SO (2) O H CO H HCO 223+→++- (3)

水质工程学排水工程题库资料

《水污染控制工程》试题库 、填空 2005年11月,造成松花江水污染事件的主要污染物是 分为 2、 污水按照来源通常分为三类,即 和降水。 3、 在工矿企业生产活动中使用过的水称为工业废水,包括 两类 4、 污水的最终出路包括 三种。 5、 生活污水的颜色常呈灰色,当溶解氧不足时,转呈 色并有臭 味。 6、 色度可由悬浮固体、胶体或溶解物质构成。悬浮固体形成的色度称为 ;胶体或 溶解性物质形成的色度称为 7、污水中最具代表性的嗅味物质是硫化氢,它是在厌氧微生物作用下,将 原形成的。 8、嗅味的检测方法分为 两种。 9、总固体是由漂浮物、可沉降物、胶体物和溶解状态的物质所组成。总固体可进一步分为 固体和 固体。 10、碱度指污水中含有的、能与强酸产生中和反应的物质,主要包括 碱 度、 .碱度和 碱度。 11、砷化物在污水中的存在形式包括亚砷酸盐 A S O 2、砷酸盐A S O 4以及有机砷,对人体毒 性排序为 12、污水中的重金属离子浓度超过一定值后就会对微生物、动植物及人类产生毒害作用, 汞、 、砷及其化合物称为“五毒”。 13、酚类化合物根据羟基的数目,可分为 ;根据能否随水蒸气挥发, 1、 14、有机农药分为 农药与 农药两大类。 15、工业废水的BOD/COD 值变化较大,如果该比值大于 ,被认为该废水可采用生 化处理。 16、有机物根据是否易于被微生物降解分为 两类。 17、污水中有机物的种类繁多, 通常难以直接进行测定, 经常用来表示污水中有机物的指标 包括

18、格栅按照除渣方式的不同分为和两种。 19、格栅按照栅条间隙分为 20、气浮法可分为、散气气浮法和三类。 21、加压溶气气浮是国内外最常用的气浮方法,分为 回流加压溶气气浮。 22、沉淀类型包括四种。 23、最常采用的3种沉砂池型式有 24、设计流量时污水在平流沉砂池中的水平流速约为m/s。 25、沉淀池分为、竖流沉淀池和斜板沉淀池几种类型。 26、油类在水中的存在可分为 27、滤池根据所采用滤料情况可分为和三层滤料滤池。 28、滤池的工作包括.两个基本过程。 29、根据膜组件的截留分子量,可将膜分为、纳滤和反渗透。 30、胶体表面通常带有电荷,使其相互排斥,难以聚集沉淀。 31、混凝的作用机理包括 32、无机混凝剂的品种较少,主要是和铝盐及其聚合物。 33、助凝剂的作用机理一般是高分子物质的作用。 34、根据固体表面吸附力的不同,吸附可分为两种类型。 35、.是选择吸附剂和设计吸附设备的重要依据。 36、吸附的操作方式包括两种。 37、正常的活性污泥为黄褐色的絮绒颗粒,含水率很高,一般都在以上。 是活性污泥中起到净化污水作用的主力军。 39、根据出现情况可以判断处理水质的优劣,故称之为活性污泥系统的指示 性生物。 40、.仅在处理水质优异情况下出现,是水质非常稳定的标志。 41、活性污泥的培养与驯化分为和接种培训法。 42、污泥培养的两个要素是.和 43、90%以上的污泥膨胀现象是由于.过量繁殖引起的。 44、二沉池内由于污泥长期滞留而产生厌氧发酵生成气体,从而使大块污泥上浮的现象称

水质工程学排水工程题库

《水污染控制工程》试题库 一、填空 1、2005年11月,造成松花江水污染事件的主要污染物是。 2、污水按照来源通常分为三类,即、和降水。 3、在工矿企业生产活动中使用过的水称为工业废水,包括和两类 4、污水的最终出路包括、、三种。 5、生活污水的颜色常呈灰色,当溶解氧不足时,转呈色并有臭味。 6、色度可由悬浮固体、胶体或溶解物质构成。悬浮固体形成的色度称为;胶体或溶解性物质形成的色度称为。 7、污水中最具代表性的嗅味物质是硫化氢,它是在厌氧微生物作用下,将还原形成的。 8、嗅味的检测方法分为和两种。 9、总固体是由漂浮物、可沉降物、胶体物和溶解状态的物质所组成。总固体可进一步分为 固体和固体。 10、碱度指污水中含有的、能与强酸产生中和反应的物质,主要包括碱度、 碱度和碱度。 11、砷化物在污水中的存在形式包括亚砷酸盐AsO2-、砷酸盐AsO4-以及有机砷,对人体毒性排序为。 12、污水中的重金属离子浓度超过一定值后就会对微生物、动植物及人类产生毒害作用,汞、、、、砷及其化合物称为“五毒”。 13、酚类化合物根据羟基的数目,可分为、和;根据能否随水蒸气挥发,分为与。 14、有机农药分为农药与农药两大类。 15、工业废水的BOD/COD值变化较大,如果该比值大于,被认为该废水可采用生化处理。 16、有机物根据是否易于被微生物降解分为和两类。 17、污水中有机物的种类繁多,通常难以直接进行测定,经常用来表示污水中有机物的指标包括、和。

18、格栅按照除渣方式的不同分为和两种。 19、格栅按照栅条间隙分为、和。 20、气浮法可分为、散气气浮法和三类。 21、加压溶气气浮是国内外最常用的气浮方法,分为、和 回流加压溶气气浮。 22、沉淀类型包括、、和四种。 23、最常采用的3种沉砂池型式有、和。 24、设计流量时污水在平流沉砂池中的水平流速约为m/s。 25、沉淀池分为、、竖流沉淀池和斜板沉淀池几种类型。 26、油类在水中的存在可分为、、和。 27、滤池根据所采用滤料情况可分为、和三层滤料滤池。 28、滤池的工作包括和两个基本过程。 29、根据膜组件的截留分子量,可将膜分为、、纳滤和反渗透。 30、胶体表面通常带有电荷,使其相互排斥,难以聚集沉淀。 31、混凝的作用机理包括、和。 32、无机混凝剂的品种较少,主要是和铝盐及其聚合物。 33、助凝剂的作用机理一般是高分子物质的作用。 34、根据固体表面吸附力的不同,吸附可分为和两种类型。 35、是选择吸附剂和设计吸附设备的重要依据。 36、吸附的操作方式包括和两种。 37、正常的活性污泥为黄褐色的絮绒颗粒,含水率很高,一般都在以上。 38、是活性污泥中起到净化污水作用的主力军。 39、根据出现情况可以判断处理水质的优劣,故称之为活性污泥系统的指示性生物。 40、仅在处理水质优异情况下出现,是水质非常稳定的标志。 41、活性污泥的培养与驯化分为、和接种培训法。 42、污泥培养的两个要素是和。 43、90%以上的污泥膨胀现象是由于过量繁殖引起的。 44、二沉池内由于污泥长期滞留而产生厌氧发酵生成气体,从而使大块污泥上浮的现象称为。

各海域海水淡化方案及水质参数

为应对全球淡水资源短缺的问题,许多沿海国家及地区积极开展海水淡化和综合利用的技术研发工作。以色列70%的饮用水来自海水淡化水;澳大利亚的海水利用主要用于市政,占总装机规模的96%;美国的海水利用主要用于市政,占89.5%;沙特阿拉伯是目前全球最大的海水淡化生产国,2010年其产量达到11亿m3。 中国淡水资源缺乏,人均淡水资源量仅为世界人均占有量的1/4,沿海地区人口稠密,淡水供需矛盾尤为突出。海水淡化技术可以增加水资源总量,有效缓解我国沿海地区淡水短缺的矛盾。在海水资源方面,我国拥有渤海、黄海、东海、南海四大海域,海岸线超过1.8万km,水资源相当丰富。但海水淡化发展速度相对其他国家缓慢,直至“十一五”期间海水淡化产业才开始较为迅速地增长。据统计,至2011年底我国海水淡化能力为66万m3/d。目前,影响海水淡化的因素有政策、技术和价格等。其中海水水质是影响淡化技术正常应用及成本的重要因素。有研究发现,海水中的有机物污染、SDI(淤泥密度指数)、温度、浊度和盐度是影响反渗透膜运行的重要指标,进而影响淡化水品质。因此对中国海域的海水理化性质、海水利用现状、研究进展进行探讨,对于优化沿海水资源结构、保障国家用水安全和促进沿海经济社会可持续发展具有战略意义。基于此,笔者首次将海水水质和海水利用状况相结合,介绍中国渤海、黄海、东海、南海4个海域海

水淡化的相关水质情况,归纳各地区海水利用的工艺技术条件和发展现状,分析形成原因和经验教训,旨对海水利用发展落后的沿岸地带提供帮助,对海水淡化利用较好地区的发展和转型方向提供参考,并为中国海水利用的发展提供新的思考途径。 1 渤海海域 1.1 渤海的水质特征 渤海是一个近封闭的内海,水温受北方大陆性气候影响显著,2月份平均水温在0 ℃左右,8月份达21 ℃。受大陆淡水注入的影响,盐度仅为30‰,是中国近海中最低的。1978—2010年历年8月的观测资料结果表明渤海夏季海水pH年际变化范围为7.86~8.30,渤海水温年际变化、降水量(酸雨)和月均黄河口径流量年际变化是影响海水pH变化的主要因素。 吴琳琳等研究发现2012年4—7月渤海湾海水温度为12.7~30.8 ℃、pH为7.30~8.55、海水CODMn为0.98~3.36 mg/L、溶解性总固体(TDS)为30.7~32.1 g/L、浊度为 2.96~136 NTU、Cl-为16.9~17.8 g/L、电导率为44 800~49 800 μS/cm。整体而言渤海水质的浊度变化范围较宽,主要受渤海湾海水泥沙含量的影响,特别在有潮汐和风浪时会大幅升高。此外还发现海水温度升

水质指标与水质标准

水质指标与水质标准 ●物理性水质标准 感官物理性状指标:如温度色度臭味浑浊度透明度等 其他物理性水质指标:总固体悬浮行固体溶解固体可沉固体电导率等 ●化学性水质指标 一般化学性水质指标如:PH 碱度硬度各种阳离子各种阴离子总含盐量一般有机物质等 ●有毒化学性水质指标:各种重金属氰化物多环芳烃各种农药等 ●氧平衡指标:溶解氧化学需氧量生化需氧量总需氧量等 1 浑浊度 指水中不溶解物质对光线透过时所产生的阻碍程度。一般来说,水中的不溶解物质越多,浑浊度越高,但两者并没有固定的定量关系。气大小与不溶解物质的数量与浓度有关系,而且,还与这些不容颗粒物的颗粒尺寸,性状和折射指数有关。 浊度单位即在蒸馏水中含有1mg/L的SiO2称为一个浑浊度单位或1度。 散射浊度单位(NUT) 一种由一定浓度的硫酸肼[(NH2)SO4·H2SO4]和六甲基四胺[(CH2)6N4]混合而成的化合物,配制的浑浊液作为测定散射光强度的标准参考浑浊液。 2 色度 水的色度有真色和假色之分,真色是由于水中所含溶解性物质和胶体物质所致,即除去水中悬浮物质后所呈现的颜色;表色指包括溶解物质胶体物质和悬浮物质共同引起的颜色。测定方法是铂钴标准比色法。先用氯铂酸钾(K2PtCl2)和氯化钴(CoCL.6H2O)配成与天然黄色色调相同的标准比色系列,1L水中含有相当于1mg铂时所产生的颜色规定为1 度,已成为1 个真色单位。 3 固体(solids) 水中固体是在一定的温度下将一定体积的水样蒸发至干时所剩余的固体总量,也叫蒸发残渣。常用的蒸发温度为103-105°C,在此温度下烘干的残渣保留结晶水和部分吸着水,重碳酸盐转变为碳酸盐,而有机物挥发较少,这样所得的残渣总量为总固体,单位mg/L计。 水中固体按溶解性可分为溶解固体和悬浮固体。如对水样进行过滤操作,则滤液(包括溶解物质和部分胶体物质)在103-105°C下烘干后的残渣就是溶解固体残量也称“总可虑残渣”。过滤方法有石棉古氏坩埚法和孔径0.45μm的滤膜,两种方法的结果会有出入。 挥发行固体是指在一定温度下,(通常为600度)将水中经蒸发干燥后的固体灼烧而失去的质量,故也称“灼烧减重”。 4 电导 水中溶解盐类都是以离子状态存在的,它们都有一定的导电能力。水的导电能力大小可用电导来衡量。水中的溶解盐类越多,水中的离子数目也越多,水的电导也越高。比电导也称为电导率。它是指25摄氏度时长1米横截面积为1平方水中的电导值。单位是mS/m或μS/cm 电导是电阻的倒数,电阻率越大说明水中的溶解盐类越少。电阻率的单位是Ωcm 对于天然水,溶解固体浓度与电导有以下经验公式: TDS=(0.55-0.70)γ 式中TDS-水中溶解固体的量,mg/L γ-25°C时的电导率,μS/cm 5 总含盐量与离子平衡 水中所含各种溶解性矿物盐类的总量称为水的总含盐量,也称总矿化度.

海水脱硫工艺

海水脱硫工艺 1、电厂概述 xxx电厂设计装机容量为6×600MW。主机采用xxx公司产品,锅炉设备选用为xxx造船厂设计制造的MO-SSRR型超临界直流锅炉。为满足环保要求,锅炉岛设置两台除尘效率达99.85%的双室五电场静电除尘器、烟气脱硝和烟气海水脱硫装置。其中脱硫装置是目前国内电力系统内安装的最大的海水脱硫设施。厂区还设有工业废水和生活污水处理站。电厂以海水作为循环冷却水,凝汽器冷却方式为海水直流冷却,冷却后的海水与脱硫后的海水混合后直接排入大海。电厂烟囱采用集束式,每三台机组一根集束烟囱,外筒为钢筋混凝土结构,内筒用耐腐蚀合金钢制成。 2.烟气海水脱硫工艺流程 电厂烟气海水脱硫系统是由xxx公司设计。这套脱硫系统主要用来将锅炉排放烟气中的二氧化硫去除。本系统设计采用海水+氢氧化钠脱硫法,初期拟先采用海水脱硫。每台锅炉采用两座吸收塔对烟气进行处理。烟气经过电除尘器和引风机后直接送入预冷器内用工业水进行冷却,冷却后的烟气进入吸收塔再往塔顶方向与喷流而下的吸收液(海水或海水+氢氧化钠)逆向接触以除去烟气中二氧化硫及少部分灰含量,脱硫后的烟气通过吸收塔内除雾器,然后直接由烟囱排入大气。吸收塔排出的脱硫后的海水与虹吸井的海水混合后进入曝气池,2-2-,重碳酸根中和氢离子并释放氧化为通过氧化风机进行曝气使海水中SOSO43二氧化碳,使海水PH值达标后排入大海。基本工艺流程图见下图1: 3.海水脱硫设计基础参数

海水脱硫系统介绍及工艺特点4.初期先采用纯海水脱硫方氢氧化钠方法,电厂设计脱硫系统采用海水+ xxx法,设备的安装及调试工作按照纯海水系统的设计进行。电厂海水脱硫系统可吸收系统、海水供排水系统和海水恢复系统、电气及控制以分为烟气系统、SO2: 系统等组成,下面就各系统的工艺特点及有关设备的情况等做一个介绍 4.1烟气系统锅炉烟气从引风机出口通过烟道直接进入脱硫系统,不设旁路烟道。烟 气首先进入预冷却器内,预冷却器作用为冷却进入吸收塔的烟气温度使之低于石内衬,由KOKA100℃。预冷却器的结构为一段扩充的圆形烟道,采用碳钢加每个烟道设置一台预冷器。预冷器内部设由公司制造。预冷器安装有两台,xxx预冷却器工业水设计喷淋流工业水由喷嘴喷入预冷器内对烟气降温,8个喷嘴,3台。冷却后的烟气自下而上流经脱硫吸收塔和除雾器,脱硫后的量为11 m/h/3 / 8 烟气不进行再加热,通过烟道直接进入烟囱排入大气,脱硫后烟气温度设计为40℃,脱硫吸收塔出口至烟囱一段烟道全部采用玻璃鳞片树脂进行内部防腐。4.2 SO吸收系统2吸收塔为SO吸收系统的关键设备。每台机组设两座吸收塔。吸收塔设2H,吸收塔内部采用玻璃鳞片树脂内衬ф12m×38m计为喷淋塔,吸收塔的尺寸为防腐,吸收塔内部的海水喷淋采用两层喷淋,管道全部采用不锈钢管道,上部3/h0-23000 m;下部喷淋分配喷淋分配管采用喷淋管喷淋,设计喷淋流量范围3/h0-2600m;上管上安装有不锈钢加陶瓷内衬式旋流喷嘴,设计喷淋流量范围下两层分配管下部分别设置多孔不锈钢检修平台。吸收塔内部安装有气流分布板,以使烟气进入吸收塔后塔内气流分布均匀。脱硫后的海水通过吸收塔下部的溢流堰溢流排出。脱硫吸收塔上部安装有除雾器,作用为将脱硫后烟气中携

给排水专业-水质工程学课程设计

水质工程学课程设计 1 总论 (1) 2 基本资料 (6) 3 总体设计参考 (8) 1 总论 1.1 设计一般步骤 (1)分析研究水质资料,确定给水处理厂处理流程。 (2)确定给水处理厂设计水量。 (3)进行处理构筑物型式的选择。 (4)进行各处理构筑物的设计计算。 (5)确定水厂的附属构筑物和建筑物。 (6)进行水厂的平面布置。 (7)进行水头损失计算,确定水厂的高程布置。 1.2 设计要点与说明 (1)给水处理厂处理流程的确定 给水处理厂处理流程的确定,应根据原水水质及设计生产能力等因素,通过调查研究、必要的试验并参考相似条件下处理构筑物的运行经验,经技术经济比较后确定。 (2)给水处理厂的设计处理量 水处理构筑物的生产能力,应以最高日供水量加水厂自用水量进行设计,并以原水水质最不利情况进行校核。水厂自用水量主要用于滤池冲洗及沉淀池或澄清池排泥等方面。自用水量取决于所采用的处理方法、构筑物类型及原水水质等因素。城镇水厂自用水量一般采用供水量的3%~10%。 (3)处理构筑物的选型

对处理流程及构筑物选型的合理性进行分析,说明工艺特点。另外,应注意在确定处理流程以及进行处理构筑物选型时,要兼顾水厂的平面布置和高程布置。 (4)药剂配制与投加设备的设计 混凝剂的投加量应在选择了混凝剂的种类之后,用实验的方法确定,我国各水厂的平均投药量为5~30毫克/升,最高不超过100毫克/升(以三氧化二铝计),否则就应当通过药剂的混合使用及改进处理途径等方法使水澄清。在确定混凝剂及投加量之后,确定投药方式、选择配制及投加药剂的设备形式。溶解池和溶液池,可根据混凝剂的纯度,溶液的浓度,加药量以及配制次数等进行计算,相应数据应合理确定。 (5)混合与絮凝设备的设计 充分考虑各方面因素,合理确定混合方式。 絮凝设备的工作效果,会直接影响到沉淀效果,应合理选择其形式、水流速度及停留时间等。絮凝池形式及工艺尺寸的选择,往往牵扯到与沉淀池的配合问题,所以絮凝池和沉淀池应一并考虑。应注意絮凝池出水管中流速的选择。 (6)沉淀澄清设备的设计 沉淀设备、澄清设备类型很多,应进行全面、慎重的选取,然后依照规范、手册进行详细设计。 (7)过滤设备的设计 滤池种类甚多,应根据水厂规模和运行管理要求等情况进行比较选择。 (8)消毒设备的设计 充分考虑各方面因素,合理选择消毒剂。结合处理工艺,确定消毒剂投加点。 目前我国主要采用加氯消毒,加氯量的多少,应视水中有机物及细菌数量而定,一般为0.5~2.0mg/L,相应的接触时间须在30min以上。消毒一般多在过滤后进行,氯常加在滤池至清水池的输水管上,借水在清水池内的停留时间进行充分接触。 加氯间应有良好的通风设备和直通室外的出口,加氯间和加氯点之间的距离一般为10~20m,加氯间的面积应根据加氯设备的形式、数量和布置决定。 (9)给水处理厂其它构筑物、建筑物的设计

锅炉水质指标及水质标准

锅炉水质指标及水质标准 (一) 水质指标 水质指标时表示水的质量好坏的技术指标。主要有以下几项: 1.悬浮物。在规定的试验条件下,将水过滤分离得到的不溶于水的物质的含量,单位mg/L 。 2.硬度(YD )。水中能够形成水垢或水渣的钙、镁盐的总含量,包括暂时硬度和永久硬度。 暂时硬度直重碳酸盐硬度,即23)(HCO Ca ,23)(HCO Mg 硬度,可以再加热煮沸过程 中使之沉淀消除;永久硬度指非碳酸盐硬度,包括钙,镁的硫酸盐和氯化物等。暂时硬度和水永久硬度简称暂硬和水硬。 表示硬度的单位有以下几种,其中(1)为我国法定单位,(2)及(3)是国外常见单位,也是国内过去的惯用单位。 (1)mmol/L (毫摩尔/升):每升水中含有钙、镁离子的一价毫摩尔数或钙、镁盐的一介毫摩尔数,及以一价离子为基点的毫摩尔数。它在数值上与过去使用的毫克当量/升相同。采用本单位便于进行化学反应计算;同时,既可以表示某种物质,也可以表示该物质中的正离子或负离子。 (2)德国度:与每升水中含10mg CaO 相当的钙、镁盐或钙、镁离子的含量,叫做1德国度或简称1度。 由于1mmol/L 的CaO 是28mg/L ,所以, 1度= 28 10 mmol/L=0.357mmol/L 1mmol/L=2.8度 (3)ppm (百万分单位):指1百万份水中含有1份3CaCO ,或者每升水中含有 1mg 3CaCO 这样的硬度。 由于3CaCO 的一价摩尔质量为50g/mol ,1mmol/L 3CaCO 是50mg/L 3CaCO ,所以有: 1ppm= 50 1 mmol/L=0.02mmol/L 1ppm=0.02×2.8度=0.056度 1mmol/L=50ppm 1度=17.86ppm 3.碱度(JD )。水中由于离解或者水解而使- OH 浓度增加的物质的总含量,称为碱度。 水中碱度主要由碱及碳酸盐、重碳酸盐、磷酸盐等构成。由碱直接离解出- OH 者叫氢 氧根碱度;由碳酸根、重碳酸根水解出- OH 者叫碳酸根碱度及重碳酸根碱度。 水中暂硬是钙、镁的重碳酸盐,在水中也水解出- OH ,因此暂硬也构成碱度,叫暂硬 碱度。暂硬碱度是碳酸盐碱度及重碳酸盐碱度的一部分。 纳与负离子构成的碱度,如NaOH ,3NaHCO ,32CO Na ,43PO Na 等,叫钠盐碱

水质工程学计算题

1、现有一种直径、高均为1cm 的圆柱体颗粒在静水中自由沉淀,已知该种颗粒密度S ρ=1.8g/cm 3,水的密度水ρ=1g/cm 3,则这种颗粒在水中自由沉淀时最小沉速为多少?(重力加速度为980cm/S 2,绕流阻力系数2 2=D C ); 提示:由题义可得,这种颗粒在水中自由沉淀时沉速大小取决于圆柱体在颗粒垂 直方向投影面积的大小。最小的沉速是颗粒在垂直方向投影面积最大时取得。 2、在实验室内做氯气消毒试验。已知细菌被灭活速率为一级反应,且k=0.85min -1求细菌被灭活99.5℅时,所需消毒时间为多少分钟? 提示:由一级反应方程式可得: lgC A = lgC A0 – o.4343kt 而C A =(1-99.5%) C AO ,k=0.85min -1 得t = (lgC A0 - lgC A )/0.4343k=6.23(min) 3、设物料i 分别通过CSTR 型和PF 型反应器进行反应,进水和出水中I 浓度之比为10/0=e C C ,且属于一级反应,k=2h -1水流在CSTR 型和PF 型反应器内各需多少停留时间?(注:0C —进水中i 初始浓度;e C —出水中i 浓度) 提示:1)由CSTR 一级反应方程式可得: t=(C 0/C e -1)/k=(10-1)/2=4.5h 2) 由PF 一级反应方程式可得: t=(㏑C 0-㏑C e )/k=1.15h 4、题3中若采用4只CSTR 型反应器串联,其余条件同上。求串联后水流总停留时间为多少? 提示:由CSTR 二级反应方程式可得: C 2/C 0=(1/(1+kt))2 得t=1.08(h) 所以T=4t=4.32(h) 5、液体中物料i 浓度为200mg/L ,经过2个串联的CSTR 型反应器后,i 的浓度降至20mg/L 。液体流量为5000m 3/h ;反应级数为1;速率常数为0.8h -1。求每个反应器的体积和总反应时间。 提示:由CSTR 二级反应方程式可得: C 2/C 0=(1/(1+kt))2 得t=2.2(h) 所以T=2t=5.4(h) V=Qt=5000×2.7=13500(m 3) 6、河水总碱度0.1mmol/L (按CaO 计)。硫酸铝(含Al 2O 3为16℅)投加量为25mg/L ,问是否需要投加石灰以保证硫酸铝顺利水解?设水厂日生产水量50000m 3,试问水厂每天约需要多少千克石灰(石灰纯度按50℅计)。 提示:投入药剂量折合Al 2O 3 为25mg/l×16%=4mg ,Al 2O 3 的分子量为102 。故投入药剂量相当于4/102=0.039mmol/l ,剩余碱度取0.37mmol/l ,则得[CaO]=3×0.039-0.1×0.37=0.487(mmol/l),CaO 的分子量为56,则石灰投量为0.487×56×50000/0.5=2.3×106(g)=2.3×103(kg) 7、设聚合铝[Al 2(OH )n Cl 6—n ]在制备过程中,控制m=5,n=4,试求该聚合铝的碱化度为多少?

海水水质标准

海水水质标准 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

中华人民共和国国家标准 海水水质标准 海水水质标准(GB 3097-1997) 前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国海洋环境保护法》,防止和控制海水污染,保护海洋生物资源和其他海洋资源,有利于海洋资源的可持续利用,维护海洋生态平衡,保障人体健康,制订本标准。 本标准从1998年7月1日起实施,同时代替GB3097-82。 本标准在下列内容和章节有所改变: -(海水水质分类,由三类改四类); -(补充和调整了污染物项目); -(增加了海水水质监测样品的采集、贮存、运输和预处理的规定); -(增加了海水水质分析方法) 本标准由国家环境保护局和国家海洋局共同提出。 本标准由国家环境保护局负责解释。 中华人民共和国国家标准 UCD 551463 海水水质标准 GB 3097-1997 Sea water quality standard 代替 GB3097-82 1 主题内容与标准适用范围 本标准规定了海域各类使用功能的水质要求。

本标准适用于中华人民共和国管辖的海域。 2 引用标准 下列标准所含条文,在本标准中被引用即构成本标准的条文,与本标准同效。海洋调查规范海水化学要素观测 HY 003-91 海洋监测规范 海洋调查规范海洋水文观测 GB7467-87 水质六价铬的测定二苯碳酰二肼分光光度法 GB7485-87 水质总砷的测定二乙基二硫代氨基甲酸银分光光度法 GB11910-89 水质镍的测定丁二酮肟分光光度法 GB11912-89 水质镍的测定火焰原子吸收分光光度法 GB 13192-91 水质有机磷农药的测定气相色谱法 GB 11895-89 水质苯并(a)芘的测定乙酰化滤纸层析荧光分光光度法 当上述标准被修订时,应使用其最新版本。 3海水水质分类与标准 海水水质分类 按照海域的不同使用功能和保护目标,海水水质分为四类: 第一类适用于海洋渔业水域,海上自然保护区和珍 稀濒危海洋生物保护区。

水质与水质标准

第2章水质与水质标准 2.1 天然水中杂质的种类与性质 2.1.1 天然水体中的杂质 天然水中存在的杂质主要来源于所接触的大气、土壤等自然环境,同时人类活动产生的各种污染物也会进入天然水体。 (1)按水中杂质的尺寸,可以分为溶解物、胶体颗粒和悬浮物3种,它们的尺寸和外观特征如表2-1所示。 表2-1水中杂质的尺寸与外观特征 悬浮物:主要是泥砂类无机物质和动植物生存过程中产生的物质或死亡后的腐败产物等有机物。 胶体:主要是细小的泥砂、矿物质等无机物和腐殖质等有机物。 溶解物:主要是呈真溶液状态的离子和分子,如Ca2+、Mg2+、Clˉ等离子,HCO3-、SO42-等酸根,O2、CO2、H2S、SO2、NH3等溶解气体分子。 (2)从化学结构上可以将水中杂质分为无机物、有机物、生物等几类。 无机杂质:天然水中所含有的无机杂质主要是溶解性的离子、气体及悬浮性的泥砂。溶解离子有Ca2+、Mg2+、Na+等阳离子和HCO3-、SO42-、Clˉ等阴离子。 有机杂质:天然水中的有机物与水体环境密切相关。一般常见的有机杂质为腐殖质类以及一些蛋白质等。生物(微生物)杂质:这类杂质包括原生动物、藻类、细菌、病毒等。这类杂质会使水产生异臭异味,增加水的色度、浊度,导致各种疾病等。 (3)按杂质的来源可以分为天然的和污染性的物质。 2.1.2 各种典型水体的水质特点 一般可以将天然水分为地表水和地下水两大类,地表水又可以分为江河水、湖泊水库水、海水等。(1)江河水 江河水的含盐量和硬度都比较低。含盐量一般在70~900mg/L之间,硬度通常在50~400mg/L(以CaCO3计)之间。 (2)湖泊、水库水 主要由江河水供给,水质特点与江河水类似。但浊度一般较低,含盐量和硬度较江河水高。 (3)海水 海水的主要特点是高含盐量,在7.5~43.0g/L之间。含量最多的约是氯化钠(NaCl),约占83.7%,其他盐类还有MgCl2、CaSO4等。 (4)地下水 含盐量一般在100~5000mg/L之间,硬度通常在100~500mg/L(以CaCO3计)之间。地下水的水质和水温一般终年稳定,较少受外界影响。 2.2 水体的污染与自净 2 .2.1 水中常见污染物及来源 按化学性质,可以分为无机污染物和有机污染物;按物理性质,可以分为悬浮性物质、胶体物质和溶解性物质。 1、可生物降解的有机污染物——耗氧有机污染物

水质工程学(上)答案

14章 4.反应器原理用于水处理有何作用和特点? 答:作用:推动了水处理工艺发展; 特点:在化工生产中,反应器都只作为化学反应设备来独立研究,但在水处理中,含义较广泛,许多水处理设备与池子都可作为反应器来进行分析研究,包括化学反应、生物化学反应以至纯物理过程等。例:沉淀池。 5.试举出3种质量传递机理的实例。 答:质量传递包括主流传递、分子扩散传递、紊流扩散传递。 1、主流传递:在平流池中,物质将随水流作水平迁移。物质在水平方向的浓度变化, 是由主流迁移和化学引起的。 2、分子扩散传递:在静止或作层流运动的液体中,存在浓度梯度的话,高浓度区内的 组分总是向低浓度区迁移,最终趋于平均分布状态,浓度梯度消失。如平流池等。 3、紊流扩散传递:在绝大多数情况下,水流往往处于紊流状态。水处理构筑物中绝大 部分都是紊流扩散。 6.(1)完全混合间歇式反应器(CMB)不存在由物质迁移而导致的物质输入和输出,且假 定是在恒温下操作 (2)完全混合连续式反应器(CSTR)反应物投入反应器后,经搅拌立即与反应器内的料液达到完全均匀混合,输出的产物其浓度和成分与反应器内的物料相同 (3)推流型反应器(PF)反应器内的物料仅以相同流速平行流动,而无扩散作用,这种流型唯一的质量传递就是平行流动的主流传递 答:在水处理方面引入反应器理论推动了水处理工艺发展。在化工生产过程中,反应器只作为化学反应设备来独立研究,但在水处理中,含义较广泛。许多水处理设备与池子都可作为反应器来进行分析研究,包括化学反应、生物化学反应以至物理过程等。例如,氯化消毒池,除铁、除锰滤池、生物滤池、絮凝池、沉淀池等等,甚至一段河流自净过程都可应用反应器原理和方法进行分析、研究。介绍反应器概念,目的就是提供一种分析研究水处理工艺设备的方法和思路。 7.为什么串联的CSTR型反应器比同容积的单个CSTR型反应器效果好? 答:因为使用多个体积相等的CSTR型反应器串联,则第二只反应器的输入物料浓度即为第一只反应器的输出物料浓度,串联的反应器数愈多,所需反应时间愈短,理论上,当串联的反应器数N趋近无穷时,所需反应时间将趋近于CMB型和PF型的反应时间。 8.混合与返混在概念上有什么区别?返混是如何造成的? 答:区别是:返混又称逆向混合。广义地说,泛指不同时间进入系统的物料之间的混合,包括物料逆流动方向的流动。 造成返混的原因主要是环流,对流,短流,流速不均匀,设备中存在死角以及物质扩散等。例如:环流和由湍流和分子扩散所造成的轴向混合,及由不均匀的速度分布所造成的短路、停滞区或“死区”、沟流等使物料在系统中的停留时间有差异的所有因素。 9.PF型和CMB型反应器为什么效果相同?两者优缺点比较。 答:在推流型反应器的起端(或开始阶段),物料是在C0的高浓度下进行的,反应速度很快。沿着液流方向,随着流程增加(或反应时间的延续),物料浓度逐渐降低,反应速度也随之逐渐减小。这跟间歇式反应器的反应过程是一样的。推流型反应器优于间歇式反应器的在于:间歇式反应器除了反应时间以外,还需考虑投料和卸料时间,而推流型反应器为连续操作。

某电厂烟气海水脱硫控制系统的应用研究

某电厂烟气海水脱硫 控制系统的应用研究X 马欣欣1,路永军1,王利红2 (11国电华北电力设计院工程有限公司,北京 100011; 21深圳市西部电力有限公司,广东 深圳 518052) 摘 要:详细介绍了深圳西部电厂烟气海水脱硫工艺及控制系统的设计和运行方案,并通过对系统试运行和调试过程的分析,研究烟气海水脱硫控制系统的设计和应用。 关键词:烟气;二氧化硫;海水;脱硫;控制 中图分类号:T M621 文献标识码:B 文章编号:1671-9913(2003)02-0054-06  The Application R esearch of Control System of Flue G as Desulphurization MA X in2xin,LU Y ong2jun,WANG Li2hong (11North China Power Engineering(Beijing).Co.,Ltd.,Beijing 100011,China; 21Shenzhen West Power Limited company,Shenzhen 518052,China) Abstract:Describing the design and operation for the flue gas desulfurization system by sea in the Shenzhen West P ower Plant,analyzing the problem during commissioning and operating,studying the design and apply for the control system of the flue gas desulfurizating system by sea. K ey w ords:flue gas;S O2;sea;desulfurization;control 1 工程概况 深圳西部电厂工程为2×300MW国产燃煤机组,控制系统采用ABB公司的PROC ONTRO LP分散控制系统。两台机组已分别于1996年10月和1997年7月并网发电。 根据电力工业部对该工程环境影响报告书预审意见和国家环保局对该工程环境影响报告书的批复意见,要求在第二台机组上安装烟气脱硫装置(FG D)。 通过反复论证比较,电力工业部和国家环保局同意深圳西部电厂工程作为采用烟气海水脱硫工艺的工程试点和示范项目,在深圳西部电厂4号锅炉上加装烟气海水脱硫系统。经过多轮谈判,最终该工程主设备采用挪威ABB环境公司的烟气海水脱硫技术和设备,并采用与主机组控制系统一体化的控制系统,即ABB公司的PRO2 C ONTRO L-P分散控制系统。 2 烟气海水脱硫工艺系统 深圳西部电厂烟气海水脱硫工艺是属于Flakt2Hydro工艺类,即不添加任何化学物质,仅利用纯海水洗涤烟气的脱硫工艺。因此,该工程的海水烟气脱硫系统(Flue G as Desulfurization, X收稿日期:2003-05-09 作者简介:马欣欣(1956-),女,北京人,高级工程师,从事火力发电厂自动控制系统设计和研究工作。

相关文档
最新文档