矩阵典型习题解析

矩阵典型习题解析
矩阵典型习题解析

2 矩阵

矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单!

2.1 知识要点解析

2.1.1 矩阵的概念

1.矩阵的定义

由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表

mn m m n n a a a a a a a a a A

21

22221

11211

称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵

(1)方阵:行数与列数相等的矩阵;

(2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下)

三角阵;

(3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵;

(5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(;

)(

若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。

2.1.2 矩阵的运算

1.加法

(1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律

① A+B=B+A ;

②(A+B )+C =A +(B+C )

③ A+O=A

④ A +(-A )=0, –A 是A 的负矩阵

2.数与矩阵的乘法

(1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA ,

③ (KL ) A = K (LA )

3.矩阵的乘法

(1)定义:设.)(,)(np ij mn ij b B a A 则

,)(mp ij C C AB 其中

n

k kj

ik ij b a

C 1

(2)运算规律

①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂

①定义:A n ij a )( ,则K

k A A A

②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。

①BA AB

②;00,0 B A AB 或不能推出

③k k k B A AB )( 4.矩阵的转置

(1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A

的转置,记为nm a A ji T )( ,

(2)运算规律

①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA

④T T T A B AB )(。

(3)对称矩阵与反对称矩阵

若,A A T 则称A 为对称阵;

A A T ,则称A 为反对称阵。

5.逆矩阵

(1)定义:设A 为n 阶方阵,若存在一个n 阶方阵B ,使得AB=BA=E ,

则称A 为可逆阵,B 为A 的逆矩阵,记作1 A B 。

(2)A 可逆的元素条件:

A 可逆0 A

(3)可逆阵的性质

①若A 可逆,则A -1也可逆,且(A -1)-1 =A ; ②若A 可逆,k ≠0,则kA 可逆,且1

11)(

A k

kA ; ③若A 可逆,则A T 也可逆,且T T A A )()(11 ; ④若A ,B 均可逆,则AB 也可逆,且111)( A B AB 。 (4)伴随矩阵

①定义:T n ij A A )(* ,其中ij A 为ij a 的代数余子式, ②性质:

i )E A A A AA **; ii )1

* n A A ;

iii )A A

A n 2

**)( ;

iv )若A 可逆,则*A 也可逆,且A A

A A 1)()(*11* ③用伴随矩阵求逆矩阵公式:*

11A A

A

2.1.3 方阵的行列式

1.定义:由n 阶方阵A 的元素构成的n 阶行列式(各元素的位置不变)叫

做方阵A 的行列式,记为A 或detA 。

2.性质:

(1)A A T ,

(2)A k kA n ,

(3)B A AB ,

(4)A

A 11

3.特殊矩阵的行列式及逆矩阵

(1) 单位阵E :E E E 1;

1;

(2) 数量矩阵kE :;n k kE 当E k

kE k 1)(,01 时 (3)对角阵:

;,*

212

1n n

若021 n ,则

n 11

12

11

4. 上(下)三角阵

设nn nn a a a A a a a A

221122

11

,*

则 若0 A ,则1 A 仍为上(下)三角阵

2.1.4 矩阵的初等变换与初等矩阵

1.矩阵的初等变换 (1)定义:以下三种变换

①交换两行(列);

②某行(列)乘一个不为零的常数k ;

③某行(列)的k 倍加到另一行(列)上去,称为矩阵的初等变换。

2.初等矩阵

(1)定义:将n 阶单位阵E 进行一次初等变换得到的矩阵称为初等矩阵;

交换i ,j 两行(列),记为E (i, j );

第i 行(列)乘以不为零的常数k 记为E(i(k));

第j 行的k 倍加到第i 行上去,记为E(j(k)i ; (2)初等矩阵的性质

初等阵是可逆阵,且逆阵仍为同型的初等阵; 而)1())](([)

()]([11

k i E k i E ij E ij E

] )([)] )(([1i k j E i k j E

(3)方阵A 可逆与初等阵的关系

若方阵A 可逆,则存在有限个初等阵t P P P ,,,21 ,使t P P P A 21 ,

(4)初等阵的行列式

1) )((,

))((,

1)( i k j E k k i E ij E

(5)初等阵的作用:

对矩阵A 进行一次初等行(列)变换,相当于用相应的初等阵左(右)乘矩阵A ,且

A i k j E A k A k i E A A ij E ) )((,

))((,

)(

3.矩阵的等价

(1)定义:若矩阵A 经过有限次初等变换变到矩阵B ,则称A 与B 等价, (2)A 与B 等价的三种等价说法,

①A 经过一系列初等变换变到B ;

②存在一些初等阵t s F F E E ,,,,,11 ,使得B F AF E E t s 11 ③存在可逆阵P ,Q ,使得PAQ=B

2.1.5 分块矩阵

1.分块矩阵的定义

以子块为元素的形式上的矩阵称为分块矩阵。 2.分块矩阵的运算

(1)设A ,B 为同型矩阵,采用相同的分法有

st s t t st s t t B B B B B B B A A A A A A A

1

221

111

1

221

111

),,2,1;,,2,1()

(t j s i B A B A ij ij

(2)),,2,1;,,2,1()

(t j s i kA kA ij

(3)设,)(,)(np ij mn ij b B a A 分块成

tr t r st s t B B B B B A A A A A

1

1111

111 其中it i i A A A ,,,21 的列数分别等于tj j j B B B ,,,21 的行数,则

sr ij c C AB )( ,其中

t

k kj ik

ij s i B A

c 1

)r ,1,2,j ;,,3,2,1(

3.准对角阵 (1)定义:形如

s A A A A

2

1

A i 为n i 阶方阵的矩阵称为准对角阵。 (2)准对角阵的行列式及逆矩阵

s A A A A

2

1

,则s A A A A 21 ;若每个A i 可逆,则A 可逆,且

11

2

1

11

s A A A A

(3)特殊的准对角阵

(i )

21

A A A ,若A 1, A 2可逆,则

12111

A A A (ii )

2

1A

A A ,若A 1, A 2可逆,则

1

112

1

A A A (iii )

C O

D B

A 是0,0,0 C

B A

C B 则

1111

1

C DC B B A (iv )0,0,0

C B C

D B A ,则

11111

0C DB C B A

2.2 经典题型解析

2.2.1 矩阵的运算

1、若11221252121=11231c c c b

L L L L L L L 则c = 解:由415a 得a =0, 11c =4 而-1+2b +6=-1得b =-3, 22c =-7

从而 c 45=17

提示:对于最基本的矩阵的四则运算我们一定要烂熟于心。

2、设A 为三阶矩阵,且4,A 则____.A 21()2

解:3

22111

444A A A

g 21()2

易错提示:本题是道特别基本的有关矩阵基本性质的类型题,考生易犯的错

误就是对矩阵进行行列式计算时,把A 2

1()2

的阶数给忘记计算。 3、设A 为3 3矩阵,B 为4 4,且12A B ,,则___.B A 解: 3

218.B A B A g

组合典型例题解析讲解学习

组合典型例题解析 【例1】判断下列各事件是排列问题,还是组合问题,并求出相应的排列数或组合数. (1)10个人相互各写一封信,共写了多少封信? (2)10个人规定相互通一次电话,共通了多少次电话? (3)10支球队以单循环进行比赛(每两队比赛一次),这次比赛需要进行多少场次? (4)10支球队以单循环进行比赛,这次比赛冠亚军获得者有多少种可能? (5)从10个人里选3个代表去开会,有多少种选法? (6)从10个人里选出3个不同学科的科代表,有多少种选法? 解:(1)是排列问题,因为发信人与收信人是有顺序区别的.排列数为A2 10 =90(种). (2)是组合问题,因为甲与乙通了一次电话,也就是乙与甲通了一次电话,没有顺序 的区别.组合数为C2 10 =45(种). (3)是组合问题,因为每两个队比赛一次,并不需要考虑谁先谁后,没有顺序的区别. 组合数为C2 10 =45(种). (4)是排列问题,因为甲队得冠军、乙队得亚军与甲队得亚军、乙队得冠军是不一样 的,是有顺序区别的.排列数为A2 10 =90(种). (5)是组合问题.因为三个代表之间没有顺序的区别.组合数为C3 10 =120(种). (6)是排列问题.因为三个人中,担任哪一科的课代表是有顺序区别的.排列数为A310=720(种). 点评:排列、组合是不同的两个事件,区分的办法是首先弄清楚事件是什么?区分的标志是有无顺序,而区分有无顺序的方法是:把问题的一个选择结果解出来,然后交换这个结果中任意两个元素的位置,看是否会产生新的变化,若有新变化,即说明有顺序,是排列问题;若无新变化,即说明无顺序,是组合问题. 【例2】写出从五个元素a,b,c,d,e中任取三个元素的所有组合,并求出其组合数. 解:考虑画出如下树形图,按给出字母从左到右的顺序来考虑. a b b c c c d d d d d e e e 根据树形图,所有组合为abc,abd,abe,acd,ace,ade,bcd,bce,bde,cde. 组合数为C3 5 =10(个). 点评:排列的树形图与组合的树形图是有区别的.排列的树形图中其元素不能重复出现但可任意排列,而组合的树形图中其元素也不能重复出现,但元素出现的次序必须按照从左到右的顺序(如元素b后面不能出现a,元素c后面不能出现a、b等)来考虑,否则就会出现重复或遗漏.

高数典型例题解析

第一章函数及其图形 例1:(). A. {x | x>3} B. {x | x<-2} C. {x |-2< x ≤1} D. {x | x≤1} 注意,单选题的解答,有其技巧和方法,可参考本课件“应试指南”中的文章《高等数学(一)单项选择题的解题策略与技巧》,这里为说明解题相关的知识点,都采用直接法。 例2:函数的定义域为(). 解:由于对数函数lnx的定义域为x>0,同时由分母不能为零知lnx≠0,即x≠1。由根式内要非负可知即要有x>0、x≠1与同时成立,从而其定义域为,即应选C。 例3:下列各组函数中,表示相同函数的是() 解:A中的两个函数是不同的,因为两函数的对应关系不同,当|x|>1时,两函数取得不同的值。 B中的函数是相同的。因为对一切实数x都成立,故应选B。 C中的两个函数是不同的。因为的定义域为x≠-1,而y=x的定义域为(-∞,+∞)。 D中的两个函数也是不同的,因为它们的定义域依次为(-∞,0)∪(0,+∞)和(0,+∞)。例4:设

解:在令t=cosx-1,得 又因为-1≤cosx≤1,所以有-2≤cosx-1≤0,即-2≤t≤0,从而有 。 5: 例 f(2)没有定义。 注意,求分段函数的函数值,要把自变量代到相应区间的表达式中。 例6:函数是()。 A.偶函数 B.有界函数 C.单调函数 D .周期函数 解:由于,可知函数为一个奇函数而不是偶函数,即(A)不正确。 由函数在x=0,1,2点处的值分别为0,1,4/5,可知函数也不是单调函数;该函数显然也不是一个周期函数,因此,只能考虑该函数为有界函数。 事实上,对任意的x,由,可得,从而有。可见,对于任意的x,有 。 因此,所给函数是有界的,即应选择B。 例7:若函数f(x)满足f(x+y)=f(x)+f(y),则f(x)是()。 A.奇函数 B.偶函数 C.非奇非偶函数D.奇偶性不确定

2016矩阵论试题

第 1 页 共 6 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则1||||A =。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为A = 4. 设矩阵??? ? ? ??--=304021101A ,则 5432333A A A A A -++-= . 5.??? ? ? ? ?-=λλλλλ0010 01)(2A 的Smith 标准形为 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

矩阵理论第一二章典型例题

《矩阵理论》第一二章 典型例题 一、 判断题 1.A n 为阶实对称矩阵,n R x 对中的列向量, ||x |A x =定义, ||x||x 则为向量 的范数. ( ) 提示:因为非负性不成立,故结论错误。 2.设A n 为阶Hermite 矩阵, 12,,,n λλλ是矩阵A 的特征值,则2 2 21 ||||n m i i A λ==∑. ( ) 提示:A n 为阶Hermite 矩阵?22 2 212||||||(,, ,)||H m n m A Udiag U λλλ= 2 212||(,, ,)||n m diag λλλ=21 n i i λ==∑. 3. 如果m n A C ?∈,且0A ≠,()H AA AA --=, 则2||||AA n -=. ( ) 提示:AA -为幂等矩阵?AA - 的特征值为0或1。又0A ≠,?A AA - ≥秩()=秩()1? 0AA -≠?1是AA -的特征值 ?2||||AA -=max ()i AA λ-= =1 4. 若设n x R ∈ ,则212||||||||||x x x ≤≤. ( ) 提示: 2 2 2 2 2 2 1221 ||||||||||||||x x x x x =++ +≤, 11||||||n i i x x ==∑1 ||1n i i x ==?∑ 21/21 ||)n i i x =≤ ∑2||x = 5. 设m n A R ?∈的奇异值为12n σσσ≥≥ ≥,则2 22 1 ||||n i i A σ==∑. ( ) 6. 设n n A C ?∈,且有某种算子范数||||?,使得||||1A <,则11 ||()||1|||| E A A --> -, 其中E 为n 阶单位矩阵. ( ) 提示:

一次函数解析式典型例题解析及部分题答案

一次函数解析式典型题型 一. 定义型(一次函数即X 和Y 的次数为1) 例1. 已知函数y m x m =-+-()3328 是一次函数,求其解析式。 解:由一次函数定义知m m 281 30 -=-≠??? ∴=±≠?? ? m m 3 3 ∴=-m 3,故一次函数的解析式为y x =-+33 注意:利用定义求一次函数y kx b =+解析式时,要保证k ≠0。如本例中应保证m -≠30 二. 点斜型(已知斜率和经过的一点) 例2. 已知一次函数y kx =-3的图像过点(2,-1),求这个函数的解析式。 解: 一次函数y kx =-3的图像过点(2,-1) 。 ∴-=-123k ,即k =1 故这个一次函数的解析式为y x =-3 变式问法:已知一次函数y kx =-3,当x =2时,y =-1,求这个函数的解析式。 三. 两点型(已知图像经过的两点) 已知某个一次函数的图像与x 轴、y 轴的交点坐标分别是(-2,0)、(0,4),则这个函数的解析式为 解:设一次函数解析式为y kx b =+ 由题意得024=-+=???k b b ∴==??? k b 2 4 故这个一次函数的解析式为y x =+24 四. 图像型 例4. 已知某个一次函数的图像如图所示,则该函数的解析式为y=-2x+2。 y 2 O 1 x #

解:设一次函数解析式为y kx b =+ 由图可知一次函数y kx b =+的图像过点(1,0)、(0,2) ∴有020=+=+??? k b b ∴=-=???k b 22 故这个一次函数的解析式为y x =-+22 五. 斜截型(已知斜率k 和截距b ) 两直线平行,则k1=k2;两直线垂直,则k1=-1/k2 例5. 已知直线y kx b =+与直线y x =-2平行,且在y 轴上的截距为2,则直线的解析式为 解析:两条直线l 1:y k x b =+11;l 2:y k x b =+22。当k k 12=,b b 12≠时,l l 12// 直线y kx b =+与直线y x =-2平行,∴=-k 2。 又 直线y kx b =+在y 轴上的截距为2,∴=b 2 《 故直线的解析式为y x =-+22 六. 平移型(向上/右平移则截距增加;向左平移则截距减小) 例6. 把直线y x =+21向下平移2个单位得到的图像解析式为 y=2x-1。 解析:设函数解析式为y kx b =+, 直线y x =+21向下平移2个单位得到的直线y kx b =+与直线y x =+21平行 ∴=k 2 直线y kx b =+在y 轴上的截距为b =-=-121,故图像解析式为y x =-21 七. 实际应用型 例7. 某油箱中存油20升,油从管道中匀速流出,流速为升/分钟,则油箱中剩油量Q (升)与流出时间t (分钟)的函数关系式为 Q=+20。 解:由题意得Q t =-2002.,即Q t =-+0220. Q t ≥∴≤0100, 故所求函数的解析式为Q t =-+0220.(0100≤≤t ) | 注意:求实际应用型问题的函数关系式要写出自变量的取值范围。 八. 面积型 例8. 已知直线y kx =-4与两坐标轴所围成的三角形面积等于4,则直线解析式为 y=2x-4或y=-2x-4。

矩阵典型习题解析

2 矩阵 矩阵是学好线性代数这门课程的基础,而对于初学者来讲,对于矩阵的理解是尤为的重要;许多学生在最初的学习过程中感觉矩阵很难,这也是因为对矩阵所表示的内涵模糊的缘故。其实当我们把矩阵与我们的实际生产经济活动相联系的时候,我们才会发现,原来用矩阵来表示这些“繁琐”的事物来是多么的奇妙!于是当我们对矩阵产生无比的兴奋时,那么一切问题都会变得那么的简单! 2.1 知识要点解析 2.1.1 矩阵的概念 1.矩阵的定义 由m×n 个数),,2,1;,,2,1(n j m i a ij 组成的m 行n 列的矩形数表 mn m m n n a a a a a a a a a A 21 22221 11211 称为m×n 矩阵,记为n m ij a A )( 2.特殊矩阵 (1)方阵:行数与列数相等的矩阵; (2)上(下)三角阵:主对角线以下(上)的元素全为零的方阵称为上(下) 三角阵; (3)对角阵:主对角线以外的元素全为零的方阵; (4)数量矩阵:主对角线上元素相同的对角阵; (5)单位矩阵:主对角线上元素全是1的对角阵,记为E ; (6)零矩阵:元素全为零的矩阵。 3.矩阵的相等 设mn ij mn ij b B a A )(; )( 若 ),,2,1;,,2,1(n j m i b a ij ij ,则称A 与B 相等,记为A=B 。 2.1.2 矩阵的运算

1.加法 (1)定义:设mn ij mn ij b B A A )(,)( ,则mn ij ij b a B A C )( (2)运算规律 ① A+B=B+A ; ②(A+B )+C =A +(B+C ) ③ A+O=A ④ A +(-A )=0, –A 是A 的负矩阵 2.数与矩阵的乘法 (1)定义:设,)(mn ij a A k 为常数,则mn ij ka kA )( (2)运算规律 ① K (A+B ) =KA+KB , ② (K+L )A =KA+LA , ③ (KL ) A = K (LA ) 3.矩阵的乘法 (1)定义:设.)(,)(np ij mn ij b B a A 则 ,)(mp ij C C AB 其中 n k kj ik ij b a C 1 (2)运算规律 ①)()(BC A C AB ;②AC AB C B A )( ③CA BA A C B )( (3)方阵的幂 ①定义:A n ij a )( ,则K k A A A ②运算规律:n m n m A A A ;mn n m A A )( (4)矩阵乘法与幂运算与数的运算不同之处。 ①BA AB ②;00,0 B A AB 或不能推出 ③k k k B A AB )( 4.矩阵的转置 (1)定义:设矩阵A =mn ij a )(,将A 的行与列的元素位置交换,称为矩阵A 的转置,记为nm a A ji T )( , (2)运算规律 ①;)(A A T T ②T T T B A B A )(; ③;)(T T KA kA ④T T T A B AB )(。

计算机网络典型例题分析解答

典型例题分析解答 一、填空题 1网络层/Network是OSI参考模型中的第三层介于运输/TmsPOEt/T层和数据链路层之间。 1.【解析】网络层在OSI参考模型中位于第三层,它的主要功能是实现两个端系统之间的数据透明传送,具体功能包括路由选择、阻塞控制和网际互连等。 【答案】网络层/Network、运输/TmsPOEt/T 2.在虚电路操作方式中,为了进行数据传输,网络的源节点和目的节点之间要建立一条逻辑电路,称之为____。 2.【解析】虚电路不是专用的,每个节点到其它任一节点之间可能有若干条虚电路支持特定的两个端系统之间的数据传输,两个端系统之间也可以有多条虚电路为不同的进程服务,这些虚电路的实际路径可能相 同也可能不同。 【答案】虚电路 3.虚电路服务是OSI____层向运输层提供的一种可靠的数据传送服务,它确保所有分组按发送____到达目的地端系统。 3.【解析】在分组交换方式中,通信子网有虚电路和数据报两种操作方式,提供虚电路和数据报两种服务。虚电路操作方式中,为了进行数据传输,网络的源节点和目的节点之间要建立一条逻辑通路,称之为虚电路。虚电路服务是网络层向运输层提供的一种使所有分组按顺序到达目的端系统的可靠的数据传送方式。【答案】网络、顺序 4.在数据报服务方式中,网络节点要为每个____选择路由,在____服务方式中,网络节点只在连接建立时选择路由。 4.【解析】在数据报操作方式中,每个分组被称为一个数据报,每个数据报自身携带地址信息,若干个数据报构成一次要传送的报文或数据块.数据报服务是指端系统的网络层同网络节点中的网络层之间,一致地 按照数据报操作方式交换数据。 虚电路服务是面向连接的服务,数据报服务是无连接的服务。 【答案】分组/数据报、虚电路

硕士研究生课程考试试题矩阵论答案

华北电力大学硕士研究生课程考试试题(A 卷) 2013~2014学年第一学期 课程编号:50920021 课程名称:矩阵论 年 级:2013 开课单位:数理系 命题教师: 考核方式:闭卷 考试时间:120分钟 试卷页数: 2页 特别注意:所有答案必须写在答题册上,答在试题纸上一律无效 一、判断题(每小题2分,共10分) 1. 方阵 A 的任意一个特征值的代数重数不大于它的几何重数。 见书52页,代数重数指特征多项式中特征值的重数,几何重数指不变子空间的维数,前者加起来为n ,后者小于等于n 2. 设12,,,m αααL 是线性无关的向量,则12dim(span{,,,})m m ααα=L . 正确,线性无关的向量张成一组基 3.如果12,V V 是V 的线性子空间,则12V V ?也是V 的线性子空间. 错误,按照线性子空间的定义进行验证。 4. n 阶λ-矩阵()A λ是可逆的充分必要条件是 ()A λ的秩是n . 见书60页,需要要求矩阵的行列式是一个非零的数 5. n 阶实矩阵A 是单纯矩阵的充分且必要条件是A 的最小多项式没有重根. 二、填空题(每小题3分,共27分) (6)210021,003A ?? ?= ? ???则A e 的Jordan 标准型为223e 1 00e 0 ,00 e ?? ? ? ?? ?。 首先写出A e 然后对于若当标准型要求非对角元部分为1. (7)301002030λλλ-?? ?+ ? ?-??的Smith 标准型为10003000(3)(2)λλλ?? ?- ? ?-+?? 见书61-63页,将矩阵做变换即得

典型例题分析

典型例题-G-方差分析-2 某企业准备用三种方法组装一种新的产品,为确定哪种方法每小时生产的产品数量最多,随机抽取了30名工人,并指定每个人使用其中的一种方法。通过对每个工人生产的产品数进行方差分析,得到如下表所示的结果。 每个工人生产产品数量的方差分析表 (2)若显著性水平为α=0.05,检验三种方法组装的产品数量之间是否有显著差异。 解: (1)完成方差分析表,以表格中所标的①、②、③、④、⑤、⑥为顺序,来完成表格,具体步骤如下: ①求k -1 根据题目中“该企业准备用三种方法组装一种新的产品”可知,因素水平(总体)的个数k =3,所以第一自由度df 1=k -1=3-1=2,即SSA 的自由度。 ②求n -k 由“随机抽取了30名工人”可知,全部观测值的个数n =30,因此可以推出第二自由度df 2=n -k =30-3=27,即SSE 的自由度。 ③求组间平方和SSA 已知第一自由度df 1=k -1=3-1=2,MSA =210 根据公式 1-= = k SSA MSA 自由度组间平方和 所以,SSA =MSA ×(k -1)=210×2=420 ④求总误差平方和SST 由上面③中可以知道SSA =420;此外从表格中可以知道:组内平方和SSE =3836,根据公式SST =SSA +SSE 可以得出SST =420+3836=4256,即总误差平方和SST=4256 ⑤求SSE 的均方MSE 已知组内平方和SSE =3836,SSE 的自由度n -k =30-3=27 根据公式 0741 .142273836 ==-== k n SSE MSE 自由度组内平方和 所以组内均方MSE =142.0741 ⑥求检验统计量F 已知MSA =210,MSE =142.0741 根据 4781.10741.142210 === MSE MSA F 所以F=1.4781

矩阵论武汉理工大学研究生考试试题科学硕士

武汉理工大学研究生考试试题(2010) 课程 矩阵论 (共6题,答题时不必抄题,标明题目序号) 一,填空题(15分) 1、已知矩阵A 的初级因子为223 ,(1),,(1)λλ-λλ-,则其最小多项式为 2、设线性变换T 在基123,,εεε的矩阵为A ,由基123,,εεε到基123,,ααα的过渡矩阵为P ,向量β在基123,,εεε下的坐标为x ,则像()T β在基123,,ααα下的坐标 3、已知矩阵123411102101,,,00113311A A A A -????????==== ? ? ? ?--???????? ,则由这四个矩阵所生成的子空间的维数为 4、已知0100001000011 000A ?? ? ?= ? ???,则1068A A A -+= 5、已知向量(1,2,0,)T i α=--,21i =-,则其范数 1α= ;2α= ;∞α= ; 二,(20)设1112112121220a a V A a a a a ??????==-=?? ?????? ?为22?R 的子集合, 1、证明:V 是22?R 的线性子空间; 2、求V 的维数与一组基; 3、对于任意的1112111221222122,a a b b A B a a b b ????== ? ????? V ∈,定义 2222212112121111234),(b a b a b a b a B A +++= 证明:),(B A 是V 的一个内积; 4、求V 在上面所定义的内积下的一组标准正交基。 三、(15分)设{} 23210[](),0,1,2i F t f t a t a t a a R i ==++∈=为所有次数小于3的实系数 多项式所成的线性空间,对于任意的22103()[]f t a t a t a F t =++∈,定义:

高中数学典型例题解析---- 数列

高中数学典型例题解析---- 数列 §等差数列的通项与求和 一、知识导学 1.数列:按一定次序排成的一列数叫做数列. 2.项:数列中的每一个数都叫做这个数列的项,各项依次叫做这个数列的第1项(或首项),第2项,…,第n 项,…. 3.通项公式:一般地,如果数列{a n }的第n项与序号n之间的关系可以用一个公式来表示,那么这个公式叫做这个数列的通项公式. 4. 有穷数列:项数有限的数列叫做有穷数列. 5. 无穷数列:项数无限的数列叫做无穷数列 6.数列的递推公式:如果已知数列的第一项(或前几项)及相邻两项(或几项)间关系可以用一个公式来表示,则这个公式就叫做这个数列的递推公式.递推公式是给出数列的一种重要方法,其关健是先求出a 1,a 2,然后用递推关系逐一写出数列中的项. 7.等差数列:一般地,如果一个数列从第二项起,每一项减去它的前一项所得的差都等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用d表示. 8.等差中项:如果a,A,b这三个数成等差数列,那么A= 2b a +.我们把A=2 b a +叫做a和b的等差中项. 二、疑难知识导析 1.数列的概念应注意几点:(1)数列中的数是按一定的次序排列的,如果组成的数相同而排列次序不同,则就是不同的数列;(2)同一数列中可以出现多个相同的数;(3)数列看做一个定义域为正整数集或其有限子集({1,2,3,…,n })的函数. 2.一个数列的通项公式通常不是唯一的. 3.数列{a n }的前n 项的和S n 与a n 之间的关系: ???≥-==-). 2(),1(1 1 n S S n S a n n n 若a 1适合a n (n>2), 则n a 不用分段形式表示,切不可不求a 1而直接求 4.从函数的角度考查等差数列的通项公式:a n = a 1+(n-1)d=d ·n+ a 1-d, a n 是关于n 的一次式;从图像上看,表示等差数列的各点(n,n a )均匀排列在一条直线上,由两点确定一条直线的性质,不难得出,任两项可以确定一个等差数列. 5、对等差数列的前n 项之和公式的理解:等差数列的前n 项之和公式可变形为 n d a n d S n )2(212-+= ,若令A =2d ,B =a 1-2 d ,则n S =An 2+6、在解决等差数列问题时,如已知,a 1,a n ,d ,n S ,n 中任意三个,可求其余两个。 三、经典例题导讲 [例1]已知数列1,4,7,10,…,3n+7,其中后一项比前一项大3.(1)指出这个数列的通项公式;(2)指出1+4+…+(3n -5)是该数列的前几项之和.错解:(1)a n =3n+7;

矩阵理论

矩阵理论 通过学习矩阵理论这门课,发现在这个大数据的时代,矩阵理论是这个时代的基础学科,也是计算机飞速发展的引擎,它的重要性令我咂舌。一下内容是我对矩阵理论这门课程的总结和描述。 本门课程主要包含以下几部分内容:线性方程组、线性空间与线性变换、内积空间、特殊变换及其矩阵、范数及其应用、矩阵分析及其应用、特征值问题。 一 线性方程组 对*m n 矩阵A 施行一次初等行变换(初等行变换),相当于在A 的左边(右边)乘以相应的m 阶(n 阶)初等矩阵。 由于现代计算机处理的数据越来越多,运行的任务越来越大,因此,对矩阵的处理复杂度就是我们关注的重点。 对行列式的拉普拉斯变换是将一个n 阶行列式的计算转化为n 个1n -阶行列式的计算,但是它的计算时间是!n 级。所以拉普拉斯展开定理在理论上非常重要,但在计算上一般仅用于低阶或特殊的行列式。 判断一个算法的优劣,有很多标准,包括时间复杂度和空间复杂度,显然,时间复杂度越小,说明算法效率越高,因此算法也越有价值;而空间复杂度越小,说明算法越好。但主要考虑时间复杂度,因为人生苦短嘛哈哈。 对于一些常用的()f n ,成立下列重要关系: 23(1)(log )()(log )()() (2)(3)(!)()n n n O O n O n O n n O n O n O O O n O n <<<<<<<<< LU 分解就是致力于对降低对方程组求解的复杂度。LU 分解就是在可以的情况下,将矩阵A 分解成单位下三角矩阵和一个上三角的乘积。这样的话,对Ax b =求解,可以转化为对Ly b =求解,然后对Ux y =求解。但是,不是每一个矩阵都可以这样分解,是要满足一定的要求的,这个要求就是矩阵A 的顺序主子式均不为零。 但是不满足这个条件的矩阵就不能分解了吗?当然不是啦!加入一个方阵A 不是顺序主子式不全为零的时候,但是通过行变换,可以满足要求,这样就得了下面这个定理。 如果存在置换矩阵P 、单位下三角矩阵L 与上三角矩阵U ,使得方阵A 满足P A L U =,称作带置换的LU 分解。

—浮力典型例题解析(太经典了)

典型例题解析 例1 下列说法中正确的是 ( ) A .物体浸没在水中越深,受的浮力越大 B .密度较大的物体在水中受的浮力大 C .重的物体受的浮力小 D .同体积的铁块和木块浸没在水中受的浮力一样大 精析 阿基米德原理的数学表达式为:F 浮=ρ液gV 排,公式表明了物体受到的浮力大小只跟液体的密度.....和物体排开液体的体积.......有关.根据公式分析题目叙述的内容,问题就可以迎刃而解了. 解 A 选项:物体浸没在水中,无论深度如何,V 排不变,水的密度不变,F 浮不变.A 选项不正确. B 选项:物体所受的浮力与物体密度的大小没有直接的关系,B 选项不正确. C 选项:重力的大小对物体所受的浮力无影响.例如:大铁块比小铁块要重一些,但将两者浸没于水中,大铁块受的浮力反而大些,因为大铁块的V 排大.C 选项不正确. D 选项:同体积的铁块和木块,浸没于水中,V 排相同,ρ水相同,F 浮铁=F 浮木,铁块和木块受的浮力一样大. 答案 D 注意:物体所受的浮力跟物体自身的重力、自身的密度、自身的形状无关. 例2 质量为79g 的铁块,密度是7.9g/cm 3 ,这个铁块的质量是多少?重多少?将这个铁块浸没于水中,排开水的质量是多少?所受浮力是多少?(g 取10N/kg )

精析 这道题考查学生对计算物体重力和计算浮力的公式的区别. 计算物体重力:G =ρ物gV 物 计算物体在液体中受的浮力:F 浮=ρ液gV 排.可以说:从计算的方法上没有本质的区别,但计算的结果却完全不同. 已知:m =79g =0.079kg ρ铁=7.9g/cm 3 求:m 铁、G 铁、m 排、F 浮 解 m 铁=0.079kg G 铁=m 铁g =0.079kg ×10N/kg =0.79N V 排=V 铁= 铁 铁 ρm = 3 7.8g/cm 79g =10 cm 3 m 排=ρ液gV 排=1g/cm 3 ×10 cm 3 =10g=0.01kg F 浮=m 浮g —0.01kg ×10N/kg =0.1N 从上面的计算看出,铁块的重力和铁块浸没在水中受的浮力大小完全不同,但计算方法委相似,关键 是区别ρ液和ρ物,区别V 排和V 物,在理解的基础上进行计算,而不是死记硬背,乱套公式. 例3 (广州市中考试题)用弹簧测力计拉住一个重为43N 的空心铜球,全部浸在水中时,弹簧测力计的示数为33.25N ,此铜球的空心部分的体积是________m 3 .(已知铜的密度为8.9×103 kg/m 3 ) 已知:G =43N ,浸没水中F =33.2N 求:V 空 解 可在求得浮力的基础上,得到整个球的体积,进一步求出实心部分体积,最后得到结果. F 浮= G —F =43N —33.2N =9.8N

矩阵的运算及其运算规则

矩阵基本运算及应用 201700060牛晨晖 在数学中,矩阵是一个按照长方阵列排列的复数或实数集合。矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。在电力系统方面,矩阵知识已有广泛深入的应用,本文将在介绍矩阵基本运算和运算规则的基础上,简要介绍其在电力系统新能源领域建模方面的应用情况,并展望随机矩阵理论等相关知识与人工智能电力系统的紧密结合。 1矩阵的运算及其运算规则 1.1矩阵的加法与减法 1.1.1运算规则 设矩阵,, 则

简言之,两个矩阵相加减,即它们相同位置的元素相加减! 注意:只有对于两个行数、列数分别相等的矩阵(即同型矩阵),加减法运算才有意义,即加减运算是可行的. 1.1.2运算性质 满足交换律和结合律 交换律; 结合律. 1.2矩阵与数的乘法 1.2.1运算规则 数乘矩阵A,就是将数乘矩阵A中的每一个元素,记为或. 特别地,称称为的负矩阵. 1.2.2运算性质 满足结合律和分配律 结合律:(λμ)A=λ(μA);(λ+μ)A =λA+μA. 分配律:λ(A+B)=λA+λB.

已知两个矩阵 满足矩阵方程,求未知矩阵. 解由已知条件知 1.3矩阵与矩阵的乘法 1.3.1运算规则 设,,则A与B的乘积是这样一个矩阵: (1) 行数与(左矩阵)A相同,列数与(右矩阵)B相同,即 . (2) C的第行第列的元素由A的第行元素与B的第列元素对应相乘,再取乘积之和.

矩阵论试题

2017—2018学年第一学期《矩阵论》试卷 (17级专业硕士) 专业 学号 姓名 得分 一.判断题(每小题3分,共15分) 1.线性空间V 上的线性变换A 是可逆的当且仅当零的原像是零, 即ker A =0。( ) 2.实数域上的全体n 阶可逆矩阵按通常的加法与数乘构成一个 线性空间。( ) 3.设A 是n 阶方阵,则k A ),2,1( =k 当∞→k 时收敛的充分 必要条件是A 的谱半径1)(

4. 设1][-n x P 是数域K 上次数不超过1-n 的多项式空间,求导算子D 在基12,,,,1-n x x x 以及基12)! 1(1,,!21, ,1--n x n x x 下的矩阵分别为 , 。 5.设A 是复数域上的正规矩阵,则A 满足: ,并 写出常用的三类正规矩阵 。 三.计算题(每小题12分,共48分) 1.在3R 中,试用镜像变换(Householder 变换)将向量T )2,2,1(-=α 变为与T e )1,0,0(3=同方向的向量,写出变换矩阵。 。

2016矩阵论试题A20170109 (1)

第 1 页 共 4 页 (A 卷) 学院 系 专业班级 姓名 学号 (密封线外不要写姓名、学号、班级、密封线内不准答题,违者按零分计) …………………………………………密…………………………封……………………………………线………………………………… 考试方式:闭卷 太原理工大学 矩阵分析 试卷(A ) 适用专业:2016级硕士研究生 考试日期:2017.1.09 时间:120 分钟 共 8页 一、填空选择题(每小题3分,共30分) 1-5题为填空题: 1. 已知??? ? ? ??--=304021101A ,则______||||1=A 。 2. 设线性变换1T ,2T 在基n ααα ,,21下的矩阵分别为A ,B ,则线性变换212T T +在基n ααα ,,21下的矩阵为_____________. 3.在3R 中,基T )2,1,3(1--=α,T )1,1,1(2-=α,T )1,3,2(3-=α到基T )1,1,1(1=β, T )3,2,1(2=β,T )1,0,2(3=β的过度矩阵为_______=A 4. 设矩阵??? ? ? ??--=304021101A ,则 _______ 3332345=-++-A A A A A . 5.??? ? ? ? ?-=λλλλλ0010 1)(2A 的Smith 标准形为 _________ 6-10题为单项选择题: 6.设A 是正规矩阵,则下列说法不正确的是 ( ). (A) A 一定可以对角化; (B )?=H A A A 的特征值全为实数; (C) 若E AA H =,则 1=A ; (D )?-=H A A A 的特征值全为零或纯虚数。 7.设矩阵A 的谱半径1)(

2014年矩阵论试题A

长 春 理 工 大 学 研 究 生 期 末 考 试 试 题 科目名称: 矩 阵 论 命题人:姜志侠 适用专业: 理 工 科 审核人: 开课学期:2013 ——2014 学年第 一 学期 □开卷 √闭卷 一、(10分)F 为数域,对于线性空间22?F 中任意矩阵??? ? ??=d c b a A ,规则σ,τ分别为??? ? ??=???? ??=c a A c b a A )(,0)(τσ,问σ,τ是否为22?F 上的变换,如果是,证明该变换为线性变换,并求该变换在基???? ??=000111E ,???? ??=001012E ,???? ??=010021E ,??? ? ??=100022E 下的矩阵. 二、(10分) 已知正规矩阵??? ? ??-=1111A ,求酉矩阵U ,使得AU U H 为对角形矩阵。三、(10分) 用Schmidt 正交化方法求矩阵???? ? ??=101011110A 的QR 分解. 四、(10分) 设矩阵?????? ? ? ?-=2000120010201012A ,求A 的行列式因子,不变因子,初等因子组, Jordan 标准形。 五、(10分) 求可对角化矩阵460350361A ?? ?=-- ? ?--?? 的谱分解式. 六、(10分) 在线性空间n m C ?中,对任意矩阵n m ij a A ?=)(,定义函数ij j i a mn A ,max ?=,证明此函数是矩阵范数。

七、(10分) 已知函数矩阵 ???? ??????=32010cos sin )(x x e x x x x A x , 其中0≠x ,试求)(lim 0x A x →,dx x dA )(,2 2)(dx x A d ,dx x dA )(. 八、(10分)已知矩阵?? ????--=1244916A ,写出矩阵函数)(A f 的Lagrange-Sylvester 内插多项式表示,并计算A πcos . .

典型例题解析

现在完成时专项练习 1. 现在完成时的结构:______________________________ 2.现在完成时的定义①_____________________________ ②____________________________ 2. 写出have been to, have gone to, have been in 的用法(并说出它们的特征): _________________________________________________________________________________________________ _________________________________________________________________________________________________ ___________________________________________ 3. 尽可能多的写出表示用现在完成时的标志性单词或者词组: _________________________________________________________________________________________________ _____________________________________________________________ 4.写出短暂性动词和其对应的延续性动词: buy----- leave------- turn on/off------ borrow----- join--------- finish------- arrive------ die---------- fall asleep---- stop-------- get married--------- catch a cold---- begin/start------- come/go--------- 典型例题解析 1.When I was at college, I _______ up early to do some morning exercises. A. used to get B. used to getting C. used get D. used to get 2.Mr Smith has taught in this university ______ he came here in 1999. 3.----“ Mary has ______ finished the difficult work. What about his classmates?” ----“_________”. A. yet; Not already B. not already; Not yet C. already; Not still D. already; Not yet 4. I’m ____ busy this week that I have to have my dirty clothes ______ nearby. A. so; to be washed B. quite; washing C. so; washed D. very; washing 5.“We are going to the Zijin Mountain tomorrow.” “Have _____ .” A. fun B. time C. wishes D. photos 6.I found my sister greatly ______ after watching the ______ film. A. exciting; excited B. excited; exciting C. exciting; excited D. excited; excited 一. 选择填空 1.( ) Mr. Dong _______ actually _______ in Sunshine Town since he was very young. A. have …lived B. has…lived C. have…live D. has …living 2.( )----Do you know Yao Ming very well? ----Of course !.I _________a lot of news about him on TV so far. A. read B. am reading C. have read D. reads 3.( )---Now Nanjing is so beautiful that I can’t recognize it when I came back. ---Yes. Great changes _______________ in the past ten years. A. has taken place B. have taken place C. took place D. take place 4.( )--Where is my English book ? --I __________it here but I can’t find it now. A. putted B. have just put C. was putting D. am putting 5.( )It’s 7:30. I can’t believe you _______ cooking dinner yet, Sandy. A. didn’t start B. haven’t started C. don’t start D. won’t start 6.( ) Mother ____me a new coat yesterday. I _______ it on. It fits me well. A. had made…have tried B. made…have tried C. has made…tried D. made…tried 7.( ) “He ____to draw horses already”. “When ______ he learn?” “Last year” A.learned...has B. learned...did C. has learned...has D. has learned (i)

相关文档
最新文档