TiO2纳米材料

TiO2纳米材料
TiO2纳米材料

纳米TiO2材料

杨岳洋2015012012

目录

摘要 (2)

前言 (2)

简要介绍 (2)

一、TiO2的结构与性质介绍 (2)

二、TiO2光催化作用介绍 (4)

三、TiO2的制备方法介绍 (5)

1.气相法制备二氧化钛 (5)

(1)物理气相沉积法 (5)

(2)化学气相沉积法 (5)

2.液相法制备纳米二氧化钛 (5)

(1)以硫酸氧钛为原料 (5)

(2)溶胶-凝胶法 (5)

(3)沉淀法 (6)

3.固相法合成纳米二氧化钛 (6)

主要进展 (6)

一、杀菌功能方面研究的进展 (6)

1.纳米二氧化钛抗菌特点 (7)

2.纳米二氧化钛的抗菌原理 (7)

3.国内外对纳米二氧化钛抗菌性的研究及应用实例 (7)

二、防紫外线功能方面研究的进展 (8)

三、光催化功能方面研究的进展 (9)

1.气体净化 (9)

2.处理有机废水 (9)

3.处理无机污水 (9)

四、防雾及自清洁功能方面研究的进展 (10)

五、纳米二氧化钛可作为锂电池、太阳能电池原料 (10)

六、在替代PVA上研究的进展 (10)

七、其它功能方面研究的进展 (11)

未来展望 (11)

归纳总结 (12)

一、研究难点 (12)

二、国内发展状况 (12)

三、应加强的研究方向 (13)

参考文献 (13)

摘要

本文主要以查阅大量文献的方式,而写出的一篇文献综述,以纳米TiO2材料本文以纳米TiO2材料的研发状况、应用及未来发展趋势为中心,介绍TiO2

的结构与性质,纳米TiO2的光催化特性,纳米TiO2的制备方法,纳米TiO2的应用,并根据我国纳米TiO2科研以及生产情况,指出我国纳米TiO2发展中存在的机遇与挑战,并展望了其近期的发展方向。

前言

近年来,纳米TiO2因其具有特殊的光、电等方面的性质,而成为材料科学领域研究热点。纳米TiO2的光催化作用可以把光能转变为电能和化学能,实现许多通常情况下难以实现或不可能进行的反应,利用太阳光作为可见光源来活化纳米TiO2,使其在室温下进行氧化还原反应,可以杀灭有害菌,清除污染物。此外,纳米TiO2本身具有优良的化学稳定性、无毒性、抗菌性广、长效,因此纳米TiO2已成为一种理想的治理环境的材料,在治理污染方面具有巨大的潜在应用价值。另外,纳米TiO2也被广泛地应用于人们的日常生活中,如用于太阳能电池、太阳能污水处理器、空气净化器、自清洁材料、化妆品、防护漆、抗菌材料、精细陶瓷及建筑材料等领域。目前,关于纳米TiO2的制备国内外研究都较多,人们已经得到多种制备纳米TiO2方法。

简要介绍

一、TiO2的结构与性质介绍

TiO

在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中

2

具有较高的催化活性,尤以锐钛矿型光催化活性[4]最佳。金红石型和锐钛矿型TiO

2

锐钛矿型和金红石型的晶型结构均由相互连接的TiO

八面体组成,两者的差别在

2

于八面体的畸变程度和八面体间相互连接的方式不同。两种晶型结构如图1-1所示[5]

图1-1TiO 2的晶体结构

a --金红石型;

b --锐钛矿型八面体间相互连接方式包括共边和共顶点两种情况,如图1-2所示:

图1-2TiO 2结构单元的连接方式

a--共边方式;b--共顶点方式

锐钛矿型TiO 2为四方晶系,其中每个八面体与周围8个八面体相连接(4个共

边,4个共顶角),4个TiO 2分子组成一个晶胞。金红石型TiO 2也为四方晶系,晶

格中心为Ti原子,八面体棱角上为6个氧原子,每个八面体与周围10个八面体相联(其中有两个共边,八个共顶角),两个TiO 2分子组成一个晶胞,其八面体畸

变程度较锐钛矿要小,对称性不如锐钛矿相,其Ti–Ti键长较锐钛矿小,而Ti-O 键长较锐钛矿型大。板钛矿型TiO 2为斜方晶系,6个TiO 2分子组成一个晶胞。

三种晶相以金红石相最稳定,而锐钛矿和板钛矿在加热处理过程中会发生不可逆的放热反应,最终都将转变为金红石相。

3种常见的TiO2晶型:

二、TiO2光催化作用介绍

通俗意义上讲触媒就是催化剂的意思,光触媒顾名思义就是光催化剂。催化剂是加速化学反应的化学物质,其本身并不参与反应。光催化剂就是在光子的激发下能够起到催化作用的化学物质的统称。光催化技术是在20世纪70年代诞生的基础纳米技术,在中国大陆我们会用光触媒这个通俗词来称呼光催化剂。典型的天然光催化剂就是我们常见的叶绿素,在植物的光合作用中促进空气中的二氧化碳和水合成为氧气和碳水化合物。总的来说纳米光触媒技术是一种纳米仿生技术,用于环境净化,自清洁材料,先进新能源,癌症医疗,高效率抗菌等多个前沿领域。

世界上能作为光触媒的材料众多,包括二氧化钛(TiO2),氧化锌(ZnO),氧化锡(SnO2),二氧化锆(ZrO2),硫化镉(CdS)等多种氧化物硫化物半导体,其中二氧化钛(Titanium Dioxide)因其氧化能力强,化学性质稳定无毒,成为世界上最当红的纳米光触媒材料。在早期,也曾经较多使用硫化镉(CdS)和氧化锌(ZnO)作为光触媒材料,但是由于这两者的化学性质不稳定,会在光催化的同时发生光溶解,溶出有害的金属离子具有一定的生物毒性,故发达国家目前已经很少将它们用作为民用光催化材料,部分工业光催化领域还在使用。二氧化钛是一种半导体,分别具有锐钛矿(Anatase),金红石(Rutile)及板钛矿(Brookite)三种晶体结构,其中只有锐钛矿结构和金红石结构具有光催化特性。

二氧化钛是氧化物半导体的一种,是世界上产量非常大的一种基础化工原料,普通的二氧化钛一般称为体相半导体以与纳米二氧化钛相区分。具有Anatase或者Rutile结构的二氧化钛在具有一定能量的光子激发下[光子激发原理参考光触媒反应原理]能使分子轨道中的电子离开价带(Valence band)跃迁至导带(conduction band)。从而在材料价带形成光生空穴[Hole+],在导带形成光生电子[e-],在体相二氧化钛中由于二氧化钛颗粒很大,光生电子在到达导带开始向颗粒表面活动的过程中很容易与光生空穴复合,从而从宏观上我们无法观察到光子激发的效果。但是纳米的二氧化钛颗粒由于尺寸很小,所以电子比较容易扩散到晶体表面,导致原本不带电的晶体表面的2个不同部分出现了极性相反的2个微区-光生电子和光生空穴。由于光生电子和光生空穴都有很强的能量,远远高出一般有机污染物的分子链的强度,所以可以轻易将有机污染物分解成最原始的状态。同时光生空穴还能与空气中的水分子形成反应,产生氢氧自由基亦可分解有机污染物并且杀灭细菌病毒。这种在一个区域内2个微区截然相反的性质并且共同达到效果的过程是纳米技术典型的应用,一般称之为二元论。该反应微区称之为二元协同界面。

从上面介绍我们可以看到,二氧化钛的光催化反应过程,很大程度依靠第一步的光子激发,所以有足够激发二氧化钛的光子,才能提供足够的能量,我们也可以知道,光催化反应并不是凭空产生的它也是需要消耗能量的,符合能量守恒原则,它消耗的是光子,也就是光能。如果是太阳光照射光触媒就利用太阳能,灯光就是利用光能。联合国将光触媒开发列为21世纪太阳能利用计划的重要组成部分。

什么样的光子能激发二氧化钛呢,从理论结构上来说,锐钛二氧化钛的导带与价带之间的间隙[我们称之为能隙]是3.2eV而金红石二氧化钛为3.0eV,所以金红石需要光能大于3.0eV的光子而锐钛需要大于3.2eV的光子。光子的能量E 与波长λ(Lambda)与之具有反比关系E=h C/λ,所以可以知道波长小于380nm

的光可以激发锐钛型二氧化钛。虽然锐钛矿需要略多的能量来激发,但是同样的锐钛矿的二氧化钛光触媒具有更强的氧化能力,所以被更为广泛的使用。有研究表明接近7nm粒径时,锐钛矿要比金红石更为稳定,这也是很多纳米光触媒采用锐钛型的原因。

当然,随着科技的进步人类能够已经突破了380nm的界限,研发出在可见光下也有响应的光触媒产品,在日本有3家企业掌握真正的可见光响应技术,2005年泰坦光能也推出了国内首款自主知识产权的可见光增强光触媒,可见光下性能达到普通光触媒的10倍,已申请国家专利,相信随着可见光响应技术在中国的推广,光触媒的应用会更广泛更进一步。

三、TiO2的制备方法介绍

目前,制备纳米TiO2的方法很多,基本上可归纳为物理法和化学法。物理法又称为机械粉碎法,对粉碎设备要求很高;化学法又可分为气相法(CVD)、液相法和固相法。

1.气相法制备二氧化钛

(1)物理气相沉积法

物理气相沉积法(PVD)是利用电弧、高频或等离子体等高稳热源将原料加热,使之气化或形成等离子体,然后骤冷使之凝聚成纳米粒子。其中以真空蒸发法最为常用。粒子的粒径大小及分布可以通过改变气体压力和加热温度进行控制。该法同时可采用于单一氧化物、复合氧化物、碳化物以及金属粉的制备。

(2)化学气相沉积法

化学气相沉积法(CVD)利用挥发性金属化合物的蒸气通过化学反应生成所需化合物,该法制备的纳米TiO2粒度细,化学活性高,粒子呈球形,单分散性好,可见光透过性好,吸收屏蔽紫外线能力强。该过程易于放大,实现连续化生产,但一次性投资大,同时需要解决粉体的收集和存放问题。CVD法又可分为气相氧化法、气相合成法、气相热解法和气相氢火焰法。

2.液相法制备纳米二氧化钛

液相法是选择可溶于水或有机溶剂的金属盐类,使其溶解,并以离子或分子状态混合均匀,再选择一种合适的沉淀剂或采用蒸法、结晶、升华、水解等过程,将金属离子均匀沉积或结晶出来,再经脱水或热分解制得粉体。它又可分为胶溶法、溶胶-凝胶法和沉积法。其中沉积法又可分为直接沉积法和均匀沉积法。

(1)以硫酸氧钛为原料

加酸使其形成溶胶,经表面活性剂处理,得到浆状胶粒,热处理得到纳米TiO2粒子。

(2)溶胶-凝胶法

溶胶-凝胶法(简称S—G法),是以有机或无机盐为原料,在有机介质中进行水解、缩聚反应,使溶液经溶胶-凝胶化过程得到凝胶,凝胶经加热(或

冷冻)干燥、锻烧得到产品。该法得到的粉末均匀,分散性好,纯度高,煅烧温度低,反应易控制,副反应少,工艺操作简单,但原料成本较高。

(3)沉淀法

A、直接沉淀法其反应机量为:Ti0SO4+2NH3·H2O→

Ti0(OH)2↓+(NH4)2SO4Ti0(OH)2→Ti02(s)+H2O该法操作简单易行,产品成本较低,对设备、技术要求不太苛刻,但沉淀洗涤困难,产品中易引入杂质,而且粒子分布较宽。B、均匀沉淀法均匀沉淀法是利用某一化学反应使溶液中的构晶离子由溶液中缓慢均匀地释放出来,在该法中,加入沉液剂(如尿素),不立刻与被沉淀物质发生反应,而是通过化学反应使沉淀剂在整个溶液中缓慢生成。该法得到的产品颗粒均匀、致密,便于过滤洗涤,是目前工业化看好的一种方法。

3.固相法合成纳米二氧化钛

固相法合成纳米TiO2是利用固态物料热分解或固-固反应进行的。它包括氧化还原法、热解法和反应法。在此介绍常用的偏钛酸热解法制备纳米TiO2。该法制得的纳米TiO2粒径分布较宽,工艺简单,操作易行,可批量生成。

主要进展

以下主要从纳米TiO2的功能及用途方面来介绍目前人们对纳米TiO2的研究进展。

纳米TiO2具有十分宝贵的光学性质,在汽车工业及诸多领域都显示出美好的发展前景。纳米TiO2还具有很高的化学稳定性、热稳定性、无毒性、超亲水性、非迁移性,且完全可以与食品接触,所以被广泛应用于抗紫外材料、纺织、光催化触媒、自洁玻璃、防晒霜、涂料、油墨、食品包装材料、造纸工业、航天工业中。

一、杀菌功能方面研究的进展

在紫外线作用下,以0.1mg/cm3浓度的超细TiO2可彻底地杀死恶性海拉细胞,而且随着超氧化物歧化酶(SOD)添加量的增多,TiO2光催化杀死癌细胞的效率也提高;用TiO2光催化氧化深度处理自来水,可大大减少水中的细菌数,饮用后无致突变作用,达到安全饮用水的标准。在涂料中添加纳米TiO2可以制造出杀菌、防污、除臭、自洁的抗菌防污涂料,可应用于医院病房、手术室及家

庭卫生间等细菌密集、易繁殖的场所,可有效杀死大肠杆菌、黄色葡萄糖菌等有害细菌,防止感染。因此,纳米TiO2能净化空气,具有除臭功能。

1.纳米二氧化钛抗菌特点

1对人体安全无毒,对皮肤无刺激性。

2抗菌能力强,抗菌范围广。

3无臭味、怪味,气味小。

4耐水洗,储存期长。

5热稳定性好,高温下不变色,不分解,不挥发,不变质。

6即时性好,纳米二氧化钛抗菌剂仅需1h就能发挥效果,而其他银系抗菌剂效果则需约24h。

7纳米二氧化钛是一种永久性维持抗菌效果的抗菌剂。

8具有很好的安全性,科用于食品添加剂等,与皮肤接触无不良影响。

2.纳米二氧化钛的抗菌原理

纳米二氧化钛在光催化作用下使细菌分解而达到抗菌效果的。由于纳米二氧化钛的电子结构特点为一个满TiO2的价带和一个空的导带,在水和空气的体

系中,纳米二氧化钛在阳光尤其是在紫外线的照射下,当电子能量达到或超过其带隙能时,电子就可从价带激发到导带,同时在价带产生相应的空穴,即生成电子、空穴对,在电场的作用下,电子与空穴发生分离,迁移到粒子表面的不同位置,发生一系列反应:

TiO2+hνe——+h H2O+h——·OH+H

O2+e——O2·O2·+H——HO2·2HO2·——O2+H2O2 H2O2+O2·——·OH+OH+O2

吸附溶解在TiO2表面的氧俘获电子形成O2·,生成的超氧化物阴离子自由基与多数有机物反应(氧化),同时能与细菌内的有机物反应,生成CO2和

H2O;而空穴则将吸附在TiO2表面的OH和H2O氧化成·OH,·OH有很强的氧化能力,攻击有机物的不饱和键或抽取H原子产生新自由基,激发链式反应,最终致使细菌分解。TiO2的杀菌作用在于它的量子尺寸效应,虽然钛白粉(普通TiO2)也有光催化作用,也能够产生电子、空穴对,但其到达材料表面的时间在微秒级以上,极易发生复合,很难发挥抗菌效果,而达到纳米级分散程度的TiO2,受光激发的电子、空穴从体内迁移到表面,只需纳秒、皮秒、甚至飞秒的时间,光生电子与空穴的复合则在纳秒量级,能很快迁移到表面,攻击细菌有机体,起到相应的抗菌作用。惠尔牌纳米二氧化钛具有很高的表面活性,抗菌能力强,产品易于分散。经试验表明,惠尔牌纳米二氧化钛对绿脓杆菌、大肠杆菌、金黄色葡萄球菌、沙门氏菌和曲霉菌等具有很强的杀菌能力,已广泛应用于纺织、陶瓷、橡胶、医药等领域的抗菌产品,深受广大用户的欢迎。

3.国内外对纳米二氧化钛抗菌性的研究及应用实例

1农田抗菌剂:日本开发了一种新型无菌杀菌剂。其主要成分为纳米二氧化硅、纳米二氧化钛和银、铜等离子,可用于土壤中,对所有的细菌都有很强的抗菌性。改杀菌剂是陶瓷类微量混合金属离子,并在含有相同离子的催化剂作用下,具有使土壤中的氧活化之功能,该功能能持续时间长达2-5年。

2卫生陶瓷洁具:陶瓷的烧结温度很高,故只能添加高温下稳定的无菌抗菌剂。日本最近开发出的用纳米二氧化硅包覆的抗菌陶瓷用品。其制造工艺是先将纳米二氧化钛加水制成浆料涂在陶瓷表面上,高温烧结即得到1微米厚的光催化纳米二氧化钛薄膜产品。在光照射下,就能完全杀死其表面的细菌。微量在微

弱光下也有抗菌性,科在纳米二氧化钛浆料中加银、铜等离子化合物。这种陶瓷的持久性、耐酸和耐碱行好,是医药、宾馆、家庭浴缸、地砖、卫生设施等抗菌除臭的理想陶瓷。

3水处理:美国德克萨斯大学研究人员利用纳米二氧化钛和太阳光进行灭菌。他们将大肠杆菌和纳米二氧化钛混合液在大于380nm的光线照射下,发现大肠杆菌被迅速杀死。这种技术有可能成为目前用氯化方法水处理的代用技术。

4新型抗菌荧光灯:日本制作新开发了具有抗菌作用的信息荧光灯,并于1997年商品化。这种灯寿命长,节能,应用前景广阔。该等表面涂布了光催化杀菌剂纳米二氧化钛,能分解等表面的油渍、空气中的菌类异臭等。清扫胜利,且具有防止灯光发暗的效果。

5抗菌纤维:抗菌纤维和除臭纤维是信息的功能纤维,这些是将纳米二氧化钛、纳米二氧化硅、纳米氧化锌等微粉掺入天然、人工聚合物或长丝中,再纺制出各种抗菌和除臭纤维。抗菌纤维具有优良的保健功能。

6抗菌建材和抗菌涂料:据报道,抗菌钛可杀死周围的菌类,具有抗菌、防锈、分解异臭、防污、减少二氧化氮含量等功能。不仅能将房间内新建材、粘结剂等产生的甲醛、吸烟产生的乙醛、家庭灰尘等产生的甲硫醇等有机异臭在紫外线照射下分解而消除掉,还能分解油分和有机物的表面污染。对油膜带3日照射就可以明显减少,5日照射就不留痕迹。对有机染料经3日照射,颜色就可消退。利用这种性能,可将抗菌钛用作外壁和内墙装饰材料。在建筑物的屋顶和外墙上、医院手术室的手术台和墙壁上常附着细菌如果涂刷光催化纳米二氧化钛涂层或墙砖,在阳光或室内弱光照射下,细菌能很快消灭。而且,经雨水冲刷科随时把氧化分解后的污垢物冲刷掉。

7杀灭口腔微生物:纳米二氧化钛能杀灭S.Mutans株AHT(血清型),还能杀灭仓鼠属链球菌SH-6、鼠属链球菌FA-1和黏性放线菌ATCC-19246。研究表明,纳米二氧化钛粒度越细、分散性越好、比表面积越大,杀菌效果越好。

二、防紫外线功能方面研究的进展

纳米TiO2既能吸收紫外线,又能反射、散射紫外线,还能透过可见光,是性能优越、极有发展前途的物理屏蔽型的紫外线防护剂。

纳米二氧化钛的抗紫外线机理:

按照波长的不同,紫外线分为短波区190~280nm、中波区280~320nm、长波区320~400nm。短波区紫外线能量最高,但在经过离臭氧层时被阻挡,因此,对人体伤害的一般是中波区和长波区紫外线。

纳米二氧化钛的强抗紫外线能力是由于其具有高折光性和高光活性。其抗紫外线能力及其机理与其粒径有关:当粒径较大时,对紫外线的阻隔是以反射、散射为主,且对中波区和长波区紫外线均有效。防晒机理是简单的遮盖,属一般的物理防晒,防晒能力较弱;随着粒径的减小,光线能透过纳米二氧化钛的粒子面,对长波区紫外线的反射、散射性不明显,而对中波区紫外线的吸收性明显增强。其防晒机理是吸收紫外线,主要吸收中波区紫外线。

由此可见,纳米二氧化钛对不同波长紫外线的防晒机理不一样,对长波区紫外线的阻隔以散射为主,对中波区紫外线的阻隔以吸收为主。

纳米二氧化钛在不同波长区均表现出优异的吸收性能,与其他有机防晒剂相比,纳米二氧化钛具有无毒、性能稳定、效果好等特点。日本资生堂应用10-100nm 的纳米二氧化钛作为防晒成分添加于口红、面霜中,其防晒因子可大SPF11-19。惠尔牌纳米二氧化钛由于粒径小,活性大,既能反射、散射紫外线,又能吸收紫外线,从而对紫外线有更强的阻隔能力。与同样剂量的一些有机紫外线防护剂相比,惠尔牌纳米二氧化钛在紫外区的吸收峰更高,更可贵的是它还是广谱屏蔽剂,不象有机紫外线防护剂那样只单一对UVA或UVB有吸收。它还能透过可见光,加入到化妆品使用时皮肤白度自然,不象颜料级TiO2,不能透过可见光,造成使用者脸上出现不自然的苍白颜色。

利用纳米TiO2的透明性和紫外线吸收能力还可用作食品包装膜、油墨、涂料、纺织制品和塑料填充剂,可以替代有机紫外线吸收剂,用于涂料中可提高涂料耐老化能力。

三、光催化功能方面研究的进展

惠尔牌的纳米二氧化钛采用液相法制备出的二氧化钛具有粒子团聚少、化学活性高,粒径分布窄、形貌均一等特性,具有很强的光催化性能,已广泛应用于环保中。

1.气体净化

环境有害气体可分为室内有害气体和大气污染气体。室内有害气体主要有装饰材料等放出的甲醛及生活环境中产生的甲硫醇、硫化氢及氨气等。纳米二氧化钛通过光催化作用可将吸附于其表面的这些物质分解氧化,从而使空气中这些物质的浓度降低,减轻或消除环境不适感。另外,TiO2在光照下对环境中微生物的抑制或杀灭作用,因此,纳米TiO2能净化空气,具有除臭功能。

2.处理有机废水

纳米TiO2复合材料对有机废水的处理,效果十分理想。以TiO2为光催化剂,在光照的条件下,可使水中的烃类、卤代物、羧酸等发生氧化-还原反应,并逐步降解,最终完全氧化为环境友好的CO2和H2O等无害物质。杭州万景新材料有限公司采用新型纳米二氧化钛载银复合催化剂,对印染和精炼废水生化处理后的出水进行深度处理,光照120min后,印染和精炼废水的CODcr去除率分别为75.3%和83.4%。经研究表明,在太阳光照射下用多孔纳米TiO2薄膜处理水溶液中的敌敌畏有很好的效果。除此之外,纳米TiO2还可有效地用于含CN—的工业废水的光催化降解。

3.处理无机污水

除有机物外,许多无机物在TiO2表面也具有光学活性,例如无机污水中的Cr6+接触到TiO2催化剂表面时,能够捕获表面的光生电子而发生还原反应,使高价有毒的Cr6+降解为毒性较低或无毒的Cr3+,从而起到净化污水的作用;一些重金属离子如Pt4+,Hg2+,Au3+等,在催化剂表面也能够捕获电子而发生还原沉淀反应,可回收污水的无机重金属离子。

四、防雾及自清洁功能方面研究的进展

TiO2薄膜在光照下具有超亲水性和超永久性,因此其具有防雾功能。如在汽车后视镜上涂覆一层氧化钛薄膜,即使空气中的水分或者水蒸气凝结,冷凝水也不会形成单个水滴,而是形成水膜均匀地铺展在表面,所以表面不会发生光散射的雾。当有雨水冲过,在表面附着的雨水也会迅速扩散成为均匀的水膜,这样就不会形成分散视线的水滴,使得后视镜表面保持原有的光亮,提高行车的安全性。纳米TiO2具有很强的“超亲水性”,在它的表面不易形成水珠,而且纳米TiO2在可见光照射下可以对碳氢化合物作用。利用这样一个效应可以在玻璃、陶瓷和瓷砖的表面涂上一层纳米TiO2薄层,利用氧化钛的光催化反应就可以把吸附在氧化钛表面的有机污染物分解为CO2和O2,同剩余的无机物一起可被雨水冲刷干净,从而实现自清洁功能。日本东京已有人在实验室研制成功自洁瓷砖,这种新产品的表面上有一薄层纳米TiO2,任何粘污在表面上的物质,包括油污、细菌在光的照射下,由于纳米TiO2的催化作用,可以使这些碳氢化合物物质进一步氧化变成气体或者很容易被擦掉的物质。纳米TiO2光催化作用使得高层建筑的玻璃、厨房容易粘污的瓷砖、汽车后视镜及前窗玻璃的保洁都可很容易地进行。

五、纳米二氧化钛可作为锂电池、太阳能电池原料

纳米二氧化钛(TA18)添加到锂电池里,可提高锂电池容量及循环稳定性,特别是循环时放电电压平台的稳定性,可有效提高电池在多次充放电过程中的电化学稳定性和热稳定性,电池在使用过程中更稳定、更耐用。

六、在替代PVA上研究的进展

在纤维纺织成纱的过程中,为了减少经纱断头必须上浆。我国从上世纪五六十年代开始使用的浆料PVA为高分子化合物,在自然环境中很难降解。因此在欧洲部分国家被列为“不洁浆料”,已经被明令禁止使用。欧盟对PVA的限制,也将是我国棉纺织品出口绿色贸易壁垒的关注重点。开发绿色环保浆料,取代难降解的PVA是国内纺织行业一直寻求的“破壁”目标。纳米二氧化钛T25F

用在纺织浆料里面,通过与淀粉的完美结合,提高纱线的综合织造性能,减少PVA的用量,煮浆时间短,降低了浆料成本,提高浆纱效益,也解决了PVA浆料不易退浆、环境污染等诸多问题。纳米二氧化钛在纱线里主要是替代PVA,起到贴顺毛羽,填补缺口,润滑的作用。

七、其它功能方面研究的进展

纳米二氧化钛对某些塑料、氟里昂及表面活性剂SDBS也具有很好的降解效果。

还有人发现,TiO2对有害气体也具有吸收功能,如含TiO2的烯烃聚合物纤维涂在含磷酸钙的陶瓷上可持续长期地吸收不同酸碱性气体。鉴于以上功能,纳米二氧化钛具有非常广阔的前景。对它的研究和利用会给人们的生活带来巨大改变。

未来展望

发展方向:

TiO2具有催化活性高、化学性能稳定、抗光腐蚀、低成本且无毒等优点,但TiO2作为光催化剂存在两大瓶颈问题:一是TiO2对可见光利用率低,二是TiO2的光量子效率低,光生电子一空穴对容易复合。因此,需要努力从拓展TiO2光响应和抑制载流子的复合两个方面出发,采取多种手段对TiO2光催化剂进行改性。

1.贵金属沉积TiO2对光敏感,在能级匹配的光照下可以产生载流子,即光生电子一空穴对。但光生电子和空穴在激发后有自然复合的倾向,降低了光催化活性。在TiO2表面引入贵金属修饰后,可以提高电荷分离效率,其光催化性能得到明显的改善。目前已报道的贵金属Pt,Ag,Au,Ru,Pd等都对TiO2的光催化效率产生了一定程度的影响。经贵金属沉积修饰后,催化剂表面载流子重新分布。大多贵金属的功函数高于TiO2,以至于TiO2与贵金属的Fermi能级不同。当贵金属粒子以团簇形式沉积在TiO2表面与其接触,电子就会从Fermi能级较高的TiO2迁移到Fermi能级相对较低的金属,迁移的结果导致金属表面获得较多的负电荷而TiO2表面则呈现更多的正电荷,在金属一半导体界面处形成Schottky势垒,有效地抑制了电子-空穴的复合。

2.离子掺杂在TiO2中引入金属离子,在某些情况下可以大大改善其光催化活性。一般认为,金属掺杂的增强机制是金属离子,如Fe3+,代替TiO2表面的Ti4+,形成浅势捕获阱,改善了光生电子一空穴对的分离效率。然而金属离子掺杂有时也会导致光催化活性的下降,因为掺杂形成的陷阱也可能是载流子的复合位点。而且,掺杂用金属离子的种类、半径、所带电荷、掺杂量的不同,可能获得不同的效果。掺杂金属能否提高Ti0:的光催化活性,须具备以下两个条件:①掺杂金属要具有适合的能级,能使电子由导带迅速转移至

被吸附物溶液中;②当进行光催化反应时,掺杂金属在TiO2表面应表现出良好的化学稳定性。因此必须选择合适的掺杂离子,采取适当的掺杂方法,才能提高TiO2光阳极的效率。

3.半导体复合半导体复合本质上是利用半导体具有不同的能带结构实现一种半导体对另一种半导体的修饰,半导体复合包括宽带隙半导体修饰和窄带隙半导体修饰。半导体复合后,导带电子从小带隙半导体注入到大带隙的半导体,使电子一空穴达到长期有效的分离,扩展Ti02光谱响应范围。不同半导体之间的禁带宽度、价带(导带)位置等都是进行半导体复合需考虑的主要因素。宽带隙半导体修饰半导体光催化剂的基本条件是,修饰用半导体的导带和价带的位置与被修饰的光催化剂的导带和价带的位置要相匹配。修饰用半导体的带隙可以与光催化剂的相同,但导带和价带的能级位置一定与被修饰的光催化剂不同,这样电子和空穴才能分配在复合半导体的不同的相中。

归纳总结

一、研究难点

迄今,国内外对纳米TiO2的研究较多,理论研究比较成熟,特别是在纳TiO2的制备方面,工业化生产也得到一定程度的发展。关于纳米TiO2的研究方向和难点在于:

(1)特种形态TiO2的制备和应用研究;

(2)纳米TiO2作为光催化剂的研究方面,如何提高光能利用率,反应机理的研究以及光催化剂的负载技术等。

二、国内发展状况

目前,我国纳米TiO2发展的现状是:

(1)关于纳米TiO2技术研究很多,涉及面较广,但大多仍停留在实验室,还不能放大到工业生产中。分析原因认为主要是投入资金不够,特别是在应用研究方面,企业投资较少,造成许多理论研究的巨大浪费。

(2)纳米TiO2的生产规模小、生产方法受限,产品质量较差,现有市场空间较小,不能给企业带来应有的利润。

(3)在纳米TiO2的制备方法中,很多都采用昂贵的钛醇盐作为钛源,应该尽量降低成本,使用廉价的无机钛盐作为原料。

(4)纳米TiO2的光催化技术无论在理论基础研究还是在应用研究都还不成熟,限制了其在工业上的应用发展。

(5)特种形态纳米TiO2的应用研究都较少,基本没有工业化生产,没开发出特种形态TiO2的优势市场。很多发达国家都实现了纳米TiO2的工业化,而且国内外的纳米TiO2的需求量越来越大。因此,我们应抓住机遇,协调我国科研力量和企业生产,充分利用我国丰富的钛资源,大力发展我国纳米TiO2工业。

三、应加强的研究方向

纳米TiO2以其优异的光催化性能引起国内外的广泛关注,成为目前开发研究的热点之一.但绝大多数还处于实验室研究阶段。为使纳米TiO2光催化剂在环境治理方面有更好的发展前景,应加强以下4个方面的研究。

(1)深入研究纳米TiO2与载体之间的相互作用关系,提高纳米TiO2的光催化效率。

(2)进~步研究降低光生载流子( h,-e)复合几率的有效方法。

(3)进一步寻求具有高效光催化活性的晶相,制备稳定且分散性良好的纳米TiO2。

(4)积极加强纳米Ti(九光催化剂在环境治理方面的研究,使纳米TiO2。光催化技术尽早用于环境治理领域。

参考文献

[1]姚超.朱毅青.成庆堂.顾立新.

纳米级二氧化钛粉体的制备方法和发展趋势[J].现代化工,2000,20(7) [2]敏世雄.王芳.韩玉琦.杨自嵘.

纳米级二氧化钛粉体的制备方法研究进展[J].河西学院学报,2007,23(2) [3]李晓平,徐宝琨,刘国范,等.

纳米TiO2光降解水中有机污染物的研究与进展[J].2004,1999(3),242(246) [4]杨玉蓉,邱敏,刘立,等.

TiO2纳米材料的研究进展[J].活力,2015(23),

[5]王慧.曾令可.程小苏.

光催化二氧化钛粉体的制备及其抗菌性能的研究:2004.

[6]解恒参,朱亦仁,李爱梅,鲁玲.

二氧化钛粉体的制备、表征及其应用[J].无机盐工业,2006,38(2)

[7]赵晓远.

纳米氧化钛的制备及应用[J].稀有金属与硬质合金,2003,31(1),:26-27.

[8]高伟,吴凤清.

TiO2晶型与光催化活性关系的研究[J].高等学校化学学报,2001,22(4)

纳米材料的制备方法

1化学气相沉积法 1.1化学气相沉积法的原理 化学气相沉积法(Chemical Vapour Deposition (CVD) )是通过气相或者在基板表面上的化学反应,在基板上形成薄膜。化学气相沉积方法实际上是化学反应方法,因此。用CVD方法可以制备各种物质的薄膜材料。通过反应气体的组合可以制备各种组成的薄膜,也可以制备具有完全新的结构和组成的薄膜材料,而且即使是高熔点物质也可以在很低的温度下制备。 用化学气相沉积法可以制备各种薄膜材料、包括单元素物、化合物、氧化物、氮化物、碳化物等。采用各种反应形式,选择适当的制备条件——基板温度、气体组成、浓度和压强、可以得到具有各种性质的薄膜构料。化学气相沉积的化学反应形式.主要有热分解反应、氢还原反应、金属还原反应、基板还原反应、化学输运反应、氧化反应、加水分解反应、等离子体和激光激发反应等。 化学气相沉积法制备纳米碳材料的原理是碳氢化合物在较低温度下与金属纳米颗粒接触时通过其催化作用而直接生成。化学气相沉积法制备碳纳米管的工艺是基于气相生长碳纤维的制备工艺。在研究气相生长碳纤维早期工作中就己经发现有直径很细的空心管状碳纤维,但遗憾的是没有对其进行更详细的研究[4]。直到Iijima在高分辨透射电子显微镜发现产物中有纳米级碳管存在,才开始真正的以碳纳米管的名义进行广泛而深入的研究。 化学气相沉积法制备碳纳米管的原料气,国际上主要采用乙炔,但也采用许多别的碳源气体,如甲烷、一氧化碳、乙烯、丙烯、丁烯、甲醇、乙醇、二甲苯等。在过渡金属催化剂铁钴镍催化生成的碳纳米管时,使用含铁催化剂,多数得到多壁碳纳米管;使用含钴催化剂,大多数的实验得到多壁碳纳米管;过渡金属的混合物比单一金属合成碳纳米管更有效。铁镍合金多合成多壁碳纳米管,铁钴合金相比较更容易制得单壁碳纳米管。此外,两种金属的混合物作为催化剂可以大大促进碳纳米管的生长。许多文献证实铁、钴、镍任意两种的混合物或者其他金属与铁、钴、镍任何一种的混合物均对碳纳米管的生长具有显著的提高作用,不仅可以提高催化剂的性能,而且可以提高产物的质量或者降低反应温度。催化裂解二甲苯时,将适量金属铽与铁混合,可以提高多壁碳纳米管的纯度和规则度。因而,包括像烃及一氧化碳等可在催化剂上裂解或歧化生成碳的物料均有形成碳纳米管的可能。Lee Y T 等[5]讨论了以铁分散的二氧化硅为基体,乙炔为碳源所制备的垂直生长的碳纳米管阵列的生长机理,并提出了碳纳米管的生长模型。Mukhopdayya K等[6]提出了一种简单而新颖的低温制备碳纳米管阵列的方法。该法以沸石为基体,以钴和钒为催化剂,仍是以乙炔气体为碳源。Pna Z W等[7]以乙炔为碳源,铁畦纳米复合物为基体高效生长出开口的多壁碳纳米管阵列。 1.2评价 化学气相沉积法该法制备的纳米微粒颗粒均匀,纯度高,粒度小,分散性好,化学反应活性高,工艺可控和连续,可对整个基体进行沉积等优点。此外,化学气相沉积法因其制备工艺简单,设备投入少,操作方便,适于大规模生产而显示出它的工业应用前景。因此,化学气相沉积法成为实现可控合成技术的一种有效途径。化学气相沉积法缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。化学气相沉积法是纳米薄膜材料制备中使用最多的一种工艺,广泛应用于各种结构材料和功能材料的制备。用化学气相沉积法可以制备几乎所有的金属,氧化物、氮化物、碳化合物、复合氧化物等膜材料。总之,随着纳米材料制备技术的不断完善,化学气相沉积法将会得到更广泛的应用。

TiO2半导体纳米材料

材料学《第二课堂》课程论文题目:TiO2半导体纳米材料姓名: 学号:

目录 1. 课程设计的目的 (1) 2. 课程设计题目描述和要求 (1) 3. 课程设计报告内容 (1) 3.1 TiO2半导体纳米材料的特性 (1) 3.2 TiO2半导体纳米材料的制备方法 (3) 3.3 TiO2半导体纳米材料的表征手段 (3) 3.4 TiO2半导体纳米材料的发展现状与趋势 (4) 4. 结论 (5)

1.课程设计的目的 本课程论文的主要目的是论述TiO2半导体纳米材料,通过简要概述TiO2半导体纳米材料的特性、制备方法、表征手段及发展现状与趋势等相关方面的内容。通过这次课设,了解TiO2半导体纳米材料,巩固课堂上所学的有关纳米材料的有关知识,提高自己应用所学知识和技能解决实际问题的能力。 2.课程设计的题目描述及要求 课程设计的题目:TiO2半导体纳米材料 TiO2半导体纳米材料由于它具有不同于体材料的光学非线性和发光性质,在未来光开关、光存储、光快速转换和超高速处理等方面具有巨大的应用前景。本文就TiO2半导体纳米材料的主要制备方法与表征手段做一全面总结。 3.课程设计报告内容 3.1 TiO2半导体纳米材料的特性 1、光学特性 TiO2半导体纳米粒子(1~ 100 nm ) [2]由于存在着显著的量子尺寸效应, 因此它们的光物理和光化学性质迅速成为目前最活跃的研究领域之一, 其中TiO2半导体纳米粒子所具有的超快速的光学非线性响应及(室温) 光致发光等特性倍受世人瞩目。通常当半导体粒子尺寸与其激子玻尔半径相近时, 随着粒子尺寸的减小, 半导体粒子的有效带隙增加, 其相应的吸收光谱和荧光光谱发生蓝移, 从而在能带中形成一系列分立的能级[1]。 2、光电催化特性 1)TiO2半导体纳米粒子优异的光电催化活性 近年来, 对纳米TiO2半导体粒子研究表明: 纳米粒子的光催化活性均明显优于相应的体相材料。我们认为这主要由以下原因所致: ①TiO2半导体纳米粒子所具有的量子尺寸效应使其导带和价带能级变成分立的能级, 能隙变宽, 导带电位变得更负, 而价带电位变得更正。[1]这意味着TiO2半导体纳米粒子获得了更强的还原及氧化能力, 从而催化活性随尺寸量子化程度的提高而提高[5]。 ②对于TiO2半导体纳米粒子而言, 其粒径通常小于空间电荷层的厚度, 在离开粒子中心L距离处的势垒高度可以表述为[1]: 公式(1) 这里LD是半导体的Debye 长度, 在此情况下, 空间电荷层的任何影响都可忽略, 光生载流子可通过简单的扩散从粒子内部迁移到粒子表面而与电子给体或受体发生还原或氧化反应。计算表明: 在粒径为1Lm 的T iO 2 粒子中, 电子从体内扩散到表面的时间约为100n s, 而在粒径为10 nm 的微粒中只有10 p s。因此粒

最新纳米材料的背景、意义资料

纳米知识介绍 1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生。 纳米 纳米是一种长度单位,1纳米=1×10-9米,即1米的十亿分之一,单位符号为 nm。 纳米技术 纳米技术是在单个原子、分子层次上对物质的种类、数量和结构形态进行精确的观测、识别和控制的技术,是在纳米尺度范围内研究物质的特性和相互作用,并利用这些特性制造具有特定功能产品的多学科交叉的高新技术。其最终目标是人类按照自己的意志直接操纵单个原子、分子,制造出具有特定功能的产品。 纳米技术的发展大致可以划分为3个阶段: 第一阶段(1990年即在召开“Nano 1”以前)主要是在实验室探索各种纳米粉体的制备手段,合成纳米块体(包括薄膜),研究评估表征的方法,探索纳米材料的特殊性能。研究对象一般局限于纳米晶或纳米相材料。 第二阶段 (1990年~1994年)人们关注的热点是设计纳米复合材料: ?纳米微粒与纳米微粒复合(0-0复合), ?纳米微粒与常规块体复合(0-3复合), ?纳米复合薄膜(0-2复合)。 第三阶段(从1994年至今)纳米组装体系研究。它的基本内涵是以纳米颗粒以及纳米丝、管等为基本单元在一维、二维和三维空间组装排列成具有纳米结构的体系的研究。 纳米材料 材料基本构成单元的尺寸在纳米范围即1~100纳米或者由他们形成的材料就称为纳米材料。纳米材料和宏观材料迥然不同,它具有奇特的光学、电学、磁学、热学和力学等方面的性质。 图1 纳米颗粒材料SEM图 一、纳米材料的基本特性

由于纳米材料是由相当于分子尺寸甚至是原子尺寸的微小单元组成,也正因为这样,纳米材料具有了一些区别于相同化学元素形成的其他物质材料特殊的物理或是化学特性例如:其力学特性、电学特性、磁学特性、热学特性等,这些特性在当前飞速发展的各个科技领域内得到了应用。科学家们和工程技术人员利用纳米材料的特殊性质解决了很多技术难题,可以说纳米材料特性促进了科技进步和发展。 1、力学性质 高韧、高硬、高强是结构材料开发应用的经典主题。具有纳米结构的材料强度与粒径成反比。纳米材料的位错密度很低,位错滑移和增殖符合Frank-Reed模型,其临界位错圈的直径比纳米晶粒粒径还要大,增殖后位错塞积的平均间距一般比晶粒大,所以纳米材料中位错滑移和增殖不会发生,这就是纳米晶强化效应。金属陶瓷作为刀具材料已有50多年历史,由于金属陶瓷的混合烧结和晶粒粗大的原因其力学强度一直难以有大的提高。应用纳米技术制成超细或纳米晶粒材料时,其韧性、强度、硬度大幅提高,使其在难以加工材料刀具等领域占据了主导地位。 使用纳米技术制成的陶瓷、纤维广泛地应用于航空、航天、航海、石油钻探等恶劣环境下使用。 2、热学性质 纳米材料的比热和热膨胀系数都大于同类粗晶材料和非晶体材料的值,这是由于界面原子排列较为混乱、原子密度低、界面原子耦合作用变弱的结果。因此在储热材料、纳米复合材料的机械耦合性能应用方面有其广泛的应用前景。例如Cr-Cr2O3颗粒膜对太阳光有强烈的吸收作用,从而有效地将太阳光能转换为热能。 3、电学性质 由于晶界面上原子体积分数增大,纳米材料的电阻高于同类粗晶材料,甚至发生尺寸诱导金属——绝缘体转变(SIMIT)。利用纳米粒子的隧道量子效应和库仑堵塞效应制成的纳米电子器件具有超高速、超容量、超微型低能耗的特点,有可能在不久的将来全面取代目前的常规半导体器件。2001年用碳纳米管制成的纳米晶体管,表现出很好的晶体三极管放大特性。并根据低温下碳纳米管的三极管放大特性,成功研制出了室温下的单电子晶体管。随着单电子晶体管研究的深入进展,已经成功研制出由碳纳米管组成的逻辑电路。 4、磁学性质 当代计算机硬盘系统的磁记录密度超过1.55Gb/cm2,在这情况下,感应法读出磁头和普通坡莫合金磁电阻磁头的磁致电阻效应为3%,已不能满足需要,而纳米多层膜系统的巨磁电阻效应高达50%,可以用于信息存储的磁电阻读出磁头,具有相当高的灵敏度和低噪音。目前巨磁电阻效应的读出磁头可将磁盘的记录密度提高到1.71Gb/cm2。同时纳米巨磁电阻材料的磁电阻与外磁场间存在近似线性的关系,所以也可以用作新型的磁传感材料。高分子复合纳米材料对可见光具有良好的透射率,对可见光的吸收系数比传统粗晶材料低得多,而且对红外波段的吸收系数至少比传统粗晶材料低3个数量级,磁性比FeBO3和FeF3透明体至少高1个数量级,从而在光磁系统、光磁材料中有着广泛的应用。

纳米材料的主要制备方法

本科毕业论文 学院物理电子工程学院 专业物理学 年级 2008级 姓名贾学伟 设计题目纳米材料的主要制备方法 指导教师闫海龙职称副教授 2012年4月28日 目录 摘要 (1) Abstract (1) 1 引言 (1) 1.1纳米材料的定义 (1) 1.2纳米材料的研究意义 (2) 2 纳米材料的主要制备方法 (3) 2.1化学气相沉积法 (3) 2.2溶胶-凝胶法 (5) 2.3分子束外延法 (6) 2.4脉冲激光沉积法 (8) 2.5静电纺丝法 (9) 2.6磁控溅射法 (11) 2.7水热法 (12)

2.8其他制备纳米材料的方法 (13) 3 总结 (14) 参考文献 (14) 致谢 (15)

纳米材料的主要制备方法 学生姓名:贾学伟学号: 学院:物理电子工程学院专业:物理学 指导教师:闫海龙职称:副教授摘要:纳米材料由于其特殊的性质,近年来引起人们极大的关注。随着纳米科技的发展,纳米材料的制备方法已日趋成熟。本文主要介绍了纳米材料的制备方法,其中包括化学气相沉积法、溶胶—凝胶法、分子束外延法、脉冲激光沉积法、静电纺丝法、磁控溅射法、水热法等。在此基础上,分析了现代纳米材料制备方法的发展趋势。纳米技术对21世纪的信息技术、医学、环境、自动化技术及能源科学的发展有重要影响,对生产力的发展有重要作用。 关键词:纳米;纳米材料;纳米科技;制备方法 The preparation method of nanomaterials Abstract:Nanomaterials are attracting intense in recent years. With the development of nanotechnology, nanomaterials preparation method has been more and more mature. The preparation methods sush as, chemical vapor deposition method, molecular beam epitaxy, laser pulse precipitation, sintering, hydrothermal method, sol-gel method are introduced in this paper. New development trend of preparation methods are analysed. N anomaterials will promote the development of IT, medicine, environment, automation technology and energy science, and will have a great influenced on productive in the 21st century. Key words:nanometer;na nomaterials;nanotechnology;preparation 1 引言 1.1纳米材料的定义 纳米材料是指在三维空间中至少有一维处于纳米尺度范围或由它们作为基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料,这大约相当于10-100个原子紧密排列在一起的尺度[1]。通常材料的性能与其颗粒尺寸的关系极为密切,当小粒子尺寸进入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值[2]。

铂纳米微粒制备方法的研究

铂纳米微粒制备方法的研究 李明元1,毛立群2,郭建辉2,黄在银1 (1.广西大学化学化工学院,广西,南宁 530004;2.河南大学化学化工学院,河南,开封 475001) 摘 要:分散型铂纳米微粒和负载型铂纳米微粒都是重要的催化剂。制备尺度可控、粒度分布均一的铂纳米微粒,对提高其催化活性和选择性,以及延长其使用寿命具有重要的意义。本文介绍了分散型和负载型铂纳米微粒常用的制备方法,讨论了各方法的制备原理及其优缺点。 关键词:纳米铂;制备方法;分散型;负载型 1 前言 铂及其合金在石油和化学工业中主要用作催化剂,对加氢反应,氧化反应具有较好的催化性能[1-2]。近年来随着纳米科学与技术研究的不断深入,研究工作者发现纳米铂由于具有比表面积高和因而显示出的更高的催化活性,使得关于纳米铂的制备及催化性能研究成为热点[3-5]。铂纳米微粒的制备方法大致分为两类,即化学法(化学还原法、微乳液法等)和物理方法(真空蒸镀法、等离子体溅射法、粒子束外延法等)。铂纳米微粒的催化性能与其制备方法密切相关,微粒的尺度、形貌、化合价等对其催化性能起着至关重要的作用[6],此外,对于载体型纳米铂催化剂而言,载体的性质也同样对纳米铂的催化性能也会产生影响。本文简述了铂纳米微粒的制备方法,主要介绍各种制备方法的原理及其优缺点,以及运用这些方法制备*铂纳米微粒所取得的进展。 2 分散型铂纳米微粒的制备 分散型铂纳米微粒的制备方法主要有化学还原法、微乳液法、吸氢多次还原法等。目前关于负载型铂纳米微粒的制备研究较多,而分散型铂纳米微粒的制备研究相对较少。 2.1 化学还原法 化学还原法制备纳米铂微粒,一般是在含有金属铂的盐或者酸里面加入还原剂还原高价铂到铂单质,然后经过洗涤、过滤、干燥、煅烧等处理后得到催化剂铂纳米粉体。常用的还原剂有甲醛[7]、多聚甲醛[8]、硼氢化钠[9]、硫代硫酸钠、连二亚硫酸钠、乙醇、乙二醇、柠檬酸、葡萄糖、水合肼等。化学还原法具有操作简单,反应条件温和,对仪器的要求低等优点。但是用化学还原法制备铂纳米微粒需要加入还原剂、保护剂等,在后处理过程中需采用高温焙烧的方法将它们除去。而在焙烧过程中容易造成保护剂的碳化和铂纳米微粒的团聚[10],因此化学还原法不容易得到小尺度,且粒度均一的铂纳米微粒。保护剂主要有聚合物、有机配合物、壳聚糖、表面活性剂等[11]。通常,保护剂的加入量对铂纳米微粒尺度有重要影响,铂纳米微粒的团聚程度随着保护剂的加入量的增加而减小。 唐浩林等[12]在碱性条件下(pH=8.5)用无水乙醇还原氯铂酸,并采用Nafion聚离子对生成的铂纳米微粒进行表面修饰,得到平均粒径为4nm的铂纳米微粒。Nafio n憎水性极强的高分子主链和亲水性的磺酸基团对铂纳米微粒具有良好的化学修饰作用,且Nafion聚离子对铂存在位阻作用,使铂纳米微粒稳定吸附在Nafion聚离子上而彼此分散开。陈卫等[13-14]在碱性条件下用甲醇做还原剂还原氯铂酸,分别在加入保护剂聚乙烯吡咯烷酮(PVP)和没有加入保护剂的条件下制得了平均粒径为2.5nm 的球状铂纳米微粒。杨玉琴等[15]在加入保护剂PVP 下,用两种还原剂乙醇和硼氢化钠还原氯铂酸制得铂纳米微粒。他们的研究表明,加入的保护剂越多,得到的铂纳米微粒就越小,分散性也越好,但是保护剂加入的越多,制备的铂纳米颗粒的催化性能就越低。他们还发现,用硼氢化钠做为还原剂制备的铂纳米微粒较小并且很少有团聚现象。吕高孟等[16]以吡啶为保护剂,在室温条件下以硼氢化钾为还原剂制得了粒径在2.0~3.0nm的铂纳米微粒。用吡啶作保护剂解决了空气对保护剂的破坏从而使胶体纳米铂可以较长时间地存在。但胶体纳米铂难以分离,因此他们所制备的铂纳米粒子并没有从胶体中分离出来。由Fox研究小组[17]用聚芳醚二硫树枝状分子作保护剂得到启发,张伟等[18]用聚芳醚三乙酸铵树枝分子作为保护剂制得了平均粒径为2.5nm的铂纳米微粒。聚芳醚三乙酸铵树枝分子上的羟基与铂纳米微粒之间有较强的相互作用,使其具有较好的稳定性,不宜发生团聚。 2.2 微乳液法 微乳液中油包水型(W/O)的水核尺寸小且彼此分离,不同水核内不能进行物质交换,因此适当的微乳液可以制备出尺寸和大小都比较均一且分散性好的纳米微粒[19]。微乳液中组分的比例对纳米微粒 5  2007年第12期 内蒙古石油化工 收稿日期:2007-08-14 基金项目:河南省教育厅资助项目(2007150007)

半导体纳米材料的光学性能及研究进展

?综合评述? 半导体纳米材料的光学性能及研究进展Ξ 关柏鸥 张桂兰 汤国庆 (南开大学现代光学研究所,天津300071) 韩关云 (天津大学电子工程系,300072) 摘要 本文综述了近年来半导体纳米材料光学性能方面的研究进展情况,着重介绍了半导体纳米材料的光吸收、光致发光和三阶非线性光学特性。 关键词 半导体纳米材料;光学性能 The Optica l Properties and Progress of Nanosize Sem iconductor M a ter i a ls Guan B ai ou Zhang Gu ilan T ang Guoqing H an Guanyun (Institute of M odern Op tics,N ankaiU niversity,T ianjin300071) Abstract T he study of nano size sem iconducto r particles has advanced a new step in the understanding of m atter.T h is paper summ arizes the p rogress of recent study on op tical p roperties of nano size sem icon2 ducto r m aterials,especially emphasizes on the op tical2abso rp ti on,pho to lum inescence,nonlinear op tical p roperties of nano size sem iconducto r m aterials. Key words nano size sem iconducto r m aterials;op tical p roperties 1 引言 随着大规模集成的微电子和光电子技术的发展,功能元器件越来越微细,人们有必要考察物质的维度下降会带来什么新的现象,这些新的现象能提供哪些新的应用。八十年代起,低维材料已成为倍受人们重视的研究领域。 低维材料一般分为以下三种:(1)二维材料,包括薄膜、量子阱和超晶格等,在某一维度上的尺寸为纳米量级;(2)一维材料,或称量子线,线的粗细为纳米量级;(3)零维材料,或称量子点,是尺寸为纳米量级的超细微粒,又称纳米微粒。随着维数的减小,半导体材料的电子能态发生变化,其光、电、声、磁等方面性能与常规体材料相比有着显著不同。低维材料开辟了材料科学研究的新领域。本文仅就半导体纳米微粒和由纳米微粒构成的纳米固体的光学性能及其研究进展情况做概括介绍。2 半导体纳米微粒中电子的能量状态 当半导体材料从体块减小到一定临界尺寸以后,其载流子(电子、空穴)的运动将受限,导致动能的增加,原来连续的能带结构变成准分立的类分子能级,并且由于动能的增加使得能隙增大,光吸收带边向短波方向移动(即吸收蓝移),尺寸越小,移动越大。 关于半导体纳米微粒中电子能态的理论工作最早是由AL.L.Efro s和A.L.Efro s开展的[1]。他们采用有效质量近似方法(E M A),根据微粒尺寸R与体材料激子玻尔半径a B之比分为弱受限(Rμa B,a B=a e+ a h,a e,a h分别为电子和空穴的玻尔半径)、中等受限(a h

纳米材料的制备方法及其研究进展

纳米材料的制备方法及其研究进展纳米材料的制备及其研究进展 摘要:综述了纳米材料的结构、性能及发展历史;介绍了纳米材料的制备方法及最新进展;概述了纳米材料在各方面的应用状况和前景;讨论了目前纳米材料制备中存在的问题。 关键词:纳米材料;结构与性能;制备技术;应用前景;研究进展 1 引言 纳米微粒是由数目极少的原子或分子组成的原子群或分子群,微粒具有壳层结构。由于微粒的表面层占很大比重,所以纳米材料实际是晶粒中原子的长程有序排列和无序界面成分的组合,纳米材料具有大量的界面,晶界原子达15%-50%。 这些特殊的结构使得纳米材料具有独特的体积效应、表面效应,量子尺寸效应、宏观量子隧道效应,从而使其具有奇异的力学、电学、磁学、热学、光学、化学活性、催化和超导性能等特性,使纳米材料在国防、电子、化工、冶金、轻工、航空、陶瓷、核技术、催化剂、医药等领域具有重要的应用价值,美国的“星球大战计划”、“信息高速公路”,欧共体的“尤里卡计划”等都将纳米材料的研究列入重点发展计划;日本在10年纳米微粒的制备方法 1 纳米微粒的制备方法一般可分为物理方法和化学方法。制备的关键是如何控制颗粒的大小和获得较窄且均匀的粒度分布。 1.1 物理方法 1.1.1 蒸发冷凝法

又称为物理气相沉积法,是用真空蒸发、激光、电弧高频感应、电子束照射等方法使原料气化或形成等离子体,然后在介质中骤冷使之凝结。特点:纯度高、结晶组织好、粒度可控;但技术设备要求高。根据加热源的不同有: (1)真空蒸发-冷凝法其原理是在高纯度惰性气氛(Ar,He)下,对蒸发物质进行真空加热蒸发,蒸气在气体介质中冷凝形成超细微粒。1984年Leiter[2]等首次用惰性气体沉积和原位成型方法,研制成功了Pd、Cu、Fe 等纳米级金属材料。1987 年Siegles[3]采用该法又成功地制备了纳米级TiO2 陶瓷材料。这种方法是目前制备纳米微粒的主要方法。特点:粒径可控,纯度较高,可制得粒径为5~10nm的微粒。但仅适用于制备低熔点、成分单一的物质,在合成金属氧化物、氮化物等高熔点物质的纳米微粒时还存在局限性。 (2)激光加热蒸发法是以激光为快速加热源,使气相反应物分子是利用高压气体雾化器将-20~-40OC的氦气和氩气以3倍于音速的速度射入熔融材料的液流是以高频线圈为热源,使坩埚是用等离子体将金属等的粉末熔融、蒸发和冷凝以获得纳米微粒。特点:微粒纯度较高,粒度均匀,是制备氧化物、氮化物、碳化物系列、金属系列和金属合金系列纳米微粒的最有效的方法,同时为高沸点金属纳米微粒的制备开辟了前景。但离子枪寿命短、功率小、热效率低。目前新开发出的电弧气化法和混合等离子体法有望克服以上缺点。 (6)电子束照射法1995年许并社等人[4]利用高能电子束照射母材,成功地获 得了表面非常洁净的纳米微粒,母材一般选用该金属的氧化物,如用电子束照射 Al2O3 后,表层的Al-O 键被高能电子“切断”,蒸发的Al原子通过瞬间冷凝,形核、长大,形成Al的纳米微粒,但目前该方法获得的纳米微粒限于金属纳 米微粒。 1.1.2 物理粉碎法

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容和所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易和其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们和旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错和晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

纳米铂

纳米铂-L半胱氨酸修饰玻碳电极对 对苯二酚的检测研究 姓名:陈盼盼学号:201004034032 班级:化学一、文献综述 化学工业对人类社会和物质文明做出了重大贡献,人们在享受现代科学与技术给人们带来巨大的便利和快乐的同时,也逐渐意识到人类未来面临的巨大生存危机和困难。20世纪,人们逐步认识化学品的不当生产和使用会对人的健康、社区环境、生态环境产生危害性。据统计,世界每年生产的人工合成有毒化合物约50万种,共400万t,所有这些物质,近一半留在大气江河、湖、海内,另外每年还有将近18万t的铅和磷,3000万t的汞和各种有毒重金属流入水体内,200万t石油流进海洋。中国化学工业排放的废水、废气和固体废物分别占全国工业排放总量的22.5%、7.82%和5.93%,造成环境严重恶化,直接危害人类,又破坏生物圈,长期的影响着人类的生存。 对苯二酚,又名氢醌.化学名1,4-苯二酚,英文名 1,4-Dihydroxybenzene ; Hydroquinone。对苯二酚为白色针状结晶,分子式C6H4(OH)2,分子量110.11,比重1.332,熔点172℃,沸点286℃,闪点165℃,溶于水、乙醇及乙醚,微溶于苯。可燃。自燃点516℃。长期接触对二苯酚蒸气、粉尘或烟雾可刺激皮肤、粘膜,并引起眼的水晶体混浊。操作现场空气中最高容许浓度2mg/m3。 对苯二酚是一种重要的化工原料且应用广泛【1】主要用于显影剂、蒽醌染料、偶氮染料、合成氨助溶剂、橡胶防老剂、阻聚剂、涂料和

香精的稳定剂、抗氧剂等。对苯二酚因具有毒性,而且在自然条件下,不易降解,对人体环境有较大的危害, 因此受到人们的普遍关注,但其微量不容易不检测出来,因而需要更加灵敏的方法来检测目前,微量对二苯酚的测定方法有荧光谱法【2】、薄层色谱法【3】高效液相色谱法【4】动力学光度法【5】因为对苯二酚具有电学活性,可用电化学方法测定其含量,因此用选择性好、灵敏度有高的化学修饰电极测量对对苯二酚已有报道【6-7】,但是因为修饰过程复杂,干扰过多,灵敏度等问题。所以要设计更好的修饰方法来对微量对苯二酚的检测。 玻碳电极,是电化学研究中使用最为频繁的碳材料基础电极【8】。它的表面具有多变的性质,极易受实验条件的影响而发生变化。玻碳电极在应用与电化学研究时,在每次试验前需要对电极进行前处理,以改善其电化学相应信号的重现性【8】。目前,世界上几乎所有的实验室,对玻碳电极最为常采用的的前处理程序都是先在Al2O3磨料浆中打磨电极,随后在超声水浴中清洗。但这样的处理方法再重现性上不尽人意。因次,在这里我们要进行电化学活化以此来满足电分析实验室所需的各种高要求,各种有效的电化学活化方法均采用一个叫高阳极极化电位。电化学活化既可以在酸性、中性溶液中【9】也可以在碱性溶液中【10】,动力学研究表明活化电极的电子传导性质的改善可能以表面的亲水性【11】、清洁度【12】、含氧基团【13】等因素有关。 纳米材料具有表面效应【14】、体积效应【15】和介电限域效应登

半导体纳米材料的制备方法

摘要:讨论了当前国内外主要的几种半导体纳米材料的制备工艺技术,包括物理法和化学法两大类下的几种,机械球磨法、磁控溅射法、静电纺丝法、溶胶凝胶法、微乳液法、模板法等,并分析了以上几种纳米材料制备技术的优缺点关键词:半导体纳米粒子性质;半导体纳米材料;溶胶一凝胶法;机械球磨法;磁控溅射法;静电纺丝法;微乳液法;模板法;金属有机物化学气相淀积引言 半导体材料(semiconductormaterial)是一类具有半导体性能(导电能力介于导体与绝缘体之间,电阻率约在1mΩ·cm~1GΩ·cm范围内)。相对于导体材料而言,半导体中的电子动能较低,有较长的德布罗意波长,对空间限域比较敏感。半导体材料空间中某一方向的尺寸限制与电子的德布罗意波长可比拟时,电子的运动被量子化地限制在离散的本征态,从而失去一个空间自由度或者说减少了一维,通常适用体材料的电子的粒子行为在此材料中不再适用。这种自然界不存在,通过能带工程人工制造的新型功能材料叫做半导体纳米材料。现已知道,半导体纳米粒子结构上的特点(原子畴尺寸小于100nm,大比例原子处于晶界环境,各畴之间存在相互作用等)是导致半导体纳米材料具有特殊性质的根本原因。半导体纳米材料独特的质使其将在未来的各种功能器件中发挥重要作用,半导体纳米材料的制备是目前研究的热点之一。本文讨论了半导体纳米材料的性质,综述了几种化学法制备半导体纳米材料的原理和特点。

2.半导体纳米粒子的基本性质 2.1表面效应 球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比。随着颗粒直径变小,比表面积将会显著增大,说明表面原子所占的百分数将会显著地增加。对直径大于0.1微米的颗粒表面效应可忽略不计,当尺寸小于0.1微米时,其表面原子百分数激剧增长,甚至1克超微颗粒表面积的总和可高达100平方米,这时的表面效应将不容忽略。 随着纳米材料粒径的减小,表面原子数迅速增加。例如当粒径为10nm 时,表面原子数为完整晶粒原子总数的20%;而粒径为1nm时,其表面原子百分数增大到99%;此时组成该纳米晶粒的所有约30个原子几乎全部分布在表面。由于表面原子周围缺少相邻的原子:有许多悬空键,具有不饱和性,易与其他原子相结合而稳定下来,故表现出很高的化学活性。随着粒径的减小,纳米材料的表面积、表面能及表面结合能都迅速增大。 超微颗粒的表面与大块物体的表面是十分不同的,若用高倍率电子显微镜对金超微颗粒(直径为2*10-3微米)进行电视摄像,实时观察发现这些颗粒没有固定的形态,随着时间的变化会自动形成各种形状(如立方八面体,十面体,二十面体多李晶等),它既不同于一般固体,又不同于液体,是一种准固体。在电子显微镜的电子束照射下,表面原子仿佛进入了“沸腾”状态,尺寸大于10纳米后才看不到这种颗粒结构的不稳定性,这时微颗粒具有稳定的结构状态。 因此想要获得发光效率高的纳米材料,采用适当的方法合成表面完好的半导体材料很重要。 2.2量子尺寸效应 量子尺寸效应--是指当粒子尺寸下降到某一数值时,费米能级附近的电子能级由准连续变为离散能级或者能隙变宽的现象。当能级的变化程度大于热能、光能、电磁能的变化时,导致了纳米微粒磁、光、声、热、电及超导特性与常规材料有显著的不同。当半导体材料从体相减小到某一临界尺寸(如与电子的德布罗意波长、电子的非弹性散射平均自由程和体相激子的玻尔半径相等)以后,其中的电子、空穴和激子等载流子的运动将受到强量子封

纳米铂基本性质及生产应用介绍

纳米铂基本性质及生产应用介绍 2016-10-28 14:05来源:内江洛伯尔材料科技有限公司作者:研发部 【产品说明】 中文名称:纳米铂粒子

英文名称:Platinum nanoparticles 中文别名:铂纳米、铂金纳米、纳米铂金溶液 CAS号:7440-06-4 【产品特性】 外观:黑色液体 PH:7.0±0.5 粒径:3nm 铂金纯度:99.95% 包装规格:按客户要求包装 保存方法:置于阴凉、干燥处 【详细介绍】 铂纳米颗粒(Platinum nanoparticles)一般是指大小在2-20nm的铂颗粒分散在水内的悬浮体或胶体,与其他金属纳米材料类似由于其形貌和尺寸的原因铂纳米颗粒具有一般金属纳米材料的表面效应、体积效应、量子尺寸效应及宏观量子隧道效应等性质。在形貌调控方面,目前已经报道的铂纳米结构包括:纳米球、纳米线、纳米管、纳米立方体、纳米轮、和纳米笼等;在尺寸调控方面,传统的调控方法为加晶种法,首先合成特定形貌的晶种,包括纳米球、纳米棒、纳米立方体和纳米多面体等,然后将晶种加入合成体系中分离成核与生长过程,保证每个成核中心有大致相同的生长时间,实现铂纳米材料粒径均一性的调控,并通过调变晶种与铂金属前体的比例控制粒径的大小。 铂纳米颗粒的制备方法大致分为两类,即化学法( 化学还原法、微乳液法、吸氢多次还原法等) 和物理方法( 真空蒸镀法、等离子体溅射法、粒子束外延法等)。铂纳米材料作为一种功能性材料,在催化、传感器、燃料电池、光学、电子学、电磁学等领域具有重要的应用价值。应用于各种生物催化剂、宇航服制作、汽车尾气净化装置、食品及化妆品防腐剂、抗菌剂、美容产品等。

纳米半导体材料在微电子技术中的应用探究

纳米半导体材料在微电子技术中的应用探究 摘要 本文先简短介绍了纳米材料的几种量子效应,而后根据半导体发展国际技术路线图(ITRS)所提出的特征尺度减小给微电子技术带来的问题,重点介绍了碳纳米管和石墨烯两种有望突破物理极限束缚的新型纳米半导体材料。作为科普性的探究论文,本文没有深究物理、化学机理,而是将重点放在两者在后摩尔时代的微电子技术应用上,指出了两者在集成电路、纳电子器件甚至太赫兹技术、量子信息学中的可能应用。 关键词:碳纳米管石墨烯纳米材料微电子技术 Abstract This paper briefly introduces the quantum mechanism of nano-semiconductor-materials, and then introduces particularly Carbon Nanotube and Graphene as two possible solutions to the physical limitations to the microelectronics, proposed by the International Technology Roadmap for Semiconductors. As a paper aimed at introduction, we focus on the applications of the two materials rather than their theoretical principles and points out their possible prospects in integrated circuits, nano-microelectronic devices, Terahertz technology, and quantum information. Key words: Carbon Nanotube Graphene Nano-materials microelectronics

常见纳米材料的制备技术

东华大学研究生课程论文封面 教师填写: 本人郑重声明:我恪守学术道德,崇尚严谨学风。所呈交的课程论文,是本人独立进行研究工作所取得的成果。除文中已明确注明和引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写过的作品及成果的内容。论文为本人亲自撰写,我对所写的内容负责,并完全意识到本声明的法律结果由本人承担。 论文作者签名: 注:本表格作为课程论文的首页递交,请用水笔或钢笔填写。

常见纳米材料的制备技术 1 概述 纳米材料是指材料的任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料,广义来讲,数百纳米的尺度亦可称为纳米材料。由于纳米尺寸的物质具有与宏观物质所迥异的表面效应、小尺寸效应、宏观量子隧道效应和量子限域效应,因而纳米材料具有异于普通材料的光、电、磁、热、力学、机械等性能,纳米材料的性能往往由量子力学决定。按照纳米材料的空间形态可以将其分为4类:三维尺寸均为纳米量级的纳米粒子或人造原子被称为零维纳米材料;纳米纤维为一维纳米材料;纳米膜(片、层)可以称为二维纳米材料;而有纳米结构的材料可以称为三维纳米材料。目前只有纳米粉末实现了工业化生产(如碳酸钙、氧化锌等),静电纺纳米纤维的产量能够满足实验的需求,其它纳米材料基本上还处于实验室研究阶段[1]。 2 常见的纳米材料 2.1 零维纳米材料 指空间中三个维度的尺寸均在纳米尺度,如纳米尺度颗粒、原子团簇等。纳米球全称“原子自组装纳米球固体润滑剂”,是具有二十面体原子团簇结构的铝基合金,是一种新型纳米/非晶合金固体抗磨自修复剂,采用急冷方法制备抗磨剂粉体,在合金从液体到固体的凝固过程中,形成纳米晶/非晶的复合结构,利用粒度控制的方法对抗磨剂粉末进行超微细化处理而成。该材料具有高硬度、高强度,并具有一定的韧性等性能,在多种减摩自修复机制的综合作用下呈现优良的减摩和抗磨性能,可以起到节省燃油、修复磨损表面、增强机车动力、降低噪音、减少污染物排放、保护环境的作用。 2.2 一维纳米材料 一维纳米材料指空间中有二维处于纳米尺度的材料,如纳米纤维、纳米棒、碳纳米管等。 静电纺纳米纤维是目前唯一一种能够连续制备纳米纤维的技术,它是利用高压电场力将纤维从导电溶液中抽拔出来,在抽拔过程中纤维被拉伸变细、溶剂挥

铂纳米团簇用于制作双功能电催化剂

铂纳米团簇用于制作双功能电催化剂 2016-05-26 13:32来源:内江洛伯尔材料科技有限公司作者:研发部 多孔钙钛矿锰氧化物负载纳米铂催化剂示意图 质子交换膜燃料电池(Proton Exchange MembraneFuel Cell,简称:PEMFC),又称固体高分子电解质燃料电池(Polymer ElectrolyteMembrane Fuel Cells ),是一种以含氢燃料与空气作用产生电力与热力的燃料电池,运作温度在50℃至100℃,无需加压或减压,以高分子质子交换膜为传导媒介,没有任何化学液体,发电后产生纯水和热。 燃料电池中,质子交换膜燃料电池相对低温与常压的特性,加上对人体无化学危险、对环境无害,适合应用在日常生活,所以被发展应用在运输动力型(Transport)、现场型(Stationary)与便携式(Portable)等机组。 燃料电池商品化的催化剂以Pt/C最具代表性。然而,Pt/C催化剂使用过程中,碳基底容易被腐蚀,进而导致铂纳米颗粒团聚、电化学活性比表面积急剧下降;另一方面,Pt价格昂贵、资源稀缺,极大地限制了此类催化材料的规模应用。因此,寻找低铂载量、高活性和高稳定性的电催化材料成为重要课题。 针对Pt/C催化剂中碳载体易被腐蚀、稳定性差这一关键问题,过渡金属氧化物被研究用来替代碳载体负载铂纳米颗粒。其中,锰基氧化物特别是复合锰氧化物由于价格低廉、储量丰富、环境友好以及自身具有氧催化性能而受到关注。 最近,南开大学科研人员设计开发了一种新型氢化Pt纳米簇/多孔CaMnO3复合电催化材料,相比于普通Pt/C催化剂,在碱性体系中,对氧还原催化反应表现出5倍的质量活性、11倍的比表面积活性以及更佳的稳定性,同时对氧析出反应性能优异。研究表明,该材料的高活性源于以下因素:第一,Pt与CaMnO3的协同效应,优化了催化剂表面对含氧物种的吸脱附;第二,高分散和小粒径的铂纳米簇有利于氧分子的活化与解离;第三,氢化处理在氧化物中引入了氧缺陷,不仅提高了材料的电导率,而且导致Mn的混合价态,促进电催化过程。该材料优异的催化稳定性可归因于两个方面:首先,钙钛矿型CaMnO3载体自身在碱性溶液中具有更好的化学稳定性以及抗腐蚀能力;其次,多孔结构的限域作用有效阻止了Pt纳米簇的团聚。研究结果有助于促进低铂载量、高活性、长寿命复合电催化材料的研制。

相关文档
最新文档