等离子体

等离子体
等离子体

等离子体技术对合成纤维表面改性的探讨

关键字:合成纤维;等离子体技术;表面改性;

合成纤维织物的拉伸、耐磨等耐用性能.及免烫、抗折皱等外观性能一般优于天然纤维织物,但其舒适性、易染性不太理想。例如,涤纶、丙纶的公定回潮率分别是04%和0.0%。显然.该二种纤维的吸湿性较差,其织物透过皮肤排泄的高热汗气的能力即透湿性较差,从而影响人们穿着的舒适性。另一方面,涤纶分子的极性较小,缺乏亲水性,无特定染色基团.易染性差,难以染出探浓鲜艳的色泽;而丙纶的染色条件更为苛刻.采用分散染料只能得到很淡的颜色,通常采用原渡着色、纤维改性等方法才能解决染色问题。

从50年代末开始,等离子体技术在离子渗析、渗硅、渗碳等表面处理工程中迅速发展。例如,利用沉积效应使碳在受热基体上有序生长构成金刚石薄膜,将氧化铝陶瓷层喷涂在铝合金上等。近年来,等离子体技术在纺织品染整工程中的应用引起了广泛关注。涤纶、聚丙烯等合成纤维,经等离子体处理,不仅可改进染色性能,还能改善润湿性、吸湿性、亲水性等。

1等离子体技术物质除了以气、液、固态存在以外.在一定条件下,有一部分分子被离解成原子.并且部分甚至全部原子或分子发生电离,电子脱离原子和分子在空间自由运动。失去一部分电子的原子和分子带有正电荷成为正离子。这种由带正负电荷的粒子组成的气体.正负电荷数相等,净电荷数等于零,称为等离子体。[1]在强磁场控制下,等离子体的粒子可以作有规律的运动.从而开发出许多新的用途。

等离子体共有三种:热等离子体、冷等离子体、混合等离子体。常见的低温等离子体由辉光放电产生,真空度1.33322-1333.22Pa,工作电流500至几千伏的直流电或交流电,电流频率-60Hz,平均电子能量1~10eV,

电子温度(ek是电子动能),电子密度[2]

根据被处理材料和工作气体的性质、放电时间、放电功率、放电真空度的变化,等离子体处理聚合物能产生不同的效果。氧、氮、氩、二氧化碳和氨气等气体产生的低温等离子体可改善合成纤维的润湿性、亲水性,CF4气体产生的等离子体在纤维表面产生强烈的氧化作用.可增强纤维的拒水性。等离子体处理聚碳酸酯、聚四氟乙烯等聚合物时,高聚物自由基重新聚合产生表面交联,使表面层分子量增加.提高聚合物的熔点。随着等离子体放电时间的延长,高能粒子对纤维表面的刻蚀作用增强,重量损失逐渐增加;随着离子体放电功率增大,产生的高能粒子能量增加;随着等离子体放电真空度增大,在一定范围内分子平均能量降低。[3]总之.由于各种等离子体反应器的设计不同.故应根据具体情况选择适当的工作参数。

2等离子体处理改善合成纤维的润湿性

2.1等离子体的刻蚀作用

低温等离子体是在真空下由辉光放电产生的具有高能量的离子和分子,电子温度达上万度(K)。等离子体处理合成纤维能引发生成高聚物自由基,随后进行链裂解、自由基转移、氧化、歧化和复合等反应,构成表面层中的降解、刻蚀、氧化和交联反应裂解和氧化的小分子产物被不断蒸发和喷溅清除出去。所以.在合成纤维光滑的表面层会产生一些小圆坑或沟槽,表面改性层达50~50OA[2].

2.2合成纤维的表面能

合成纤维表面层分子和内部分子所具有的能量是不同的。内部任意一个分子所受周围分子的引力是球形对称的.而表面层的分子受内部分子引力大于外部气体或液体分子列它的吸引力。在恒温、恒压和组成一定的情况下,

可逆地增加物系的表面积而对物系做的非体积功称为表面能。[4]若增大表面积dA。

式中,a为比表面能。a在数值上等于实验所测定的表面张力。

显然,经过等离子体对合成纤维表面的刻蚀.纤维表面粗糙单位体积的物质所具有的表面积,即比表面AS增加,

式中.A代表体积为V的物质所具有的表面积。因此,等离子体气体中高能粒子能量的~部分转化为纤维的表面能.使合成纤维的表面能增大。

2.3合成纤维的润湿现象

水对合成纤维的润湿程度可用接触角来衡量。所谓接触角就是固液界面与气液界面在气、液、固兰相交点的切线的夹角0。[5]见附图。接触角愈小愈易润湿。

当接触角达平衡状态时,有杨氏方程

能润湿。例如.在室温下聚酯的水

接触角是75.8°.等离子体处理纤维后.其表面能增加愈易润湿。若改变ó后,使铺展系数ψ>O,则水液可能铺展于合成纤维上.达到更理想的润湿效果。

3等离子体处理改善合成纤维的吸湿性

纤维放置在大气中具有吸收和放出水分的性能称为吸湿性。合成纤维的吸湿性普通较差。纤维的吸湿性能与氢键、

范德华力有关。根据兰格缪尔提出的单分子层吸附理论,[4]

式中,r表示平衡压力有P时的吸附量;r∞表示饱和吸附量,即1kg吸附剂的表面上,盖满一层吸附质的分子时.所能吸附的最大摩尔数:b是吸附系数。

饱和吸附量r∞及每个吸附质分子的截面积Am与吸附剂的比表面Aw之间的定量关系为:

式中,L为阿伏加德罗常数;Aμ为比表面.即每kg吸附剂所具有的表面,单位为M2·kg-1因此,经等离子体处理后纤维表面50~500A深度改性,相应增加了纤维的比表面Aw,使纤维的饱和吸附量r∞成比例增大。根据公式(6),随着r∞增大可提高纤维对水分的吸附量,使纤维的吸湿性增大。

另一方面,合成纤维表面所吸尉的水分子和碰撞在上面的水分子之阃存在范德华力,会使水分子层加厚.而形成多分子层吸附。又由于纤维表面改性后具有毛细作用.也能提高纤维的吸湿性。

4等离子体处理改善合成纤维的亲水性

棉、麻干n粘胶都是纤维素纤维,其大分子的每一个葡萄糖剩基含有一个伯醇基、二个仲醇基,这种纤维称为亲水性纤维。涤纶纤维的大分子除了疏水性的苯环和乙撑外,只含有亲水性不强的酯键.这种纤维称为疏水性纤维。分散染料对涤纶纤维的上染是通过染料溶解成分子分散状态而吸附到纤维表面层,再通过扩散层“溶解”在纤维的无定形区。分散染料和涤纶纤维分子问的作用主要是极性引力(包括氢键)和非极性引力(主要是色散力)。

分子问的作用力可用内聚能密度来衡量,δ2可表示成

式中.δя2称极性力内聚能密度,是由偶极力和氢键产生的。δb2称非极性力内聚能密度。显然,如果涤纶纤维所岔的极性基团增加.则δя2增加,导致δ2增加,那么用溶解度参数的概念即可估计出该涤纶纤维对分散染料的“溶解度”增加。

等离子体含有自由基、激发的分子和原子、离子及电子。例如

等离子体一高聚物反应是按自由基机理进行的。由紫外线辐射引发的过程是

这些聚合物自由基可与反应器或空气中的O2等气体反应,引人极性基因。例如,等离子体处理使将涤纶表面引起链裂解、去羧基反应,生成同位和对位酚端基.即[2]

由此可见,等离子体处理合成纤维可引人丰富的极性基因.如—0H、—NH2.从而捷高合成纤维的亲水性,改善染色效果。

5等离子体处理在合成纤维接枝聚合中的作用

通过化学反应,在某聚合物主链接上结构组成不同的支链.这一过程称为接枝;所形成的产物称为接枝共聚物。

[6]接枝共聚物兼有骨架聚台物和构成支链的聚合物的特征,在合成纤维表面处理中.也可用接枝聚合反应改善合成纤维的吸湿性、染色性能等。

如前所述,等离子体处理高聚物后,可引发高聚物自由基产生,进行自由基聚合反应。例如。由激发的惰性气体原子引发[2]

研究证明,由等离子体处理产生的高聚物自由基.在约24h内不会衰变。因此,可采用预浸渍或后浸渍单体溶液方法。

目前.大多数合成纤维接枝聚合的单体采用丙烯酰胺、丙烯酸酯类等。

6结论

等离子体处理技术应南于染整工程,具有减少环境污染.缩短工艺流程,能提高合成纤维的润湿性、吸湿性和亲水性等性能.在一定程度上可改善合纤织物的舒适性能和染色性能。

ICP等离子体直读光谱仪作业指导书

ICP等离子体直读光谱仪作业指导书 1 主题内容 本作业指导书规定了ICP等离子体发射光谱开机预热、编辑分析方法、和打印报告等各环节的具体操作程序。 2人员 操作人员须经过专业培训,考核合格,取得仪器操作授权。 3仪器的准备 (1)开机 调分压表为0.5—0.8Mpa,同时确认两瓶氩气储量足够。再确认氩气打开1小时后开主机。 (2)预热 主机开机以后预热一般2—3小时,使光室恒温指示达到90±0.2华氏度。 4计算机操作系统 (1)条件检查 再次确认氩气储量大于或等于一瓶,分压为0.5—0.8Mpa,通气时间大于40min。 检查并确认炬管等进样系统正确安装。 ●检查病确认废液桶有足够的容积空间。 ?将进样管放入水中。 (2)启动计算机

进入TEVA软件,点击点火图标,检查仪器连接是否正常。 如果仪器连接正常,点击点火图标,稳定15—30min后开始工作。 5编辑分析方法 (1)选择元素及谱线 在TEVA软件里选择Analysis 选择Methad,再选择new,选择所需要的元素,点击OK即可。 (2)设定分析参数 在上一步完成后,点击Methad,点击Analysis Preference设置重复次数、长短波积分时间。 (3)保存参数 点击Automated output,选上store results to database,点击Apply to all sample type,即可。 (4)设定标准系列 点击standards,输入标准系列,点击save保存。 6拍摄高标谱图 回到Analyst界面中,点击拍摄高标图标,选择各元素条件拍摄高标谱图。 7校正高标谱图里的谱线 选择使谱线波长接近元素波长,强度最大的位置为谱图的中心位置,然后右键点击Restore zoom即可。 8拍摄标准谱线 回到Analyst界面中,点击左下角Analyst,点击拍摄标准曲线图标,点击run,

等离子体法处理危险废弃物技术与设备

等离子体法处理危险废弃物技术与设备 等离子体法是处理危险废物的新型技术。日前,力学所工程科学部废物处理技术组建成了等离子体热解处理模拟医疗废物的全套实验室系统。 全套实验室模拟处理装置为中试规模,设计能力最大可达到5吨/日,包括进料子系统、等离子体核心处理设备和完善的尾气后处理子系统。进料子系统主要是柱塞式液压给料机,核心处理设备由等离子体炉、电源设备、测量控制系统、工作气体控制供应系统等设备组成;尾气后处理子系统由尾气急冷器、空气预热器、碳纤维吸附器、烟气脱酸、烟气再热器、尾气燃烧炉、引风机等设备组成。该系统还包括冷却和散热系统等辅助设备。 等离子体法利用电弧放电,可以将裂解温度提高到1500~2000oC,有效打断有机物的化学键,达到很高的摧毁效率,并能避免在处理过程中排放NOx、CO 和二噁英类等在焚烧时生成的有害物质,因此适合处理各类难分解的危险废物,达到近零排放的水平。实验数据显示,等离子体法仅形成少量裂解气体、炭黑和玻璃体,特别有利于二次产物的后处理和无害化,处理一吨废物的电耗约 1200~1500 kWh,低于焚烧多氯联苯等高危废物的能耗和能源成本,产生的可燃性尾气中的能源还可以回收利用,因而也是节能型技术。但是由于技术复杂,成本昂贵,国际上发展速度并不快,主要是用于处理多氯联苯(PCBs)、废农药、焚烧飞灰、医疗废物等有机与无机废物的处置,国内尚没有成熟的商业化产品。 近年来,课题组以交流等离子体弧技术为基础,在处理废塑料、废橡胶、医疗废物、有机废物、化学试剂和电子线路板等实验研究的基础上,承担了国家863计划课题和院知识创新工程方向性重要项目,研制交流等离子体处理医疗废物的成套设备和技术,并于2006年在四川晨光化工研究院建成国内首套工业规模的化工固体危险废物处理系统。 现在,课题组与深圳迈科瑞环境技术有限公司的合作,全面开发等离子体处理危险废物的技术和设备,努力通过走产业化的道路,尽早实现科研成果向生产力的转化。

用微波ECR等离子体溅射法在蓝宝石_0112_晶面上生长ZnO薄膜的研究

研究快讯 用微波ECR 等离子体溅射法在蓝宝石 (0112)晶面上生长Z nO 薄膜的研究Ξ 汪建华 袁润章 (武汉工业大学材料复合新技术国家重点实验室,武汉 430070) 邬钦崇 任兆杏 (中国科学院等离子体物理研究所,合肥 230031) (1998年6月12日收到;1998年11月27日收到修改稿) Ξ国家自然科学基金(批准号:19175046)资助的课题. 蓝宝石上外延生长ZnO 薄膜在表面波和声光器件中有重要的应用.用微波电子回旋共 振(ECR )等离子体溅射法在蓝宝石(0112)晶面上外延生长了ZnO 薄膜,膜无色透明,并且表面光滑,基片温度为380℃,为探索沉积工艺参数对薄膜结构的影响,用XRD 对不同基片温度和沉积速率生长的ZnO 薄膜进行了研究. PACC :0484 1 引言 随着声表面波(SAW )技术的发展,对更高频的SAW 器件的需求日益增加,因而希望有高声速的基片材料,在蓝宝石基片上溅射沉积ZnO 薄膜格外引人注目.如:当膜厚相当于SAW 波长时,则SAW 速率约为6000m/s ,高次模SAW 传播的速度则高达7000m/s 以上[1].这比LiNO 3或石英的SAW 速度大得多.众所周知,用溅射法能在玻璃衬底上生长c 轴取向的ZnO 薄膜,这种膜与衬底构成的层状结构可用于较低频段的SAW 器件.当用于几百MHz 以上的高频波段的薄膜SAW 器件时,若构成器件的压电ZnO 薄膜是多晶结构,则由于传播损耗大,而降低器件性能.这时就要使用单晶ZnO 薄膜[2].用化学气相沉积法生长的薄膜,沉积温度高,膜表面粗糙,用于SAW 器件时需要抛光.将薄膜抛光到有确定的SAW 相速度的一定厚度是很困难的.有文献报道,用射频溅射外延生长ZnO 薄膜,不用抛光工序即可获得光滑的薄膜.但这时使用了掺Li 2CO 3氧化锌陶瓷靶,溅射沉积时,获得的薄膜晶粒大,工艺稳定性和重复性差,制作的薄膜器件传输损耗大,尤其是当Li +离子吸收了空气中的水分时,在薄膜的表面会产生LiOH ,并降低器件的稳定性和可靠性[1,3—5]. 第48卷第5期1999年5月 100023290/1999/48(05)/0955206物 理 学 报ACTA PHYSICA SIN ICA Vol.48,No.5,May ,1999ν1999Chin.Phys.S oc.

等离子体发射光谱

等离子体光谱是指等离子体从红外到VUV发射的电磁辐射光谱。 资源 它包含了大量关于等离子体复杂原子过程的信息。利用光谱原理、实验技术和等离子体理论模型对等离子体光谱进行测量和分析具有重要意义。 包括 等离子体光谱主要是线性的和连续的。当等离子体中的中性原子和离子从高能能级的激发态转移到低能能级时,会产生线性谱;②在电子从高能能级跃迁到低能能级逃逸出等离子体之前光子的再吸收量被重新吸收。然而,谱线的总强度与电子和离子的密度和温度有关,每一条谱线都有其强度分布规律。因此,结合光谱模型中的理论模型和原子数据,通过测量谱线的强度,可以得到电子和离子的密度和温度。根据多普勒效应,等离子体的宏观速度可以由谱线波长的偏移来确定。当电子在其他粒子的势场中加速或减速时,就会产生连续的谱。连续谱强度测量也可获得电子密度和温度的数据。 改变

随着等离子体温度的升高,当达到10℃以上时,原子的外部电子逐渐剥离形成各种离子态的离子,如C IV、CV、O VI、n V、Fe Xi x、Ti Xi x(I为中性原子,II,III,IV损失1,2,3)的一个电子外层。这些高电离离子的线性谱主要在远紫外波段。在连续谱情况下,当温度升高时,最大发射强度向短波方向移动;对于聚变高温等离子体,其工作物质为氢,同位素为氘和三种,但不可避免地会含有一些杂质,如C、O、Fe,Ti、Mo、W等元素的温度已达到10度以上。这些杂质离子的光谱大多在真空紫外和X射线波段。分析时间非常重要。比较了高阶重杂质电离线的位置和位置。他们的强度。研究等离子体参数的测量、传输过程和在如此高的温度下的辐射损耗是非常重要的。特别是分析氢离子和氦离子的线强度更为有用,因为这些离子的原子数据相对完整。 形状 等离子体光谱的另一个重要方面是光谱线的形状或轮廓。谱线不是“线”,而是具有一定宽度的等高线。在等离子体光谱中,线展宽的机理非常复杂。多普勒效应和斯塔克效应是影响多普勒效应的两个重要因素。等离子体中的各种粒子都处于随机热运动状

等离子体物理培养方案

等离子体物理学科硕士研究生培养方案 (专业代码:070204) 等离子体物理主要研究微波等离子体理论与应用、计算等离子体物理、等离子体电子学以及激光与等离子体的相互作用、聚变等离子体、等离子体诊断。微波等离子体理论与应用,重点研究其产生、维持的理论和方法,微波等离子体激光、微波等离子体沉积及新材料制备等。计算等离子体物理研究等离子体重要物理过程的粒子模拟技术(PIC技术)。等离子体电子学主要研究电磁场或电磁波和电子注及等离子体的三元相互作用,探索新型高效率、高功率微波器件。聚变等离子体学主要开展对受控聚变中所涉及的基础等离子体物理学进行细致研究。重点开展波与等离子体相互作用及加热机理,探索新型等离子体诊断方法。 一、培养目标 培养德、智体全面发展的,具有坚实的数理基础和等离子体物理专业知识,掌握本学科坚实的理论基础及系统的专门知识,掌握现代微波等离子体实验技能和基本的等离子体诊断技术,了解等离子体物理的前沿领域和发展动态。具有严谨求实的科学态度和工作作风及从事科学研究工作及独立从事专门技术工作的能力,能胜任高等院校、研究机构和产业部门有关方面的教学、研究、工程、开发及管理工作。 二、研究方向 1.微波等离子体理论与应用2.计算等离子体物理 3.聚变等离子体物理4.等离子体电子学 5.等离子体诊断6.太赫兹科学技术 三、培养方式和学习年限 全日制硕士研究生学制为三年。提前完成硕士学业者,可申请提前半年毕业;若因客观原因不能按时完成学业者,可申请适当延长学习年限,但最长学习年限不超过四年。 四、学分与课程学习基本要求 总学分要求不低于26学分,其中课程总学分不低于24个学分,必修环节不低于2学分。课程学分要求中,学位课不低于15学分,其中公共基础课必修,基础课至少选修一门。专业基础课中有“*”标志的为全校共选专业基础课。允许在导师指导下、在相同学科门类之间、工科与理科之间跨学科选修1~2门学位课作为本学科的学位课。 学位课可以代替非学位课,但非学位课不能代替学位课。对于跨学科专业录取的硕士生,要求补修相应专业本科核心课程至少2门,通过考试,但不计学分;通过后方可选修专业课。 研究生应在导师指导下制定个人培养计划和具体选课。研究生学习与研究课题有关的专业知识,可由导师指定内容系统地自学某些课程,并列入个人培养计划,但不计学分。 五、课程设置 研究生课程主要划分为学位课、非学位选修课、必修环节三大部分。

关于等离子体及其研究方法的若干讨论

本科毕业论文 题目:关于等离子体及其研究方法的 若干讨论

目录 1.引言 (3) 2.等离子体的概念与简介 (1) 2.1.等离子体概念的形成 (1) 2.2.现实生活中的等离子体 (1) 3.等离子体的种类 (3) 4.等离子体的特征 (3) 5.等离子体与普通气体的区别 (4) 6.等离子体的运动规律 (4) 7. 等离子体的研究方法 (6) 8.等离子体的主要参量 (7) 8.1.等离子体粒子密度 (7) 8.2.等离子体的温度 (7) 8.3.等离子体振荡频率 (8) 8.4.D EBYE长度 (9) 9.等离子体对现代科学的应用 (12) 10.总结 (133) 11.参考文献 (144) 12.致谢 .......................................... 错误!未定义书签。5

关于等离子体及其研究方法的若干讨论 摘要:等离子体是部分或完全电离的气体按物质聚集态的顺序,等离子体位居固体、液体、气体之后,所以也称为物质的第四态。等离子体不仅与固体、液体不同,而且与普通的由中性原子、分子组成的气体也大不相同。这是因为构成等离子体的带电粒子之间的作用主要是长程的Coulomb力。在本文中主要阐述等离子体的三种研究方法,并推出等离子体的振荡频率和德拜长度。 关键词:等离子体;振荡频率;粒子密度;德拜长度

1.引言 对于常见的三种物质聚集状态,即固态、液态、气态我们比较熟悉。但对高温状态的等离子体和低温状态的超导体则缺乏了解。本文对物质的这种状态做简单的介绍。 等离子体是部分或完全电离的气体按物质聚集态的顺序,等离子体位居固体、液体、气体之后,所以也称为物质的第四态。 等离子体不仅与固体、液体不同,而且与普通的由中性原子、分子组成的气体也大不相同。这是因为构成等离子体的带电粒子之间的作用主要是长程的Coulomb力。 等离子体物理是在20世纪20年代后逐步形成的物理学新分支,它研究等离子体的形成、性质和运动规律。 等离子体物理学的研究方法包括三部分,即粒子轨道理论、磁流体力学和等离子体动力论。 2.等离子体的概念与简介 2.1.等离子体概念的形成 等离子体(plasma)是一种由自由电子和带电离子为主要成分的物质形态,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。 1928年朗缪尔在第一篇“电离气体中的振荡”论文中首次提出等离子体概念。等离子体又叫做电浆,是部分或完全电离的气体,由大量自由电子和正离子以及中性原子、分子组成。等离子体宏观上是近似电中性的,即所含的正电荷与负电荷几乎处处相等。 任何物质由于温度不同将处于不同的聚集状态。固体加温溶解成为液体,液体加温沸腾成为气体。气体加温到几百上千度仍是气体,但若加温到几千万度、几十万度甚至更高的温度,则不仅分子或原子的运动十分剧烈,而且原子中的电子也已具有相当大的动能,足以摆脱原子核的束缚成为自由电子,于是原子电离,成为自由电子和正离子。这种部分电离或完全电离的气体,就是等离子体。它广泛存在于宇宙中,常被视为是除去固、液、气外,物质存在的第四态。我们在日常生活中也常常遇到等离子体。 2.2.现实生活中的等离子体 看似“神秘”的等离子体,其实是宇宙中一种常见的物质,在太阳、恒星、闪电中都存在等离子体,它占整个宇宙的99%。现在人们已经掌握利用电场和

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它金属元素的研究

电感耦合等离子体原子发射光谱法(ICP—AES)测定铝合金中其它 金属元素的研究 摘要:本文采用电感耦合全谱直读等离子体原子发射光谱法(ICP-AES)对未知元素组成和含量的铝合金中钛、铜、镁、锰、锌、铬、硅和铁的测定进行了研究,所测试的结果具有较好的精密度和准确度。 关键词:电感耦合等离子体原子发射光谱法元素组成和含量铝合金钛、铜、镁、锰、锌、铬、硅和铁 一、引言 铝合金具有较高的强度,良好的塑性成形能力和机械加工性能,在航空工业中具有重要的应用前景[1-3]。铝合金中其它金属的含量,如金属元素钛、铜、镁、锰、锌、铬、硅和铁等,对其性质和应用具有很大的影响[3-6]。所以,准确测定铝合金中其它金属的含量显得尤为重要。对金属材料的成分进行表征分析,可以深入了解材料的组成元素及其内部构造,可以为我们更好地去研发设计复杂的金属材料提供依据[7]。为此必需建立一个快速、准确的分析方法,以控制其化学成分,使该材料获得良好的物理性能。 国内外常用和新发展的分析方法包括[7-13]:分光光度法、滴定分析法、原子光谱分析法、X射线荧光光谱法、电化学分析法、电感耦合等离子体质谱法、激光诱导等离子体光谱法、电感耦合等离子原子发射光谱法(ICP-AES)和石墨炉原子吸收法。一般铝合金中元素的测定分析方法采用ICP-AES和石墨炉原子吸收法[9,14-18]。ICP-AES[19]作为一种新型的分析方法,较其它分析方法而言,具有灵敏度高、精密度好、线性范围宽、基体效应小、动态范围宽、快速简便并可同时进行多元素分析的优点,已成为铝合金常用的分析方法之一。 基于以上的背景调研,我们拟采用ICP-AES法对未知元素组成和含量的铝合金样品中其它金属元素的组成和含量进行研究,为铝合金材料的潜在应用和材料制备提供理论基础。通过查阅相关文献[3-5],可以知道铝合金材料中可能含有的金属元素;因此,本文主要研究并测定了铝合金中可能存在的金属元素,如钛、铜、镁、锰、锌、铬、硅和铁的含量。 二、实验部分 1.主要仪器及实验条件 铝合金样品(元素组成和含量未知),水(二次去离子),盐酸(优级纯),硝酸(优级纯)。 ICP 6300型电感耦合等离子体发射光谱仪。工作参数:射频功率1.15 kW,

等离子体实验报告

等离子体分析实验报告 摘要: 本文阐述了气体放电中等离子体的特性及其测试方法,分别使用单探针法和双探针法测量了等离子体参量,并简要介绍了等离子体的应用,最后对实验结果进行讨论。 关键词:等离子体、单探针、双探针 (一)引言 等离子体作为物质的第四态在宇宙中普遍存在。在实验室中对等离子体的研究是从气体放电开始的。朗缪尔和汤克斯首先引入“等离子体”这个名称。近年来等离子体物理学有了较快发展,并被应用于电力工业、电子工业、金属加工和广播通讯等部门,特别是等离子体的研究,为利用受控热核反应,解决能源问题提供了诱人的前景。 (二)实验目的 1,了解气体放电中等离子体的特性。 2,利用等离子体诊断技术测定等离子体的一些基本参量。 (三)实验原理 1,等离子体的物理特性 等离子体定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。 等离子体有一系列不同于普通气体的特性: (1)高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2)带正电的和带负电的粒子密度几乎相等。

(3)宏观上是电中性的。 描述等离子体的一些主要参量为: (1)电子温度e T 。它是等离子体的一个主要参量,因为在等离子体中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关联。 (2)带电粒子密度。电子密度为e n ,正离子密度为i n ,在等离子体中e i n n 。 (3)轴向电场强度L E 。表征为维持等离子体的存在所需的能量。 (4)电子平均动能e E 。 (5)空间电位分布。 本实验研究的是辉光放电等离子体。 辉光放电是气体导电的一种形态。当放电管内的压强保持在10~102 Pa 时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,在管内两个电极间的光强、电位和场强分布如图一所示。8个区域的名称为 (1)阿斯顿区,(2)阴极辉区,(3)阴极暗区,(4)负辉区,(5)法拉第暗区, (6)正辉区,(7)阳极暗区,(8)阳极辉区。其中正辉区是等离子区。 辉光放电的光强、电位和场强分布 2,单探针与双探针法的测量原理 测试等离子体的方法被称为诊断。等离子体诊断有探针法,霍尔效应法,微

等离子体法发生器

南京万和测控仪表有限公司与洛阳博耐特工程技术有限公司及西安天立能源环保工程技术有限公司精诚合作,是一个强强联合的实体,在研发和制造上属国内领先地位。用户的需求就是我们努力前方向,我们以优质的产品和近在咫尺的服务,迎接用户的选择。 一、等离子体燃烧器 1 、等离子体发生器燃煤原理: 随着等离子体电子源在不同工业领域应用和扩展,对它们的物理研究具有特殊意义。它们尤其在电子束燃煤技术中广泛应用。 在等离子发生器里,利用直流电流将压缩气体电离形成等离子体,在电磁场的作用下该等离子体会稳定定向流动,内含有大量化学活性粒子,如原子、原子团、粒子和电子等,这些粒子正负电荷数值相等,对内为良导体,对外呈中性,其内部有着上万度的高温,用眼睛就可以看见明亮的火炬。 实验室等离子体状态 等离子发生器由线圈、阴极、阳极等组成,等离子载体为压缩空气,阴极材料采用具有高导电率、高导热率、耐氧化的金属材料制成,阳极亦由高导电率、高导热率及抗氧化的金属材料制成,它们均采用水冷冷却方式,以承受电弧的高温冲击 等离子发生器原理图 2、等离子煤粉燃烧器配置: (1) 等离子发生器:产生电功率80~300 Kw的空气等离子体; (2) 直流电源(含整流变压器):将三相380 VAC或厂变6000VAC电源整流成直流电,用于产生等离子体。WHDLZ-250型等离子发生器采用直流电源供电,并且该电源经常工作在低电压、大电流输出状态。因此该电源设计上充分考虑了多种使用工况,具有较大的抗冲击负荷的能力。 (3) 燃烧器:等离子发生器配套使用将点燃煤粉喷进炉膛即一次风管; (4) 控制系统:由PLC、CRT、通信接口和数据总线构成,实现装置的全数字自动控制。 (5) 压缩空气系统:压缩空气是等离子的载体,由空气压缩机、分流器、空气过滤器和电磁阀组成。 (6) 水冷却系统:给等离子发生器、燃烧器冷却,由水箱水磅等组成。 (7) 火焰检测图像探头:用于检测等离子燃烧器工作状态,由摄像机、石英光学传输系统、画面分割器组成。

电子回旋共振等离子体及其在材料加工中的应用

电子回旋共振等离子体及其在材料加工中的应用 02级近代物理系等离子体谢会乔PB02203013 摘要 对ECR等离子体放电原理,特点,参数诊断,以及在薄膜沉积和刻蚀方面的应用做一简要调研. 关键词ECR Plasma?lm etching 目录 §1引言1 §2ECR等离子体概述2§2.1ECR放电原理 (2) §2.2ECR等离子体源的优点 (2) §3ECR等离子体实验参数3§3.1等离子体实验参数 (3) §3.2利用双探针对射频偏置ECR–PECVD等离子体参数测量 (3) §3.2.1实验装置 (3) §3.2.2实验结果 (4) §3.3栅网与偏压对ECR等离子体特性影响的测量 (4) §3.3.1实验装置 (4) §3.3.2实验结果 (5) §4气体放电等离子体应用简介5§4.1等离子体表面改性 (6) §4.1.1薄膜沉积 (6) §4.1.2刻蚀 (7) §4.2ECR等离子体活化CVD沉积CN x H y薄膜 (7) §4.3ECR CCl2F2/Ar/O2等离子体放电刻蚀GaAs (8) §5结论9参考文献9 §1引言 20世纪70年代晚期,Suzuki等[1]介绍了电子回旋共振(Electron Cyclotron Resonance:ECR)等离子体可以用在硅的亚显微结构刻蚀上.早期实验表明ECR放电可以在中低压强下(10?4?5×10?3Torr)产生高密度等离子体(N e~1011?1012/cm?3),并同时保持较低的等离子体电势.

在这种处理工艺条件下,离子成为重要的一种化学活性粒子组分,此时离子平均自由程大于离子壳层厚度.所以,通过在基板电极上加入独立的射频(RF)偏压,离子速度大小和方向可控,直接通过基片离子壳打在基片上.离子在穿过离子壳层时没有碰撞,以正常方式撞击基片.通过调整微波能量可以控制离子流,通过调整基片电极偏压可以控制轰击能量,因为离子流垂直于基片表面,通过合适地调整阻挡层,可以在基片上实现方向性很好的基片亚显微刻蚀. 上世纪90年代,ECR等离子体工艺技术已经相当成熟.发展了多种ECR等离子体装置和等离子体源设计思想,并在众多低压等离子体工艺中得到应用[2]. §2ECR等离子体概述 在实验室中,有很多方法和途径可以产生等离子体,如气体放电、激光压缩、射线辐照及热电离等,但最常见和最主要的还是气体放电法.气体放电可分为电晕放电、辉光放电和电弧放电.辉光放电又可以分为直流辉光放电、射频辉光放电和微波放电. 微波放电是将微波能量转换为气体分子的内能,使之激发、电离以产生等离子体的一种放电方式.这种放电虽然与射频放电有许多相似之处,但能量的传输方式却不相同.在微波放电中,通常采用波导管或天线将由微波电源产生的微波耦合到放电管内,放电气体存在的少量初始电子被微波电场加速后,与气体分子发生非弹性碰撞并使之电离.若微波的输出的功率适当,便可以使气体击穿,实现持续放电. 电子回旋共振的诞生和发展直接来源于高功率微波源的实现. §2.1ECR放电原理 图1为微波ECR等离子体放电装置示意图,这种放电装置分为两部分,即放电室和工作室.在放电 图1:微波ECR等离子体放电装置 室中,工作气体中的初始电子在由电流线圈产生的稳恒磁场的作用下,绕磁力线做回旋运动.电子的回 旋频率为 ωce=eB m e .(1) 其中,B为磁感应强度,e为电子电量,m e为电子质量.通过通过适当地调整磁场的空间分布,使得电子回旋频率在沿放电室的轴向上某一位置与微波的圆频率ω一致,那么就会产生共振现象,称为电子回旋共振.对于这种类型的放电装置,微波的频率一般为2.45GHz,那么发生共振的磁感应强度为875高斯.实际上,磁场沿着轴线是发散的.借助于发散磁场的梯度,可以将放电室中产生的等离子体输送到工作室中以供使用[2]. §2.2ECR等离子体源的优点 使用ECR等离子体源有很多显著优点,可以在较低气压下产生比较高密度的等离子体;由于气压较低,离子和活性粒子的平均自由程较长;等离子体电势较低;不需要放置在等离子体内电极,从而不会

固定污染源废气碱雾的测定等离子体发射光谱法

中华人民共和国国家环境保护标准 HJ □□□-20□□ 固定污染源废气 碱雾的测定 等离子体发射光谱法 Stationary source emission -Determination of alkaline mist —Plasma optical emission spectrometry method (征求意见稿) 201□-□□-□□发布 201□-□□- □□实施

目次 前言 (i) 1适用范围 (1) 2规范性引用文件 (1) 3术语和定义 (1) 4方法原理 (1) 5干扰和消除 (1) 6试剂和材料 (2) 7仪器和设备 (2) 8样品 (2) 9分析步骤 (3) 10结果计算与表示 (4) 11精密度和准确度 (4) 12质量保证和质量控制 (5)

前言 为贯彻《中华人民共和国环境保护法》和《中华人民共和国大气污染防治法》,保护环境,保障人体健康,规范固定汚染源废气中碱雾的测定方法,制定本标准。 本标准规定了测定固定汚染源废气中碱雾的等离子体发射光谱法。 本标准为首次发布。 本标准由环境保护部环境监测司、科技标准司组织制订。 本标准起草单位:哈尔滨市环境监测中心站。 本标准验证单位:黑龙江省环境监测中心站、国家环境分析测试中心、北京市环境保护监测中心、天津市环境监测中心、杭州市环境监测中心站和长春市环境监测中心站。 本标准环境保护部20□□年□□月□□日批准。 本标准自20□□年□□月□□日起实施。 本标准由环境保护部解释。

固定污染源废气碱雾的测定等离子体发射光谱法 1 适用范围 本标准规定了测定固定污染源废气中碱雾的等离子体发射光谱法。 本标准适用于固定污染源废气中碱雾的测定。 当采样体积为0.6 m3(标准干态烟气下),碱雾(以NaOH计)的方法检出限为0.04 mg/m3,测定下限为0.16 mg/m3。 2 规范性引用文件 本标准引用了下列文件或其中的条款。凡是不注日期的引用文件,其有效版本适用于本标准。 GB/T 16157 固定污染源排气中颗粒物测定与气态污染物采样方法 HJ/T 48 烟尘采样器技术条件 HJ/T 373 固定污染源监测质量保证与质量控制技术规范(试行) HJ/T 397 固定源废气监测技术规范 3 术语和定义 下列术语和定义适用于本标准。 3.1 碱雾 alkali mist 本标准测定的碱雾包括氢氧化钠、碳酸钠及碳酸氢钠等液态和固态碱性颗粒(以NaOH 计)。 4 方法原理 以等速采样的方式,使固定污染源排气通过采样管收集于石英纤维滤筒上。采集后的碱雾样品用实验用水提取后,用等离子体发射光谱仪对钠进行测定,结果以NaOH计。 5 干扰和消除 5.1 废气颗粒物中的钠盐会干扰测定。 5.2 光谱干扰主要包括连续背景和谱线重叠干扰。通过选择正确的分析线,采用直接干扰校正法扣除背景干扰可以获得满意的结果。非光谱干扰主要包括化学干扰、电离干扰、物理干扰及去溶剂干扰等。

等离子体实验报告

等离子体特性研究 Research on Plasma 【教学基本要求】 1.了解计算机数据采集的基本过程和影响采集精确度的主要因素。 2.掌握气体放电中等离子体的特性与特点。 3.掌握描述等离子体特性的主要参量及各参量的影响因素。 4.理解等离子体诊断的主要方法,重点掌握单探针法。 5.了解等离子体研究实验软件的主要功能,熟练操作软件。 【授课提纲】 1.等离子体物理学科发展史和主要研究领域(1)等离子体物理学科发展简史 ●19世纪30年代起 ●20世纪50年代起 ●20世纪80年代起 (2)等离子体物理主要研究领域 ●低温应用等离子体 ●聚变等离子体 ●空间和天体等离子体 2.认识等离子体 (1)空间等离子体展示 (2)宇宙中90%物质处于等离子体态 (3)等离子体概念 (4)等离子体分类 (5)等离子体是物质第四态 (6)等离子体参数空间 (7)电离气体是一种常见的等离子体 (8)等离子体特性和主要参量 3.等离子体诊断 (1)德拜屏蔽和准中性 (2)等离子体诊断-单探针法

【板书内容】 等离子体特性研究 φφtan 11600tan == k e T e e e kT E 23= e e e m kT v π8= kT m eS I v eS I n e e e π2400= = ()? ????-== =e s p e e kT U U e I Se n e N I exp 41 ? C kT eU I e p += ln e e e e n v E T ,, ,

【实验报告】 等离子体特性研究 【实验目的】 1. 了解气体放电中等离子体的特性。 2. 利用等离子体诊断技术测定等离子体的一些基本参量。 【实验原理】 等离子体(又称等离子区)定义为包含大量正负带电粒子、而又不出现净空间电荷的电离气体。也就是说,其中正负电荷密度相等,整体上呈现电中性。等离子体可分为等温等离子体和不等温等离子体,一般气体放电产生的等离子体属不等温等离子体。 等离子体有一系列不同于普通气体的特性:① 高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。② 带正电的和带负电的粒子密度几乎相等。③ 宏观上是电中性的。 虽然等离子体宏观上是电中性的,但是由于电子的热运动,等离子体局部会偏离电中性。然而,电荷之间的库仑相互作用,使这种偏离电中性的范围不能无限扩大,最终使电中性得以恢复。偏离电中性的区域最大尺度称为德拜长度。 1. 等离子体的主要参量 描述等离子体的主要参量有:① 电子温度T ,它是等离子的一个主要参量,因为在等离子中电子碰撞电离是主要的,而电子碰撞电离与电子的能量有直接关系,即与电子温度相关;② 带电粒子密度,电子密度为ne ,正离子密度为ni ,在等离子体中ne ni 。;③ 轴向电场强度EL 。表征为维持等离子体的存在所需的能量;④ 电子平均动能e E ;⑤ 空间电位分布。 此外,由于等离子体中带电粒子间的相互作用是长程的库仑力,使它们在无规则的热运动之外,能产生某些类型的集体运动,如等离子振荡,其振荡频率p f 称为朗缪尔频率或等离子体频率。电子振荡时辐射的电磁波称为等离子体电磁辐射。 2. 稀薄气体产生的辉光放电 辉光放电是气体导电的一种形态。当放电管内的压强保持在Pa 2 10~10时,在两电极上加高电压,就能观察到管内有放电现象。辉光分为明暗相间的8个区域,分别为阿斯顿区、阴极辉区、阴极暗区、负辉区、法拉第暗区、正辉区(即正辉柱)、阳极暗区、阳极辉区。正辉区是感兴趣的等离子区。其特征是:气体高度电离;电场强度很小,且沿轴向有恒定值。这使得其中带电粒子的无规则热运动胜过它们的定向运动。所以它们基本上遵从麦克斯韦速度分布律。由其具体分布可得到一个相应的温度,即电子温度。但是由于电子质量小,它在跟离子或原子作弹性碰撞时能量损失很小,所以电子的平均动能比其他粒子的大得多,这是一种非平衡状态。因此,虽然电子温度很高(约为105K ),但放电气体的整体温度并不明显升高,放电管的玻璃壁并不软化。

等离子体诊断技术作业题及答案

“等离子体诊断技术”课程作业题 1.试述光谱分析法对激光等离子体诊断的特点以及能进行定量测试的物理量,并举例说明; 答:不同波段对分析仪器及所用的分析技术的要求不相同。而且各种类型的高温等离子体的参数范围变化很大,不同的参数范围和不同的诊断方法对光谱的分析也有不同的要求。在此着重介绍可见光区光谱分析,稍微介绍下红外和紫外以及X射线光谱。在可见光区,光谱分析基本上都是用棱镜光谱仪、衍射光栅光谱仪和干涉光谱仪。光谱分析仪中最关键的元件是棱镜或衍射光栅等色散元件,它用以使不同波长的光在空间分离出来。 棱镜的分光原理是基于某些透光物质的色散作用,即某些透光介质对不同光波的光具有不同的折射率。棱镜光谱分析仪最大的优点是其没有光谱重叠问题。其显 著缺点是,在0.4m μ到1.0m μ,d n dλ 均下降约达一个数量级,使角色散率和分辨 率都随波长而有显著变化。棱镜光谱仪的工作光谱区,主要取决于棱镜及其它光学零件所用材料的光谱透射率。国产KCA-1型大型棱镜摄谱仪,光源出发的光通过三透镜系统照明狭缝,使得整个狭缝照明均匀,并使光线充满物镜,从而发挥仪器的最大分辨率。狭缝是光谱仪中十分精密的部件,其缝宽调节精度达微米量级,它的高度有光阑调节。 近代高级的光谱仪大多都采用光栅作为色散元件。从广义上讲,任何一种装置和结构,只要它能给入射光的振幅或相位、或者两者同时加以周期性的空间调制,都称为衍射光栅。它的分光作用是基于光的衍射和干涉现象。实际采用的光栅都不采用投射式,而采用反射式。由于振幅调制式光栅的大部分光强仍然都落在五色散的零级谱上,因而现代所有的光栅都采用相位调制式反射光栅。相位调制式反射光栅的主要优点是,可以选择一定形状的沟槽断面,是大部分的入射光集中于预定的方向上,这种光栅称为闪耀光栅。闪耀光栅在闪耀方向上,所集中地入射总光能可达80%~90%,这是闪耀光栅的最大优点。在光栅光谱仪中,不同波长的不同光谱级的光会发生重叠,这是其最严重的缺点之一。反射光栅除了上述的平面反射光栅外,还有一种所谓凹面反射光栅,它是在球面反射镜上沿弦刻画出等间隔且等宽的许多平行直刻痕二制成的。凹面光栅除了具有与平面光栅相同

基于Fokker-Planck方程的等离子体模拟

基于Fokker-Planck方程的等离子体模拟 ALI SHAJII,DANIEL SMITH MKS Instruments, 90 Industrial Way, Wilmington, MA, USA, 01887 对于各个计算组织,等离子体的 模拟一直是个极大的挑战,有很多不 同近似程度的模拟计算方法。包括完 整的动力学计算方法,流体近似方法 和关于漂移扩散方程的方法。近几年 来,有人用Fokker-Planck方程处理 等离子体中的电子,同时把离子当作 流体进行耦合计算,获得了很好的计 算结果。本章我们将介绍基于通用 Fokker-Planck方程的计算求解过程, 并通过一个具体实例得到电容放电过程的电子密度分布。希望通过该简单模型使读者对等离子放电建模过程有个初步的了解。 1.引言 各种工业等离子体应用“过程”中都存在一个关键步骤[2][3]。历史上曾采用各种不同方法对等离子体进行简化建模,分别对应于不同层面问题所需准确性 [3][5][7]。这些层面包括: ●完整的动力学模型(多组分Boltzmann方程)[4]; ●使用Monte-Carlo方法的颗粒模拟[3]; ●Fokker-Planck近似[1][7]; ●多尺度流动模型(也被称作漂移扩散模型)[3]。 出于种种原因,使得 等离子体的建模和模拟 非常困难。首先,最直接 的使用多流体方程的模 型不能反应相关的等离 子体物理过程。其次,“水 动力学”系数完全取决于 研究的特定问题,不能作 为纯气体或液体的常数 简单测量。最重要的一点 是,完整的动力学模型包 括Boltzmann方程,计算 求解非常困难。 对于完整动力学模型和流动模型之间的需求空白,通常采用Fokker-Planck (FP)近似或者Monte Carlo (MC)颗粒模拟。这两种方法可以在所需计算复杂度和捕获等离子体重要物理细节之间找到一个很好的平衡。 本章的主要目的是展现用COMSOL Multiphysics求解FP方程的功能。为了对该问题给出一个整体认识,我们把侧重点集中在一个简单的例子上。特别是在

电感耦合等离子体原子发射光谱法

电感耦合等离子体原子发射光谱法 电感耦合等离子体原子发射光谱法(ICP-AES)是以等离子体为激发光源的原子发射光谱分析方法,可进行多元素的同时测定。 样品由载气(氩气)引入雾化系统进行雾化后,以气溶胶形式进入等离子体的轴向通道,在高温和惰性气氛中被充分蒸发、原子化、电离和激发,发射出所含元素的特征谱线。根据特征谱线的存在与否,鉴别样品中是否含有某种元素(定性分析);根据特征谱线强度确定样品中相应元素的含量(定量分析)。 本法适用于各类药品中从痕量到常量的元素分析,尤其是矿物类中药、营养补充剂等药品中的元素定性定量测定。 1、对仪器的一般要求 电感耦合等离子体原子发射光谱仪由样品引入系统、电感耦合等离子体(ICP)光源、分光系统、检测系统等构成,另有计算机控制及数据处理系统,冷却系统、气体控制系统等。 样品引入系统 按样品状态不同可以分为以液体、气体或固体进样,通常采用液体进样方式。样品引入系统由两个主要部分组成:样品提升部分和雾化部分。样品提升部分一般为蠕动泵,也可使用自提升雾化器。要求蠕动泵转速稳定,泵管弹性良好,使样品溶液匀速地泵入,废液顺畅地排出。雾化部分包括雾化器和雾化室。样品以泵入方式或自提升方式进入雾化器后,在载气作用下形成小雾滴并进入雾化室,大雾滴碰到雾化室壁后被排除,只有小雾滴可进入等离子体源。要求雾化器雾化效率高,雾化稳定性高,记忆效应小,耐腐蚀;雾化室应保持稳定的低温环境,并需经常清洗。常用的溶液型雾化器有同心雾化器、交叉型雾化器等;常见的雾化室有双通路型和旋流型。实际应用中宜根据样品基质,待测元素,灵敏度等因

素选择合适的雾化器和雾化室。 电感耦合等离子体(ICP)光源 电感耦合等离子体光源的“点燃”,需具备持续稳定的高纯氩气流,炬管、感应圈、高频发生器,冷却系统等条件。样品气溶胶被引入等离子体源后,在6,000K~10,000K的高温下,发生去溶剂、蒸发、离解、激发、电离、发射谱线。根据光路采光方向,可分为水平观察ICP源和垂直观察ICP源;双向观察ICP 光源可实现垂直/水平双向观察。实际应用中宜根据样品基质、待测元素、波长、灵敏度等因素选择合适的观察方式。 色散系统 电感耦合等离子体原子发射光谱的色散系统通常采用棱镜或光栅分光,光源发出的复合光经色散系统分解成按波长顺序排列的谱线,形成光谱。 检测系统 电感耦合等离子体原子发射光谱的检测系统为光电转换器,它是利用光电效应将不同波长光的辐射能转化成电信号。常见的光电转换器有光电倍增管和固态成像系统两类。固态成像系统是一类以半导体硅片为基材的光敏元件制成的多元阵列集成电路式的焦平面检测器,如电荷注入器件(CID)、电荷耦合器件(CCD)等,具有多谱线同时检测能力,检测速度快,动态线性范围宽,灵敏度高等特点。检测系统应保持性能稳定,具有良好的灵敏度、分辨率和光谱响应范围。 冷却和气体控制系统 冷却系统包括排风系统和循环水系统,其功能主要是有效地排出仪器内部的热量。循环水温度和排风口温度应控制在仪器要求范围内。气体控制系统须稳定正常地运行,氩气的纯度应不小于99.99%。 2、干扰和校正 电感耦合等离子体原子发射光谱法测定中通常存在的干扰大致可分为两类:

直流辉光等离子体系列实验报告-复旦大学物理教学实验中心

直流辉光等离子体系列实验报告 陈金杰合作者张帆指导老师乐永康 (复旦大学物理系上海 200433) 摘要:利用直流辉光等离子体实验装置,获得等离子体。并研究直流低气压放电现象,测量等离子体伏安曲线,测定气体击穿电压验证帕邢定律,利用Langmuir单探针和Langmuir双探针测量等离子体的密度、温度和德拜长度等参数。并就相关现象进行讨论。 关键词:直流辉光等离子体气体放电伏安特性击穿Langmuir探针 引言:关于等离子体 等离子体(Plasma)是一种由大量正、负带电粒子和中性粒子组成的准中性气体,广泛存在于宇宙中,常被视为是物质的第四态,被称为等离子态,或者“超气态”。等离子体具有很高的电导率,与电磁场存在极强的耦合作用。等离子体是由克鲁克斯在1879年发现的,1928年美国科学家欧文·朗缪尔和汤克斯(Tonks)首次将“等离子体(plasma)”一词引入物理学,用来描述气体放电管里的物质形态。严格来说,等离子是具有高位能动能的气体团,等离子的总带电量仍是中性,借由电场或磁场的高动能将外层的电子击出,结果电子已不再被束缚于原子核,而成为高位能高动能的的自由电子。等离子体可通过放电、加热、光激励等方法产生,它有以下特点: [1] (1) 电子温度高于离子温度 由于电子和离子的质量差别悬殊,电子更容易从电场中获得能量,因此电子的平均动能远大于离子的平均动能,即电子和离子有各自独立的不同平衡温度。电子温度比离子温度高得多,而离子温度与等离子体中中性粒子温度一样。引入等离子体中的极板也可以保持较低的温度。等离子体高度电离,是电和热的良导体,具有比普通气体大几百倍的比热容。 (2) 具有丰富的活性粒子 通过与电子的非弹性碰撞,各种粒子得到活性激发。这些活性粒子具有不同能量,可在固体表面发生各种物理和化学效应。所以需要在很高温度下才能进行的化学反应在等离子体中很容易完成。 (3) 存在等离子体鞘层 在等离子体中引入负(或正) 电极,为屏蔽外电势对等离子体的影响,在电极周围形成正(或负) 电荷层,称为等离子体鞘层。以等离子体电位为零电位,则外加电压完全降落在这一鞘层上。进入这一鞘层的正离子受到加速,得到数值上相当于电势能的动能。调节外加负电压的数值,正

低温等离子体废气处理

有机、无机废气和恶臭处理技术 市场拓展人员培训教程 (宋文国,男,1968年出生,高级工程师,从事于节能环保项目多年。邮箱:,手机:) 一、行业废气概况 煤化工废气 煤制焦过程废气 焦化废气主要来源于装煤、炼焦、化产回收等过程。装煤初期,煤料在高温条件下与空气接触,形成大量黑烟及烟尘、荒煤气及对人体健康有害的多环芳烃。炼焦时,废气一方面来自化学转化过程中未完全炭化的细煤粉及其析出的挥发组分、焦油、飞灰和泄漏的粗煤气,另一方面来自出焦时灼热的焦炭与空气接触生成的CO、CO2、NOx等,主要污染物包括苯系物(如苯并芘)、酚、氰、硫氧化物以及碳氢化合物等。 煤制气过程废气 煤制气废气的来源主要是气化炉开车过程中由于炉内结渣、火层倾斜等非正常停车而产生的逸散,另外,还有炉内的排空气形成部分废气、固定床气化炉的卸压废气、粗煤气净化工序中的部分尾气、硫和酚类物质回收装置的尾气及酸性气体、氨回收吸

收塔的排放气。这些废气的主要成分包括碳氧化物、硫氧化物、氨气、苯并芘、CO、CH4等,有些还夹杂了煤中的砷、镉、汞、铅等有害物质,对环境及人体健康有较大的危害。 煤制油过程废气 煤的液化可分为直接液化和间接液化。煤直接液化时,经过加氢反应,所有异质原子基本被脱除,也无颗粒物,回收的硫可以获得元素硫,氮大多转化为氨。煤间接液化时,催化合成过程中的排放物不多,未反应的尾气(主要是CO)可以在燃烧器中燃烧,排放的废气中CO2和硫很少,也没有颗粒物的生成。煤液化过程对环境造成的影响较小,主要的污染物是液化残渣,这是一种高碳、高灰和高硫物质,在某些工艺中占到液化原料煤总量的40%左右,需进一步处理。 煤燃烧过程废气 煤燃烧过程主要污染物有粉尘与烟雾、SO2为主的硫化物、N2O、NO、NO2、N2O3、 N2O4等氮氧化物、Hg、Cd、Pb、Cr、As、Se、F等有害微量元素、产生温室效应的CO2等。煤直接燃烧的能量利用率低,环境污染严重。 石油化工厂废气 化工厂在生产过程中会产生大量的废气,比如:氨、三甲胺、硫化氢、二氧化硫、甲硫氢、甲硫醇、甲硫醚、二甲二硫、二硫化碳和硫化氢等无机废气;还有VOC类:苯、甲苯、二甲苯、丙

相关文档
最新文档