CIGS太阳能电池缓冲层ZnS薄膜的制备与表征

CIGS太阳能电池缓冲层ZnS薄膜的制备与表征
CIGS太阳能电池缓冲层ZnS薄膜的制备与表征

三种主要的薄膜太阳能电池详解

三种主要的薄膜太阳能电池详解 摘要:上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 关键字:薄膜太阳能电池, 砷化镓, 单晶硅电池 单晶硅是制造太阳能电池的理想材料,但是由于其制取工艺相对复杂,耗能大,仍然需要其他更加廉价的材料来取代。为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。来源:大比特半导体器件网 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。来源:大比特半导体器件网 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为 1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LP E技术,其中MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术

Ⅲ-Ⅴ族化合物叠层太阳电池

Ⅲ-Ⅴ族化合物叠层太阳电池 摘要 叠层太阳电池是一种重要的新概念电池。本文简要介绍了叠层太阳电池的基本概念,了解了Ⅲ-Ⅴ族化合物的特点及为何Ⅲ-Ⅴ族化合物适用于制作叠层电池。怎样实现Ⅲ-Ⅴ族化合物叠层太阳能电池的工作原理、光伏特性及影响转换效率的因素等。探讨了相关的技术发展概况和技术难点,并就未来的发展趋势进行了展望。 关键词:Ⅲ-Ⅴ族化合物;太阳电池;新概念能源

III-V compound semiconductor multi-junction monolithic solar cell Abstract Multi-junction monolithic solar cells is a new important concept of battery.This paper briefly introduces the basic concept of multi-junction monolithic solar cells,to understand the characteristics of III-V compound and why III-V compound is suitable for manufacturing multi-junction monolithic solar cells.How to realize the III-V compound laminated working principle of solar cells,photovoltaic properties and Influence factors of conversion efficiency etc.The relative progress and difficulty in technology was discussed.And the future direction was prospected. Key words:III-V compound;solar cells;new concept resource

薄膜太阳能电池

3长江学者和创新团队发展计划资助项目(IR T0547) 徐慢:男,1964年生,博士研究生 E 2mail :opluse @https://www.360docs.net/doc/7d11817006.html, 薄膜太阳能电池3 徐 慢,夏冬林,杨 晟,赵修建 (武汉理工大学硅酸盐工程教育部重点实验室,武汉430070) 摘要 薄膜太阳能电池作为一种新的能源材料正在得到迅速的发展和进步,主要介绍了非晶硅、多晶硅薄膜太 阳能电池以及CIGS 薄膜太阳能电池,通过比较这几种薄膜太阳能电池各自的特点阐述了各种薄膜太阳能电池的发展状况。 关键词 光电功能薄膜 薄膜 太阳能电池  Thin Film Solar Cells XU Man ,XIA Donglin ,YAN G Sheng ,ZHAO Xiujian (Key Laboratory of Silicate Materials Science and Engineering of Ministry of Education , Wuhan University of Technology ,Wuhan 430070) Abstract Thin film solar cells are under study by many research group s.This paper makes an introduction of the application of photoelectric f unctional thin films in solar cells ,mainly in the application of a 2Si ∶H ,poly 2Si ∶H and CIGS thin film solar cells and also includes the introduction of their development and preparation techniques. K ey w ords photoelectric f unction thin films ,thin film ,solar cells 0 前言 随着社会的进步与发展,如今光电技术已经成为热门的学科,同时它与各种学科之间的互相交叉也大大促进了各种新的光电子材料的发展。例如,薄膜技术与光电子学领域的互相渗透使得光电子薄膜技术不断迅速发展,涌现了各种新型的光电薄膜器件,并且这些光电薄膜器件正在以较快的速度不断发展和进步。对光电薄膜材料的研究和开发工作是非常活跃的,所涉及的光电薄膜材料也很丰富,这些材料主要包括:G e 和Si 单晶以及以它们为基的掺杂体;化合物半导体有:CdS 、CdSe 、Cd Te 、ZnSe 、HgSe 、Hg Te 、PbS 、PbSe 、InP 、InAs 、InSb 、G aAs 、G aSb 等[1]。 在光(包括不可见光)的照射下,物体发射电子的现象即使物质发生某些电性质的变化,就称为光电效应。光电效应主要有光电导效应、光生伏特效应和光电子发射效应3种。光电材料中光伏材料一直是研究的热点,利用光伏效应原理不仅可以制作探测光信号的光电转化元件,还可以制造光电池———薄膜太阳能电池。随着世界能源的紧缺,薄膜太阳能电池作为一种光电功能薄膜,可以有效地解决能源短缺问题,而且它无污染,易于大面积推广。 1 薄膜太阳能电池 目前薄膜太阳能电池按材料可分为硅薄膜型、化合物半导 体薄膜型和有机薄膜型。化合物半导体薄膜型又分为非结晶型(如a 2Si ∶H )、ⅢV 2族(如CaAs )、Ⅱ2Ⅵ族(CdS 系)和磷化锌 (Zn 3P 2)等[2,3] 。 以硅为主的太阳能电池从1954年第一块单晶硅太阳电池开始,已经获得了极大的发展和演化。第一代单晶硅太阳能电 池虽然效率高,但制备所需的高纯硅工艺复杂且成本较高。为降低成本,非晶硅薄膜太阳能电池在此基础上得到了很大的发展,它制备工艺相对简单,易实现自动化生产,已在1980年开始实现产业化生产[4],但是非晶硅薄膜太阳能电池存在光致衰减效应(S 2W 效应),因而阻碍了它的进一步发展。多晶硅薄膜太阳能电池因同时具有单晶硅的高迁移率及非晶硅材料成本低、可大面积制备的优点,且无光致衰减效应,因而在薄膜太阳能电池方面得到了越来越多的重视。另外,CIGS 薄膜作为一种性能优异的化合物半导体光伏材料应用在薄膜太阳能电池上也成为各国研究的热点之一,其光电转化效率高,性能稳定而且不会发生光致衰减效应。本文将着重介绍非晶硅(a 2Si )、多晶硅(Poly 2Si )、铜铟镓硒(CIGS )这几种薄膜太阳能电池。 1.1 a 2Si ∶H 薄膜 相对于单晶硅太阳能电池,非晶硅薄膜是一种极有希望大幅度降低太阳电池成本的材料。非晶硅薄膜太阳能电池具有诸多优点使之成为一种优良的光电薄膜光伏器件。(1)非晶硅的光吸收系数大,因而作为太阳能电池时,薄膜所需厚度相对其他材料如砷化镓时,要小得多;(2)相对于单晶硅,非晶硅薄膜太阳能电池制造工艺简单,制造过程能量消耗少;(3)可实现大面积化及连续的生产;(4)可以采用玻璃或不锈钢等材料作为衬底,因而容易降低成本;(5)可以做成叠层结构,提高效率。自1976年美国的Carlson 和Wronski 制备出第一个非晶硅太阳能电池以来,非晶硅太阳能电池就成为世界各国太阳电池的研究重点。非晶硅太阳电池由于经济上的优势使之在整个太阳电池领域中的地位正在迅速升高,成为一些发达国家能源计划的重点。在薄膜太阳电池中,非晶硅太阳电池是唯一能进行大规模生产的器件,且价格便宜,市场占有率逐年增加。它能应用在如计算器、手表等弱光电池市场,也能应用在微波中继站、光伏水泵等 ? 901?薄膜太阳能电池/徐 慢等

薄膜太阳能电池分类

薄膜太阳能电池分类 21世纪初之前,太阳能电池主要以硅系太阳能电池为主,超过89%的光伏市场由硅系列太阳能电池所占领,但自2003年以来,晶体硅太阳能电池的主要原料多晶硅价格快速上涨,因此,业内人士自热而然将目光转向了成本较低的薄膜电池。薄膜太阳电池可以使用在价格低廉的玻璃、塑料、陶瓷、石墨,金属片等不同材料当基板来制造,形成可产生电压的薄膜厚度仅需数μm,目前转换效率最高可达13%以上。薄膜电池太阳电池除了平面之外,也因为具有可挠性可以制作成非平面构造其使用范围大,可和建筑物结合或是变成建筑体的一部份,使用非常广泛。 1.硅基薄膜电池 硅基薄膜电池包括非晶硅薄膜电池、微晶硅薄膜电池、多晶硅薄膜电池,而目前市场主要是非晶硅薄膜电池产品。非晶硅的禁带宽度为1.7eV,通过掺硼或磷可得到p型或n型a-Si。为了提高效率和改善稳定性,还发展了p-i-n/p-i-n双层或多层结构式的叠层电池。 2.碲化镉(CdTe)薄膜电池 碲化镉薄膜电池是最早发展的太阳电池之一,由于其工艺过程简单,制造成本低,实验室转换效率已超过16%,大规模效率超过12%,远高于非晶硅电池。不过由于镉元素可能对环境造成污染,使用受到限制。近年来美国FirstSolar公司采取了独特的蒸气输运法沉积等特殊措施,解决了污染问题,开始大规模生产,并为德国建造世界最大的光伏电站提供40MW 碲化镉太阳电池组件。 3.铜铟镓硒(CIGS)薄膜电池 铜铟镓硒薄膜电池是近年来发展起来的新型太阳电池,通过磁控溅射、真空蒸发等方法,在基底上沉积铜铟镓硒薄膜,薄膜制作方法主要有多元分布蒸发法和金属预置层后硒化法等。基底一般用玻璃,也可用不锈钢作为柔性衬底。实验室最高效率已接近20%,成品组件效率已达到13%,是目前薄膜电池中效率最高的电池之一。 4.砷化镓(GaAs)薄膜电池 砷化镓薄膜电池是在单晶硅基板上以化学气相沉积法生长GaAs薄膜所制成的薄膜太阳电池,其直接带隙1.424eV,具有30%以上的高转换效率,很早就被使用于人造卫星的太阳电池板。然而砷化镓电池价格昂贵,且砷是有毒元素,所以极少在地面使用。 5.染料敏化薄膜电池 染料敏化太阳电池是太阳电池中相当新颖的技术产品,由透明导电基板、二氧化钛(TiO2)纳米微粒薄膜、染料(光敏化剂)、电解质和ITO电极所组成。目前仍停留在实验室阶段,实验室最高效率在11%左右。 非晶硅薄膜电池 简介 非晶硅(amorphous silicon α-Si)又称无定形硅。单质硅的一种形态。棕黑色或灰黑色的微晶体。硅不具有完整的金刚石晶胞,纯度不高。熔点、密度和硬度也明显低于晶体硅。非晶硅的化学性质比晶体硅活泼。可由活泼金属(如钠、钾等) 在加热下还原四卤化硅,或用碳等还原剂还原二氧化硅制得。结构特征为短程有序而长程无序的α-硅。纯α-硅因缺陷密度高而无法使用。采用辉光放电气相沉积法就得含氢的非晶硅薄膜,氢在其中补偿悬挂链,并进行掺杂和制作pn结。非晶硅在太阳辐射峰附近的光吸收系数比晶体硅大一个数量级。禁带宽度1.7~1.8eV,而迁移率和少子寿命远比晶体硅低。现已工业使用,主要用于提炼纯硅,制造太阳电池、薄膜晶体管、复印鼓、光电传感器等。 非晶硅薄膜电池的起源 非晶硅薄膜太阳能电池由Carlson和Wronski在20世纪70年代中期开发成功,80年代其生产曾达到高潮,约占全球太阳能电池总量的20%左右,但由于非晶硅太阳能电池转化效率

CIGS薄膜太阳能电池缓冲层的研究及其发展

2010年(第39卷)第3期甘肃科技纵横 CIGS薄膜太阳能电池缓冲层的研究及其发展 赵静,王智平,王克振,冯晶晖 (兰州理工大学可再生能源研究院,甘肃兰州730050) 摘要:本论述简要介绍了CIGS薄膜太阳能电池缓冲层的发展,重点阐述了CdS和ZnS缓冲层的研究现状,指出缓冲层的制备工艺上以化学水浴法居多,从成膜机理到工艺参数的优化都做了充分的研究,对真空蒸发法的制备工艺研究则相对较少,而且大部分都集中在蒸发温度、衬底温度和沉积温度对薄膜性能的影响上。最后指出了发展过程中遇到的两个问题:一Cd对环境的污染,二化学水浴法不利于工业化大生产。 关键词:CIGS;薄膜电池;缓冲层;CdS薄膜;ZnS薄膜 CIGS薄膜太阳能电池的典型结构为Al/MgF2/ ZnO/CdS/CIGS/Mo/衬底,并以衬底为支撑。该电池成本低,性能稳定、抗辐射能力强、光电转换效率高、光谱响应范围宽、弱光性好,有可能成为未来光伏电池的主流产品之一。不加缓冲层CdS,其转换效率只有7%。如果在ZnO和CIGS之间加上缓冲层CdS,则太阳能电池的转换效率达到11%至13%,缓冲层改善了CIGS太阳能电池的性能[1]。由于缓冲层中含有有毒元素Cd,限制了薄膜太阳能电池的大规模使用;同时其制备工艺通常采用化学水浴法,但制备电池器件需要进出真空室,不利于一次成型,限制了电池的大规模生产。正是由于缓冲层对CIGS薄膜太阳能电池有着重要影响,使得很多学者对它做了深入的研究。 1缓冲层的形成及发展 1974年Bell实验室的Wagner等人[2]采用提拉法制备出了第一块CIS太阳能电池。到了1975年,经过结构改进,电池的光电转换效率为12.5%,这是CIGS 太阳能电池的雏形。1982年Boeing公司采用ZnxCd1-xS代替CdS,电池效率为10%[3]。直到1985年,R.R.Potter等人[4]才研究出了目前这种CIS电池的基本结构,即其中铜铟硒(CIS)为吸收层,CdS为缓冲层,ZnO 为窗口层,这种结构改善了电池的短波响应。薛玉明等人[5]建立异质结模型,得出了形成异质结前后的能带图。蒋方丹等[6]对CdS做为缓冲层的作用和弊端做了分析。认为CdS是非常适合作为CIGS薄膜太阳能电池缓冲层材料,但由于Cd有毒、能隙偏窄、制备工艺不匹配等因素的制约,限制了电池的大规模应用。因此,目前对缓冲层的研究主要集中在薄膜的制备工艺和无镉缓冲层材料方面。2CdS缓冲层及其制备方法 2.1化学水浴法(CBD) 化学水浴法是在溶液中利用化学反应在衬底上沉积薄膜的一种技术。因为它成本低、工艺简单、成膜质量好、反应参数易于控制等优点,因此人们从成膜机理到浓度、温度等参数优化上都做了大量的研究。 2.1.1成膜机理的研究 周向东等人[7]对成膜机理做了深入的研究,提出CdS薄膜的成核机理是Cd(NH3)42+先附着在衬底表面形成晶核,然后Cd(NH3)42+和S2-同晶核作用长大成膜,此时Cd(NH3)42+在热驱动下变得不稳定,放出氨气,同时Cd2+同S2-相互作用形成CdS。 2.1.2浓度对CdS薄膜质量影响的研究 南开大学的孙云、敖建平等人[8,9]研究了醋酸氨、硫脲的浓度对CdS薄膜晶相、S/Cd原子比、沉积速率的影响。研究表明,增加醋酸氨的浓度有利于立方相的生成,以立方相CdS制备的电池最佳效率可达到12.17%;沉积速率和S/Cd原子比随着醋酸氨、硫脲浓度的增大而增大。李华维等人[10]研究了Cd2+浓度对薄膜晶相的影响,发现随着Cd2+浓度(0.002~0.008mol·L-1)增加,沉积速率加快,薄膜晶相由六方相向立方相转变。可见关于对各溶质的不同浓度对CdS薄膜的晶相、沉积速率、S/Cd原子比和形貌的影响都做了研究。2.1.3PH值对CdS薄膜质量影响的研究 崔岩等人[11]通过加氨水调节溶液的PH值在8.43~10.09间变化,研究了薄膜的表面形貌、晶体结构、能隙等特征。结果表明,薄膜全为立方晶型,随着pH值的降低,晶粒尺寸逐渐变大,颗粒尺寸逐渐变小,晶粒倾向于沿着立方(111)面择优生长,能隙增大。敖建平 资源环境70

非晶硅薄膜太阳能电池的制备工艺流程

非晶硅薄膜太阳能电池的制备 工艺流程 非晶硅薄膜太阳能电池的制备工艺流程 清抚是玻璃镀膜必备的一道工序,因为班璃基片的清洁度会直接膨响沉积的薄臓的的匀性和粘附力?棊片上的任何微粒、油污和杂大程健上降低薄震的附若力.玻璃淸洗机是玻西在真亨橫痕.熟弯、钢化、中空合片等探加工丄艺和対璇璃农面述和清活、干燥处理的设篇.实验所采用的班隣为普通浮法股越口玻璃尺、j为700mm550mm D ?35rSa机主要由传动系统、辰洗、清水冲洗、纯水冲洗、冷、热J4千、电拎系统等组成”本立实验中使用HKD-TY1200清洗机清洗擴膜前的玻革基片” 背板玻璃清诜机工艺{£程为; 入料一城切1~盘刷洗一淀剂滾刪抚一风切2—D】水滚刷洗?傀切3—高压

喷附洗-BJ清洗一啧衲洗[-咬淋洗2-DI术洗?风刀「燥"除静电一出料玻璃淸洗后经检玲光源檢测,确认玻璃表曲没有明显微观峡陌和可见污Jft 物后方可进入镀膜阶段. “ 2,1.2玻璃基片的加热 为了提冉IF品硅太阳能电池的生产效率,首先将淆抚干挣的玻珀辜片裝载入沉枳盒.沉积盒放入侦热炉中加熱.预热炉加热方武为熱颯循环式.加热温度均20CV-300r.控富糯度£编?控制方式为PID涮节. 2J.3 AZO膜的溅射设备 实验采用与企业共同开发研制的非标大廊积苹片磁捽银膜中试线.设备有盘岚业潔和中茨电阪靶村为平沏甕材*靶材与基片闾的距离为g如.基片敖置于墓片架上,在荷动机构的潜动下征返运动.设备设计加工尺寸为宽SS0im?. K7W W的平面肢璃赴板材科.采用夹心直加無营加热方貳.有肉匀的布P方式和稳定的抽吒速度.

制备AZO薄膜之前,使用中频反应溉射沉积SiOr钩离子阻挡层,使用的Si耙纯度为99.999%, Ar气纯度为99.99%,本底真空高f 2x10^3.之后使用直流磁控裁射沉积AZO薄膜,采用氧化锌掺铝陶瓷把材,威射气体及本底真空与隔离层一致.实验中制备的电池组件需要激光刻划来完成电池的集成.AZO 薄膜沉积之后,使用波长为355nm的激光刻划AZO薄膜. 2.1.4 Si膜的PECVD设备及电池的篥成 PECVD设备是非晶硅太阳能电池生产线的关键设备,完成a-SiiH膜的沉积。本设备为多片武中试线设备,主要由反应室、片盒、真空系统,电控系统,水路.气路,机架等组成.加热采用板式加热劈室外烘烤方式,沉积室内祁址高能达到300*0。设备电源有两种:一为AE射频CRF)电源,频率为13.56MHz, 最大功率为1?2KW; 二.为AE其离频(VHP》电源,频率为40.68MHzo设备的极用真空可以达到1X10-P/沉积用的气体由供气系统提供,柜内气体种类有硅烷⑸比)、磷烷(PH3k乙硼烷厲人)、氢气但2〉、氫气(Ar)、氮气两?设条配备有尾气处理系统.用于处理被抽出的易燃、易爆及席蚀性工艺气体.此非晶莊薄膜太阳德电池中试设篇用于生产700mmX550nun的大面积璇璃基非晶硅太阳能电池组件。 1、检査压缩空气、冷却水、设备电減足否正常,梅预热好的沉积盒推入沉枳室内,馈闭炉门。 2、开维持泵,开底抽管道插板阀,待破完管道真空后关低抽管路充气阀,开底 抽管道插板阀,开滑阀泵,特真空室内压力低于50OPa以下时,关旁路预抽阀,开低抽高阀,开罗茨泵,抽压力至IP A以下,此时若分子泵前级压力低于IP B。开分子泵,当分子泵转速到达最高转速时(31080).关底抽管道插板阀.开分子泵前级阀"开髙抽阀,拉真空至本底真空,打开出气总阀,打开要做工艺气体的出口阀,调节流盘计度数,抽管路真空至本底良空. 3、打开尾气处理系统。观察尾气处理系统水、气、负压是否正常,炉口、炉内、水位有无报警,温度是否升到雯求700*0.加热裂解装置是否正常功能工作。 4、梅干泵N?吹扫址调制85L,开干泵,开干泵前级阀? 5、打开凱气、翘气、硅烷、磅烷气体瓶阀,确认后,开岀气总阀,依次开配气 柜氧气岀气阀,配气柜氨气进气阀,调节流爲计读数至工艺所需移数.通Ar起?辉.打击极板10分钟,关闭射频电瀕.再依次通入氢气、硅烷、确烷,调节角阀设定压力(0?266)?调节至工艺所需压力.待压力稳定后,开射频电源开关调节至工艺所需功率奁看辉光情况.稳定后,开始计时. 6、沉枳p层膜 7、沉枳到工艺所需时间后,关闭射频电源,迅速调小工艺气体流量.用干泵抽真

(整理)薄膜太阳能电池种类

薄膜太阳能电池种类 为了寻找单晶硅电池的替代品,人们除开发了多晶硅,非晶硅薄膜太阳能电池外,又不断研制其它材料的太阳能电池。其中主要包括砷化镓III-V族化合物,硫化镉,碲化镉及铜锢硒薄膜电池等。 上述电池中,尽管硫化镉薄膜电池的效率较非晶硅薄膜太阳能电池效率高,成本较单晶硅电池低,并且也易于大规模生产,但由于镉有剧毒,会对环境造成严重的污染,因此,并不是晶体硅太阳能电池最理想的替代。砷化镓III-V化合物及铜铟硒薄膜电池由于具有较高的转换效率受到人们的普遍重视。 砷化镓太阳能电池 GaAs属于III-V族化合物半导体材料,其能隙为1.4eV,正好为高吸收率太阳光的值,与太阳光谱的匹配较适合,且能耐高温,在250℃的条件下,光电转换性能仍很良好,其最高光电转换效率约30%,特别适合做高温聚光太阳电池。 砷化镓生产方式和传统的硅晶圆生产方式大不相同,砷化镓需要采用磊晶技术制造,这种磊晶圆的直径通常为4—6英寸,比硅晶圆的12英寸要小得多。 磊晶圆需要特殊的机台,同时砷化镓原材料成本高出硅很多,最终导致砷化镓成品IC成本比较高。磊晶目前有两种,一种是化学的MOCVD,一种是物理的MBE。 GaAs等III-V化合物薄膜电池的制备主要采用MOVPE和LPE技术,其中 MOVPE方法制备GaAs薄膜电池受衬底位错,反应压力,III-V比率,总流量等诸多参数的影响。GaAs(砷化镓)光电池大多采用液相外延法或MOCVD技术制备。用GaAs作衬底的光电池效率高达29.5%(一般在19.5%左右) ,产品耐高温和辐射,但生产成本高,产量受限,目前主要作空间电源用。以硅片作衬底,MOCVD技术异质外延方法制造GaAs电池是降用低成本很有希望的方法。已研究的砷化镓系列太阳电池有单晶砷化镓,多晶砷化镓,镓铝砷--砷化镓异质结,金属-半导体砷化镓,金属--绝缘体--半导体砷化镓太阳电池等。 砷化镓材料的制备类似硅半导体材料的制备,有晶体生长法,直接拉制法,气相生长法,液相外延法等。由于镓比较稀缺,砷有毒,制造成本高,此种太阳电池的发展受到影响。除GaAs外,其它III-V化合物如Gasb,GaInP等电池材料也得到了开发。 1998年德国费莱堡太阳能系统研究所制得的GaAs太阳能电池转换效率为 24.2%,为欧洲记录。首次制备的GaInP电池转换效率为14.7%。另外,该研

薄膜太阳能电池的优缺点

薄膜型太阳能电池的优缺点 3.4 薄膜型太阳能电池 薄膜型太阳能电池由于使用材料较少,就每一模块的成本而言比起堆积型太阳能电池有着明显的减少,制造程序上所需的能量也较堆积型太阳能电池来的小,它同时也拥有整合型式的连接模块,如此一来便可省下了独立模块所需在固定和内部连接的成本。未来薄膜型太阳能电池将可能会取代现今一般常用硅太阳能电池,而成为市场主流。 非晶硅太阳能电池与单晶硅太阳能电池或多晶硅太阳能电池的最主要差异是材料的不同,单晶硅太阳能电池或多晶硅太阳能电池的材料都疏,而非晶硅太阳能电池的材料则是SiH4,因为材料的不同而使非晶硅太阳能电池的构造与晶硅太阳能电池稍有不同。 SiH4 最大的优点为吸光效果及光导效果都很好,但其电气特性类似绝缘体,与硅的半导体特性相差甚远,因此最初认为SiH4 是不适合的材料。但在1970年代科学家克服了这个问题,不久后美国的RCA制造出第一个非晶硅太阳能电池。虽然SiH4 吸光效果及光导效果都很好,但由于其结晶构造比多晶硅太阳能电池差,所以悬浮键的问题比多晶硅太阳能电池还严重,自由电子与电洞复合的速率非常快;此外SiH4 的结晶构造不规则会阻碍电子与电洞的移动使得扩散范围变短。基于以上两个因素,因此当光照射在SiH4上产生电子电洞对后,必须尽快将电子与电洞分离,才能有效产生光电效应。所以非晶硅太阳能电池大多做得很薄,以减少自由电子与电洞复合。由于SiH4的吸光效果很好,虽然非晶硅太阳能电池做得很薄,仍然可以吸收大部分的光。 非晶硅薄膜型太阳能电池的结构不同于一般硅太阳能电池,如图9 所示,其主要可分为三层,上层为非常薄(约为0.008微米)且具有高掺杂浓度的P+;中间一层则是较厚(0.5~1 微米)的纯质层(Intrinsic layer),但纯质层一般而言通常都不会是完全的纯质(Intrinsic),而是掺杂浓度较低的n 型材料;最下面一层则是较薄(0.02 微米)的n。而这种p+-i-n的结构较传统p-n结构有较大的电场,使得纯质层中生成电子电洞对后能迅速被电场分离。而在P+上一层薄的氧化物膜为透明导电膜(Transparent Conducting Oxide :TCO),它可防止太阳光反射,以有效吸收太阳光,通常是使用二氧化硅(SnO2)。非晶硅太阳能电池最大的优点为成本低,而缺点则是效率低及光电转换效率随使用时间衰退的问题。因此非晶硅太阳能电池在小电力市场上被广泛使用,但在发电市场上则较不具竞争力。 图9 非晶硅薄膜型太阳能电池的结构图

碲化镉薄膜太阳能电池及其溅射制备

3上海海事大学青年骨干教师培养项目(No.025063)  张榕:通信作者 Tel :021********* E 2mail :rongzhang @https://www.360docs.net/doc/7d11817006.html, 碲化镉薄膜太阳能电池及其溅射制备3 张 榕1,周海平2,陈 红3 (1 上海海事大学基础科学部,上海200135;2 四川师范大学物理与电子工程学院,成都610066; 3 上海交通大学物理系凝聚态光谱与光电子物理实验室,上海200030) 摘要 简单综述了化合物半导体碲化镉太阳能电池的发展历史、基本结构和核心问题,在此基础上重点总结了 用溅射法制备的多晶碲化镉薄膜太阳能电池的优缺点、面临问题、发展现状,展望了它的发展趋势,并讨论了用溅射法制备渐变带隙碲化镉薄膜太阳能电池以提高转化效率的可能性。 关键词 碲化镉 薄膜太阳能电池 溅射法中图分类号:TM914.42 An Overvie w of CdT e Thin Film Solar Cells and R elevant Sputtering F abrication ZHAN G Rong 1,ZHOU Haiping 2,C H EN Hong 3 (1 Basic Science Department ,Shanghai Maritime University ,Shanghai 200135;2 Department of Physics and Electronic Engineering , Sichuan Normal University ,Chengdu 610066;3 Laboratory of Condensed Matter Spectroscopy and Opto 2electronic Physics , Department of Physics ,Shanghai Jiaotong University ,Shanghai 200030) Abstract This article firstly gives a brief overview to the development history ,basic structures and critical is 2 sues of compound semiconductor Cd Te 2based solar cells ,then sheds light on the advatages and disadvantages ,current status ,and trend of development of the sputtered polycrystalline Cd Te thin film solar cells.Finally ,it also discusses the possibility to fabricate graded 2bandgap Cd Te solar cells by using the sputtering method K ey w ords Cd Te ,thin film solar cells ,sputtering   0 引言 随着当今世界人口和经济的增长、能源资源的日益匮乏、环境的日益恶化以及人们对电能的需求量越来越大,太阳能的开发和利用已经在全球范围内掀起了热潮。这非常有利于生态环境的可持续发展,造福子孙后代,因此世界各国竞相投资研究开发太阳能电池。 太阳能电池是一种利用光生伏特效应将太阳光能直接转化为电能的器件。早在1839年,科学家们已经开始研究光生伏特效应,到20世纪40年代中期,太阳能电池的研制取得了重大突破,在单晶硅中发现了称之为Czochralski 的过程。1954年,美国贝尔实验室根据这个Czochralski 的过程成功研制了世界上第一块太阳能电池,能量转换效率达到4%。太阳能电池的问世,标志着太阳能开始借助人工器件直接转换为电能,这是世界能源业界的一次新的飞跃。 太阳能电池种类繁多,包括单晶硅太阳能电池、多晶硅太阳能电池、非晶硅太阳能电池、化合物半导体电池和叠层太阳能电池等。 硅材料是目前太阳能电池材料(即光伏材料)的主流,这不仅因为硅在地壳中含量丰富,而且用它制成的电池转化效率相对较高。单晶硅太阳能电池在实验室里最高的转换效率接近25%,而规模生产的单晶硅太阳能电池,其效率为15%。但是单晶硅太阳能电池制作工艺繁琐,且单晶硅成本价格居高不下,大幅降低成本非常困难,无法实现太阳能发电的大规模普及。 随着新材料的不断开发和相关技术的发展,以其他材料为基础的太阳能电池愈来愈显示出诱人的前景。目前国际低成本大规模生产技术的研究主要集中在多晶硅、大面积薄膜非晶硅、碲化镉(Cd Te )、铜铟硒(CuInSe 2)太阳能电池,Ⅲ2Ⅴ族化合物半导体高效太阳能电池,非晶硅及结晶硅混合型薄膜太阳能电池等方面。与单晶硅太阳能电池相比,除多晶硅、砷化镓、铜铟硒、碲化镉等外,其他材料的电池光电转化效率普遍未超过15%。尽管如此,硅材料仍不是最理想的光伏材料,这主要是因为硅是间接带隙半导体材料,其光学吸收系数较低,所以研究其他光伏材料成为当前的一种趋势。其中,Cd Te 和CuInSe 2被认为是两种非常有应用前景的光伏材料,目前已经取得一定的进展,但是要将它们大规模生产并与晶体硅太阳能电池抗衡还需要投入大量的人力物力进行研发。 Cd Te 是一种化合物半导体,在太阳能电池中一般作吸收层。由于它的直接带隙为1.45eV [1],最适合于光电能量转换, 因此使得约2 μm 厚的Cd Te 吸收层在其带隙以上的光学吸收率达到90%成为可能,允许的最高理论转换效率在大气质量AM1.5条件下高达27%[2]。Cd Te 容易沉积成大面积的薄膜,沉积速率也高。因此,Cd Te 薄膜太阳能电池的制造成本较低,是应用前景较好的一种新型太阳能电池,已成为美、德、日、意等国研发的主要对象。目前,已获得的最高效率为16.5%(1cm 2),电池模块效率达到11%(0.94m 2)[2~4]。然而,人们当前对Cd Te 太阳能电池的特点和发展趋势认识很零散,没有一个系统的、整体的了解。此外,人们对用溅射法制备的多晶碲化

薄膜晶体硅太阳能电池分析比较

薄膜晶体硅太阳能电池分析比较 《中国组件行业投资前景及策略咨询报告》分析:目前在工业上,硅的成本大约占硅太阳能电池生产成本的一半。为减少硅的消耗量,光伏(PV)产业正期待着一些处于研究开发中的选择方案。其中最显然的一种就是转向更薄的硅衬底。现在,用于太阳能电池生产的硅衬底厚度略大于200mm,而衬底厚度略小于100mm的技术正在开发中。为使硅有源层薄至5-20 mm,可以在成本较低的硅衬底上淀积硅有源层,这样制得的电池被称为薄膜。为使其具有工业可行性,主要的挑战是在适于大规模生产的工艺中,怎样找到提高效率和降低成本之间的理想平衡。已经存在几种制造硅有源层的技术1,本文将讨论其中的三种。 薄膜PV基础 第一种技术是制作外延(epitaxial)(图1),从高掺杂的晶体硅片(例如优级冶金硅或废料)开始,然后利用化学气相淀积(CVD)方法来淀积外延层。除成本和可用性等优势以外,这种方法还可以使硅太阳能电池从基于硅片的技术逐渐过渡到薄膜技术。由于具有与传统体硅工艺类似的工艺过程,与其它的薄膜技术相比,这种技术更容易在现有工艺线上实现。 第二种是基于层转移(layer transfer)的技术,它在多孔硅薄膜上外延淀积单晶硅层,从而可以在工艺中的某一点将单晶硅层从衬底上分离下来。这种技术的思路是多次重复利用母衬底,从而使每个太阳能电池的最终硅片成本很低。正在研究中的一种有趣的选择方案是在外延之前就分离出多孔硅薄膜,并尝试无支撑薄膜工艺的可能性。 最后一种是薄膜多晶硅太阳能电池,即将一层厚度只有几微米的晶体硅淀积在便宜的异质衬底上,比如陶瓷(图2)或高温玻璃等。晶粒尺寸在1-100mm之间的多晶硅薄膜是一种很好的选择。我们已经证实,利用非晶硅的铝诱导晶化可以获得高质量的多晶硅太阳能电池。这种工艺可以获得平均晶粒尺寸约为5 mm 的很薄的多晶硅层。接着利用生长速率超过1 mm/min的高温CVD技术,将种子层外延生长成几微米厚的吸收层,衬底为陶瓷氧化铝或玻璃陶瓷。选择热CVD是因为它的生长速率高,而且可以获得高质量的晶体。然而这样的选择却限定了只能使用陶瓷等耐热衬底材料。这项技术还不像其它薄膜技术那样成熟,但已经表现出使成本降低的巨大潜力。

薄膜太阳能电池基础知识整理

非晶硅薄膜太阳能电池基础知识 一、优点: 1.光谱特性好(弱光性好、光谱吸收范围宽) 2.温度特性好(温度上升时电池效率下降很小) 3.成本能耗低(硅用量少:2um、生产温度底:200度) 4.生产效率高(连续,大面积,自动化生产) 5.使用方便(重量轻,厚度薄.可弯曲,易携带) 6.无毒无污染、美观大方 缺点: 二、非晶硅薄膜太阳能电池的四个效应: 1.光电效应 2.光致衰退效应(薄膜经较长时间的强光照射或电流通过,在其内部将产生缺陷而 使薄膜的使用性能下降,简称为S-W效应) 3.边缘效应(边缘效率比中心效率低) 4.面积效应(面积越大,效率越低) 三、结构 1.一般结构 2.非晶\微晶硅叠层结构

衬底:玻璃、不锈钢、特种塑料 TOC :透明导电氧化膜(要求:透光性>80%、表面绒面度12~15% 面电阻R 9~13 Ω ) 四、原理 非晶硅太阳电池的工作原理是基于半导体的光伏效应。当太阳光照射到电池上时,电池吸收光层(i 层)能产生光生电子—空穴对,在电池内建电场Vb 的作用下,光生电子和空穴被分离,空穴漂移到P 边,电子漂移到N 边,形成光生电动势VL, VL 与内建电势Vb 相反,当VL = Vb 时,达到平衡; IL = 0, VL 达到最大值,称之为开路电压Voc ; 当外电路接通时,则形成最大光电流,称之为短路电流Isc ,此时VL= 0;当外电路加入负载时,则维持某一光电压VL 和光电流IL 。其I--V 特性曲线见图 3 SiO2(20~40nm) TCO(700~1000nm) a-si(~300nm) SiO2(100nm) μc-Si (~1.7μm ) AZO (~100nm) Ag (130~200nm)

采用叠层结构的有机太阳能电池

27 & PROCESSING MANUFACTURING 工艺与制造 美 国国家标准局(NIST,马里兰州Gaithersburg)最新的研究成果——一种新型的具有商业价值的太阳能电 池——使太阳能电池更加接近于实际应用。NIST的科研人员对复杂的有机光电材料进行了深入的研究,这种新材料是有机光电器件的核心部分。 有机光电器件依靠有机物分子将吸收到的太阳光转化为电能,相对于传统的硅材料电池具有显著的优势,因而成为研究的热点。有机太阳能电池的原料为一种类似墨水的物质,将其涂覆在柔性表面从而制造出能够覆盖大面积的太阳能电池模块,这个过程与展开一卷地毯类似。有机太阳能电池制造成本更加低廉,并且易于为多种功耗应用所采纳,但是,要真正应用到实际还需要对该技术进行改进。 不同种类太阳能电池的转化效率相差很大,这主要取决于太阳能电池单元的制造工艺。单晶硅太阳能电池是在由单晶硅棒切割而成的厚度为200微米的硅片上制造的,处于试验阶段的电池的转化效率已经接近24%,商用模块的转化效率也已经超过15%。多晶硅太阳能电池是在多晶硅锭切片上进行加工,因而制造成本低廉,但同时电池的转化效 采用叠层结构的有机太阳能电池 Alexander E. Braun, Senior Editor 率也低于单晶硅电池。目前,处于实验室阶段的多晶硅电池的转化效率达到了18%,商用模块的转化效率接近14%。典型的太阳能电池模块的使用寿命可以达到20年左右。 从转化效率和使用寿命的角度来看,即使是目前性能最佳的有机物太阳能电池,光电转化效率也未达到6%,使用寿命也仅有几千个小时。NIST的David Germack表示:“工业界普遍认为,当该太阳能电池的转化效率超过10%,同时使用寿命达到10000小时后,这项技术将会被以更快的速度被采用。”如何对电池进行优化,关键在于了解材料内部的变化,但我们对于这方面的研究还处于起步阶段。 近期,NIST的研究团队对材料的研究已经取得了突破性的进展,采用新型有效的测试方法揭示了如何控制有机光电材料合成的方法。有机光电器件制造工艺中所用的“墨”通常是由能够吸收太阳光(通过太阳光照射使材料释放电子)的有机物材料与富勒烯混合而成,富勒烯是一种由碳原子构成的球形分子,主要用于收集电子。当“墨”涂覆到表面后,有机材料和富勒烯的混合物会硬化形成薄膜,硬化过程中,有机材料所形成的随机网络与富勒烯通道(如图所示)混合在一起。对于常规器件,理想状况的有机物网络要能够完全接触到薄膜下表面,而富勒烯通道则将与上表面接触,从而电流能够沿着正确的方向流出器件。尽管如此,如果在有机物与薄膜下表面之间形成富勒烯阻挡层,电池的光电转化效率将会降低。 通过测量薄膜界面对X光的吸收情况,NIST发现通过改变电极表面的特性,可以使其排斥富勒烯(就好象油排斥水一样)同时吸引聚合物。这样,界面的电学性能也会发生显著的变化。最终的结构将提高光电流到达恰当电极的几率,同时降低富勒烯在薄膜底部的沉积,这两方面都将使太阳能电池的光电转化效率或者寿命得到改善。 Germack表示:“针对薄膜的边缘,我们已经确定了一些需要进行优化的重要参数,这也意味着整个行业将着手对太阳能电池整体性能进行优化。” 目前,NIST的研究人员根据其对薄膜边缘的了解,开始对整个薄膜内部的反应进行研究。这方面的知识对于研究有机太阳能电池的工作原理以及老化过程,以及如何延长其使用寿命至关重要。 图中所示为有机光电器件的剖面图,光线穿过上层材料后会在有机材料与富勒烯(polymer-fullerene)的混合层中形成光电流。有机材料(棕色)与富勒烯(蓝色)形成的通路保证电流能够流向位于底层的电极。研究结果揭示了导电通道形成的最新信息,这将为提高电池光电转化效率提供帮助。(来源: NIST)

薄膜太阳能电池技术及市场发展现状

薄膜电池技术发展现状 太阳能电池发展中,薄膜电池从一开始就以低成本成为众人关注的亮点,目前国际上已经能进行产业化大规模生产的薄膜电池主要有3种,硅基薄膜太阳能电池、铜铟镓硒薄膜太阳能电池(CIGS )、碲化镉薄膜太阳能电池(CdTe ),其中,硅基薄膜电池以其特有的优势快速发展。 2010年行业专家预测,a-Si ,CdTe ,CIGS 3种电池将分别占有薄膜光伏市场的52%,37%和11%。可 见,硅基薄膜电池在中长期发展阶段仍将占据薄膜光伏市场的主导地位。薄膜电池近几年全球产量、市场份额趋势预测见表1、表2。笔者将重点介绍硅基薄膜太阳电池技术和薄膜太阳能电池市场发展现状。 摘 要:详细叙述了硅基薄膜太阳能电池结构、工艺制造技术,a-Si 沉积设备,并针对薄膜电池技术的发展现状, 分析了薄膜电池引起波动和变化的原因,展望了BIPV 薄膜电池在未来城市建筑中的应用前景。关键词:薄膜太阳能电池;非晶硅;转换效率中图分类号:TN604 文献标志码:A 收稿日期:2011-05-12;修回日期:2011-06-16 作者简介:张世伟(1962-),男,山西运城人,高级工程师,主要从事电子工艺及专用设备研究,E-mail :scjs@https://www.360docs.net/doc/7d11817006.html, 。 薄膜太阳能电池技术及市场发展现状 (中国电子科技集团公司第二研究所,山西 太原 030024) 张世伟 文章编号:1674-9146(2011)07-0041-04 表1 近几年薄膜电池全球产量 200920102011201220137211224196027373136185.5341.5484627.577311041605214426493151 2010.53170.545886013.5706054.9150.6246.7344.0544.63 9.2310.7710.5510.4310.9535.8638.6142.7245.5144.42年份 碲化镉(CdTe ) /MW 铜铟镓硒(CIGS ) /MW 非晶硅薄膜 /MW 全球产量/MW CdTe 市场份额/%CIGS 市场份额/%非晶硅薄膜市场份额 /% 表2 市场份额及趋势预测 2009201020112012201311531865270535553625464591.5721.5880107020902680311937464158 3707513765458181885356.3952.1847.6545.7946.97 12.5211.5111.0210.7612.0931.163.3141.3343.4540.95年份 碲化镉(CdTe )/MW 铜铟镓硒(CIGS )/MW 非晶硅薄膜 /MW 全球产量/MW CdTe 市场份额/%CIGS 市场份额/%非晶硅薄膜市场份额 /%

相关文档
最新文档