粗苯加氢催化剂的装填及预硫化技术

粗苯加氢催化剂的装填及预硫化技术
粗苯加氢催化剂的装填及预硫化技术

加氢催化剂的研究进展2详解

加氢催化剂的研究进展 化工12-4 金贞顺 06122533 摘要 综述石油工业中各类加氢催化剂的研究进展,包括汽、柴油加氢催化剂,加氢裂化、加氢异构催化剂, 重油加氢催化剂等。以及加氢过程的各种基本反应(如加氢脱氮、加氢脱硫、烯烃加氢和芳烃饱和等)的热力学研究、基本反应动力学及与催化剂组成及结构特征间的关系、活性组分与载体间的相互作用、反应物分子平均扩散半径与催化剂空间结构的匹配、结焦失活的机理及其抑制措施等。 关键词: 加氢催化剂结焦失活载体 引言 随着环保法规和清洁柴油标准的日益严格,清洁油品的生产将是全球需要解决的重要问题。现有炼油工艺不断改进,创新并开发出一些先进技术以满足生产清洁柴油的需求。加氢裂化技术具有原料适应性强、产品方案灵活、液体产品收率高、产品质量好等诸多优点,催化剂则是加氢裂化技术的核心。重油加氢裂化分散型催化剂主要分为3大类:固体粉末添加剂、有机金属化合物及无机化合物。本文分别对加氢催化剂及载体的研究进展进行简要介绍。 1、汽柴油加氢催化剂研究进展 随着原油的劣质化和环保法规的日益严格,我国在清洁柴油生产方面面临着十分严峻的局面,所以迫切需要研制具有高效加氢精制的催化剂来满足油品深度加氢处理的要求[1-3]。日益提高的环境保护要求促进了柴油标准的不断升级。文中综述了国外炼油企业在柴油加氢催化剂方面的技术进展。 刘笑等综述了国内外有关FCC汽油中硫的存在形态、加氢脱硫反应原理及其催化剂的研究进展。一般认为,FC C汽油中的硫化物形态主要为嚷吩类化合物,且主要集中在重馏分中,汽油的加氢脱硫反应原理的研究也都集中在嚷吩

的加氢脱硫反应上。传统的HDS催化剂由于烯烃饱和率过高不适于FCC汽油的加氢脱硫,可通过改变催化剂的酸性来调整其HDS/HYD选择性。发展高活性、高选择性的催化剂仍是现今研究的热点,同时还应足够重视硫醇的二次生成而影响脱硫深度的问题。 赵西明综述了裂解汽油一段加氢把基催化剂的研究进展。提出在裂解原料劣化的形势下,把基催化剂的研究重点是制备和选择孔容较大、孔分布合理、酸性弱、比表面积适中的载体,并添加助催化剂。从控制拟薄水铝石的制备过程和后处理方法以及添加扩孔剂等角度出发,评述了近年来大、中孔容Alt及其前驱物拟薄水铝石的制备方法。任志鹏等[4]介绍了裂解汽油一段选择加氢催化剂的工业应用现状及发展趋势,综述了新型裂解汽油一段选择加氢Ni系催化剂的研究进展。提出在贵金属价格上涨和裂解原料劣化的形势下,Ni系催化剂是未来裂解汽油一段加氢催化剂的重点发展方向。而Ni系催化剂的研究重点是制备和选择比表面积适中、酸性低、孔体积大、孔分布合理的载体,选择合适的Ni盐前体及浸渍方法,添加第二种金属助剂以及开展硫化和再生方法的研究。 孙利民等介绍了镍基裂解汽油一段加氢催化剂的工业应用状况及研究进展,指出了提高裂解汽油一段镍基催化剂加氢性能的途径及该领域最新发展趋势。文献[5-6]介绍了柴油加氢精制催化剂的研究进展,近年来,随着柴油需求量增加、原油劣化程度加深和环保要求的日益严格,满足特定需求的超低硫柴油仍存在很大挑战,柴油加氢精制催化剂的研制和开发取得较大进展。介绍了载体、活性组分、助剂和制备方法(液相浸渍法、沉淀法和溶胶一凝胶法)等因素对催化剂活性的影响,结果表明,溶胶一凝胶法较其它方法有较优的一面。具体探讨了溶胶一凝胶法的制备条件对催化剂活性的影响,也为设计、开发高活性加氢精制催化剂积累了经验。 马金丽等介绍了柴油加氢脱硫催化剂研究进展。降低柴油中硫含量对于减少汽车尾气排放从而保护环境具有十分重要的意义。介绍了加氢脱硫催化剂的研究进展。张坤等介绍了中国石化抚顺石油化工研究院开发的最大柴油十六烷值改进技术(MCI)、和中国石化石油化工科学研究院研发的提高柴油十六烷值和

聚氨酯固化剂-MSDS资料

聚氨酯固化剂MSDS 第一部分?化学品及企业标识 化学品中文名:聚氨酯固化剂 化学品英文名:PU-Curing agent 生产企业名称: 地址:?邮编:? 电子邮件地址: 技术说明书编码:?登记号:? 生效日期:?传真号码:? 企业应急电话: 第二部分?成分/组成信息 纯品混合物 有害物成分浓度CAS No. 甲苯-2,4-二异氰酸酯<%584-84-9 乙酯40-60%141-78-6 第三部分?危险性概述 危险性类别:第类毒害品 侵入途径:吸入、食入、经皮吸收 健康危害:本品具有明显的刺激和致敏作用。高浓度接触直接损害呼吸道粘膜,发生喘息性支气管炎,表现有咽喉干燥、剧咳、胸痛、呼吸困难等。重者缺 氧、紫绀、昏迷。可引起肺炎和肺水肿。蒸气或雾对眼有刺激性;液体溅 入眼内,可能引起角膜损伤。液体对皮肤有刺激作用,引起皮炎。口服能 引起消化道的刺激和腐蚀。 慢性影响:反复接触本品,能引起过敏性哮喘。长期低浓度接触,呼吸功 能可受到影响。 环境危害: 燃爆危险:本品可燃,有毒,具刺激性,具致敏性。 第四部分? 急救措施 皮肤接触:脱去污染的衣着,用大量流动清水冲洗。 眼睛接触:立即提起眼睑,用大量流动清水或生理盐水彻底冲洗至少15分钟。就医。

吸入:迅速脱离现场至空气新鲜处。保持呼吸道通畅。如呼吸困难,给输氧。如呼吸停止,立即进行人工呼吸。就医。 食入:用水漱口,给饮牛奶或蛋清。就医。 第五部分?消防措施 危险特性:遇明火、高热可燃。与氧化剂可发生反应。与胺类、醇、碱类和温水反应剧烈,能引起燃烧或爆炸。加热或燃烧时可分解生成有毒气体。其蒸气比 空气重,能在较低处扩散到相当远的地方,遇火源会着火回燃。若遇高 热,容器内压增大,有开裂和爆炸的危险。 有害燃烧产物:一氧化碳、二氧化碳、氧化氮、氰化氢。 灭火方法:消防人员须佩戴防毒面具、穿全身消防服,在上风向灭火。尽可能将容器从火场移至空旷处。喷水保持火场容器冷却,直至灭火结束。处在火场中 的容器若已变色或从安全泄压装置中产生声音,必须马上撤离。灭火剂: 干粉、二氧化碳、砂土。禁止用水、泡沫和酸碱灭火剂灭火。 第六部分?泄漏应急处理 应急行动:迅速撤离泄漏污染区人员至安全区,并进行隔离,严格限制出入。切断火源。建议应急处理人员戴自给正压式呼吸器,穿防毒服。尽可能切断泄漏 源。防止流入下水道、排洪沟等限制性空间。小量泄漏:用砂土、蛭石或 其它惰性材料吸收。大量泄漏:构筑围堤或挖坑收容。用泵转移至槽车或 专用收集器内,回收或运至废物处理场所处置。 第七部分?操作处置与储存 操作处置注意事项:密闭操作,提供充分的局部排风。操作人员必须经过专门培训,严格遵守操作规程。建议操作人员佩戴自吸过滤式防毒面具(半面 罩),戴化学安全防护眼镜,穿防毒物渗透工作服,戴橡胶耐油手套。远 离火种、热源,工作场所严禁吸烟。使用防爆型的通风系统和设备。防止 蒸气泄漏到工作场所空气中。避免与氧化剂、酸类、碱类、醇类接触。尤 其要注意避免与水接触。搬运时要轻装轻卸,防止包装及容器损坏。配备 相应品种和数量的消防器材及泄漏应急处理设备。倒空的容器可能残留有 害物。 储存注意事项:储存于阴凉、干燥、通风良好的库房。远离火种、热源。库温不超过25℃,相对湿度不超过75%。保持容器密封。应与氧化剂、酸类、碱类、 醇类等分开存放,切忌混储。配备相应品种和数量的消防器材。储区应备 有泄漏应急处理设备和合适的收容材料。 第八部分?接触控制/个体防护

加氢催化剂硫化方案

内蒙庆华20万吨/年甲醇装置 JT-8焦炉气加氢催化剂予硫化方案 一、催化剂装填前准备 1.检查反应器内清洁无水无杂质; 2.准备好内件、填料及催化剂,其中有: ①2mm不锈钢丝网16张左右(直径与反应器直径相同); ②瓷球约数吨左右; ③催化剂;JT-8 装填数量:87M3其中:予加氢反应器D61201A、B各14.5 M3 一级加氢反应器D61202:29.06 M3;二级加氢反应器D61205:29 M3 ④φ300、6.5-10.5米长帆布筒子2根、剪刀2把; ⑤装料漏斗(需预制); ⑥500×700轻质木板2块; ⑦葫芦2只或吊车。 ⑧在设备内的工作人员以及所需的人孔值班人员在装填作业开始前必须具备具有认可的安全培训,所有时候进入设备内工作都须持有进入许可证以及反应器内气体测试报告。 ⑨装填前要对设备进行检验以确保所需的内件都已正确的安装好,特别是温度计导管和取样管,还要检验所有的施工材料是否都已拆掉并且反应器壁已清除氧化物和铁屑。钢丝网除锈,用白布擦净,检查各测温热电偶管,取样管的安装及连接管口方位是否符合图纸要求,特别注意固定筛网支架。 二、装填作业 1、检查反应器内清洁无水无杂质; 2、底部格栅安装牢固; 3、画出催化剂装填上下界限标记及中间分段标记; 4、底部格栅上面平铺1层不锈钢丝网; 5、装入填料(瓷球)至标志线铺平;瓷球上面平铺2层不锈钢丝网 6关闭下部人孔; 7装催化剂 装填催化剂时应避免阴天,下雨,以防催化剂受潮而影响其使用活性。催化剂装填之前

应先筛去粉尘。催化剂装填时,从上人孔放入加料帆布筒10.0米左右和漏斗连接;催化剂装填时视装填设备及人员情况,可进行一台或多台反应器的装填作业。 ①漏斗内倒入催化剂0.5-1.0吨;可根据具体情况确定。并用吊车吊至反应器人 孔上方,漏斗与帆布筒相连,放入催化剂。 ②视吊装催化剂的量,取出漏斗和帆布筒由软梯进入反应器,用木板刮平催化剂; ③刮平后,根据具体装填高度,帆布筒剪掉约1米,继续装催化剂,装量根据第 一次实际装填情况可调节。在整个装填过程中,要求均匀平整,防止粉碎变潮, 勿在催化剂上直接踩踏。 ④装入催化剂至分段标记高度后,均匀平整,然后继续装入催化剂。 ⑤装入催化剂至额定高度后,扒平后铺2层不锈钢丝网,再装瓷球; ⑥瓷球装到预定高度,扒平后铺一层不锈钢丝网; 7、安装并固定填料压实格栅; 8、安装上人孔。各加氢反应器催化剂的装填方法基本相同。 三、JT-8型焦炉气加氢催化剂的硫化 催化剂在正常使用之前,为获得较高的加氢转化活性,应对其进行硫化。 采用H2S为硫化剂时,发生如下反应: MoO3+2H2S+H2→MoS2+3H2O 系统在试压、试漏结束后,以氮气或其它惰性气体吹净置换后,开始催化剂的升温。升温时,可用氮气或氢氮气。 在对处理有机硫含量较高,硫形态较复杂的焦炉气原料时,为了获得较高的加氢转化活性,催化剂首次使用时,应进行预硫化,预硫化结束时,催化剂吸硫量约为本身重量的4-5%左右。 预硫化条件推荐如下: 气源:氢氮气或含氢的焦炉气中配入CS2 催化剂床层温度升至180℃以上时可在硫化用气中配入CS2。 空速:200~500h-1,压力:常压或低压(≤0.5MPa) 气体中含硫量:0.5~1.5%(体积)氧含量<0.2% 边升温边预硫化(升温速度20℃/小时),260℃、300℃分别恒温2小时,最终升温至正常的操作温度,再恒温,按催化剂理论吸硫量将CS2加完为止,可认为预硫化结束,然后系统逐步升压到正常操作压力,转入正常操作。

加氢催化剂的预硫化及其影响因素

加氢催化剂的预硫化及其影响因素 张笑剑 摘要:加氢催化剂的预硫化是提高催化剂活性,优化加氢催化剂操作,获得理想经济效益的关键之一。为获得理想的硫化效果,必须严格控制各阶段的反应条件。本文介绍了加氢催化剂预硫化的反应原理,探讨了在预硫化过程中影响催化剂预硫化效果的因素。 关键词:加氢催化剂硫化技术操作条件影响因素 加氢催化剂硫化是提高催化剂活性,优化装置操作,延长装置运转周期,提 高经济效益的关键技术之一。加氢催化剂主要由金属组分(一般为W,Mo,Co, , Ni 等)和载体(氧化铝 ,二氧化硅,沸石,活性炭,黏土,渗铝水泥和硅藻土等)两部分组成,金属组分以氧化态的形式负载在多孔的载体上,促进加氢脱氮,加氢脱硫,加氢脱芳烃,加氢脱金属,加氢脱氧和加氢裂化等反应。生产经验和理论研究表明:氧化态催化剂的加氢活性,稳定性和选择性均低于硫化态催化剂。只有将催化剂进行硫化预处理,使金属组分从氧化态转变为硫化态,催化剂才具有较高的活性,稳定性和选择性,抗毒性强,寿命长,才能够最大限度地发挥加氢催化剂的作用。 1硫化原理 1.1 H 2 S的制备 H 2 S主要来自硫化剂的分解:硫化剂的分解均为放热反应,且理论分解温度与 实际操作条件下的分解温度有所差别,一般有机硫化物在催化剂和H 2 条件下分解温度通常比常温下分解温度低10~25o C。 CS 2+4H 2 =CH 4 +2H 2 S CH 3SSCH 3 +3H 2 =2CH 4 +2H 2 S 1.2金属氧化物的硫化 金属氧化物的硫化是放热反应。理想的硫化反应应为 MoO 3+2H 2 S+H 2 =MS 2 +3H 2 O 9CoO+8H 2S+H 2 =Co 9 S 8 +9H 2 O 3NiO+2H 2S+H 2 =NiS+3HO WO 3+2H 2 S+H 2 =WS 2 +3H 2 O

固化剂和促进剂安全使用规范

固化剂和促进剂安全使用规范 福建首创嘉净环保科技有限公司固化剂和促进剂安全使用规范 受控状态: 编制:张明日期:2015年12月28日 审查:日期:年月日 核准:日期:年月日 版次:A/0 发行编号:FJSCJJ-JS-05-012

1范围 是引发剂的一种,具有很强的腐蚀性,促进剂是可以提高反应速率的一种用量较少的物质。固化剂及促进剂直接混兑,会发生剧烈反应而引起燃爆,不正确使用,会带来极大的安全事故。因此,特制定本使用规范,该规范确定了沭阳嘉净环保科技有限公司相关部门所有岗位在固化剂和促进剂使用过程中的安全作业方法。

2规范性引用文件 安全生产管理标准 3职责 技术部负责制定固化剂和促进剂安全操作管理规范。 各相关部门、车间、班组严格执行本规范。 4.控制要求 存放 固化剂与促进剂及丙酮盛装桶严禁混用,否则将引起燃爆 仓库及各岗位严禁将固化剂和促进剂进行混放,放置间距应不少于5米。 存放温度不超过25℃,避免阳光直射。当室温高于25℃时,需将固化剂及促进剂桶分别放置于不同的容器中,盛入冷水进行降温。 使用规范 固化剂使一种很强的氧化剂,对人皮肤有很强的腐蚀性,若不慎滴洒到皮肤上会有灼伤感,若进入眼镜则很有可能造成短时失明,因此,使用固化剂时要做好防护,带上胶皮手套和防护眼镜,促进剂对人体也有很大的危害,使用时尽量避免直接接触, 制造部各车间按根据需要设置专门树脂调配区,指定专人进行树脂调配,其他任何人不得擅自操作。树脂调配区内固化剂存放不超过1桶(25公斤),促进剂不超过1桶(20公斤)。 公司所有树脂进厂时需确定是否进行过预促进处理,如添加促进剂,则要确定其混合比例,由树脂调配人员按需调配。 除树脂调配区允许存放树脂、固化剂、促进剂外,各班组岗位上严禁存放促进剂、固化剂。 树脂调配时应先加入适量促进剂,搅拌均匀后再加入固化剂,搅拌均匀。操作中应杜绝促进剂和固化剂同时加入,否则将会产生化学反应起火。 固化剂的使用器具应该严格区分于促进剂的器具,盛装过促进剂的器具,禁止再用于固化剂。 固化剂不能与丙酮混放,更不得将固化剂与丙酮混合,否则,也会起反应造成燃爆。 添加了促进剂和固化剂的树脂,必须在完全固化后方可放入垃圾桶。由于固化过程中急剧放热,会引起燃烧,造成火灾,因此,要求各班组对树脂用量必须按需调配,杜绝浪费及安全隐患。 各班组长为固化剂及促进剂安全使用第一责任人,需随时保持车间清洁卫生,避免因地面残留的

加氢催化剂再生

催化剂再生 12.1 就地催化剂再生 注意,以下规程旨在概括催化剂再生的步骤和条件。催化剂供应商提供的具体 规程可取代此概述性规程。须遵守催化剂供应商规定的临界参数,例如温度限 制。 在COLO加氢处理单元中,使用NiMo和CoMo两种催化剂,有些焦碳沉积 是不可避免的。这会引起载体的孔状结构逐渐堵塞,导致催化剂活性降低。则 必须提高苛刻度(通常通过提高反应器温度),以使产品达到技术要求,而提 高温度会加速焦碳的产生。 当达到反应系统的最高设计温度(机械或反应限)时,需要停车进行催化剂再 生或更换催化剂。在正常操作时,这种事情至少在12个月内不应发生。 o催化剂再生燃烧在正常操作期间沉积的使催化剂失活的焦碳。 o再生的主要产物是CO2、CO和SO2。 12.2 再生准备 按照与正常停车相同的步骤,但反应器无需进行冷却。反应器再生可不分先后。 仅取R-101为例。 单元状态:按照正常停车规程的要求或根据再生放空气体系统规范,反应器在 吹扫净其中的H2和烃类后被氮气填充。将R-102的压力降低至略低于随后将 使用的蒸汽的压力。T-101已关停,且E-101排放至塔。T-102可根据再生过 程的下一步骤进行全回流或启动,以便实现石脑油安全循环。 12.3 蒸汽-空气再生程序 1. 在压缩机-反应器回路中建立热氮气循环。利用B-101加热带有循环氮气 的催化剂床,使其温度以25 oC/小时的速度上升至315oC。绝不可让催化 剂床内的温度降至260oC以下,否则,随后置换氮气的蒸汽会出现冷凝, 从而要求在进行下一操作前采取干燥措施。 2. 再次检查吹扫气中的可燃物并继续进行吹扫,直至反应器出口气体中的氢 气浓度低于0.5% vol。在E-107的壳程入口和压缩机的排放侧将压缩机 和D-103系统与反应器B-101系统隔离,并关停压缩机。反应器系统此 时处于氮气条件下。进一步关闭压缩机系统。两个分隔的工段均应处于氮 气正压下,这点至关重要。 3. 将蒸汽从E-104入口引至R-102,将反应器流出物导至再生排气系统。 逐渐加快速度,同时利用B-101控制温度,将反应器入口温度升至并保 持在330-370oC。蒸汽宜为7000 kg/hr左右的速度,这高于CRI(催化 剂供应商)推荐的反应器横截面每平方米1950 kg/hr的最低速度,此最 低速度使R-101和R-102的最低流量分别达到2000 kg/hr和3700 kg/hr。 此时R-102已做好下一步的蒸汽和空气燃烧准备。 4. 启动含0.3-0.5 mole%氧气的空气流,将其导入R-102。 5. 焰锋的建立表现为催化剂床的温度上升,此后,氧气含量最大可增加至1 mole%,但焰锋温度须保持在400oC以下。根据经验,氧气含量每高于

预加氢催化剂预硫化方法

精心整理 中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕, (2)绘出催化剂干燥脱水升、恒温曲线。 (3) 2、干燥示意流程 ↓N2 ↑↓ ↓放水 3 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2催化剂干燥温度要求 反应器入口温度 ℃ 床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h 常温→250- 10~15 15

250~280 ≮200- 至干燥结束 250→<150≯15020~25 4~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力1.5MPa/h的升 温速度将反应器入口温度升至250℃, 不到200 (2)在干燥过程中,每2 (3) (4) <150 (如DMDS)分解生成H2S,H2S使 H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。 1、预硫化前的准备工作 (1)催化剂干燥结束后,将催化剂床层温度降至150℃,泄压至0.2MPa,引氢气置换至氢纯度>85%,再升压至操作压力,建立氢气循环。

(2)绘出预硫化过程的升、恒温曲线。 (3)注硫系统吹扫干净,并将硫化剂装入硫化罐内。 (4)准备好不同规格的H 2S 检测管。硫化过程中每1小时测一次循环氢中的H 2S 浓度。 2、催化剂硫化示意流程 硫化油↓DMDS ↑ ↑分液罐→循环压缩机↓ ↑ ←高分←水冷←空冷←换热器 3、催化剂硫化条件 反应压力:操作压力 (CS 2)。 则需按照CS 2硫化剂含硫量的不同进行硫化温度及循环氢中H 2S 含量控制要求见表3。 表3催化剂硫化阶段温度要求 反应器入温度 ℃ 升温速度 ℃/h 升、恒温参考时间 h 循环氢H 2S 控制 v% 常温→150 15~20

最全化学品安全技术说明书

目录 甲基苯 (1) 2-丙醇 (2) 2-丁酮 (3) 乙酸乙酯 (4) 乙酸正丁酯 (5) 环氧树酯 (6) 醇酸树酯 (7) 二甲苯异体混合物 (8) 环己酮 (9) 不干性醇酸树脂 (10) 聚氨酯树脂 (11) 硝化纤维素 (12) 2-丁氧基乙醇 (13) 丙烯酸清漆 (14) 丙烯酸漆稀释剂 (15) 环氧漆固化剂 (16) 环氧漆稀释剂 (17) 硝基底漆 (18) 硝基清漆 (19) 硝基磁漆 (20) 硝基漆防潮剂 (21) 硝基漆稀释剂 (22) 聚酯树脂清漆 (23) 聚酯漆稀释剂 (24) 醇酸漆稀释剂 (25) 环氧磁漆 (26) 汽油 (27) 柴油 (28) 1,2,4,5-四甲苯 (29) 1,2,3-三甲苯 (30) 1,2,4-三甲基苯 (31) 1,3,5-三甲苯 (32) 1-丙醇 (33) 2-氨基乙醇 (34)

2-甲基-1-丙醇 (35) 4-甲基-2-戊酮 (36) 7110甲聚氨酯固化剂 (37) 氨溶液 (38) 苯酚 (39) 苯乙烯 (40) 环己烷 (41) 丙酮 (42) 石脑油 (43) 1,1-二氯乙烷 (44) 1,2-二氯乙烷 (45) 甲醇 (46) 乙醇[无水] (47) 4-羟基-4-甲基-2-戊酮 (48) 乙酸正丙酯 (49) 乙酸异丙酯 (50) 乙酸异丁酯 (51) 乙酸仲丁酯 (52) 乙酸乙烯酯[抑制了的] (53) 碳酸(二)甲酯 (54) 1,2-二甲苯 (55) 1,3-二甲苯 (56) 1,4-二甲苯 (57) 1,3,5-三甲基苯 (58) 正丁醇 (59) 乙二醇甲醚 (60) 乙二醇乙醚 (61) 丙烯酸正丁酯[抑制了的] (62) N,N-二甲基甲酰胺 (63) 3-氯-1,2-环氧丙烷 (64) 三氯甲烷 (65) 三氯乙烯 (66) 乙酸[含量>80%] (67) 丙烯酸[抑制了的] (68) 氢氧化钠溶液 (69)

催化剂的活化与再生

催化剂的活化与再生 加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 在推出EasyActive器外预硫化催化剂后,Eurecat和Akzo Nobel公司又进一步改进器外预硫化技术。为简化预硫化过程和减少对环境的污染,研究了水溶性硫化物生产器外预硫化催化剂以及将器外预硫化和原位预硫化结合的预硫化技术。 水溶性硫化剂有1,2,2-二亚甲基双二硫代氨基甲酸二酸盐、二巯基二氨硫杂茂、二乙醇二硫代物、二甲基二硫碳酸二甲氨和亚二硫基乙酸等。下表列举了几种水溶性硫化剂器外预硫化的催化剂的活性比较。 水溶性硫化剂进行器外预硫化的催化剂活性 可见水溶性硫化剂完全可以作为器外预硫化的硫化剂。 为了降低器外预硫化的成本和提高硫的利用率,又开发一种将S作为硫化剂的器外预硫化方法及将S与有机硫化物相结合的技术,目前多采用这一方法。

加氢催化剂器外预硫化技术 1、Eurecat公司开发的Sulficat技术,用于再生催化剂的器外预硫化。 2、Eurecat和Akzo Nobel公司联合开发的EasyActive技术,用于新鲜催化剂的器外预硫化。 3、CRI公司开发的ActiCat技术。 4、RIPP开发的RPS技术用于新鲜催化剂和再生催化剂的器外预硫化。 国外催化剂器外再生的主要工艺 目前,国外主要有三家催化剂再生公司:Eurecat、CRI和Tricat。其中Eurecat和CRI两家公司占国外废催化剂再生服务业的85%,余下的为Tricat公司和其他公司所分担。CRI公司的再生催化剂中,约60%来自加氢处理装置,15%来自加氢裂化装置,25%来自重整和石化等其他领域。 Eurecat、CRI和Tricat公司采用不同的再生工艺。Eurecat公司使用一个旋转的容器使催化剂达到缓慢烧炭的目的;CRI公司采用流化床和移动带相结合的工艺,如最新的OptiCAT 工艺;Tricat公司应用沸腾床工艺。 非贵金属废加氢催化剂的金属回收 从非贵金属废加氢催化剂中回收金属有两种方法:一种是湿法冶金,用酸或碱浸析废催化剂,然后回收可以销售的金属化合物或金属。另一种是火法(高温)冶金,用热处理(焙烧或熔炼)使金属分离。 非贵金属废加氢处理/加氢精制催化剂通常都有3~5种组分:钼、钒、镍、钴、钨、氧化铝和氧化硅。 美国有两家领先的非贵金属回收商:一家是海湾化学和冶金公司(GCMC),从1946年开始回收金属业务;另一家是Cri-met公司(Cyprus Amax矿业公司和CRI国际公司的合资公司),从1946年开始回收金属业务。有些废非贵金属加氢裂化催化剂中含有钨,回收的费用高,且数量不大。目前奥地利的Treibacher工业公司是钨的主要回收商。 另外,美国的ACI工业公司、Encycle/texas公司、Inmetco公司,法国的Eurecat公司,德国的Aura冶金公司、废催化剂循环公司,比利时的Sadaci公司,日本的太阳矿工公司、

预加氢催化剂预硫化方案

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月 一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力: 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2 催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h

常温→250-10~1515 250~280≮200-至干燥结束 250→<150≯15020~254~5 4、干燥结束标准 高分无明水放出。 5、干燥操作 (1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

加氢催化剂再生

中国石油股份有限公司乌鲁木齐石化分公司 失活AT-505、FH-5加氢催化剂 器外再生技术总结 受中国石油股份有限公司乌鲁木齐石化分公司的委托,温州瑞博催化剂有限公司于2009年9月23日至9月26日,在山东再生基地对该公司失活AT-505、FH-5加氢催化剂进行了器外再生,现将有关技术总结如下: 一、催化剂再生前的物性分析及再生后催化剂指标要求 根据合同和再生的程序要求,首先对待生剂进行了硫、碳含量、比表面、孔容、强度等物性分析,其结果如下表: AT-505加氢催化剂再生前物性分析表 ◆中国石油股份有限公司乌鲁木齐石化分公司对再生后AT-505、FH-5加氢催化剂质量要求如下: 催化剂碳含量:≯0.5m% 硫含量不大于实验室数据+0.3 m% 三项指标(比表面、孔体积、强度)达到在实验室再生结果的95%以上。

二、实验室和工业再生 温州瑞博催化剂有限公司加氢催化剂器外再生是网带炉式集预热脱油、烧硫、烧碳和冷却降温于一体,实现电脑控制、上位管理的临氢催化剂烧焦再生作业线,系半自动、全密封、进行颗粒分离并实施除尘和烟气脱硫的清洁工艺生产的作业线。 针对中国石油股份有限公司乌鲁木齐石化分公司提出的再生后催化剂质量要求,在物性分析检查的基础上,温州瑞博催化剂有限公司首先对AT-505、FH-5加氢催化剂进行了实验室模拟再生,并根据本公司设备特点制定出了工业再生的方案和操作条件。在确保安全和再生剂质量的前提下组织了本次工业再生工作。现将催化剂再生前后,实验室再生和工业再生的综合样品分析结果列于下表: AT-505加氢催化剂物化分析数据

FH-5加氢催化剂物化分析数据 三、催化剂再生前后物料平衡

催化剂预硫化

黑龙江安瑞佳石油化工有限公司 学习资料 (催化剂预硫化方法) 气分车间 2013年4月 催化剂的预硫化

催化剂的预硫化有两种方法:一是干法预硫化,亦称气相预硫化,即在循环氢或氢氮混合气或氢气与丙烷或氢气与丁烷混合气存在下注入硫化剂进行硫化;二是湿法预硫化,亦称液相预硫化,即在循环氢存在下以轻油等为硫化油携带硫化剂注入反应系统进行硫化。 催化剂硫化的基本原理 催化剂硫化是基于硫化剂(CS2或二甲基二硫DMDS )临氢分解生成的H2S, 将催化剂活性金属氧化态转化为相应的硫化态的反应。 干法硫化反应:用氢气作载体,硫化氢为硫化剂。 M O O3 + 2H2S + H2 ----------- ? M0S2 + 3H2O 9CoO + 8H2S + H2 --------- ? C09S8 + 9H2O 3NiO + 2H2S + H2 ________ . M3S2 + 3出0 湿法硫化反应:用氢气作载体,CS2为硫化剂。 CS2 + 4H2 ----------- ? 2H2S + CH4 M O O3 + CS2 + 5H2 --------------- k M0S2 + 3H20 + CH4 M O O3 + CS2 + 3H2 ---------------- ? M0S2 + 3H2O + C 9C O O + 4CS2 + 17H2 -------------- 09S8 + 9H20 + CH4 9C O O + 4CS? + 9H2 ----------- k C09S8 + 9H2O + 4C 3Ni0 + 2CS2 + 5H2 ------------ ? M3S2 + 3出0 + CH4 基于上述硫化反应式和加氢催化剂的装量及相关金属含量可估算出催化剂硫化剂的理论需要量。其硫化剂的备用量(采购量)一般按催化剂硫化理论需硫量的1.25倍考虑即可。

加氢精制再生催化剂的合理使用

加氢精制再生催化剂的合理使用 摘要:简要讨论了加氢精制再生催化剂的特点,说明了再生催化剂降级使用的技术方案是完全可行的,并介绍了在再生催化剂装填和硫化过程中,与新鲜催化剂的差别,及应该注意的事项。 关键词:加氢精制再生催化剂合理使用 前言 石油馏分的加氢工艺技术是目前生产清洁燃料应用最广泛、最成熟的主要加工手段之一,在石油化工企业中所占的地位越来越重要。近年来,随着炼油企业加氢精制工业装置加工量的逐渐增加,所使用加氢催化剂的品种越来越多,数量也越来越大,经过烧焦再生后继续使用的再生催化剂的品种和数量也越来越多。目前,全世界约有18 kt/a加氢催化剂需要再生[1],而预计其中的加氢精制催化剂至少在10 kt/a以上。因此,如何合理使用加氢精制再生剂,使之发挥更大的作用,提高炼油企业的经济效益变得越来越重要。 加氢精制催化剂经过1 个周期的运转,由于积炭等原因造成活性下降,必须经过烧焦再生处理后才能使催化剂的活性得到恢复,并继续使用。在正常使用的情况下,加氢精制催化剂可以再生1~2 次,催化剂总寿命在6~9 a之间。加氢精制再生催化剂的开工过程原则上与新鲜催化剂是一致的,但是也有一些不同之处。这主要是因为:再生催化剂的物理性质,如比表面积、孔容积和机械强度等都发生了变化;再生剂的催化活性要比新鲜剂低一些;再生剂上残留的硫、炭和其它杂质,对开工中催化剂的硫化过程会产生一定的影响。如果再生催化剂完全按新鲜催化剂的开工方法进行,将会造成开工成本提高,和因过量的硫化氢对设备腐蚀而造成的安全隐患,以及不能充分发挥催化剂的活性和稳定性,影响工业装置长周期安全稳定运转。本文主要讨论了加氢精制催化剂再生剂的合理使用及开工工艺过程中应当注意的一些问题。 1 加氢精制再生催化剂的特点 再生催化剂与新鲜催化剂相比,孔容积和比表面积都比新催化剂略有降低。这主要是由于积炭和杂质沉积堵塞催化剂孔道,降低了孔容积和比表面积,使催化剂活性金属的利用率降低,造成再生后的催化剂活性有所下降。表1列出了某柴油加氢精制催化剂新鲜剂与再生剂的理化性质。 表1 新鲜催化剂与再生剂的理化性质 Table1 The physicochemical properties of fresh catalyst and regenerated catalyst 催化剂再生剂新鲜剂 孔容积/(mL?g-1) 0.46 0.48 表面积/(m2?g-1) 218 226 耐压强度/(N?cm-1) 172 168 堆积密度/(g?cm-3) 0.90 0.88 硫含量,% 0.58 - 碳含量,% 0.22 - 由表1可以看出,再生催化剂的孔容积和表面积较新鲜催化剂要小;新催化剂上没有硫和碳,

固化剂和促进剂安全使用规范

固化剂和促进剂安全使 用规范 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

1范围 是引发剂的一种,具有很强的腐蚀性,促进剂是可以提高反应速率的一种用量较少的物质。固化剂及促进剂直接混兑,会发生剧烈反应而引起燃爆,不正确使用,会带来极大的安全事故。因此,特制定本使用规范,该规范确定了沭阳嘉净环保科技有限公司相关部门所有岗位在固化剂和促进剂使用过程中的安全作业方法。

2规范性引用文件 安全生产管理标准 3职责 技术部负责制定固化剂和促进剂安全操作管理规范。 各相关部门、车间、班组严格执行本规范。 4.控制要求 存放 固化剂与促进剂及丙酮盛装桶严禁混用,否则将引起燃爆 仓库及各岗位严禁将固化剂和促进剂进行混放,放置间距应不少于5米。 存放温度不超过25℃,避免阳光直射。当室温高于25℃时,需将固化剂及促进剂桶分别放置于不同的容器中,盛入冷水进行降温。 使用规范 固化剂使一种很强的氧化剂,对人皮肤有很强的腐蚀性,若不慎滴洒到皮肤上会有灼伤感,若进入眼镜则很有可能造成短时失明,因此,使用固化剂时要做好防护,带上胶皮手套和防护眼镜,促进剂对人体也有很大的危害,使用时尽量避免直接接触, 制造部各车间按根据需要设置专门树脂调配区,指定专人进行树脂调配,其他任何人不得擅自操作。树脂调配区内固化剂存放不超过1桶(25公斤),促进剂不超过1桶(20公斤)。 公司所有树脂进厂时需确定是否进行过预促进处理,如添加促进剂,则要确定其混合比例,由树脂调配人员按需调配。 除树脂调配区允许存放树脂、固化剂、促进剂外,各班组岗位上严禁存放促进剂、固化剂。 树脂调配时应先加入适量促进剂,搅拌均匀后再加入固化剂,搅拌均匀。操作中应杜绝促进剂和固化剂同时加入,否则将会产生化学反应起火。 固化剂的使用器具应该严格区分于促进剂的器具,盛装过促进剂的器具,禁止再用于固化剂。 固化剂不能与丙酮混放,更不得将固化剂与丙酮混合,否则,也会起反应造成燃爆。

预加氢催化剂预硫化方案审批稿

预加氢催化剂预硫化方 案 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

中国石化九江分公司 30×104t/a重整预加氢装置FH-40C催化剂原则开工方案 中国石油化工股份有限公司抚顺石油化工研究院 二○○九年四月

一、催化剂干燥 1、干燥前的准备工作 (1)催化剂装填完毕,临氢系统进行氮气置换、气密合格。催化剂干燥用氮气作介质。 (2)绘出催化剂干燥脱水升、恒温曲线。 (3)催化剂干燥前,各切水点排尽存水,并准备好计量水的器具。 2、干燥示意流程 ↓N2 循环氢分液罐→循环压缩机→换热器→加热炉 ↑↓ 分离器←水冷←空冷←换热器←反应器 ↓放水 3、催化剂干燥条件: 高分压力: 反应器入口温度:250℃ 循环氮气量:循环压缩机全量循环 干燥温度要求见表2。 表2 催化剂干燥温度要求 反应器入口温度 ℃床层温度 ℃ 升、降温速度 ℃/h 升、恒温参考时间 h 常温→250- 10~15 15 250~280 ≮200 - 至干燥结束250→<150≯150 20~25 4~5 4、干燥结束标准

高分无明水放出。 5、干燥操作 (1)在氮气压力下,循环压缩机全量循环,加热炉点火,以10~15℃/h的升温速度将反应器入口温度升至250℃,开始恒温脱水。如果催化剂床层最低点温度达不到200℃,可适当提高反应器入口温度,但反应器入口温度≯280℃。 (2)在干燥过程中,每2小时在高分放水一次,并计量。 (3)画出催化剂脱水干燥的实际升、恒温曲线图。 (4)干燥达到结束标准后,以≯25℃/h的降温速度将反应器床层各点温度均降至<150℃,方可引入氢气进行高压气密,合格后进行催化剂预硫化。 二、催化剂预硫化 催化剂预硫化是指催化剂在氢气存在下,硫化剂(如DMDS)分解生成H2S,H2S使催化剂金属组分由氧化态转化成相应的硫化态。 在预硫化过程中,关键问题是要避免金属氧化态在与H2S反应转化成硫化态之前被热氢还原。所以,催化剂预硫化时,必须控制好预硫化温度与循环氢中H2S含量的关系,在H2S未穿透催化剂床层前,床层最高点温度不应超过230℃。

加氢裂化催化剂再生技术总结

加氢裂化催化剂再生技术总结 摘要:催化剂是加氢裂化工艺的核心,特别是加氢裂化催化剂,直接决定了油品 转换的方向。在精制反应器与裂化反应器串联使用的生产工艺中,裂化催化剂失 活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。加氢裂化催化剂 选择专业的公司进行器外再生,再生剂质量好、活性损失少,能够满足装置生产 运行要求。 关键词:加氢裂化催化剂结焦积碳再生 1前言 加氢裂化催化剂不仅要求有加氢性能,且有适宜的酸性,因此多含有沸石酸 性组分。加氢处理和加氢裂化操作中,多种因素导致催化剂暂时或永久失活,运 转周期一般为6个月到4~5年,视装置类型和操作条件苛刻度而定,在运转过 程中催化剂失活,可由提高反应温度来弥补,直至产品质量、数量限制而停止升温,确定停运进行再生。再生可以除去焦炭、清除覆盖活性中心及堵塞孔口的焦 炭和杂质,同时使活性金属重新分散,恢复催化剂活性[1]。通过分析裂化催化剂 使用情况,委托专业厂家对催化剂进行再生,再生剂活性较好,使用效果满足生 产需求。 2加氢裂化催化剂失活现象 造成加氢裂化催化剂失活的主要原因有催化剂结焦、催化剂中毒以及催化剂 中金属聚集、分散变差[2]。结合催化剂使用情况来看,该裂化剂串联在精制催化 剂之后使用,其发生催化剂中毒和金属沉积的可能性较小。通过收集分析催化剂 运行数据,显示该裂化剂在第一运行周期中未出现局部热点,通过温度补偿的方 式基本能够满足反应深度的需求。因此,该裂化剂失活的主要原因为结焦或积碳,通过再生处理能够使其恢复活性。 3加氢裂化催化剂再生的要求 加氢裂化催化器外再生需要确保催化剂晶体结构稳定、损坏程度微小,活性 金属凝聚度降至最低,使得比表面积、孔容及径向压碎强度得到良好的恢复。通 常要求如下; 表 1 再生剂性能指标要求 注:Rx—实验室再生样品的分析值。 一般通过过筛分离脱除反应器卸下催化剂中的碳粉、杂质、瓷球等物,将剩 余的待生剂进行烧焦再生,烧焦脱除待生剂中的碳和硫,使其比表面积、孔体积 得以恢复。最后还要对完成烧焦的再生剂再次进行过筛分离,脱除粉尘和碎粒, 确保其颗粒完整,回装反应器后不影响流体分布。由于多数加氢裂化催化是分子 筛型催化剂,其特殊的分子筛结构决定了对其再生过程温度的控制要更加严格, 必须防止再生过程中超温对催化剂载体结构的破坏[3]。因此,催化剂再生时要求 厂家严格控制预热的空气流量和烧嘴条件,准确控制温度使催化剂得以良好再生。3再生剂效果评价 3.1物理性质评价 将某加氢裂化催化剂HC-A待生剂、HC-A实验室再生剂及HC-A再生剂的物 化性能汇总于表1。由表1可见,通过再生后的HC-A裂化催化剂S、C含量大幅 降低,比表面积、孔容及径向压碎强度均有了明显改善。积碳是催化剂活性下降 的主要原因,但催化剂通过再生,随着积碳的烧除,催化剂活性将得到一定程度

加氢催化剂的硫化_翟京宋

2011 年第 1 期 2011 年 1 月
化学工程与装备 Chemical Engineering & Equipment
59
生产实践
摘 前言 1 催化剂的硫化原理 应。硫化的反应方程式如下: (CH3)2S2 +3H2 = 2H2S + 2CH4 MoO3+2H2S+H2 = MoS2+3H2O 9CoO+8H2S+H2 = Co9O8+9H2O 3NiO+2H2S+H2 = Ni3S2+3H2O WO3+2H2S+H2 = WS2+3H2O 2 硫化方法和硫化剂的选择 硫化。
加氢催化剂的硫化
翟京宋
(广西石化公司,广西 钦州 535008)
要:加氢催化剂的硫化是提高催化剂活性、优化加氢催化剂操作,确保装置安全、平稳、高效运行。
本文从生产实践中介绍了加氢催化剂硫化的原理、方法、硫化剂的选择,以及催化剂器内硫化通用操作步 骤,并介绍了硫化过程中的事故处理、主要注意事项。 关键词:催化剂硫化;事故处理;注意事项
CS2、二甲基二硫化物等)进行硫化;另一种是依靠硫化油 自身的硫进行硫化。 干法硫化是在氢气存在下, 直接用含有 一定浓度的硫化氢或直接向循环氢中注入有机硫化物进行 硫化。 在开工硫化阶段需要使用硫化剂, 而硫化剂的选择应考 虑以下因素: (1)硫化剂在临氢和催化剂存在的条件下,能在较低 反应温度下分解生成H2S,有利于催化剂硫化的顺利进行, 提高硫化效果。 (2) 硫化剂的硫含量应较高, 以减少硫化剂的使用量, 避免其他元素对硫化过程的不利影响。 (3)硫化剂价格便宜、毒性小,使用安全可靠。 3 催化剂器内硫化 催化剂的湿法硫化可分为原料油自身的含硫化物的湿 法硫化和外加硫化剂湿法硫化两种。 虽然原料油的自身湿法 硫化方法简单、省事,但由于原料油本身所含硫化物低,难 以分解、分解温度高,容易使催化剂被还原的危险,一旦形 成低价态的金属氧化物, 就很难再与硫化氢反应, 则无法在 理想的时间内完成硫化,因此催化剂硫化效果较差。 在湿法硫化中,使用馏分油作为催化剂湿法硫化用油, 其馏分范围一般应接近或略轻于加氢原料油, 通常以直馏柴 油馏分应用较多, 不含烯烃且氮含量应低于200ppm, 其总硫 含量要求低于2% wt(包括加入的有机含硫化合物) 。烯烃加 氢反应会增加放热并导致催化剂上焦炭沉积, 为取得好的硫 化效果,所选用的硫化油的干点不宜过高(一般不大于 370oC) 。 因为在硫化温度下可能发生饱和反应对正常的硫化 操作造成干扰,导致催化剂床层温度不稳定,氢耗过高,同 时裂化原料中含有转化难度很高的含氮化合物, 具有较强的 吸附能力和较高结焦倾向。 3.1 催化剂的湿法硫化
新鲜的催化剂或再生后的催化剂, 其所含的活性金属组 分(Mo、Ni、Co、W)都是以氧化态的形式存在。经过研究 和工业化运用实践证明,当催化剂以硫化态的形态存在时, 催化剂具有较高的活性、稳定性和选择性,抗毒性强,寿命 长,才能够最大限度地发挥加氢催化剂的作用。 催化剂的硫化是在一定的温度和氢气分压下, 通过加氢 催化剂中的氧化态活性组分(氧化镍、氧化钼等)和硫化剂 化学作用变为活性较高的硫化态金属组分, 达到催化剂长周 期稳定运行的目的。 催化剂硫化是基于硫化剂临氢分解生产 的 H2S 将催化剂活性金属氧化态转化为相应金属硫化态的反
硫化技术的分类方法根据硫化反应进行的场所来确定, 加氢催化剂硫化可分为器内硫化和器外硫化。 而催化剂的器 内预硫化可以分为气相(干法)预硫化和液相(湿法)预硫 化两大类。 目前, 国内工业加氢装置大都实行器内预硫化方 法, 除对于择形裂解活性, 弱加氢活性的临氢活性的降凝催 化剂、 分子筛加氢裂化催化剂的预硫化大多采用干法硫化以 外, 其他的加氢精制、 加氢处理装置的催化剂普遍采用湿法 湿法硫化是在氢气存在下, 采用含有硫化物的烃类或馏 分油在液相或半液相状态下硫化。 湿法硫化又分为两种, 一 种是催化剂硫化过程所需要的硫由外部加入的硫化物(如

相关文档
最新文档