开关电源控制环设计原理

开关电源控制环设计原理
开关电源控制环设计原理

开关电源控制环设计原理

1. 绪论

在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。

2. 基本控制环概念

2.1 传输函数和博得图

系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。

2.2 极点

数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB 每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。

图1

2.3 零点

零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2描述一个由高通滤波器电路引起的零点。

图2

存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和BUCK-BOOST 转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。

图3

3.0 开关电源的理想增益相位图

设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。

图4

3.1 相位裕量

参看图4,相位裕量是在穿越频率处相位高于0度的数量。这不同于大多数控制系统教科书里提出的从-180度开始测量相位裕量。其中包括DC负反馈所提供的180度初始相移。在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。

根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。如果相位裕量小于45度,则系统在边界稳定。当相位裕量超过45度时,能提供最好的动态响应,短的调节时间和最少过冲。

3.2 增益带宽

增益带宽是指单位增益时的频率,见图4,增益带宽就是穿越频率Fcs。最大穿越频率的主要限制因素是电源的开关频率。根据采样定理,如果采样频率小于2倍信号频率(更严谨一点的说法是应该小于2倍最大信号频率,译注),则被采样的信息就不能被完全读取。

在开关电源中,开关频率可以从输出纹波中看得出来,它是错误的信息,并且必须不被控制环路所传递。

因此,系统的穿越频率必须小于开关频率的一半,否则,开关噪声和纹波会扭曲输出电压中想要得到的信息,并导致系统不稳定。

3.3 增益

高的系统增益对于保证好的线性和负载调节率提供重要贡献。它能够使PWM比较器在响应输入输出电压的变化时精确地改变电源开关的占空比,通常,需要在决定高增益和低相位裕量之间做出权衡。

4. 实际设计分析举例

用经典环路控制分析方法,开关调整器的控制环分为四个主要部分:输出滤波器,PWM 电路,误差放大器补偿和反馈。图5用方块图举例说明这四部分,图6举例说明一个开关电源电路图。

图5

图6

首先,输出电压被反馈网络降压,然后把这个反馈电压送入误差放大器,使之与基准电压相比较而产生一个误差电压信号。脉宽调制部分拾取这个误差电压并且把它与功率变压器的电流相比较并转化为合适的占空比去控制输出部分功率脉冲调制的数量。输出滤波器部分使来自于功率变压器的斩波电压或电流平滑,使反馈控制环完善。下面确定每一部分的增益和相位,并把他们联合起来形成系统的传输函数和系统的增益相位点。

4.1 反馈网络H(s)

反馈网络把输出电压降到误差放大器参考电压的水平,其传输式按简单的电阻分压式得到:

4.2 输出滤波部分G1(S)

在电流模式控制系统中,输出电流被调节以达到目标的输出电压。输出滤波部分把脉动的输出电流转换为目标输出电压。小信号分析得到:

输出电容的ESR和反馈网络的电阻(R1+R2=RFB)反映出输出滤波器传输函数的特性。图7的电路分析给出ESR和RSENSE的影响。

传输函数G1(S)给出RFB的初始低频增益。这个增益在fPOLE=1/2*π*(RFB+ESR)*C处开始滚降,并在fZERO=1/2*π*ESR*C变为水平。G1(S)的博得图见图8。

图7

4.3 PWM电路部分G2(S)

光耦电路把误差放大网路产生的误差信号传输到主边。AS3842 PWM电路把这个误差电压与通过主边功率变压器的电流进行比较。然后功率场效应管的占空比被调制,以提供足够的电流到副边来维持想要的输出。

光耦的小信号传输函数是与光耦的电流传输比成比例的固定增益。R5(原文误为R6,式5一并改为R5,译注)是与光耦的二极管串联的限流电阻,并且是AS3842误差放大器的输出阻抗(此句应该理解为R5是这个AS3842开关电源电路中,误差放大器部分的输出阻抗,译注)。这一点在应用文档“Secondary error amplifier with the AS431”

中有深入的阐述。从误差放大器的输出到AS3842的COMP脚的传输函数是:

VCATHODE是AS431的阴极电压,也就是误差补偿放大器的输出电压。CTR是光耦的电流传输比。R5(原文为R6,译注)是与光耦的二极管串联的限流电阻。RCOMP是AS3842的COMP脚当其试图拉电流超过它的最大输出电流时的输出阻抗。

当误差信号传递到补偿脚以后,将其与电流检测信号比较。图9表示一个电流检测比较器和开关部分的简单框图:

在闭环系统中,VCOMP与ISENSE维持同样的电平。因此,IPRIMARY被VCOMP 有效的调节:

从ISECONDARY以后(见图9),副边电流或者说输出电流与主边电流成比例,把等式(4)重新排列表示出副边电流与VCOMP之间的关系。

结合等式(3)和(6)得到PWM部分的传输函数:

传输函数G2(s)仅包含增益没有相移。

4.4 误差放大器补偿网络G3(S)

一旦输出滤波器和PWM电路部分的传输函数确定下来,然后可以设定误差放大器补偿网络以取得最优化的系统性能。图10例举出一个在低频时提供高的频率滚降和高增益的补偿方案。

这个补偿方案有一些很好的特性适合于误差放大器的补偿,它有很高的直流增益和易控的滚降。

4.5 整个系统

因为这是一个线性系统,可以用叠加的方法得到整个系统的传输函数。通过把整个环路各部分的增益和相位叠加起来,产生整个系统的博得图。通过放置补偿网络的极点和零点使系统的性能最优化。图11把各部分的博得图结合起来,负反馈系统的180度相移也加入进来了。

5. 测量结果

构造一个150W的电流模式正激转换器,经过修正的小信号环路特性显示出它在系统瞬态响应时所起的作用。图13(原文误为图12,译注)给出它的增益-相位图。与图11所展示的一样,获得了相同的博得图曲线。此增益相位图显示这个系统有86.7度的相位裕量。意味着稳定的系统有快速的瞬态响应。图15(原文误为图13,译注)给出系统的瞬态响应。为了展示相位裕量的作用,通过增加整个系统的增益和提高穿越频率,系统的相位裕量会减少。穿越频率提高时系统的相位裕量在减少。图12(原文误为图14,译注)给出更高的穿越频率和更少的相位裕量(65度)时的系统博得图。其瞬态响应见图14(原文误为图15,译注),注意更少的相位裕量导致更大的振荡和更长的调节时间。表1比较了这两

个不同增益大小的系统之间线性和负载调节率的变化。正如前面所述,高的环路增益得到更紧密的线性和负载调节率。还应该注意需在高的相位裕量和较低的环路增益之间取得平衡。

图12 图13

图14 图15

6. 测量方法

为了保证准确的结果,测试信号接入节点的阻抗必须大于它的输出阻抗。在图6的测试电路中,误差放大器在副边,PWM电路在主边。测试信号在光耦的输出和AS3842的VCOMP输入之前接入。输入阻抗是从VCOMP脚看入时的阻抗,输出阻抗是光耦的输出阻抗。在其他误差放大器和PWM电路没有隔离的应用中,测试信号可以在输出滤波电容之后接入,使其与误差放大器的输入相串联。

开关电源设计与制作

《自动化专业综合课程设计2》 课程设计报告 题目:开关电源设计与制作 院(系):机电与自动化学院 专业班级:自动化0803 学生姓名:程杰 学号:20081184111 指导教师:雷丹 2011年11月14日至2011年12月2日 华中科技大学武昌分校制

目录 1.开关电源简介 (2) 1.1开关电源概述 (2) 1.2开关电源的分类 (3) 1.3开关电源特点 (4) 1.4开关电源的条件 (4) 1.5开关电源发展趋势 (4) 2.课程设计目的 (5) 3.课程设计题目描述和要求 (5) 4.课程设计报告内容 (5) 4.1开关电源基本结构 (5) 4.2系统总体电路框架 (6) 4.3变换电路的选择 (6) 4.4控制方案 (7) 4.5控制器的选择 (8) 4.5.1 C8051F020的内核 (8) 4.5.2片内存储器 (8) 4.5.312位模/数转换器 (9) 4.5.4 单片机初始化程序 (9) 4.6 输出采样电路 (10) 4.6.1 信号调节电路 (10) 4.6.2 信号的采样 (11) 4.6.3 ADC 的工作方式 (11) 4.6.4 ADC的程序 (12) 4.7 显示电路 (13) 4.7.1 显示方案 (13) 4.7.2 显示程序 (14) 5.总结 (16) 参考文献 (17)

1.开关电源简介 1.1开关电源概述 开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源。它运用功率变换器进行电能变换,经过变换电能,可以满足各种对参数的要求。这些变换包括交流到直流(AC-DC,即整流),直流到交流(DC-AC,即逆变),交流到交流(AC-AC,即变压),直流到直流(DC-DC)。广义地说,利用半导体功率器件作为开关,将一种电源形式转变为另一种电源形式的主电路都叫做开关变换器电路;转变时用自动控制闭环稳定输出并有保护环节则称为开关电源(SwitchingPower Supply)。 将一种直流电压变换成另一种固定的或可调的直流电压的过程称为DC-DC交换完成这一变幻的电路称为DC-DC转换器。根据输入电路与输出电路的关系,DC-DC 转换器可分为非隔离式DC-DC转换器和隔离式DC-DC转换器。降压型DC-DC 开关电源属于非隔离式的。降压型DC-DC转换器主电路图如1: 图1 降压型DC-DC转换器主电路 其中,功率IGBT为开关调整元件,它的导通与关断由控制电路决定;L和C为滤波元件。驱动VT导通时,负载电压Uo=Uin,负载电流Io按指数上升;控制VT关断时,二极管VD可保持输出电流连续,所以通常称为续流二极管。负载电流经二极管VD续流,负载电压Uo近似为零,负载电流呈指数曲线下降。为了使负载电流连续且脉动小,通常串联L值较大的电感。至一个周期T结束,在驱动VT导通,重复上一周期过程。当电路工作于稳态时,负载电流在一个周期的初值和终值相等。负载电压的平均值为:

单端反激开关电源原理与设计

单端反激开关电源原理与设计

单端反激开关电源原理与设计 林晓伟 (国电南瑞科技股份有限公司,江苏省南京市210061) 0 引言 近年来随着电源技术的飞速发展,开关稳压电源正朝着小型化、高频化、继承化的方向发展,高效率的开关电源已经得到越来越广泛的应用。单端反激式变换器以其电路简单、可以高效提供直流输出等许多优点,特别适合设计小功率的开关电源。 本文简要介绍了Unitorde公司生产的电流型脉宽调制器UC3842,介绍了该芯片在单端反激式开关电源中的应用,对电源电路进行了具体分析。利用本文所述的方法设计的小功率开关电源已经应用在国电南瑞科技股份有限公司工业控制分公司自主研发的分散控制系统GKS-9000

中,运行状况良好,各项指标均符合实际工程的要求。 1 反激式开关电源基本原理 单端反激开关电源采用了稳定性很好的双环路反馈(输出直流电压隔离取样反馈外回路和初级线圈充磁峰值电流取样反馈内回路)控制系统,就可以通过开关电源的PWM(脉冲宽度调制器)迅速调整脉冲占空比,从而在每一个周期内对前一个周期的输出电压和初级线圈充磁峰值电流进行有效调节,达到稳定输出电压的目的。这种反馈控制电路的最大特点是:在输入电压和负载电流变化较大时,具有更快的动态响应速度,自动限制负载电流,补偿电路简单。反激电路适应于小功率开关电源,其原理图如图1所示。

下面分析在理想空载的情况下电流型PWM的工作情况。与电压型的PWM比较,电流型PWM 又增加了一个电感电流反馈环节。 图中:A1为误差放大器;A2为电流检测比较器;U2为RS触发器;Uf为输出电压Uo的反馈取样,该反馈取样与基准电压Uref通过误差放大器A1产生误差信号Ue(该信号也是A2的比较箝位电压)。 设场效应管Q1导通,则电感电流iL以斜率Ui /L线性增长,L为T1的原边电感,电感电流在无感电阻R1上采样u1=R1iL,该采样电压被送入电流检测比较器A2与来自误差放大器的Ue进行比较,当u1>Ue时,A2输出高电平,送到RS触发器U2的复位端,则两输入或非门U1输出低电平并关断Q1;当时钟输出高电平时,或非门U1始终输出低电平,封锁PWM,在振荡器输出时钟下降的同时,或非门U1的两输入均为低电平,则Q1被打开。

控制环路设计

开关电源控制环设计 资料来源:Switching power supply control loop design(ASTEC-Application Note 5) 译者:smartway 1. 绪论 在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。 2. 基本控制环概念 2.1 传输函数和博得图 系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。 2.2 极点 数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB 每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。 2.3 零点 零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2描述一个由高通滤波器电路引起的零点。

存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。 3.0 开关电源的理想增益相位图 设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。

开关电源设计与实现毕业设计(论文)

毕业论文(设计) 题目开关电源设计 英文题目switch source design

毕业设计(论文)原创性声明和使用授权说明 原创性声明 本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。 作者签名:日期: 指导教师签名:日期: 使用授权说明 本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。 作者签名:日期:

学位论文原创性声明 本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。 作者签名:日期:年月日 学位论文版权使用授权书 本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 涉密论文按学校规定处理。 作者签名:日期:年月日 导师签名:日期:年月日

开关电源入门必读:开关电源工作原理超详细解析

开关电源入门必读:开关电源工作原理超详细解析 第1页:前言:PC电源知多少 个人PC所采用的电源都是基于一种名为“开关模式”的技术,所以我们经常会将个人PC电源称之为——开关电源(Sw itching Mode P ow er Supplies,简称SMPS),它还有一个绰号——DC-DC转化器。本次文章我们将会为您解读开关电源的工作模式和原理、开关电源内部的元器件的介绍以及这些元器件的功能。 ●线性电源知多少 目前主要包括两种电源类型:线性电源(linear)和开关电源(sw itching)。线性电源的工作原理是首先将127 V或者220V市电通过变压器转为低压电,比如说12V,而且经过转换后的低压依然是AC交流电;然后再通过一系列的二极管进行矫正和整流,并将低压AC交流电转化为脉动电压(配图1和2中的“3”);下一步需要对脉动电压进行滤波,通过电容完成,然后将经过滤波后的低压交流电转换成DC直流电(配图1和2中的“4”);此时得到的低压直流电依然不够纯净,会有一定的波动(这种电压波动就是我们常说的纹波),所以还需要稳压二极管或者电压整流电路进行矫正。最后,我们就可以得到纯净的低压DC直流电输出了(配图1和2中的“5”) 配图1:标准的线性电源设计图

配图2:线性电源的波形 尽管说线性电源非常适合为低功耗设备供电,比如说无绳电话、PlayStation/W ii/Xbox等游戏主机等等,但是对于高功耗设备而言,线性电源将会力不从心。 对于线性电源而言,其内部电容以及变压器的大小和AC市电的频率成反比:也即说如果输入市电的频率越低时,线性电源就需要越大的电容和变压器,反之亦然。由于当前一直采用的是60Hz(有些国家是50Hz)频率的AC市电,这是一个相对较低的频率,所以其变压器以及电容的个头往往都相对比较大。此外,AC市电的浪涌越大,线性电源的变压器的个头就越大。 由此可见,对于个人PC领域而言,制造一台线性电源将会是一件疯狂的举动,因为它的体积将会非常大、重量也会非常的重。所以说个人PC用户并不适合用线性电源。 ●开关电源知多少 开关电源可以通过高频开关模式很好的解决这一问题。对于高频开关电源而言,AC输入电压可以在进入变压器之前升压(升压前一般是50-60KHz)。随着输入电压的升高,变压器以及电容等元器件的个头就不用像线性电源那么的大。这种高频开关电源正是我们的个人PC以及像VCR录像机这样的设备所需要的。需要说明的是,我们经常所说的“开关电源”其实是“高频开关电源”的缩写形式,和电源本身的关闭和开启式没有任何关系的。 事实上,终端用户的PC的电源采用的是一种更为优化的方案:闭回路系统(closed loop system)——负责控制开关管的电路,从电源的输出获得反馈信号,然后根据PC的功耗来增加或者降低某一周期内的电压的频率以便能够适应电源的变压器(这个方法称作PW M,Pulse W idth Modulation,脉冲宽度调制)。所以说,开关电源可以根据与之相连的耗电设备的功耗的大小来自我调整,从而可以让变压器以及其他的元器件带走更少量的能量,而且降低发热量。 反观线性电源,它的设计理念就是功率至上,即便负载电路并不需要很大电流。这样做的后果就是所有元件即便非必要的时候也工作在满负荷下,结果产生高很多的热量。 第2页:看图说话:图解开关电源 下图3和4描述的是开关电源的PW M反馈机制。图3描述的是没有PFC(P ow er Factor Correction,功率因素校正)电路的廉价电源,图4描述的是采用主动式PFC设计的中高端电源。 图3:没有PFC电路的电源 图4:有PFC电路的电源 通过图3和图4的对比我们可以看出两者的不同之处:一个具备主动式PFC电路而另一个不具备,前者没有110/220V转换器,而且也没有电压倍压电路。下文我们的重点将会是主动式PFC电源的讲解。

LED开关电源设计

《开关电源课程设计》 指导教师:熊春宇 姓名:李丽丽 学号:200701071235 电话:136664664296

LED照明驱动开关电源设计 (李丽丽,大庆师范学院物电学院07级电子信息工程专业)摘要:LED照明驱动设计了恒流输出、空载保护、隔离输出及EMC等功能.系应用于LED 照明驱动的开关电源电路。采用PWM自动调节实现恒流输出,稳压管过压锁定实现空载保护,电磁隔离和光隔离实现隔离输出。经过多次的运行与检测,实践证明该电路恒流输出稳定,发热量低。本设计体积小,微调反馈电路可设置作为为LED驱动常用的350mA或700mA恒流输出。可广泛适用于生活照明,商用照明。 关键词:LED驱动电源;发热低恒流;隔离低成本 Abstract:LED lighting design drive the constant-current output, the output and protection, isolation no-load EMC etc. Function. Is applied to the switch power LED lighting driving circuit. Using PWM automatic adjustment output voltage, the constant-current over-voltage protection tube, electromagnetic no-load realize locking and isolation realize isolation output isolation. After many operation and test, the practice has proved that the constant-current circuits, low heat stable output. This design, small size, fine-tuning feedback circuit can be set as the common 350mA LED drive or 700mA constant-current output. Life can be widely used in commercial lighting, lighting. Key words:Leds driving power;Fever is low;Constant flow;Isolation;Low cost 0概述 0.1选题的目的与意义: 全球能源紧张,提高电器的效率是行之有效的方法。照明用电占据全球21%的总用电量,如果能提高照明用的的效率,可以有效缓解能源紧张。如何提高照明系统的能源利用率,延长照明系统的寿命,并且是绿色无污染的?取代白炽灯,荧光灯,节能灯的第四代照明灯具是什么?业界给出的答案就是LED灯照明。LED照明每W流明数可达到120lm。远高于白炽灯和日光灯,此外LED灯珠寿命可长达十万小时,并且绿色无污染。LED照明具备的这些优点决定了其应用前景是非常广阔的。LED照明应用上的限制在于LED有固定的正向压降,电流也有上限(工作电流是影响LED寿命的主要因素)。大功率白光LED上的正向压降一般为3-4V,不能直接使用市电驱动。因此一个和LED灯珠匹配的高效,环保,长寿命的电源是必须的,这正是这次选题的意义与目的所在。 0.2研究现状 开关电源的技术已经非常成熟,由于LED驱动的降压技术大部分采用开关电源。因此即使是LED驱动电源真正进入研究的时间不算长,却无碍其技术的成熟。LED驱动要求的技术特点是:寿命长,体积小(特别商用照明和家用照明,最好可以内嵌到灯头)。 众所周知,绝大部分开关电源都需要一个输出滤波的电解电容,即使高品质的电解电容,工作在100摄氏度左右,寿命也只有1Wh左右。毫无疑问,电解电容正是LED灯整体寿命的瓶颈。而内嵌式驱动板上的电解电容,由于LED的发热以及驱动板本身的发热,长期在

高频开关电源的设计与实现

电力电子技术课程设计报告 题目高频开关稳压电源 专业电气工程及其自动化 班级 学号 学生姓名 指导教师 2016年春季学期 起止时间:2016年6月25日至2016年6月27日

设计任务书11 高频开关稳压电源设计√ 一、设计任务 根据电源参数要求设计一个高频直流开关稳压电源。 二、设计条件与指标 1.电源:电压额定值220±10%,频率:50Hz; 2. 输出:稳压电源功率Po=1000W,电压Uo=50V; 开关频率:100KHz 3.电源输出保持时间td=10ms(电压从280V下降到250V); 三、设计要求 1.分析题目要求,提出2~3种电路结构,比较并确定主电路 结构和控制方案; 2.设计主电路原理图、触发电路的原理框图,并设置必要的 保护电路; 3.参数计算,选择主电路及保护电路元件参数; 4.利用PSPICE、PSIM或MATLAB等进行电路仿真优化; 5.撰写课程设计报告。 四、参考文献 1.王兆安,《电力电子技术》,机械工业出版社; 2.林渭勋等,《电力电子设备设计和应用手册》; 3.张占松、蔡宣三,《开关电源的原理与设计》,电子工业 出版社。

目录 一、总体设计 (1) 1.主电路的选型(方案设计) (1) 2.控制电路设计 (4) 3.总体实现框架 (4) 二、主要参数及电路设计 (5) 1.主电路参数设计 (5) 2.控制电路参数设计 (7) 3.保护电路的设计以及参数整定 (8) 4.过压和欠压保护 (8) 三、仿真验证(设计测试方案、存在的问题及解决方法) (9) 1、主电路测试 (9) 2、驱动电路测试 (10) 3、保护电路测试 (10) 四、小结 (11) 参考文献 (11)

开关电源环路设计过程

1. 绪论 在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。 2. 基本控制环概念 2.1 传输函数和博得图 系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。 2.2 极点 数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。 2.3 零点 零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2 描述一个由高通滤波器电路引起的零点。 存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和

BUCK-BOOST转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。 3.0 开关电源的理想增益相位图 设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。 3.1 相位裕量 参看图4,相位裕量是在穿越频率处相位高于0度的数量。这不同于大多数控制系统教科书里提出的从-180度开始测量相位裕量。其中包括DC负反馈所提供的180度初始相移。在实际测量中,这180度相移在DC处被补偿并允许相位裕量从0度开始测量。 根据奈奎斯特稳定性判据,当系统的相位裕量大于0度时,此系统是稳定的。然而,有一个边界稳定区域存在,此处(指边界稳定区,译注),系统由于瞬态响应引起振荡到经过一个长的调节时间最终稳定下来。如果相位裕量小于45度,

开关电源设计教学内容

开关电源设计

开关直流稳压电源设计 摘要 直流稳压电源应用广泛,几乎所有电器,电力或者电子设备都毫不例外的需要稳定的直流电压(电流)供电,它是电子电路工作的“能源”和“动力”。不同的电路对电源的要求是不同的。在很多电子设备和电路中需要一种当电网电压波动或负载发生变化时,输出电压仍能基本保持不点的电源。电子设备中的电源一般由交流电网提供,如何将交流电压(电流)变为直流电压(电流)供电?又如何使直流电压(电流)稳定?这是电子技术的一个基本问题。解决这个问题的方案很多,归纳起来大致可分为线性电子稳压电源和开关稳压电源两类,他们又各自可以用集成电路或分立元件构成。开关稳压电源具有效率高,输出功率大,输入电压变化范围宽,节约能耗等优点。 一、引言 1.1基本要求 稳压电源。 1.基本要求 ①输出电压UO可调范围:12V~15V; ②最大输出电流IOmax:2A; ③U2从15V变到21V时,电压调整率SU≤2%(IO=2A); ④IO从0变到2A时,负载调整率SI≤5%(U2=18V); ⑤输出噪声纹波电压峰-峰值UOPP≤1V(U2=18V,UO=36V,IO=2A); ⑥DC-DC变换器的效率≥70%(U2=18V,UO=36V,IO=2A); ⑦具有过流保护功能,动作电流IO(th)=2.5±0.2A; 1.2发挥部分 (1)排除短路故障后,自动恢复为正常状态; (2)过热保护; 二、方案设计与论证 开关式直流稳压电源的控制方式可分为调宽式和调频式两种。实际应用中,调宽式应用较多,在目前开发和使用的开关电源集成电路中,绝大多数为脉宽调制(PWM)型。开关电源的工作原理就是通过改变开关器件的开通时间和工作周期的比值,即占空比来改变输出电压,通常有三种方式:脉冲宽度调制(PWM)、脉冲频率调制(PFM)和混合调制。PWM调制是指开关周期恒定,通过改变脉冲宽度来改变占空比的方式。因为周期恒定,滤波电路的设计比较简单,因此本次设计采用PWM调制方式实现电路设计要求。主要框架如图1所示。由变压器降压得到交流电压,再经过整流滤波电路,将交流电变成直流电,然后再经过DC-DC变换,由PWM的驱动电路去控制开关管的导通和截止,从而产生一个稳定的电压源。

开关电源环路设计(详细)

6.4 开关电源闭环设计 从反馈基本概念知道:放大器在深度负反馈时,如输入不变,电路参数变化、负载变化或干扰对输出影响减小。反馈越深,干扰引起的输出误差越小。但是,深反馈时,反馈环路在某一频率附加相位移如达到180°,同时输出信号等于输入信号,就会产生自激振荡。 开关电源不同于一般放大器,放大器加负反馈是为了有足够的通频带,足够的稳定增益,减少干扰和减少线性和非线性失真。而开关电源,如果要等效为放大器的话,输入信号是基准(参考)电压U ref ,一般说来,基准电压是不变的;反馈网络就是取样电路,一般是一个分压器,当输出电压和基准 一定时,取样电路分压比(k v )也是固定的(U o =k v U ref ) 。开关电源不同于放大器,内部(开关频率)和外部干扰(输入电源和负载变化)非常严重,闭环设计目的不仅要求对以上的内部和外部干扰有很强抑制能力,保证静态精度,而且要有良好的动态响应。 对于恒压输出开关电源,就其反馈拓扑而言,输入信号(基准)相当于放大器的输入电压,分压器是反馈网络,这就是一个电压串联负反馈。如果恒流输出,就是电流串联负反馈。 如果是恒压输出,对电压取样,闭环稳定输出电压。因此,首先选择稳定的参考电压,通常为5~6V 或2.5V ,要求极小的动态电阻和温度漂移。其次要求开环增益高,使得反馈为深度反馈,输出电压才不受电源电压和负载(干扰)影响和对开关频率纹波抑制。一般功率电路、滤波和PWM 发生电路增益低,只有采用运放(误差放大器)来获得高增益。再有,由于输出滤波器有两个极点,最大相移180°,如果直接加入运放组成反馈,很容易自激振荡,因此需要相位补偿。根据不同的电路条件,可以采用Venable 三种补偿放大器。补偿结果既满足稳态要求,又要获得良好的瞬态响应,同时能够抑制低频纹波和对高频分量衰减。 6.4.1 概述 图6.31为一个典型的正激变换器闭环调节的例子。可以看出是一个负反馈系统。PWM 控制芯片中包含了误差放大器和PWM 形成电路。控制芯片也提供许多其他的功能,但了解闭环稳定性问题,仅需 考虑误差放大器和PWM 。 对于输出电压U o 缓慢或直流变化,闭环当然是稳定的。例如输入电网或负载变化(干扰),引起U o 的变化,经R 1和R 2取样(反馈网络),送到误差放大器EA 的反相输入端,再与加在EA 同相输入端的参考电压(输入电压)U ref 比较。将引起EA 的输出直流电平U ea 变化,再送入到脉冲宽度调制器PWM 的输入端A 。在PWM 中,直流电平U ea 与输入B 端0~3V 三角波U t 比较,产生一个矩形脉冲输出,其宽度t on 等于三角波开始时间t0到PWM 输入B 三角波与直流电平相交时间t1。此脉冲宽度决定了芯片中输出晶体管导通时间,同时也决定了控制晶体管Q1的导通时间。U dc 的增加引起U y 的增加,因U o =U y t o n /T ,U o 也随之增加。U o 增加引起Us 增加,并因此U ea 的减少。从三角波开始到t1的t on 相应减少, U o 恢复到它的初始值。当然,反之亦然。 PWM 产生的信号可以从芯片的输出晶体管发射极或集电极输出,经电流放大提供Q1基极驱动。但不管从那一点-发射极还是集电极-输出,必须保证当U o 增加,要引起t on 减少,即负反馈。 应当注意,大多数PWM 芯片的输出晶 体管导通时间是t0到t1。对于这样的芯片,U s 送到EA 的反相输入端,PWM 信号如果驱动功率NPN 晶体管基极(N 沟道MOSFET 的栅极),则芯片输出晶体管应由发射极输出。 然而,在某些PWM 芯片(TL494)中,它们的导通时间是三角波U t 与直流电平(U ea )相交时间 图6.31 典型的正激变换器闭环控制

开关电源原理与设计(6)word文档

开关电源原理与设计(连载九)并联式开关电源输出电压滤 波电路 时间:2013-11-01 来源:作者: 1-4-2.并联式开关电源输出电压滤波电路 上面已经知道,当并联式开关电源不带输出电压滤波电路时,输出脉冲电压的幅度将非常高。但在应用中,大多数并联式开关电源输出电压还是经过整流滤波后的直流电压,因此,一般开关电源的输出电路都带有整流滤波电路。 图1-12是带有整流滤波功能的并联式开关电源工作原理图。图1-12中,Ui 是开关电源的工作电压,L是储能电感,eL为电流iL在储能电感两端产生的反电动势,K是控制开关,R是负载。而图1-13、图1-14、图1-15分别是并联式开关电源控制开关K工作于占空比为0.5、< 0.5、> 0.5时,图1-12电路中各点的电压、电流波形。图图1-13、图1-14、图1-15中Ui是开关电源的输入电压,uo是控制开关K两端的输出电压,uc是滤波电容两端的输出电压,Up是开关电源输出的峰值电压,Uo是开关电源输出电压(平均值),Ua是开关电源输出的平均电压, iL是流过储能电感L的电流,iLm是流过储能电感L电流的最大值,Io是流过负载R的电流(平均值)。 当控制开关K接通时,输入电源Ui开始对储能电感L加电,流过储能电感L 的电流iL开始增加,同时电流在储能电感中也要产生反电动势eL;当控制开关K由接通转为关断的时候,储能电感也会产生反电动势eL。eL反电动势的方向与开关K 关断前的方向相反,但与电流的方向相同,因此,在控制开关K两端的输出电压uo 等于输入电压Ui与反电动势eL之和。 因此,在Ton期间:

eL = Ldi/dt = Ui —— K接通期间 (1-43)

开关电源设计

& 课程设计任务书 学生姓名:专业班级: 指导教师:工作单位: 题目: 开关电源设计 初始条件: 输入交流电源:单相220V,频率50Hz。 要求完成的主要任务:(包括课程设计工作量及其技术要求,以及说明书撰写等具体要求)? 1、输出两路直流电压:12V,5V。 2、直流最大输出电流1A。 3、完成总电路设计和参数设计。 时间安排: 课程设计时间为两周,将其分为三个阶段。 第一阶段:复习有关知识,阅读课程设计指导书,搞懂原理,并准备收集设计资料,此阶段约占总时间的20%。 第二阶段:根据设计的技术指标要求选择方案,设计计算。 ) 第三阶段:完成设计和文档整理,约占总时间的40%。 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 ) 引言 (1) 1设计意义及要求 (2) 设计意义 (2) 开关电源的组成部分 (2) 开关电源的工作过程 (2) 开关电源的工作方式 (3) 脉宽调制器的基本原理 (3) 2方案设计 (5) ) 设计要求 (5) 方案选择 (5) 整流滤波部分 (6) 降压斩波电路 (7) 脉宽调制电路 (8) MOSFET管的驱动电路 (9) 总电路图 (11) 3主电路参数设定 (12) { 变压器、二极管、MOSFET管选择 (12) 反馈回路的设计 (13) MOSFET的驱动设计 (14) 结束语 (15) 参考文献 (16)

附录一 (17) ]

引言 随着电力电子技术的高速发展,电力电子设备与人们的工作、生活的关系日益密切,而电子设备都离不开可靠的电源,进入80年代计算机电源全面实现了开关电源化,率先完成计算机的电源换代,进入90年代开关电源相继进入各种电子、电器设备领域,远程控制交换机、通讯、电子检测设备电源、控制设备电源等都已广泛地使用了开关电源,更促进了开关电源技术的迅速发展。 开关电源高频化是其发展的方向,高频化使开关电源小型化,并使开关电源进入更广泛的应用领域,特别是在高新技术领域的应用,推动了高新技术产品的小型化、轻便化。开关电源是利用现代电力电子技术,控制开关管开通和关断的时间比率,维持稳定输出电压的一种电源,开关电源一般由脉冲宽度调制(PWM)控制IGBT和MOSFET构成。随着电力电子技术的发展和创新,使得开关电源技术也在不断地创新。目前,开关电源以小型、轻量和高效率的特点被广泛应用几乎所有的电子设备,是当今电子信息产业飞速发展不可缺少的一种电源方式。 开关电源根据输入输出的性质不同可分为AC/DC和DC/DC两大类。AC/DC称为一次电源,也常称为开关整流器。值得指出的是,AC-DC变换不单是整流的意义,而是整流后又做DC-DC变换。所以说,DC-DC变换器是开关电源的核心。DC/DC称为二次电源,其设计技术及生产工艺在国内外均已成熟和标准化,所以学习设计开关电源有重要的意义。

开关电源PCB设计要点及实例分析

开关电源PCB设计要点及实例分析 开关电源PCB设计要点及实例分析 开关电源PCB设计要点及实例分析 为了适应电子产品飞快的更新换代节奏,产品设计工程师更倾向于选择在市场上很容易采购到的AC/DC适配器,并把多组直流电源直接安装在系统的线路板上。由于开关电源产生的电磁干扰会影响到其电子产品的正常工作,正确的电源PCB设计就变得非常重要。开关电源PCB设计与数字电路PCB设计完全不一样。在数字电路排版中,许多数字芯片可以通过PCB软件来自动排列,且芯片之间的连接线可以通过PCB软件来自动连接。用自动排版方式排出的开关电源肯定无法正常工作。所以,设计人员需要对开关电源PCB设计基本规则和开关电源工作原理有一定的了解。 1 开关电源PCB设计基本要点 1.1 电容高频滤波特性 图1是电容器基本结构和高频等效模型。 图1 电容器结构和寄生等效串联电阻和电感 电容的基本公式是 C=Εrε0 (1)

式(1)显示,减小电容器极板之间的距离(D)和增加极板的截面积(A)将增加电容器的电容量。 电容通常存在等效串联电阻(ESR)和等效串联电感(ESL)二个寄生参数。图2是电容器在不同工作频率下的阻抗(ZC)。 图2 电容阻抗(ZC)曲线 一个电容器的谐振频率(F0)可以从它自身电容量(C)和等效串联电感量(LESL)得到,即 F0= (2) 当一个电容器工作频率在F0以下时,其阻抗随频率的上升而减小,即 ZC= (3) 当电容器工作频率在F0以上时,其阻抗会随频率的上升而增加,即 ZC=J2πfLESL(4) 当电容器工作频率接近F0时,电容阻抗就等于它的等效串联电阻(RESR)。 电解电容器一般都有很大的电容量和很大的等效串联电感。由于它的谐振频率很低,所以只能使用在低频滤波上。钽电容器一般都有较大电容量和较小等效串联电感,

开关电源课程设计

太原理工大学课程设计任务书 指导教师签名:日期:

前言 随着电力电子技术的发展,开关电源的应用越来越广泛。反激式开关电源以其设计简单,体积小巧等优势,广泛应用于小功率场合。开关电源以其小型、轻量和高效率的特点,被广泛地应用于各种电气设备和系统中,其性能的优劣直接关系到整个系统功能的实现。开关稳压电源有多种类型,其中单端反激式开关电源由于具有线路简单,所需要的元器件少,能够提供多路隔离输出等优点而广泛应用于小功率电源领域。 本论文根据输入电压经EMI滤波设计整流桥,再与直流变压器开关管构成反激电路。通过输出反馈经UC3842控制占空比,从而使输出电压稳定。反激电路中开关管开通原边线圈储存能量,副边不导通。原边关断时,线圈储存的能量通过互感向负载提供能量。输出电压反馈由TL431和光耦构成,当输出稳定时,有一个稳定的电流;当输出电压增大时,TL431分流增加,发光二极管亮度改变,使三级管电流改变,致使开关管控制导通占空比改变,从而使输出电压减小。另外,芯片UC3842引脚接一电流反馈,通过控制分压值实现截流保护,防止输出过电流。 设计中,直流变压器的设计是重点,需要计算其原边电感,原副边匝数,铁芯的选择,根据这些参数构造电路图,计算各电容电阻值及二极管承受的反压,选择合适的型号。 论文先介绍了开关电源及反激式开关电源,然后介绍器件选型,再分部分介绍主电路、控制电路和保护电路,最后附表为选择时参数参考表和总电路图。

目录 前言 第一章开关电源概述 (1) 1.1开关电源综述 (1) 1.2反激式开关电源介绍 (2) 第二章总体方案的确定 (2) 2.1总体设计思路及框图 (2) 2.2仿真原理图 (3) 第三章具体电路设计 (5) 3.1EMI滤波电路 (5) 3.2整流滤波电路设计 (6) 3.3高频变压器的设计 (7) 3.4控制反馈电路的设计 (15) 3.5保护电路的设计 (17) 3.6输出侧滤波电路设计 (18) 第四章电路仿真与结果 (19) 4.1 EMI滤波电路 (19) 4.2整流电路 (21) 4.3反激型电路 (22) 4.4反馈电路 (23) 4.5总电路 (24) 心得体会 (25) 参考文献 (26)

开关电源控制环设计原理

开关电源控制环设计原理 1. 绪论 在开关模式的功率转换器中,功率开关的导通时间是根据输入和输出电压来调节的。因而,功率转换器是一种反映输入与输出的变化而使其导通时间被调制的独立控制系统。由于理论近似,控制环的设计往往陷入复杂的方程式中,使开关电源的控制设计面临挑战并且常常走入误区。下面几页将展示控制环的简单化近似分析,首先大体了解开关电源系统中影响性能的各种参数。给出一个实际的开关电源作为演示以表明哪些器件与设计控制环的特性有关。测试结果和测量方法也包含在其中。 2. 基本控制环概念 2.1 传输函数和博得图 系统的传输函数定义为输出除以输入。它由增益和相位因素组成并可以在博得图上分别用图形表示。整个系统的闭环增益是环路里各个部分增益的乘积。在博得图中,增益用对数图表示。因为两个数的乘积的对数等于他们各自对数的和,他们的增益可以画成图相加。系统的相位是整个环路相移之和。 2.2 极点 数学上,在传输方程式中,当分母为零时会产生一个极点。在图形上,当增益以20dB 每十倍频的斜率开始递减时,在博得图上会产生一个极点。图1举例说明一个低通滤波器通常在系统中产生一个极点。其传输函数和博得图也一并给出。 图1 2.3 零点 零点是频域范围内的传输函数当分子等于零时产生的。在博得图中,零点发生在增益以20dB每十倍频的斜率开始递增的点,并伴随有90度的相位超前。图2描述一个由高通滤波器电路引起的零点。

图2 存在第二种零点,即右半平面零点,它引起相位滞后而非超前。伴随着增益递增,右半平面零点引起90度的相位滞后。右半平面零点经常出现于BOOST和BUCK-BOOST 转换器中,所以,在设计反馈补偿电路的时候要非常警惕,以使系统的穿越频率大大低于右半平面零点的频率。右半平面零点的博得图见图3。 图3 3.0 开关电源的理想增益相位图 设计任何控制系统首先必须清楚地定义出目标。通常,这个目标是建立一个简单的博得图以达到最好的系统动态响应,最紧密的线性和负载调节率和最好的稳定性。理想的闭环博得图应该包含三个特性:足够的相位裕量,宽的带宽,和高增益。高的相位裕量能阻尼振荡并缩短瞬态调节时间。宽的带宽允许电源系统快速响应线性和负载的突变。高的增益保证良好的线性和负载调节率。

开关电源设计与实现

Xx大学机电工程学院 Mechanical &Electronic Engineering Department 开关电源技术原理及应用设计报告 说明书 设计题目:开关电源的设计与实现 专业: 学号: 姓名: 指导教师: 设计时间:

开关电源的设计与实现 摘要: 本文通过对日常生活中用到的开关电源,进行了比较详细的描述和说明,也就相关制作问题进行了描述。再根据开关电源的理论、电路分析、及变压器的基础,从电路工作的角度分析了开关电源的工作原理,制作了一种比较简单,工作可靠,且适用于目前生活中常用的开关电源。这个设计的主要特点是稳压开关电源,设计中运用了开关电源中的整流、滤波、变压、过压保护等设计。最后按照电路图焊接元件,当接入220V的交流电时,负载所接的灯泡亮。 关键字:开关电源脉宽调制变压器 Design and Realization of Switching Power Supply Abstract: Based on the switching power supply used in daily life, for a more detailed description and explanation, also making the problem is described. According to the theory of switching power supply, circuit analysis, and the transformer, the-working principle of switching power supply circuit from the angle of the work,making a relatively simple, reliable, and suitable for the switch power supply in life. This design is the main characteristics of switching power supply, use in the design of rectifier, filter, transformer, overvoltage protection design of switch power supply. The final element welding according to the circuit diagram, when the access 220V alternating current, load the light bulb. Key words:switching power supply PWM transformer

LED模块开关电源设计原理

Power Logics Co., Ltd. High PF/AC Direct LED Driver LID-PC-R101B Features ? Wide input range : maximum AC 300V ? LED protection by constant current driving and power compensation ? Drive max. 40W @ 220V, max. 30W @ 110V in 25mm x 30mm x 1.6mm metal PCB condition ? Adjustable efficiency and power factor by LED array and group configuration ? Tap switching structure to implement high power factor ? 83% typical efficiency, minimum power factor 0.95 using 1tap ? No EMI issue ? Small package MLF 20pin, 7mm x 7mm ? Implementation of light and slim lighting fixture by minimizing necessary components Applications. ? Various kind of LED lighting ? Small size LED lighting – Down light, Bulb, etc General Description PC-R101B includes circuits which provide load with constant current and adjust LED power so as to be less sensitive to change of input voltage and protect LED from overloads. Also it helps to achieve high power factor by internal switching circuits and LED group separation scheme. Consequently, PC-R101B is a LED driver guarantees effective use of LEDs which are sensitive to the change of voltage and current. LED drivers generally used such as SMPS or AC/DC converter include switching component and inductors, capacitors of large capacity. These cause complex circuit and problems of noise and life of lighting apparatus. On the contrary, this driver is designed as AC direct concept without complicated circuit and huge inductors, capacitors. Therefore it helps to prolong the life of lighting apparatus and make it free from difficulties of design and debugging. Especially, using properly designed tap structure supported by this driver, it ensures over 0.99 power factor. Total three LED groups are able to be set up connecting with two tap point (TP1, TP2) and power factor will be improved by applying this tap structure interlocked with LED groups. In addition, it

相关文档
最新文档