高中数学选修2-2第一章导数及其应用单元检测试卷

高中数学选修2-2第一章导数及其应用单元检测试卷
高中数学选修2-2第一章导数及其应用单元检测试卷

高中数学选修2-2第一章导数及其应用单元检测试卷

一、 选择题(每题5分,共60分)

1.满足()()f x f x '=的函数是

A . f (x )=1-x

B. f (x )=x

C . f (x )=0

D . f (x )=1

2.曲线3

4y x x =-在点(-1,-3)处的切线方程是 A . 74y x =+

B. 72y x =+

C. 4y x =-

D. 2y x =-

3.若关于x 的函数2m n y mx -=的导数为4y x '=,则m n +的值为

A. 3-

B. 1-

C. 1 D . 3 4.设ln y x x =-,则此函数在区间(0,1)为

A .单调递增, B.有增有减 C.单调递减, D.不确定

5. 已知()f x =3x ·sin x x ,则(1)f '=

A .

31+cos1 B. 31sin1+cos1 C. 3

1

sin1-cos1 D.sin1+cos1 6.函数f (x )=x 3-3x +1在闭区间[-3,0]上的最大值、最小值分别是

A . 1,-1 B. 3,-17 C. 1,-17 D. 9,-19

7.f (x )与g (x )是定义在R 上的两个可导函数,若f (x )、g (x )满足f ′(x )=g ′(x ),

A f (x )=g (x )

B f (x )-g (x )为常数函数

C f (x )=g (x )=0

D f (x )+g (x )为常数函数

8.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 的图象如图所示,则函数)(x f 在开区间),(b a 有极小值点 A 1个 B 2个 C 3个 D 4个

9.设函数()f x 在定义域可导,()y f x =的图象如图1所示,则导函数()y f x '=可能为 ( )

A

C

D

10.设f (x ),g (x )分别是定义在R 上的奇函数和偶函数,当x <0时,f ′(x )g (x )+

f (x )

g ′(x )>0,

且(3)0g -=,则不等式f (x )g (x )<0的解集是

A . (-3,0)∪(3,+∞) B. (-3,0)∪(0,3) C . (-∞,-3)∪(3,+∞) D. (-∞,-3)∪(0,3) 11.给出以下命题: ⑴若

()0b a

f x dx >?

,则f (x )>0; ⑵20

sin 4xdx =?

π;

⑶已知()()F x f x '=,且F (x )是以T 为周期的函数,则0

()()a a T T

f x dx f x dx +=?

?

其中正确命题的个数为( )

A.1

B.2

C.3

D.0

12.已知函数2

()f x x bx =+的图象在点(1,(1))A f 处的切线的斜率为3,数列?

??

???)(1n f

的前n 项和为n S ,则2011S 的值为( )

2012

2011

.

2011

2010.

2010

2009.

2009

2008

.

D C B A 二.填空题(每题5分,共20分)

13.若32()33(2)1f x x ax a x =++++有极大值和极小值,则a 的取值围是__ 14.函数3

2

()26(f x x x m m =-+为常数) 在[22]-,上有最大值3,那么此函数在[22]-, 上的最小值为_____

15.周长为20cm 的矩形,绕一条边旋转成一个圆柱,则圆柱体积的最大值为 16.已知)(x f 为一次函数,且10

()2

()f x x f t dt =+?

,则)(x f =______ .

三.解答题(共70分)

17. (本小题满分10分)

已知曲线 3

2y x x =+- 在点 P 0 处的切线 1l 平行直线4x -y -1=0,且点 P 0 在第三象限.

(1)求P 0的坐标;

(2)若直线 1l l ⊥ , 且 l 也过切点P 0 ,求直线l 的方程.

18.(本小题满分12分)

将边长为a 的一块正方形铁皮的四角各截去一个大小相同的小正方形,然后将四边折起做成一个无盖的方盒.欲使所得的方盒有最大容积,截去的小正方形的边长应为多少?方盒的最大容积为多少?

19.(本小题满分12分)

已知a 为实数,))(4()(2

a x x x f --= (1)求导数)(x f ';

(2)若0)1(=-'f ,求)(x f 在[-2,2] 上的最大值和最小值; (3)若)(x f 在(,2)-∞-和(2,)+∞上都是递增的,求a 的取值围. 20.(本小题满分12分)

已知函数()ln(1)f x x x =+-.

(1)求函数f (x )的单调递减区间; (2若1x >-,证明:1

1ln(1)1

x x x -

≤+≤+. 21. (本小题满分12分)

已知函数()ln f x x =(0)x ≠,函数1

()()(0)()

g x af x x f x '=

+≠' (1)当0x ≠时,求函数()y g x =的表达式;

(2)若0a >,函数()y g x =在(0,)+∞上的最小值是2 ,求a 的值; (3)在⑵的条件下,求直线27

36

y x =

+与函数()y g x =的图象所围成图形的面积. 22.(本小题满分12分)

若存在实常数k 和b ,使得函数()f x 和()g x 对其定义域上的任意实数x 分别满足:()f x kx b ≥+和()g x kx b ≤+,

则称直线:l y kx b =+为()f x 和()g x 的“隔离直线”.已知2

()h x x =,()2eln (e x x ?=为自然对数的底数). (1)求()()()F x h x x ?=-的极值;

(2)函数()h x 和()x ?是否存在隔离直线?若存在,求出此隔离直线方程;若不存在,请说明理由.

《导数及其应用》参考答案【理科】

一、选择题 CDBCB BBADD BD 二.填空题

13.2a > 或1a <- 14. 37- 15.

400027

π cm 2

16. ()1f x x =- 三.解答题

17.解:⑴由y =x 3+x -2,得y ′=3x 2

+1,

由已知得3x 2

+1=4,解之得x =±1.当x =1时,y =0;当x =-1时,y =-4. 又∵点P 0在第三象限, ∴切点P 0的坐标为 (-1,-4). ⑵∵直线1l l ⊥,1l 的斜率为4,∴直线l 的斜率为14

-, ∵l 过切点P 0,点P 0的坐标为 (-1,-4) ∴直线l 的方程为1

4(1)4

y x +=-

+即4170x y ++=. 18.解:设小正方形的边长为x ,则盒底的边长为a -2x ,

∴方盒的体积2(2)((0,)),2

a

V x a x x =-∈

121'(2)(6),'0,,,(0,),(0,),'0,26226

a a a a a

V a x a x V x x x x V =--==

==?∈>令则由且对于 (,),'0,62a a

x V ∈<∴函数V 在点x =a

6处取得极大值,由于问题的最大值存在, ∴V (a

6)=2a 3

27即为容积的最大值,此时小正方形的边长为a

6

19. 解:⑴由原式得,44)(23a x ax x x f +--=∴.423)(2

--='ax x x f

⑵由0)1(=-'f 得21=

a ,此时有43)(),21)(4()(2

2--='--=x x x f x x x f . 由0)(='x f 得34=x 或x=-1 , 又,0)2(,0)2(,2

9

)1(,2750)34(==-=--=f f f f

所以f(x)在[-2,2]上的最大值为,29最小值为.27

50

-

⑶解法一:423)(2

--='ax x x f 的图象为开口向上且过点(0,-4)的抛物线,由条件得

,0)2(,0)2(≥'≥-'f f 即

{480840

a a +≥-≥ ∴-2≤a ≤2.

所以a 的取值围为[-2,2]. 解法二:令

0)(='x f 即,04232=--ax x 由求根公式得:

1,2

12)x x x =<

所以.423)(2

--='ax x x f 在(]1,x ∞-和[)+∞,2x 上非负. 由题意可知,当2x -或2x 时, )(x f '≥0,

从而1

2x -, 2

2x ,

即???+≤+-≤+612.

61222

a a a a 解不等式组得-2≤a ≤2.

∴a 的取值围是[2,2]-.

20.解:⑴函数f (x )的定义域为(1,)-+∞.()f x '=11x +-1=-1

x x +. 由()f x '<0及x >-1,得x >0.

∴ 当x ∈(0,+∞)时,f (x )是减函数,即f (x )的单调递减区间为(0,+∞). ⑵证明:由⑴知,当x ∈(-1,0)时,()f x '>0,当x ∈(0,+∞)时,()f x '<0, 因此,当1x >-时,()f x ≤(0)f ,即ln(1)x x +-≤0∴ ln(1)x x +≤.

令1

()ln(1)11

g x x x =++-+,则211()1(1)g x x x '=

-++=2(1)x x +. ∴ 当x ∈(-1,0)时,()g x '<0,当x ∈(0,+∞)时,()g x '>0.

∴ 当1x >-时,()g x ≥(0)g ,即 1ln(1)11x x ++-+≥0,∴ 1

ln(1)11

x x +≥-

+. 综上可知,当1x >-时,有1

1ln(1)1

x x x -≤+≤+.

21.解:⑴∵()ln f x x =,

∴当0x >时,()ln f x x =; 当0x <时,()ln()f x x =-

∴当0x >时,1()f x x '=

; 当0x <时,11()(1)f x x x

'=?-=-. ∴当0x ≠时,函数()a

y g x x x ==+.

⑵∵由⑴知当0x >时,()a

g x x x

=+,

∴当0,0a x >>时, ()≥g x x =

.

∴函数()y g x =在(0,)+∞上的最小值是∴依题意得2=∴1a =.

⑶由27361y x y x x ?=+????=+??

解得2121322,5132

6x x y y ?==????

??=??=???

∴直线27

36

y x =

+与函数()y g x =的图象所围成图形的面积 232271()()3

6S x x dx x ??=+-+?????=2ln 23ln 247

-+

22.解(1)

()()()F x h x x ?=-=22eln (0)x x x ->,

2e ()2F x x x '∴=-

=

当x =

()0F x '=.

当0x <<时,()0F x '<,此时函数()F x 递减;

当x >()0F x '>,此时函数()F x 递增;

∴当x =

()F x 取极小值,其极小值为0.

(2)解法一:由(1)可知函数)(x h 和)(x ?

的图象在x =因此若存在)(x h 和

)(x ?的隔离直线,则该直线过这个公共点.

设隔离直线的斜率为k

,则直线方程为e (y k x -=

,即e y kx =+-.

由()e R)h x kx x ≥+-∈

,可得2e 0x kx --+当R x ∈时恒成立.

2(k ?=-,

∴由0≤?

,得k =.

下面证明()e x φ≤-当0>x 时恒成立.

令()()e G x x ?=-

+2eln e x =-+,则

2e ()G x x '=

-=,

当x =

()0G x '=.

当0x <<时,()0G x '>,此时函数()G x 递增;

当x >()0G x '<,此时函数()G x 递减;

∴当x =

()G x 取极大值,其极大值为0.

从而()2e ln e 0G x x =-+≤,即()e(0)x x φ≤->恒成立.

∴函数()h x 和()x ?存在唯一的隔离直线e y =-.

解法二: 由(1)可知当0x >时,()()h x x ?≥ (当且仅当x =) .

若存在()h x 和()x ?的隔离直线,则存在实常数k 和b ,使得

()()h x kx b x R ≥+∈和()(0)x kx b x ?≤+>恒成立,

令x =

e b ≥且e b ≤

e b ∴=,即e b =-

后面解题步骤同解法一.

人教版高中数学《导数》全部教案

导数的背景(5月4日) 教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是2 2 1gt s = (其中g 是重力加速度). 当时间增量t ?很小时,从3秒到(3+t ?)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度. 从3秒到(3+t ?)秒这段时间内位移的增量: 222)(9.44.2939.4)3(9.4)3()3(t t t s t s s ?+?=?-?+=-?+=? 从而,t t s v ?+=??= - -9.44.29. 从上式可以看出,t ?越小,t s ??越接近29.4米/秒;当t ?无限趋近于0时, t s ??无限趋近于29.4米/秒. 此时我们说,当t ?趋向于0时,t s ??的极限是29.4. 当t ?趋向于0时,平均速度t s ??的极限就是小球下降3秒时的速度,也叫做 瞬时速度. 一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ?)这段时间 内的平均速度为t t s t t s t s ?-?+= ??)()(. 如果t ?无限趋近于0时,t s ??无限趋近于某个常数a ,就说当t ?趋向于0时,t s ??的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 2. 切线的斜率 问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况.

高中数学人教版选修2-2导数及其应用知识点总结

数学选修2-2导数及其应用知识点必记 1.函数的平均变化率是什么? 答:平均变化率为 = ??=??x f x y x x f x x f x x x f x f ?-?+=--)()()()(111212 注1:其中x ?是自变量的改变量,可正,可负,可零。 注2:函数的平均变化率可以看作是物体运动的平均速度。 2、导函数的概念是什么? 答:函数)(x f y =在0x x =处的瞬时变化率是x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000,则称函数)(x f y =在点0x 处可导,并把这个极限叫做)(x f y =在0x 处的导数,记作)(0'x f 或0|'x x y =,即)(0'x f =x x f x x f x y x x ?-?+=??→?→?)()(lim lim 0000. 3.平均变化率和导数的几何意义是什么? 答:函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。 4导数的背景是什么? 答:(1)切线的斜率;(2)瞬时速度;(3)边际成本。 5、常见的函数导数和积分公式有哪些? 函数 导函数 不定积分 y c = 'y =0 ———————— n y x =()*n N ∈ 1'n y nx -= 1 1n n x x dx n +=+? x y a =()0,1a a >≠ 'ln x y a a = ln x x a a dx a =? x y e = 'x y e = x x e dx e =? log a y x =()0,1,0a a x >≠> 1 'ln y x a = ———————— ln y x = 1'y x = 1 ln dx x x =? sin y x = 'cos y x = cos sin xdx x =? cos y x = 'sin y x =- sin cos xdx x =-? 6、常见的导数和定积分运算公式有哪些?

高中数学导数及其应用电子教案

高中数学导数及其应用一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。

三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可 正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果 时,有极限,则说函数在点处可导,并把这个极限叫做在点 处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间() 内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间() 内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数 是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量;

②求平均变化率; ③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时, 记 ,则有即在点处连续。 (Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。 反例:在点处连续,但在点处无导数。

高中数学《导数的概念及几何意义》公开课优秀教学设计

《导数的概念及几何意义》教学设计 教材内容分析 本节课的教学内容选自人教社普通高中课程标准实验教科书( A 版)数学选修2-2第一章第一节的《变化率与导数》,《导数的概念及几何意义》是在学习了函数平均变化率以后,过渡到瞬时变化率,从而得出导数的概念,再从平均变化率的几何意义,迁移至瞬时变化率即导数的几何意义。 导数是微积分的核心概念之一,是从生产技术和自然科学的需要中产生的,它深刻揭示了函数变化的本质,其思想方法和基本理论在在天文、物理、工程技术中有着广泛的应用,而且在日常生活及经济领域也日渐显示出其重要的功能。 在中学数学中,导数具有相当重要的地位和作用。 从横向看,导数在现行高中教材体系中处于一种特殊的地位。它是众多知识的交汇点,是解决函数、不等式、数列、几何等多章节相关问题的重要工具, 它以更高的观点和更简捷的方法对中学数学的许多问题起到以简驭繁的处理。 从纵向看,导数是函数一章学习的延续和深化,也是对极限知识的发展, 同时为后继研究导数的几何意义及应用打下必备的基础, 具有承前启后的重要作用。 学生学情分析 学生在高一年级的物理课程中已经学习了瞬时速度,因此,先通过求物体在某一时刻的平均速度的极限去得出瞬时速度, 再由此抽象出函数在某点的平均变化率的极限就是瞬时变化率的的模型, 并将瞬时变化率定义为导数,这是符合学生认知规律的. 而在第一课时平均变化率的学习中,课本给出了一个思考,观察函数 )(x f y 的图像,平均变化x y 表示什么?这个思考为研究导数的几何意义埋下 了伏笔。因此,在将瞬时变化率定义为导数之后, 立即让学生继续探索导数的几何意义,学生会对导数的几何意义有更为深刻的认识。 教学目标 1、知识与技能目标会从数值逼近、几何直观感知,解析式抽象三个角度认识导数的含义,应用导数的定义求简单函数在某点处的导数, 掌握求导数的基本步骤,初步学会求解 简单函数在一点处的切线方程。 2、过程与方法目标 通过动手计算培养学生观察、分析、比较和归纳能力,通过问题的探究体会逼近、类比、以及用已知探求未知、从特殊到一般的数学思想方法。 3、情感态度与价值观

(word完整版)高中数学导数练习题(分类练习)讲义

导数专题 经典例题剖析 考点一:求导公式。 例1. ()f x '是3 1()213 f x x x = ++的导函数,则(1)f '-的值是 。 解析:()2'2 +=x x f ,所以()3211'=+=-f 答案:3 考点二:导数的几何意义。 例 2. 已知函数()y f x =的图象在点(1 (1))M f ,处的切线方程是1 22 y x =+,则(1)(1)f f '+= 。 解析:因为21= k ,所以()2 1 1'=f ,由切线过点(1 (1))M f ,,可得点M 的纵坐标为25,所以()2 5 1=f ,所以()()31'1=+f f 答案:3 例3.曲线32 242y x x x =--+在点(1 3)-,处的切线方程是 。 解析:443'2 --=x x y ,∴点(1 3)-,处切线的斜率为5443-=--=k ,所以设切线方程为b x y +-=5,将点(13)-,带入切线方程可得2=b ,所以,过曲线上点(13)-,处的切线方程为:025=-+y x 答案:025=-+y x 点评:以上两小题均是对导数的几何意义的考查。 考点三:导数的几何意义的应用。 例4.已知曲线C :x x x y 232 3 +-=,直线kx y l =:,且直线l 与曲线C 相切于点 ()00,y x 00≠x ,求直线l 的方程及切点坐标。

解析:Θ直线过原点,则()000 ≠= x x y k 。由点()00,y x 在曲线C 上,则02 030023x x x y +-=,∴ 2302 00 0+-=x x x y 。又263'2+-=x x y ,∴ 在() 00,y x 处曲线C 的切线斜率为()263'02 00+-==x x x f k ,∴ 2632302 0020+-=+-x x x x , 整理得:03200=-x x ,解得:2 3 0=x 或00=x (舍),此时,830- =y ,41-=k 。所以,直线l 的方程为x y 4 1 -=,切点坐标是?? ? ??-83,23。 答案:直线l 的方程为x y 41- =,切点坐标是?? ? ??-83,23 点评:本小题考查导数几何意义的应用。解决此类问题时应注意“切点既在曲线上又在切线上”这个条件的应用。函数在某点可导是相应曲线上过该点存在切线的充分条件,而不是必要条件。 考点四:函数的单调性。 例5.已知()132 3 +-+=x x ax x f 在R 上是减函数,求a 的取值范围。 解析:函数()x f 的导数为()163'2 -+=x ax x f 。对于R x ∈都有()0'a 时,函数()x f 在R 上存在增区间。所以,当3->a 时,函数()x f 在 R 上不是单调递减函数。 综合(1)(2)(3)可知3-≤a 。

高中数学导数与积分知识点

高中数学教案—导数、定积分 一.课标要求: 1.导数及其应用 (1)导数概念及其几何意义 ① 通过对大量实例的分析,经历由平均变化率过渡到瞬时变化率的过程,了解导数概念的实际背景,知道瞬时变化率就是导数,体会导数的思想及其内涵; ②通过函数图像直观地理解导数的几何意义。 (2)导数的运算 ① 能根据导数定义求函数y=c ,y=x ,y=x 2,y=x 3 ,y=1/x ,y=x 的导数; ② 能利用给出的基本初等函数的导数公式和导数的四则运算法则求简单函数的导数,能求简单的复合函数(仅限于形如f (ax+b ))的导数; ③ 会使用导数公式表。 (3)导数在研究函数中的应用 ① 结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间; ② 结合函数的图像,了解函数在某点取得极值的必要条件和充分条件;会用导数求不超过三次的多项式函数的极大值、极小值,以及闭区间上不超过三次的多项式函数最大值、最小值;体会导数方法在研究函数性质中的一般性和有效性。 (4)生活中的优化问题举例 例如,使利润最大、用料最省、效率最高等优化问题,体会导数在解决实际问题中的作用。 (5)定积分与微积分基本定理 ① 通过实例(如求曲边梯形的面积、变力做功等),从问题情境中了解定积分的实际背景;借助几何直观体会定积分的基本思想,初步了解定积分的概念; ② 通过实例(如变速运动物体在某段时间内的速度与路程的关系),直观了解微积分基本定理的含义。 (6)数学文化 收集有关微积分创立的时代背景和有关人物的资料,并进行交流;体会微积分的建立在人类文化发展中的意义和价值。具体要求见本《标准》中"数学文化"的要求。 二.命题走向 导数是高中数学中重要的内容,是解决实际问题的强有力的数学工具,运用导数的有关知识,研究函数的性质:单调性、极值和最值是高考的热点问题。在高考中考察形式多种多样,以选择题、填空题等主观题目的形式考察基本概念、运算及导数的应用,也经常以解答题形式和其它数学知识结合起来,综合考察利用导数研究函数的单调性、极值、最值. 三.要点精讲 1.导数的概念 函数y=f(x),如果自变量x 在x 0处有增量x ?,那么函数y 相应地有增量y ?=f (x 0+x ?)-f (x 0),比值 x y ??叫做函数y=f (x )在x 0到x 0+x ?之间的平均变化率,即x y ??=x x f x x f ?-?+)()(00。 如果当0→?x 时, x y ??有极限,我们就说函数y=f(x)在点x 0处可导,并把这个极限叫做f (x )在点x 0处的导数,记作f’(x 0)或y’|0x x =。

高二数学导数及其应用练习题及答案

(数学选修1-1)第一章 导数及其应用 [提高训练C 组]及答案 一、选择题 1.若()sin cos f x x α=-,则'()f α等于( ) A .sin α B .cos α C .sin cos αα+ D .2sin α 2.若函数2()f x x bx c =++的图象的顶点在第四象限,则函数'()f x 的图象是( ) 3.已知函数1)(23--+-=x ax x x f 在),(+∞-∞上是单调函数,则实数a 的 取值范围是( ) A .),3[]3,(+∞--∞ B .]3,3[- C .),3()3,(+∞--∞ D .)3,3(- 4.对于R 上可导的任意函数()f x ,若满足'(1)()0x f x -≥,则必有( ) A . (0)(2)2(1)f f f +< B. (0)(2)2(1)f f f +≤ C. (0)(2)2(1)f f f +≥ D. (0)(2)2(1)f f f +> 5.若曲线4 y x =的一条切线l 与直线480x y +-=垂直,则l 的方程为( ) A .430x y --= B .450x y +-= C .430x y -+= D .430x y ++= 6.函数)(x f 的定义域为开区间),(b a ,导函数)(x f '在),(b a 内的图象如图所示, 则函数)(x f 在开区间),(b a 内有极小值点( A .1个 B .2个 C .3个 D .4个 二、填空题 1.若函数()()2 f x x x c =-在2x =处有极大值,则常数c 的值为_________;

2.函数x x y sin 2+=的单调增区间为 。 3.设函数())(0)f x ??π=+<<,若()()f x f x '+为奇函数,则?=__________ 4.设3 2 1()252 f x x x x =- -+,当]2,1[-∈x 时,()f x m <恒成立,则实数m 的 取值范围为 。 5.对正整数n ,设曲线)1(x x y n -=在2x =处的切线与y 轴交点的纵坐标为n a ,则 数列1n a n ?? ? ?+?? 的前n 项和的公式是 三、解答题 1.求函数3(1cos 2)y x =+的导数。 2.求函数y = 3.已知函数3 2 ()f x x ax bx c =+++在2 3 x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间 (2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。 4.已知23()log x ax b f x x ++=,(0,)x ∈+∞,是否存在实数a b 、,使)(x f 同时满足下列 两个条件:(1))(x f 在(0,1)上是减函数,在[)1,+∞上是增函数;(2))(x f 的最小值是1,若存在,求出a b 、,若不存在,说明理由. (数学选修1-1)第一章 导数及其应用 [提高训练C 组] 一、选择题 1.A ' ' ()sin ,()sin f x x f αα==

高中数学选修2-2导数--导数的运算(解析版)

高中数学选修2-2导数--导数的运算(解析版) 1.若f (x )=sin π 3 -cos x ,则f ′(α)等于( ) A .Sin α B .Cos α C .sin π3+cos α D .cos π 3+sin α [答案] A [解析] ∵f (x )=sin π 3 -cos x ,∴f ′(x )=sin x ,∴f ′(α)=sin α,故选A. 2.设函数f (x )=x m +ax 的导数为f ′(x )=2x +1,则数列{1 f (n ) }(n ∈N *)的前n 项和是( ) A.n n +1B .n +2n +1C.n n -1 D .n +1n [答案] A [解析] ∵f (x )=x m +ax 的导数为f ′(x )=2x +1,∴m =2,a =1,∴f (x )=x 2+x , ∴f (n )=n 2+n =n (n +1),∴数列{1 f (n ) }(n ∈N *)的前n 项和为: S n =11×2+12×3+13×4+…+1 n (n +1)=????1-12+????12-13+…+????1n -1n +1 =1-1n +1=n n +1 ,故选A. 3.已知二次函数f (x )的图象如图所示,则其导函数f ′(x )的图象大致形状是( ) [答案] B [解析] 依题意可设f (x )=ax 2+c (a <0,且c >0),于是f ′(x )=2ax ,显然f ′(x )的图象为直线,过原点,且斜率2a <0,故选B. 4.已知函数f (x )的导函数为f ′(x ),且满足f (x )=2xf ′(e)+ln x ,则f ′(e)=( ) A .e - 1B .-1C .-e - 1 D .-e [答案] C [解析] ∵f (x )=2xf ′(e)+ln x ,∴f ′(x )=2f ′(e)+1x ,∴f ′(e)=2f ′(e)+1 e , 解得f ′(e)=-1 e ,故选C.

高中数学-导数的概念及运算练习

高中数学-导数的概念及运算练习 1.y =ln 1 x 的导函数为( ) A .y ′=-1 x B .y ′=1 x C .y ′=lnx D .y ′=-ln(-x) 答案 A 解析 y =ln 1x =-lnx ,∴y ′=-1 x . 2.(·东北师大附中摸底)曲线y =5x +lnx 在点(1,5)处的切线方程为( ) A .4x -y +1=0 B .4x -y -1=0 C .6x -y +1=0 D .6x -y -1=0 答案 D 解析 将点(1,5)代入y =5x +lnx 成立,即点(1,5)为切点.因为y ′=5+1x ,所以y ′|x =1=5+1 1=6. 所以切线方程为y -5=6(x -1),即6x -y -1=0.故选D. 3.曲线y =x +1 x -1在点(3,2)处的切线的斜率是( ) A .2 B .-2 C.12 D .-12 答案 D 解析 y ′=(x +1)′(x -1)-(x +1)(x -1)′(x -1)2=-2 (x -1)2,故曲线在(3,2)处的切线的斜率k = y ′|x =3=-2(3-1)2=-1 2 ,故选D. 4.一质点沿直线运动,如果由始点起经过t 秒后的位移为s =13t 3-32t 2 +2t ,那么速度为零的时刻是( ) A .0秒 B .1秒末 C .2秒末 D .1秒末和2秒末 答案 D 解析 ∵s=13t 3-32t 2+2t ,∴v =s ′(t)=t 2 -3t +2. 令v =0,得t 2 -3t +2=0,t 1=1或t 2=2. 5.(·郑州质量检测)已知曲线y =x 2 2-3lnx 的一条切线的斜率为2,则切点的横坐标为( ) A .3 B .2 C .1 D.12 答案 A

高等数学导数的概念学习教案.docx

教学合班 1:专业班合计人授课 合班 2:专业班合计人日期对象 合班 3:专业班合计人地点教学第二章导数与微分计划 内容 第一节导数的概念 2学时 (课题) 通过学习,学生能够: 1.理解导数概念,会用定义求函数在一点处的导数; 2.理解导数的几何意义,会求曲线的切线; 3.理解可导与连续的关系。 具体目标如下: 教学 目的 知识目标:技能目标:素养目标: 教学重点难点教学资源 1.理解导数的概念;1.会用定义求函数在一点处 1 .培养学生的数学思维 2.理解导数的几何意义;的导数;能力和解决问题的能 3.把握可导与连续的关系。2.会求曲线的切线。力; 2.培养学生严谨、求实 的作风。 重点:导数的定义。 难点:理解导数的几何意义。 教材、例子(幻灯片)、课件。 教学后记 对培养方案、大纲修改意见对授课计划修改意见对本教案修改意见需增加资源其他教研室主任:系主任:教务处:

教学活动流程 教学步骤与内容教学目标教学方法时间 对前面的知 识进行复习 A. 复习内容与巩固,并简述 1.极限的定义为新知识和6mins 2.极限的计算方法新技能的学 习奠定必要 的基础。 板书 ( 或 PPT展 B. 板书课题,明确学习目标及主要学习内容示)课题简介 明确本次课的辅以2mins (略。详见教案首页)内容重点及目PPT展示 标 C.讲授新知 导数与微分是微积分的基本概念,要更好地理解导数 的概念,应从解决实际问题的背景出发,在解决问题的过 程中自然抽象出导数的概念。导数与微分在理论上和实践 中都有非常广泛的应用。 一、瞬时速度、曲线的切线斜率 1.变速直线运动的瞬时速度 设一质点作变速直线运动,质点的运行路程s与时间t的 关系为 s s(t ) ,求质点在 t0时刻的瞬时速度. 分析:如果质点做匀速直线运动,给时间一个增量t ,讲解20mins 那么质点在时刻 t0与时刻 t0t 间隔内的平均速度也就是 辅以 PPT展示 引入导数概念 质点在时刻 t0的瞬时速度为 v0v s(t0t ) s(t0 ) t 在匀速直线运动中,这个比值是常数,但是如果质点作 变速直线运动,它的运行速度时刻都在发生变化,为了计算 瞬时速度,首先在时刻 t0任给时间一个增量t ,考虑质点由 t0到 t0 Vt 这段时间的平均速度:v s(t0t )s(t0 ) t

人教版高中数学《导数》全部教案课程

导数的背景 (5月4日) 教学目标 理解函数的增量与自变量的增量的比的极限的具体意义 教学重点 瞬时速度、切线的斜率、边际成本 教学难点 极限思想 教学过程 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? 析:大家知道,自由落体的运动公式是2 2 1gt s = (其中g 是重力加速度). 当时间增量t ?很小时,从3秒到(3+t ?)秒这段时间内,小球下落的快慢变化不大. 因此,可以用这段时间内的平均速度近似地反映小球在下落3秒时的速度. 从3秒到(3+t ?)秒这段时间内位移的增量: 从而,t t s v ?+=??= - -9.44.29. 从上式可以看出,t ?越小,t s ??越接近29.4米/秒;当t ?无限趋近于0时,t s ??无限趋近于29.4 米/秒. 此时我们说,当t ?趋向于0时,t s ??的极限是29.4. 当t ?趋向于0时,平均速度t s ??的极限就是小球下降3秒时的速度,也叫做瞬时速度. 一般地,设物体的运动规律是s =s (t ),则物体在t 到(t +t ?)这段时间内的平均速度为 t t s t t s t s ?-?+= ??)()(. 如果t ?无限趋近于0时,t s ??无限趋近于某个常数a ,就说当t ?趋向于0时,t s ??的极限为a ,这时a 就是物体在时刻t 的瞬时速度. 2. 切线的斜率 问题2:P (1,1)是曲线2x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况. 析:设点Q 的横坐标为1+x ?,则点Q 的纵坐标为(1+x ?)2,点Q 对于点P 的纵坐标的增量 (即函数的增量)22)(21)1(x x x y ?+?=-?+=?, 所以,割线PQ 的斜率x x x x x y k PQ ?+=??+?=??=2)(22.

高中数学导数及其应用

高中数学导数及其应用 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

高中数学导数及其应用 一、知识网络 二、高考考点 1、导数定义的认知与应用; 2、求导公式与运算法则的运用; 3、导数的几何意义; 4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。 三、知识要点 (一)导数 1、导数的概念 (1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如

在点处的导数(或变化率),记作,即 。 (Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间 ()内可导,此时,对于开区间()内每一个确定的值,都对应着一个确定的导数,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间()内的导函数(简称导数),记作或,即 。 认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量; ②求平均变化率;

③求极限 上述三部曲可简记为一差、二比、三极限。 (2)导数的几何意义: 函数在点处的导数,是曲线在点处的切线的斜率。 (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别: (Ⅰ)若函数在点处可导,则在点处连续; 若函数在开区间()内可导,则在开区间()内连续(可导一定连续)。 事实上,若函数在点处可导,则有此时,

高中数学导数讲义完整版

高中数学导数讲义完整版 第一部分 导数的背景 一、导入新课 1. 瞬时速度 问题1:一个小球自由下落,它在下落3秒时的速度是多少? (2 2 1gt s =,其中g 是重力加速度). 2. 切线的斜率 问题2:P (1,1)是曲线2 x y =上的一点,Q 是曲线上点P 附近的一个点,当点Q 沿曲线逐渐向点P 趋近时割线PQ 的斜率的变化情况. 3. 边际成本 问题3:设成本为C ,产量为q ,成本与产量的函数关系式为103)(2 +=q q C ,我们来研究当q =50时,产量变化q ?对成本的影响. 二、小结: 瞬时速度是平均速度 t s ??当t ?趋近于0时的极限;切线是割线的极限位置,切线的斜率是割线斜率x y ??当x ?趋近于0时的极限;边际成本是平均成本 q C ??当q ?趋近于0时的极限. 三、练习与作业: 1. 某物体的运动方程为2 5)(t t s =(位移单位:m ,时间单位:s )求它在t =2s 时的速度. 2. 判断曲线2 2x y =在点P (1,2)处是否有切线,如果有,求出切线的方程. 3. 已知成本C 与产量q 的函数关系式为522 +=q C ,求当产量q =80时的边际成本. 4. 一球沿某一斜面自由滚下,测得滚下的垂直距离h (单位:m )与时间t (单位:s )之间的函数关系为2 t h =,求t =4s 时此球在垂直方向的瞬时速度. 5. 判断曲线2 2 1x y = 在(1,21)处是否有切线,如果有,求出切线的方程. 6. 已知成本C 与产量q 的函数关系为742 +=q C ,求当产量q =30时的边际成本.

高中数学导数教案

个性化教学辅导教案学科:数学任课教师:林老师授课时间:

.B ()()f x g x < .C ()()()()f x g a g x f a +>+ .D ()()()()f x g b g x f b +>+ 问题2.()f x 的导函数()y f x '= 的图象如图所示,则()y f x =的图象最有可能的是 问题3.求下列函数的导数: ()1()2 1sin y x =+; ()41 1 x x e y e +=-; ()6ln x y e x =? () 7sin 1cos x y x = +; ()8()21sin cos y x x x x =-?+? ()932x x x y e e =?-+ ()10()()33421y x x x =-?- 问题4.()1求过点()1,1P 且与曲线3y x =相切的直线方程. ()2(06全国Ⅱ文)过点()1,0-作抛物线21y x x =++的切线,则其中一条切线为 .A 220x y ++= .B 330x y -+= .C 10x y ++= .D 10x y -+= ()3(08届高三攸县一中)已知曲线m x y += 3 3 1的一条切线方程是44y x =-,则m 的值为 .A 43 .B 283- .C 43或283- .D 23或13 3 - (三)课后作业: 1.若0()2f x '=,求0 lim →k k x f k x f 2) ()(00-- 2.(07届高三皖南八校联考)已知2()2(2)f x x xf =+',则(2)f '=

设函数)(x f 在[]b a ,上连续,在(,)a b 内可导,则求)(x f 在[]b a ,上的最大值与最小值的步骤如下: ()1求)(x f 在(,)a b 内的极值; ()2将)(x f 的各极值与)(a f 、)(b f 比较得出函数)(x f 在[]b a ,上的最值p 9.求参数范围的方法:①分离变量法;②构造(差)函数法. 10.构造函数法是证明不等式的常用方法:构造时要注意四变原则:变具体为抽象,变常量为变量,变主 元为辅元,变分式为整式. 11.通过求导求函数不等式的基本思路是:以导函数和不等式为基础,单调性为主线,最(极值)为 助手,从数形结合、分类讨论等多视角进行综合探索. (二)典例分析: 问题1.()1函数)(x f y =在定义域)3,2 3 (-内可导,其图象如图所示,记)(x f y = 的导函数为 )(x f y '=,则不等式0)(≤'x f 的解集为 .A [)3,2]1,31 [Y - .B ]38,34[]21,1[Y - .C [)2,1]2 1 ,23[Y - .D ?? ??????? ??--3,38]34,21[1,23Y Y ()3设(),()f x g x 均是定义在R 上的奇函数,当0x <时,()()f x g x '+ ()()0f x g x '>,且(2)0f -=,则不等式()()0f x g x ?<的解集是 .A ()()2,02,-+∞U .B ()2,2- .C ()(),22,-∞-+∞U .D ()(),20,2-∞-U 问题2.()1如果函数3()f x x bx =-+在区间()0,1上单调递增,并且方程()0f x =的根都在区间 []2,2-内,则b 的取值范围为 ()2已知2()12f x x x =+-,那么[]()()g x f f x = .A 在区间()2,1-上单调递增 .B 在()0,2上单调递增 .C 在()1,1-上单调递增 .D 在()1,2上单调递增 ()3函数R x x x x f ∈+-=,56)(3, (Ⅰ)求)(x f 的单调区间和极值; (Ⅱ)若关于x 的方程a x f =)(有3个不同实根,求实数a 的取值范围. (Ⅲ)已知当(1,)x ∈+∞时,()f x ≥(1)k x -恒成立,求实数k 的取值范围.

导数的运算-高中数学知识点讲解

导数的运算1.导数的运算 【知识点的知识】 1、基本函数的导函数 ①(为常数) C=0 C ②()=() x n nx n﹣1 n R ③()= sinx cosx ④()=﹣ cosx sinx ⑤()= e e x x ⑥()=()* (>0且1) a a lna a a x x ⑦= [log x)] a 11 (log e)(a>0且a 1) ?* = ???? a lnx ⑧=1.? 2、和差积商的导数 ① [ (f x)g(x)]=f (x )g(x) ② [ (f x)﹣g(x)]=f(x)﹣g(x) ③ [ (f x)g(x)]=f(x)(g x)(f x)g(x) ?(?) ④[?(?)]′=[?′(?)?(?)― ?(?)?′(?)] . [?(?)2]

3、复合函数的导数 设,则 y=(u t),t=(v x)y(x)=u(t)v(x)=u[(v x)]v(x) 1/ 3

【典型例题分析】 题型一:和差积商的导数 典例 1:已知函数,为的导函数,则(f x)=asinx bx 3 (4a R,b R)f (x)(f x)(2014)(﹣2014)(2015)﹣(﹣2015)=() f f f f A.0 B.2014 C.2015 D.8 f (x)=acosx 3bx 2 解:, ∴f (﹣x)=aco(s ﹣x ) 3(b ﹣x) 2 ∴为偶函数; f (x) f ( 2015)﹣f (﹣2015)=0 ∴()(﹣) f 2014 f 2014 =asi(n)b asi(n﹣)(b﹣)=; 2014 ? 20143 4 2014 2014 3 4 8 (f2014)(f﹣2014)f(2015)﹣(f ﹣2015)=8 故选D. 题型二:复合函数的导数 典例 2:下列式子不正确的是() A.B.=()=﹣(lnx﹣2x ) 3x 2 cosx 6x sinx 1?―2?ln2 ????C.()=D.()′= 2sin2x 2cos2x ??????―???? ?2 解:由复合函数的求导法则 对于选项,成立,故正确; A (3x 2 cosx )=6x﹣sinx A

北师大版数学高二-高中数学《导数的计算》教案5 选修2-2

高中数学《导数的计算》教案5 选修2-2 教学目标: 1.使学生应用由定义求导数的三个步骤推导四种常见函数y c =、y x =、2y x =、1y x =的导数公式; 2.掌握并能运用这四个公式正确求函数的导数. 教学重点:四种常见函数y c =、y x =、2y x =、1y x =的导数公式及应用 教学难点: 四种常见函数y c =、y x =、2 y x =、1y x =的导数公式 教学过程: 一.创设情景 我们知道,导数的几何意义是曲线在某一点处的切线斜率,物理意义是运动物体在某一时刻的瞬时速度.那么,对于函数()y f x =,如何求它的导数呢? 由导数定义本身,给出了求导数的最基本的方法,但由于导数是用极限来定义的,所以求导数总是归结到求极限这在运算上很麻烦,有时甚至很困难,为了能够较快地求出某些函数的导数,这一单元我们将研究比较简捷的求导数的方法,下面我们求几个常用的函数的导数. 二.新课讲授 1.函数()y f x c ==的导数 根据导数定义,因为()()0y f x x f x c c x x x ?+?--===??? 所以00 lim lim 00x x y y x ?→?→?'===? 0y '=表示函数y c =图像(图3.2-1)上每一点处的切线的斜率都为0.若y c =表示路程关于时间的函数,则0y '=可以解释为某物体的瞬时速度始终为0,即物体一直处于静止状态. 2.函数()y f x x ==的导数

因为()()1y f x x f x x x x x x x ?+?-+?-===??? 所以00 lim lim11x x y y x ?→?→?'===? 1y '=表示函数y x =图像(图3.2-2)上每一点处的切线的斜率都为1.若y x =表示路程关于时间的函数,则1y '=可以解释为某物体做瞬时速度为1的匀速运动. 3.函数2 ()y f x x ==的导数 因为22 ()()()y f x x f x x x x x x x ?+?-+?-==??? 222 2()2x x x x x x x x +?+?-==+?? 所以00 lim lim(2)2x x y y x x x x ?→?→?'==+?=? 2y x '=表示函数2y x =图像(图3.2-3)上点(,)x y 处的切线的斜率都为2x ,说明随着x 的变化,切线的斜率也在变化.另一方面,从导数作为函数在一点的瞬时变化率来看,表明:当0x <时,随着x 的增加,函数2y x =减少得越来越慢;当0x >时,随着x 的增加,函数2y x =增加得越来越快.若2y x =表示路程关于时间的函数,则2y x '=可以解释为某物体做变速运动,它在时刻x 的瞬时速度为2x . 4.函数1()y f x x ==的导数 因为11()()y f x x f x x x x x x x -?+?-+?==???

高中数学-导数的概念几何性质及应用

高中数学 导数及其应用学案 类型一:利用导数研究函数的图像 例2、若函数的导函数... 在区间上是增函数,则函数在区间上的图象 可能是( ) (A) (B) (C) (D) 练习1.如右图:是f (x )的导函数, 的图象如右图所示,则f (x )的图象只可能是( ) (A ) (B ) (C ) (D ) ()y f x =[,]a b ()y f x =[,]a b )(/x f 例1、设a <b,函数y=(x-a)2(x-b)的图象可能是( ) a b a b a o o y o y o y

2.设f '(x )是函数f (x )的导函数,y =f '(x )的图象如右图所示,则y =f (x )的图象最有 可能的是 ( ) A . B . C . D . 类型二:导数几何意义的应用 例3、(1)求曲线在点处的切线方程。(2)求抛物线y=2x 过点5,62?? ??? 的切线方程 32151,09425217257.1..76444644y x y ax x a B C D ==+ ----练习:若存在过点()的直线和都相切,则等于()A.-1或-或或-或 7.曲线y =x 2-2x +a 与直线y =3x +1相切时,常数a 的值是________. 类型三:利用导数研究函数的单调性 例4、已知a ,b 为常数,且a ≠0,函数f (x )=-ax+b+axlnx ,f(e)=2(e=2.71828…是自然对数的底数). (I )求实数b 的值; (II )求函数f (x )的单调区间; 21x y x =-()1,1

例5、已知函数f(x)= ax 1x 2 ++在(-2,+∞)内单调递减,求实数a 的取值范围. 练习:若函数y =3 1x 3-21ax 2+(a -1)x +1在区间(1,4)内为减函数,在区间(6,+∞)内为增函数,试求实数a 的取值范围 类型四:导数与极值 ()ln 6x f x x = 例、求函数的极值。 ()3227310,f x x ax bx a x a b =+++=-例、已知在有极值,求常数的值。 练习1、已知f(x)=x 3+ax 2 +(a+6)x+1有极大值和极小值,则a 的取值范围是( ) (A )-1<a <2 (B )-3<a <6 (C )a <-1或a >2 (D )a <-3或a >6 2、直线y =a 与函数f(x)=x 3-3x 的图象有相异的三个公共点,则求a 的取值范围。 类型五:导数与最值 例8、已知函数f(x)=(x-k)e x . (1)求f(x)的单调区间;

高中数学导数及其应用

高中数学导数及其应用 一、知识网络 二、高考考点?1、导数定义的认知与应用; ?2、求导公式与运算法则的运用; ? 3、导数的几何意义; ?4、导数在研究函数单调性上的应用; 5、导数在寻求函数的极值或最值的应用; 6、导数在解决实际问题中的应用。??三、知识要点? (一)导数?1、导数的概念?(1)导数的定义 (Ⅰ)设函数在点及其附近有定义,当自变量x在处有增量△x(△x可正可负),则函数y相应地有增量,这两个增量的比 ,叫做函数在点到这间的平均变化率。如果

时,有极限,则说函数在点处可导,并把这个极限叫做在点处的导数(或变化率),记作 ,即 。 ?(Ⅱ)如果函数在开区间()内每一点都可导,则说在开区间()内可导,此时,对于开区间()内每一个确定的值 ,都对应着一个确定的导数 ,这样在开区间()内构成一个新的函数,我们把这个新函数叫做在开区间( )内的导函数(简称导数),记作或, 即。??认知: (Ⅰ)函数的导数是以x为自变量的函数,而函数在点处的导数是一个数值;在点处的导数是的导函数当 时的函数值。 (Ⅱ)求函数在点处的导数的三部曲: ①求函数的增量 ;? ②求平均变化率; ③求极限?上述三部曲可简记为一差、二比、三极限。?? (2)导数的几何意义:?函数在点处的导数,是曲线在点 处的切线的斜率。? (3)函数的可导与连续的关系 函数的可导与连续既有联系又有区别:?(Ⅰ)若函数在点处可导,则在点处连续;?若函数在开区间()内可导,则在开区间()内连续(可

导一定连续)。??事实上,若函数在点处可导,则有 此 时,? ? ? ?记 ,则有即在点处连续。?(Ⅱ)若函数在点处连续,但在点处不一定可导(连续不一定可导)。?反例:在点处连续,但在点处无导数。 事实上,在点处的增量?当 时,, ;?当时,, 由此可知,不存在,故在点处不可导。??2、求导公式与 求导运算法则 (1)基本函数的导数(求导公式) 公式1 常数的导数:(c为常数),即常数的导数等于0。??公式2 幂函 数的导数:。? 公式3 正弦函数的导数:。??公式4 余弦函数的导数: ??公式5 对数函数的导数:? (Ⅰ); ?(Ⅱ)

高中数学-导数的计算练习

高中数学-导数的计算练习 一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.下列求导运算正确的是 A .211()1x x x '+=+ B .21 (log )ln 2 x x '= C .3(3)3log x x x '= D .2 (cos )2sin x x x x '=- 【答案】B 【解析】因为211()x x '=- ,所以A 项应为2 11x -;由1(log )ln a x x a '=知B 项正确;由()ln x x a a a '=可知C 项错误;D 项中,2 2 (cos )2cos sin x x x x x x '=-,所以D 项是错误的,综上所述,正确选项为B . 2.已知函数3 ()f x x =在点P 处的导数值为3,则P 点的坐标为 A .(2,8)-- B .(1,1)-- C .(2,8)--或(2,8) D .(1,1)--或(1,1) 【答案】D 3.已知函数()f x 的导函数为()f x ',且满足()(1)2ln xf f x x ='+,则(1)f '等于 A .e - B . 1- C .1 D .e 【答案】B 【解析】∵函数()f x 的导函数为()f x ',且满足()(1)2ln (0)f x x xf x ='+>, ∴1 ()1()2f x f x '='+ ,把1x =代入()f x '可得(1)2(1)1f f '='+,解得(1)1f '=-.故选B . 4.曲线e x y =在点2 (2,e )处的切线与坐标轴所围成的三角形的面积为 A .2e 2 B .23e C .26e D .29e 【答案】A

相关文档
最新文档