大连理工大学数学系考研试题集_数学分析

大连理工大学数学系考研试题集_数学分析
大连理工大学数学系考研试题集_数学分析

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; , 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

(完整版)大连理工大学高等数值分析抛物型方程有限差分法

抛物型方程有限差分法 1. 简单差分法 考虑一维模型热传导方程 (1.1) )(22x f x u a t u +??=??,T t ≤<0 其中a 为常数。)(x f 是给定的连续函数。(1.1)的定解问题分两类: 第一,初值问题(Cauchy 问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: (1.2) ()()x x u ?=0,, ∞<<∞-x 第二,初边值问题(也称混合问题):求足够光滑的函数()t x u ,,满足方程(1.1)和初始条件: ()13.1 ()()x x u ?=0,, l x l <<- 及边值条件 ()23.1 ()()0,,0==t l u t u , T t ≤≤0 假定()x f 和()x ?在相应的区域光滑,并且于()0,0,()0,l 两点满足相容条件,则上述问题有唯一的充分光滑的解。

现在考虑边值问题(1.1),(1.3)的差分逼近 取 N l h = 为空间步长,M T = τ为时间步长,其中N ,M 是 自然数, jh x x j ==, ()N j ,,1,0Λ=; τ k y y k ==, ()M k ,,1,0Λ= 将矩形域G {}T t l x ≤≤≤≤=0;0分割成矩形网格。其中 ()j i y x ,表 示网格节点; h G 表示网格内点(位于开矩形G 中的网格节点)的集合; h G 表示位于闭矩形G 中的网格节点的集合; h Γ表示h G -h G 网格边界点的集合。 k j u 表示定义在网点()k i t x ,处的待求近似解,N j ≤≤0,M k ≤≤0。 注意到在节点()k i t x ,处的微商和差商之间的下列关系 ((,)k j k j u u x t t t ????≡ ? ????): ()() ()ττ O t u t x u t x u k j k j k j +??? ????=-+,,1 ()() ()2112,,ττ O t u t x u t x u k j k j k j +??? ????=--+ ()()()h O x u h t x u t x u k j k j k j +??? ????=-+,,1 ()() ()h O x u h t x u t x u k j k j k j +??? ????=--,,1 ()() ()2112,,h O x u h t x u t x u k j k j k j +??? ????=--+ ()()() ()2 222 11,,2,h O x u h t x u t x u t x u k j k j k j k j +???? ????=+--+ 可得到以下几种最简差分格式

大连理工大学2009年数学分析考研试题

大连理工大学2009年研究生入学考试数学分析试题 一、解答下列问题。 1、 判断下列数列是否收敛 222 111123n ++++…… 2、 设{}n a 1= 1= 3、 判断下列函数是否一致连续 ()1cos n f x e x ??= ??? ,(]0,1x ∈ 4、 设,y u f xy x ??= ???,求:22u x ??,2u x y ??? 5、 已知:()f a 存在,求()()lim x a xf a af x x a →-- 6、 设()f x 在[],a b 上可导,且()f a =()f b ,证明:存在(),a b ξ∈,使得 ()()()22f f a f ξξξ-= 7、 求极限()2lim ln n x x x →∞ 8、 求下列函数的Fourior 级数展开(),0,0x x f x x x ππππ+≤,使得 ()()0f x f x ≥,()00,x x x δδ∈-+,证明存在一个区域I 使得()f x 在I 上是一个常数。 二、设()f x 是[],a b 上具有连续的导数,()0a b <<,()()0f a f b ==,()2 1b a f x dx =?, 证明()()2 2'14b a x f x dx >? 三、给定函数列()()()2,3,n x x Inx f x n n α==…试问当α取何值时,(){}n f x 在[0,)+∞上

1大连理工数学分析试题及解答

大连理工大学2001年硕士生入学考试 数学分析试题 一. 从以下的1到8题中选答6题 1. 证明:2 ()f x x =在区间[0,]M 内一致连续(M 为任意正数),但是在[0,)+∞不一致 连续 2. 证明:若()f x 在[,]a b 内连续,那么()f x 在[,]a b 内Riemann 可积. 3. 证明:若1α>,那么广义积分1 sin x dx α+∞ ? 收敛 4. 证明:若()f x ,()g x 为区间(,)a b 上的连续函数,对任意的(,)(,)a b αβ?有: ()()f x dx g x dx β β α α =??,那么, ()()f x g x ≡于(,)a b 5. 证明:若1 n n a ∞ =∑收敛,那么 1 nx n n a e ∞ -=∑在[0,)+∞一致收敛 6. 已知:2 ,0 ()0,0 x e x f x x -?≠?=?=??,求"(0)f 7. 已知:()() 1(,)()2 2x at x at x at x at u x t d a φφψαα+-++-= + ?. 其中, ψ和φ分别是可以求导一次和求导两次的已知函数,计算 22 222 (,)(,)u x t u x t a t x ??-?? 8. 计算,半径为R 的球的表面积 二. 从9到14题中选取6题 9.已知: lim '()0x f x →∞ =,求证: () lim 0x f x x →∞ =

10.证明: ()a f x dx +∞ ? 收敛,且lim ()x f x λ→+∞ =,那么0λ= 11.计算曲面积分: 333 S I x dydz y dzdx z dxdy = ++??, 其中S 为旋转椭球面222 2221x y z a b c ++=的外侧 12.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: ()()n n S x f x =对于任意小于1的正数δ,在区间(0,1]δ-一致收敛,但是不在(0,1)一致收敛 13.设()[0,1]f x C ∈,(0)0f =,(1)1f =,0()1f x ≤<. 求证: 1 0lim ()0n n f x dx →∞ =? 14.证明:若()[,]n u x C a b ∈,1,2,...,...n =且1 ()n n u b ∞ =∑发散,那么1 ()n n u x ∞ =∑不在[,)a b 一致收 敛

大连理工大学入学测试机考专升本高等数学模拟题

大连理工大学入学测试机考专升本高等数学模拟题1、题目Z1-2(2)() 标准答案:A 2、题目20-1:(2)() 标准答案:A 3、题目20-2:(2)() 标准答案:B 4、题目20-3:(2)() 标准答案:A 5、题目20-4:(2)() 标准答案:D 6、题目20-5:(2)() 标准答案:D

标准答案:A 8、题目20-7:(2)() 标准答案:D 9、题目20-8:(2)() 标准答案:C 10、题目11-1(2)() 标准答案:C 11、题目11-2(2)() 标准答案:B 12、题目11-3(2)() 标准答案:A 13、题目20-9:(2)() 标准答案:C

标准答案:D 15、题目11-5(2)() 标准答案:C 16、题目20-10:(2)() 标准答案:B 17、题目11-6(2)() 标准答案:B 18、题目11-7(2)() 标准答案:C 19、题目11-8(2)() 标准答案:C 20、题目11-9(2)() 标准答案:D 21、题目11-10(2)() 标准答案:B

标准答案:C 23、题目19-2:(2)() 标准答案:B 24、题目19-3:(2)() 标准答案:D 25、题目12-1(2)() 标准答案:D 26、题目12-2(2)() 标准答案:D 27、题目19-4:(2)() 标准答案:B 28、题目12-3(2)() 标准答案:B 29、题目12-4(2)() 标准答案:C

标准答案:A 31、题目19-5:(2)() 标准答案:C 32、题目12-6(2)() 标准答案:A 33、题目12-7(2)() 标准答案:B 34、题目19-6:(2)() 标准答案:B 35、题目12-8(2)() 标准答案:B

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

大连理工大学上学期工科数学分析基础学习知识试题

2010工科数学分析基础(微积分)试题 一、填空题 (每题6分,共30分) 1.函数?? ? ?? ??? ??-≥+=01 0)(2πx x e x bx a x f bx ,=- →)(lim 0x f x ,若函数)(x f 在0=x 点连续,则b a ,满足 。 2.=?? ? ??+∞→x x x x 1lim , =??? ??+++???++++++∞→n n n n n n n n n 2222211lim 。 3.曲线? ??==t e y t e x t t cos 2sin 在()1,0处的切线斜率为 ,切线方程为 。 4.1=-+xy e y x ,=dy ,='')0(y 。 5.若22 lim 2 21=-+++→x x b ax x x ,则=a ,=b 。 二、单项选择题 (每题4分,共20分) 1.当0→x 时,1132-+ax 与x cos 1-是等价无穷小,则( ) (A )32= a , (B )3=a , (C). 2 3 =a , (D )2=a 2.下列结论中不正确的是( ) (A )可导奇函数的导数一定是偶函数; (B )可导偶函数的导数一定是奇函数; (C). 可导周期函数的导数一定是周期函数; (D )可导单调增加函数的导数一定是单调增加函数; 3.设x x x x f πsin )(3-=,则其( ) (A )有无穷多个第一类间断点; (B )只有一个跳跃间断点; (C). 只有两个可去间断点; (D )有三个可去间断点; 4.设x x x x f 3 )(+=,则使)0() (n f 存在的最高阶数n 为( )。 (A )1 (B )2 (C) 3 (D )4 5.若0)(sin lim 30=+→x x xf x x , 则20) (1lim x x f x +→为( )。 (A )。 0 (B )6 1 , (C) 1 (D )∞

大工《高等数学》课程考试模拟试卷A答案

绝 密★启用前 大连理工大学网络教育学院 2010年9月份《高等数学》课程考试 模拟试卷答案 考试形式:闭卷 试卷类型:A 一、单项选择题(本大题共10小题,每小题2分,共20分) 1.B 2.C 3.A 4.C 5.D 6.C 7.D 8.A 9.A 10.B 二、填空题(本大题共10小题,每小题3分,共30分) 1.dx x 45 2.x e 3.0 4.5 5.C x x +-3 31 (不写常数C 扣1分) 6.0 7.)cos(2 2y x x 8.2ln 21 9.61 10.C x y +=22(不写常数C 扣1分) 三、计算题(本大题共5小题,每小题8分,共40分) 1.解:11lim )1)(1(1lim 1 1lim 1121+=+--=--→→→x x x x x x x x x (4分)21=(4分) 2.解:)(sin sin 1'= 'x x y (4分)x x cos sin 1=x cot =(4分) 3.解:??=x xd xdx 33sin 313sin (4分)C x +-=3cos 31(4分)(不写常数C 扣1分) 4.解法1:令x t =,则tdt dx t x 2,2== 当1=x 时,1=t ;4=x 时,2=t (4分) 于是???=?=212 14122dt e dt t t e dx x e t t x (2分) )(21222e e e t -==(2分) 解法2:x d e dx x e x x ??=41412(4分))(21422e e e x -==(4分) 5.解:t dt dx 4=(2分) t dt dy cos =(2分)

数学分析报告考研试题

高数考研试题2 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?????+='--x x x x x x x f 若若λλλ 显然当2>λ时,有) 0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续. 【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=2 33与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. (3)设a>0, ,x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则??-=D dxdy x y g x f I )()(= 2 a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域积分即可. 【详解】 ??-=D dxdy x y g x f I )()(=dxdy a x y x ??≤-≤≤≤1 0,102 =. ])1[(21 02101 2a dx x x a dy dx a x x =-+=??? + 【评注】 若被积函数只在某区域不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例8.16-17】 . (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵 T E A αα-=, T a E B αα1+=,

大连理工大学2005硕士研究生考试数学分析试题及解答

大连理工大学2005硕士研究生考试试题数学分析试题及解答 一、 计算题 1、 求极限:122 2 (i) ,lim n n n n a a na a a n →∞ →∞+++=其中 解: 1212222...(1)(1)lim lim lim ()(1)212 n n n n n n a a na n a n a a Stolz n n n n +→∞→∞→∞+++++===+-+利用公式 2、求极限:2 1lim (1)x x x e x -→∞ + 解: 22 2 222 1(1) 1lim (1)lim()1111(1)(1)(ln(1)) 1lim lim 11 1111(())21lim 121(1)112lim (1)lim( )lim()x x x x x x x x x x x x x x x x x x x x e x e e x x x x x x o e x x x x e x e e x x e x e e e -→∞→∞→∞→∞→∞-→∞→∞→∞++=+-++-+=--+- +==--+- ∴+=== 3、证明区间(0,1)和(0,+∞)具有相同的势。 证明:构造一一对应y=arctanx 。 4、计算积分2 1 D dxdy y x +?? ,其中D 是x=0,y=1,y=x 围成的区域 解:

1120220001 1 1011ln()|ln(1)ln [(1)ln(1)(1)ln ]|2ln 2 y y D dxdy dxdy x y dy y x y x y dy ydy y y y y y y ==+++=+-=++-+-+=?? ????? 5、计算第二类曲线积分:22 C ydx xdy I x y --=+?,22:21C x y +=方向为逆时针。 解 : 222222002222 2tan 2222 cos ,[0,2)1sin 211 sin cos 4cos 222113cos 22cos 22 13(2)(1)812arctan 421(2)(1)2 311421C x x y ydx xdy I d d x y x x x x d x dx x x x x ππθθ θπθθθθθθθθ +∞+∞=-∞-∞=?? ∈? =?? ---=???→=-+++-+-++?????→-=--+++ +=-?????换元万能公式代换22 6426212x dx d x x ππ+∞+∞-∞-∞+=-++??+ ??? ?? 6、设a>0,b>0,证明:1 11b b a a b b ++?? ?? ≥ ? ?+?? ?? 。 证明:

大工高等数学课程考试模拟试卷A答案

大工高等数学课程考试模 拟试卷A答案 Prepared on 24 November 2020

机密★启用前 大连理工大学网络教育学院 2015年3月份《高等数学》课程考试模拟试卷答案 考试形式:闭卷试卷类型:A 一、单项选择题(本大题共10小题,每小题2分,共20分)1、C 2、A 3、C 4、B 5、B 6、C 7、D 8、B 9、C 10、A 二、填空题(本大题共 10 小题,每小题 3 分,共 30 分) 1、2 1 -=x y 2、0 3、dx x x x x x x x ??? ? ??-+---22 22121)23(arccos 6 4、>(或写成“大于”) 5、C x x +-3sin 31 sin 6、13-=x y 7、x 2 sin 2ππ 8、C e x +--9、必要10、 2 2y x xy + 三、计算题(本大题共5小题,每小题8分,共40分) 1、解:所给极限为“ ”型,注意当0→x 时,x x ~)1ln(+(4分)。因此 211sin lim sin lim )1ln(sin lim 000=+=?? ? ??+=+=++→→→x x x x x x x x x x x x x (4分) 2、解:本题为第一类换元法计算不定积分 解法Ⅰ做变量代换,令,1 ,ln du dx x u x ==(4分) C x C u udu dx x x +=+==??ln sin sin cos ln cos (4分) 解法Ⅱ凑微分法,使用凑微分公式 3、解:依前述求定义域的原则,需有???>+-≥--01204222x y y x ,(4分)即???>+≤+x y y x 214 222(4分)

数学分析考研试题 (1)

南京理工大学2005年数学分析试题 一、(10分)设0>n a ,n=1,2, )(,0∞→≠→n a a n ,证 1lim =∞→n n n a 。 二、(15分)求积分 ??∑?ds n F ??其中),,=(x y yz x y F ?,∑为半球面,0z 1z y x 222≥,=++和圆1y x 0z 22≤+, =的外侧 三、(15分)设f 为一阶连续可微函数,且) (0f ''存在,f (0)=0, 定义?????≠'0 x x f x 10 x 0f x g )(=)()=( 证 g 是一个可微,且g '在0点连续。 四、(15分)证明 级数 ∑∞1n x n 2e =- 在),+(∞0上不一致收敛,但和函数在) ,+(∞0上无穷次可微。 五、(15分)设〕,〔b a C f ∈,证明,0>?ε存在连续折线函数g ,使得 ε<)()-(x g x f ,〕〔b a,x ∈ ?。 六、(15分)设),(t x u 为二元二阶连续可微函数且u 的各一阶偏导关于x 是以1为周期 函数,且2222x u t u ????=,证明?????E 1022dx x u t u 21t ))+()(()=(是一个与t 无关的函数。 七、(15分)设f 为〕 ,+〔∞1上实值函数,且f (1)=1,)()(+)=(1x x f x 1x f 22≥',证明)(+x f lim x ∞→存在且小于4 1π+。 八、(15分)设∑∞1n n n x a =为一幂函数,在(-R ,R )上收敛,和函数为f ,若数列{}j x 满足 0x x R 21>>>>Λ且0lim =∞ →j j x ,Λ1,2j 0x f j =,)=(,证明 Λ210n 0a n ,,=,= 九、(15)设f 是 〕〔〕,〔b a b a ??上的二元连续映射,定义 {}〕 ,〔),()=(b a y y x f max x g ∈,证明 g 在〔a ,b 〕上连续。 十、(20分)讨论二元函数连续、可偏导、可微三个概念之间的关系,要有论证和反例。

(完整版)大连理工大学高等数值分析偏微分方程数值解(双曲方程书稿)

双曲型方程的有限差分法 线性双曲型方程定解问题: (a )一阶线性双曲型方程 ()0=??+??x u x a t u (b )一阶常系数线性双曲型方程组 0=??+??x t u A u 其中A ,s 阶常数方程方阵,u 为未知向量函数。 (c )二阶线性双曲型方程(波动方程) ()022=?? ? ??????-??x u x a x t u ()x a 为非负函数 (d )二维,三维空间变量的波动方程 0222222=???? ????+??-??y u x u t u 022222222=???? ????+??+??-??z u y u x u t u §1 波动方程的差分逼近 1.1 波动方程及其特征 线性双曲型偏微方程的最简单模型是一维波动方程: (1.1) 22 222x u a t u ??=?? 其中0>a 是常数。 (1.1)可表示为:022 222=??-??x u a t u ,进一步有

0=??? ????+?????? ????-?? u x a t x a t 由于 x a t ?? ±??当a dt dx ±=时为()t x u ,的全导数 (=dt du dt dx x u t u ???+??x u a t u ??±??=),故由此定出两个方向 (1.3) a dx dt 1 ±= 解常微分方程(1.3)得到两族直线 (1.4) 1C t a x =?+ 和 2C t a x =?- 称其为特征。 特征在研究波动方程的各种定解问题时,起着非常重要的作用。 比如,我们可通过特征给出(1.1)的通解。(行波法、特征线法) 将(1.4)视为),(t x 与),(21C C 之间的变量替换。由复合函数的微分法则 2 12211C u C u x C C u x C C u x u ??+??=?????+?????=?? x C C u C u C x C C u C u C x u ????? ? ????+????+?????? ????+????=??2 212121122 2221222122 12C u C C u C C u C u ??+???+???+??= 2 2 22122122C u C C u C u ??+???+??= 同理可得 a t t a t C -=??-=??1,a t C =??2 ???? ????-??=?????+?????=??21 2211C u C u a t C C u t C C u t u

大连理工数学分析试题及解答

2000年大连理工大学硕士生入学考试试题——数学分析 一、从以下的第一到第八题中选取6题解答,每题10分 1. 证明:1 ()f x x =于区间0(,1)δ(其中001δ<<)一致连续,但是于(0,1)内不一致连续 证明: 01212(1)0,()[1]2 (2)1||()|()()|f x x x f x f x δδδδεδδε<= =+=-∈-+≤<≠∈为无理数,对于,,取,显然这样的存在 当所以,在无理点连续 为有理数,。不难找到趋近于的收敛子列:无理数这样显然不连续。

大连理工大学专升本高等数学题库道

大连理工大学专升本高等 数学题库道 Last updated on the afternoon of January 3, 2021

Z题库建议搜索作业帮 [题型]单选题 [章节] [类别]模拟 [题干]题目编号01 [选项] [答案]D [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号02 [选项] [答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号03 [选项] [答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号04 [选项]

[答案]A [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号05 [选项] [答案]D [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号06 [选项] [答案]D [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号07 [选项] [答案]C [解析] [难度]易 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号08

[答案]B [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号09 [选项] [答案]B [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号10 [选项] [答案]A [解析] [难度]中 [分数]2 [题型]单选题 [章节] [类别]模拟 [题干]题目编号11 [选项] [答案]B [解析] [难度]中 [分数]2 [题型]单选题

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

大工2018年春高等数学期末复习题

机 密★启用前 大连理工大学网络教育学院 2018年春《高等数学》 期末考试复习题 ☆ 注意事项:本复习题满分共:400分。 一、单项选择题(本大题共60小题,每小题2分,共120分) 1、设x x x x f 2)(,)(2==?,则=)]([x f ?( ) A 、2 2x B 、x x 2 C 、x x 2 D 、x 22 答案:D 2、下列结论正确的是( ) A 、函数x y 5=与x y 5-=关于原点对称 B 、函数x y 5=与x y -=5关于x 轴对称 C 、函数x y 5=与x y 5-=关于y 轴对称 D 、函数x y 5=与x y 5log =关于直线y=x 对称 答案:D 3、设)(x f 在()+∞∞-,内定义,则下列函数中必为奇函数的是( ) A 、|)(|x f y = B 、|)(|x f y -= C 、c y = D 、)(2 x xf y = 答案:D 4、下列极限存在的有( ) A 、2 ) 1(lim x x x x +∞→ B 、1 21 lim 0-→x x C 、x x e 1 lim → D 、x x x 1 lim 2++∞ → 答案:A 5、当0→x 时,与x x --+11等价的无穷小量的是( ) A 、x B 、x 2 C 、2 x D 、2 2x 答案:A 6、当∞→n 时,为了使n 1sin 2 与k n 1 等价,k 应为( ) A 、 2 1 B 、1

C 、2 D 、3 答案:C 7、已知三次抛物线3x y =在点1M 和2M 处的切线斜率都等于3,则点1M 和2M 分别为( ) A 、(-1,-1)及(1,1) B 、(-1,1)及(1,1) C 、(1,-1)及(1,1) D 、(-1,-1)及(1,-1) 答案:A 8、根据函数在一点处连续和可导的关系,可知函数???? ???≥<<≤+=1,1 10,20,2)(2 x x x x x x x x f 的不可导点是( ) A 、1-=x B 、0=x C 、1=x D 、2=x 答案:C 9、设x x y 2 212--=,则='y ( ) A 、 ()2 22 214x x -- B 、 ()2 22 212x x +-- C 、 ()2 22 212x x -- D 、 ()2 22 214x x +- 答案:D 10、=)(arccos x d ( ) A 、xdx 2 sec B 、xdx 2 csc C 、 dx x 2 11- D 、dx x 2 11-- 答案:D 11、在区间[-1,1]上,下列函数中不满足罗尔定理的是( ) A 、1)(2 -=x e x f B 、)1ln()(2 x x f += C 、x x f =)( D 、2 11 )(x x f += 答案:C 12、下列极限中能使用罗必达法则的有( ) A 、x x x x sin 1sin lim 20 → B 、?? ? ??-+∞ →x x x arctan 2lim π C 、x x x x x sin sin lim +-∞→ D 、2 sin lim x x x x ∞ → 答案:B 13、下列函数对应的曲线在定义域内为凹的是( ) A 、x e y -= B 、)1ln(2 x y += C 、3 2x x y -= D 、x y sin = 答案:A 14、下列函数中原函数为)0(ln ≠k kx 的是( )

大连理工大学2000-2017年数学分析真题

大连理工大学2000年数学分析真题 (2) 大连理工大学2001年数学分析真题 (4) 大连理工大学2002年数学分析真题 (6) 大连理工大学2003年数学分析真题 (8) 大连理工大学2004年数学分析真题 (10) 大连理工大学2005年数学分析真题 (12) 大连理工大学2006年数学分析真题 (14) 大连理工大学2008年数学分析真题 (16) 大连理工大学2009年数学分析真题 (18) 大连理工大学2010年数学分析真题 (20) 大连理工大学2011年数学分析真题 (22) 大连理工大学2013年数学分析真题 (24) 大连理工大学2014年数学分析真题 (25) 大连理工大学2015年数学分析真题 (28) 大连理工大学2016年数学分析真意 (30) 大连理工大学2017年数学分析真题 (32)

大连理工大学2000年数学分析真题 一.从以下的第一到第八题中选取6题解答,每题10分 1.证明: ()x x f 1 = 于区间()10,δ(其中0<0δ<1)一致连续,但是于(0,1)内不一致连续。 2.证明:若()x f 于[a ,b]单调,则()x f 于[a ,b]内Riemann 可积。 3.证明:Dirichlet 函数: ()()?? ???==有理数为无理数q p x q x x f ,1,0在所有无理点连续,在有理点间断。 4.证明:若()()b a C x f ,∈,(指(a ,b )上的连续函数,且任意()()b a ,,?βα, ()?=β α 0dx x f ,那么()()b a x x f ,0∈≡,。 5.证明:∑∞ =-1 n nx ne 于(0,+∞)不一致收敛,但是对于0>?δ,于[)+∞,δ一致收敛。 6.证明:()?? ???=≠=0,00 ,1sin 4 x x x x x f ,在0=x 处有连续的二阶导数。 7.利用重积分计算三个半长轴分别为a,b,c 的椭球体的体积。 8.计算第二类曲面积分:??∑ ++zdxdy ydzdx xdydz ,其中,∑是三角形 ()10,,=++>z y x z y x ,,法方向与z y x ,,轴成锐角为正。 9.假设∞ →=n n a a lim ,证明2 2lim 2 21a n na a a a n n n = +++∞ → 。 11.计算曲面积分?? ++=S dxdy z dzdx y dydz x I 3 3 3 ,S 为椭球面122 2222=++c z b y a x 的外侧。 12.设()[]()?-==-∈>1 1 ,,3,2,111,10 n dx x C x n n ,, ,φφφ,对于任意的c>0,()x n φ在[][] 1,,1,1c -上一致收敛于0。证明:对于任意()[]1,1-∈C x g ,()()()?-∞→=1 1 0lim g x x g n n φ 13.证明:一个严格递增函数的间断点只能是第一类间断点

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

相关文档
最新文档