(完整版)绳、杆相关联物体的速度求解带答案

(完整版)绳、杆相关联物体的速度求解带答案
(完整版)绳、杆相关联物体的速度求解带答案

绳、杆相关联物体的速度求解

“关联速度”问题特点:沿杆或绳方向的速度分量大小相等。

绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特点,则拉动绳或杆的速度等于绳或杆拉物的速度。②在绳或杆连体中,物体实际运动方向就是合速度的方向。③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。

常用的解题思路和方法:先确定合运动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果。以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。

1.一绳一物题型

⑴拉的物体匀速运

【例1】如图1所示, 人在岸上拉船,已知船的质量为m,水的阻力恒为f,当轻绳与水平面的夹

角为θ时,船的速度为v,此时人的拉力大小为T,则此时

A.人拉绳行走的速度为v cosθB.人拉绳行走的速度为v/cosθ

C.船的加速度为D.船的加速度为

解析:船的速度产生了两个效果: 一是滑轮与船间的绳缩短, 二是绳绕滑轮顺时针转动, 因此将船的速度进行分解如图所示, 人拉绳行走的速度v人=v cosθ, A对, B错;绳对船的拉力等于人拉绳的力,即绳的拉

力大小为T,与水平方向成θ角,因此T cosθ-f=ma,解得:,C正确,D错误。答案:AC。

点评:人拉绳行走的速度即绳的速度,易错误地采用力的分解法则,将人拉绳行走的速度。即若按图3所示进行分解,则水平分速度为船的速度,得人拉绳行走的速度为v/cosθ,会错选B选项。

⑵匀速拉动物体

【例2】如图4所示,在河岸上利用定滑轮拉绳索使小船靠岸,拉绳的速度为v,当拉船头的绳索与水平面的夹角为α时,船的速度是多少?

2.两绳一物题型

【例3】如图7所示,两绳通过等高的定滑轮共同对称地系住一个物体A,两边以v速度匀速地向下拉绳。当两根细绳与竖直方向的夹角都为60°时,物体A上升的速度多大?

解析:以右边绳子为研究对象,应用绳连体模型的结论,当绳端物体A在做既不沿绳方向,又不垂直于绳方向运动时,一般要将绳物体A的真实运动分解到沿绳收缩方向和垂直于绳子方向的两个分运动。其运动效果一是沿绳方向的直线运动,这使得绳变短,二是以定滑轮为圆心

的圆周运动,这使得绳转过了一个小角度,即A的运动就是这两个分运动的

合成。如图8所示,有,则。

点评:本题是一道绳连体的速度问题,有部分学生认为物体A参与两边绳子的分运动,物体A上升的

速度为合速度,容易错解成,等同于力的合成与分解。

3.一绳两物题型

⑴水平方向情况分析

【例4】A、B两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A以v1的速度向右匀速运动,当绳被拉成与水平面夹角分别是α、β时,如图9所示。物体B的运动速度v B为(绳始终有拉力)

A.B.

C. D.

解析:A、B两物体通过绳相连接,且两物体都是运动的,物体的实际运动速度是合速度,物体的速度都产生了沿绳方向和垂直于绳方向两个作用效果。设物体B的运动速度为v B,此速度为物体B合运动的速度,根据它的实际运动效果,两分运动分别为:沿绳收缩方向的分运动,设其速度为v绳B;垂直绳方向

的圆周运动,速度分解如图10所示,则有v B=①

物体A的合运动对应的速度为v1,它也产生两个分运动效果,分别是:沿绳伸长方向的分运动,设其速度为v绳A;垂直绳方向的圆周运动,它的速度分解如图11所示,则有v绳A=v1cosα②由于对应同一根绳,其长度不变,故v绳B=v绳A③

根据三式解得:v B=。选项ABC错误D正确。答案:D

点评:此题涉及多个物体的速度分解,应用隔离法将每个物体的速度进行分解,再通过关联速度进行求解。

⑵竖直方向情况分析

【例5】如图12所示,竖直平面内放置一直角杆AOB,杆的水平部分粗糙,竖直部分光滑,两部分各有质量相等的小球A和B套在杆上,A、B间用轻绳相连,以下说法中正确的是

A.若用水平拉力向右缓慢地拉A,则拉动过程中A受到的摩擦力不变

B.若以一较明显的速度向右匀速地拉A,则拉动过程中A受到的摩擦力不变

C.若以一较明显的速度向右匀速地拉A,则过程中A受到的摩擦力比静止时的摩擦力要大

D.若以一较明显的速度向下匀速地拉B,则过程中A受到的摩擦力与静止时的摩擦力相等

解析:当A滑动时,A受到的摩擦力是滑动摩擦力,在动摩擦因数不变的情况下,其大小只与正压力有关。若用水平拉力向右缓慢地拉A,两小球都处于平衡状态,选取两球组成的系统为研究对象,该系统

在竖直方向上受到总重力和水平杆对A球竖直向上的支持力N的作用,二力平衡,所以,

可见,支持力N不变,又因为A受到的摩擦力,所以不变,选项A正确。若用水平拉力向右以一较明显的速度向右匀速地拉A,则两球实际运动的速度可以看作合速度,它们均可以分解为沿绳方向的分速度和垂直绳方向的分速度,并且两球沿绳方向的分速度大小相等,设A球匀速运动的速度为v,轻绳AB与水平杆间的夹角为,如图13所示,则,,,

所以,可见,当A球向右运动时,变大,也变大,即B球在竖直方向上做加速运动,所以轻绳对B球拉力的竖直向上的分量大于G B,根据牛顿第三定律,轻绳对A球竖直向下的拉力分量也大于G B,所以N=G A+G B,A受到的摩擦力>,选项B错误,C正确;若以一较明显的速度向下匀速地拉B,那么由两球组成的系统在竖直方向上受力平衡,则水平杆对A球的弹力N=G A+G B+F,其中F为拉力,可见N比静止时要大,所以该过程中A受到的摩擦力经静止时大,选项D错误。

答案:AC

点评:竖直方向的物体分析,涉及到超、失重情况,分析时应加以注意,否则易出现错误。

二、杆相关联问题

【例6】如图14所示,一根长直轻杆AB在墙角沿竖直墙和水平地面滑动,当AB杆和墙的夹角为θ时,杆的A端沿墙下滑的速度大小为v1,B端沿地面的速度大小为v2。则v1、v2的关系是()

A.v1=v2B.v1=v2cosθC.v1=v2tanθ D.v1=v2sinθ

解析:如图15所示,轻杆A端下滑速度v1可分解为沿杆方向的速度v1′和垂直于杆的方向速度v1″,B 端水平速度v2可分解为沿杆方向的速度v2′和垂直于杆的方向速度v2″,由于沿杆方向的速度相等v1′=v2′,由数学知识可知,v1′=v1cosθ,v2′=v2sinθ,v1=v2tanθ。故C项正确。

答案:C

点评:对于直杆的运动,一般将其两端的运动速度沿杆和垂直于杆的两个方向分解,两端速度沿杆的分量相等。

2020-2021年高中物理模型分类解析模型9 杆绳速度分解(解析版)

模型9 杆绳速度分解(解析版) 1.模型特点 沿绳(或杆)方向的速度分量大小相等。 2.思路与方法 合速度就是物体的实际运动速度v 分速度 方法:v 1与v 2的合成遵循平行四边形定则。 【典例1】(湖北省“荆、襄、宜七校考试联盟”2017 2018学年高一下学期期中)人用绳子通过定滑轮拉物体A ,A 穿在光滑的竖直杆上,当以速度v 0匀速地拉绳使物体A 到达如图所示位置时,绳与竖直杆的夹角为θ,则物体A 实际运动的速率是( B ) A .v 0cos θ B .v 0cos θ C .v 0sin θ D .v 0sin θ 【答案】B 【解析】物体A 的运动是由绳的运动和垂直绳子方向的转动合成的,如图,则v =v 0 cos θ,故选B 。 【变式训练1】如图,人沿平直的河岸以速度v 行走,且通过不可伸长的绳拖船,船沿绳的方向行进,此过程中绳始终与水面平行。当绳与河岸的夹角为α时,船的速率为 ( )

A. v sin α B. αsin v C. v cos α D. α cos v 【答案】 C 【解析】如图所示,把人的速度沿绳和垂直绳的方向分解,由几何知识有 v 船=v cos α,所以C 正确,A 、B 、D 错误。 【典例2】A 、B 两物体通过一根跨过定滑轮的轻绳相连放在水平面上,现物体A 以v 1的速度向右匀速运动,当绳被拉成与水平面夹角分别为α、β时,如图所示。物体B 的运动速度v B 为(绳始终有拉力)( ) A. βαsin sin 1v B. βαsin cos 1v C. βαcos sin 1v D. 1cos cos v β α 【答案】 D 【解析】 A 、B 两物体的速度分解如图 由图可知:v 绳A =v 1cos α v 绳B =v B cos β 由于v 绳A =v 绳B

第五讲 关联速度

第五讲关联速度 所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有: 1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度. 2,接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同. 3, 线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和. 4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同· 类型1 质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度. 图5-1 图5-2 类型2 绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度。 类型3 直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v 2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题) 图5-3图5-4

以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循. 首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关. 根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论. 结论1 杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度. 我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论. 结论2 接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同. 相交物系交叉点速度的特征是什么呢?我们来看交叉的两直线a、b,如图5-5所示,设直线a不动,当直线b沿自身方向移动时,交点P并不移动,而当直线b沿直线a的方向移动时,交点P便沿直线a移动,因交点P亦是直线b上一点,故与直线b具有相同的沿直线a方

(完整版)绳(杆)端速度分解模型问题的分析(含答案)

绳(杆)端速度分解模型 一、基础知识 1、模型特点 沿绳(或杆)方向的速度分量大小相等. 2、思路与方法 合运动→绳拉物体的实际运动速度v 分运动→????? 其一:沿绳(或杆)的速度v 1 其二:与绳(或杆)垂直的分速度v 2 方法:v 1与v 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度; (2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动.应根据实际效果进行运动的分解. 二、练习 1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________. 答案 v 0cos θ F cos θm 解析 物体的运动(即绳的末端的运动)可看做两个分运动的合成: (1)沿绳的方向被牵引,绳长缩短,缩短的速度等于v 0;(2)垂直于 绳以定滑轮为圆心的摆动,它不改变绳长.即速度v 分解为沿绳 方向和垂直绳方向的分速度,如图所示,v cos θ=v 0,v =v 0 cos θ . 拉力F 产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为F cos θ,加速度a =F cos θm . 2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v ,绳AO 段与水平面的夹角为θ,OB 段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的

速度多大? 解析小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果,所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向, 分解如图所示,则由图可知 v A= v cos θ. 答案 v cos θ 3、如图所示,在水平地面上做匀速直线运动的小车, 通过定滑轮用绳子吊起一个物体,若小车和被吊的物体在同一 时刻的速度分别为v1和v2,绳子对物体的拉力为F T,物体所 受重力为G,则下列说法正确的是() A.物体做匀速运动,且v1=v2 B.物体做加速运动,且v2>v1 C.物体做加速运动,且F T>G D.物体做匀速运动,且F T=G 答案 C 解析把v1分解如图所示,v2=v1cos α,α变小,v2变大,物体做加速运动,超重,F T>G,选项C正确. 4、人用绳子通过定滑轮拉物体A,A穿在光滑的竖直杆上,当以速度v0 匀速地拉绳使物体A到达如图所示位置时,绳与竖直杆的夹角为 θ,则物体A实际运动的速度是()

绳杆端速度分解模型问题的分析含答案

绳(杆)端速度分解模型 一、基础知识 1、模型特点 沿绳(或杆)方向的速度分量大小相等. 2、思路与方法 合运动→绳拉物体的实际运动速度v 分运动→?? ? 其一:沿绳(或杆)的速度v 1 其二:与绳(或杆)垂直的分速度v 2 方法:v 1与v 2的合成遵循平行四边形定则. 3、解决此类问题时应把握以下两点: (1)确定合速度,它应是小船的实际速度; (2)小船的运动引起了两个效果:一是绳子的收缩,二是绳绕滑轮的转 动.应根据实际效果进行运动的分解. 二、练习 1、如图所示,轻绳通过定滑轮拉动物体,使其在水平面上运动.若拉绳的速度为v 0,当绳与水平方向夹角为θ时,物体的速度v 为________.若此时绳上的拉力大小为F ,物体的质量为m ,忽略地面的摩擦力,那么,此时物体的加速度为________.

答案 v cos θ F cos θ m 解析物体的运动(即绳的末端的运动)可看做两个分运动的合成: (1)沿绳的方向被牵引,绳长缩短,缩短的速度等于v0;(2)垂直于 绳以定滑轮为圆心的摆动,它不改变绳长.即速度v分解为沿绳 方向和垂直绳方向的分速度,如图所示,v cos θ=v0,v= v 0 cos θ . 拉力F产生竖直向上拉物体和水平向右拉物体的效果,其水平分量为F cos θ,加速度 a=F cos θ m . 2、如图所示,一人站在岸上,利用绳和定滑轮拉船靠岸,在某一时刻绳的速度为v,绳AO 段与水平面的夹角为θ,OB段与水平面的夹角为α.不计摩擦和轮的质量,则此时小船的速度多大 解析小船的运动引起了绳子的收缩以及绳子绕定滑轮转动的效果, 所以将小船的运动分解到绳子收缩的方向和垂直于绳子的方向, 分解如图所示,则由图可知 v A = v cos θ . 答案 v cos θ

“关联”速度问题模型归类例析

关联”速度问题模型归类例析 绳、杆等有长度的物体,在运动过程中,如果两端点 的速度方向不在绳、杆所在直线上,两端的速度通常是不样的,但两端点的速度是有联系的,称之为“关联”速度。 关联速度”问题特点:沿杆或绳方向的速度分量大小 相等。 绳或杆连体速度关系:①由于绳或杆具有不可伸缩的特 点,则拉动绳或杆的速度等于绳或杆拉物的速度。②在绳或杆连体中,物体实际运动方向就是合速度的方向。③当物体实际运动方向与绳或杆成一定夹角时,可将合速度分解为沿绳或杆方向和垂直于绳或杆方向的两个分速度。 关联速度”问题常用的解题思路和方法:先确定合运 动的方向,即物体实际运动的方向,然后分析这个合运动所产生的实际效果,即一方面使绳或杆伸缩的效果;另一方面使绳或杆转动的效果,以确定两个分速度的方向,沿绳或杆方向的分速度和垂直绳或杆方向的分速度,而沿绳或杆方向的分速度大小相同。 、绳相关联问题 1.一绳一物模型 1)所拉的物体做匀速运动

例 1 如图 1 所示,人在岸上拉船,已知船的质量为m, 水的阻力恒为厂,当轻绳与水平面的夹角为e 时,船的速度为u,此时人的拉力大小为T,则此时 小结人拉绳行走的速度即绳的速度,易错误地采用力的分解 法则,将人拉绳行走的速度。即按图 3 所示进行分解,则水错选 B 选项. 平分速度为船的速度,得人拉绳行走的速度为u /cos e ,会 2)匀速拉动物体 例2 如图 4 所示,在河岸上利用定滑轮拉绳索使小船靠岸, 拉绳的速度为v,当拉船头的绳索与水平面的夹角为a时,船的速度是多少? 解析方法1——微元分析法取小角度e ,如图5所示,设角度变化e 方法2——运动等效法因为定滑轮右边的绳子既要缩短又要偏转,所以定滑轮 右边绳上的 A 点的运动情况可以等效为:先以滑轮为网心,以AC为半径做圆周运动到达B,再沿BC直线运动到D。 做圆周运动就有垂直绳子方向的线速度,做直线运动就有沿着绳子方向的速度,也就是说船的速度(即绳上 4 点的速度)的两个分速度方向是:一个沿绳缩短的方向,另一个垂直绳的方 2.两绳一物模型例3 如图7 所示,两绳通过等高的定滑轮共同 对称地系住 个物体 A ,两边以速度v 匀速地向下拉绳,当两根细绳与竖直方向的夹角都为60。时,物体 A 上升的速度多大?

“关联速度”模型

“关联速度”模型 太原市第十二中学 姚维明 模型建构: 【模型】绳子(或杆)牵连物体,研究关联速度 【特点】力学问题中经常出现牵连运动:“两个物体用轻绳(或轻杆)相维系着向不同方向运动且速度不同,但在沿绳或杆方向上的速度分量却相同” 。 这种特殊的运动形式与一般意义的动力学连结体运动有很大的差别,通常不宜采用牛顿运动定律求解,大多可以通过“运动效果分解”或“功能关系分析(标量运算)”也可以用“微元法(借助三角函数)”来处理,准确地考察两物体之间的速度牵连关系(矢量运算)往往是求解这类问题的关键。 “绳子(杆)牵连物体”,求解关联速度的问题,是我们将要探究的重点。由于两个物体相互关联,一般地我们都要按“运动效果”分解成:沿着绳子(或杆)的速度分量[改变绳子(或杆)速度的大小]和垂直于绳子(或杆)方向的速度分量[改变绳子(或杆)速度的方向]。 模型典案: 【典案1】如图1所示,汽车以速度v 匀速行驶,当汽车到达图 示位置时,绳子与水平方向的夹角是θ,此时物体M 的上升速度大小 为多少?(结果用v 和θ表示) 〖解析〗解法一:运动效果分解法 物体M 与右段绳子上升的速率相同,而右段绳子上升的速率与左段绳子在沿绳长方向运动的速率v 1是相等的。与车相连的端点的 实际运动速度就是合速度,且与汽车速度v 相同。分析左段绳子的运动可知,它其实同时参与了两个分运动,即沿绳长方向运动和绕滑轮 边缘顺时针转动。 将车速v 分解为沿绳方向的速度v 1和垂直绳子方向的速度v 2,如 图2所示。根据平行四边形定则可得v 1=v cos θ。 所以,物体M 上升速度的大小为 v ’=v cos θ。 【点评】这是我们处理这类问题常用的方法。物理意义很明显。这种方法说明了:①物体的运动一定是合运动;②物体的运 动才能分解成沿绳子(或杆)——改变绳子速度大小的分量与垂直于绳子(或杆)——改变绳子(或杆)运动方向的分量;③改变物体运动方向的分量是圆周运动向心力的本质。 解法二:位移微元法 如图3所示,假设端点A 水平向左匀速移动微小位移△s 至B ,此过程中左段绳子长度增大了△s 1(过A 向OB 作垂线AP ,因顶角很小,故OP ≈OA ),即物体上升了△s 1, 显然,△s 1=△s·cos θ θcos 1t s t s ??=?? 由于△s 很小、△t 很小,由速度的定义t s v ??=可得v 1=v cos θ。 所以,物体M 上升速度的大小为v /=v cos θ。 这种方法从理论上揭示了运动效果分解法的本质。 图2 1图3 图1

绳末端速度的分解处理方法及提升

绳末端速度的分解处理方法及提升 林西一中物理组王冰 在学习“运动的合成和分解”这一部分内容时,会遇到这样一类题:跟不可伸长的绳有关,解题时要进行绳末端速度的分解。学生在学习时表现出困惑和不理解,同时这是学生学习中的难点和易错点。现就这类题结合例题说明,并举一反三,进行解题的提高。 题1. 如图1,人在岸上用跨过滑轮的绳,拉水中小船,人以速度v匀速前进,求当船头绳与水平方向的夹角为θ时,船速V的大小。 学生常见错误: 把船速看作是绳速v 这样画的错误在于:物体的实际运动速度才是合速度,在人拉小船靠岸的过程中,小船的实际运动速度(即合速度)为水平向前,那么把v当做小船的实际速度,当然是不对的。解决问题的关键: (1)弄清题目中所涉及的速度关系; (2)分清哪个是合速度,哪个是分速度; (3)我们的研究对象是物体,用什么手段研究它的运动。 为解决问题,对几个速度及研究对象加以说明: 几个速度: 1,绳端速度:即绳子末端的速度,也就是与绳末端相连的物体的速度,是合速度。例如题1中,绳左端的速度就是人的速度v,绳右端的速度是小船的速度V,v与V都是合速度。2,绳身的“移动”速度:是指绳子通过滑轮的速度,其大小对于同一根绳来说,个点均相同,其方向总是沿着绳子方向。绳身移动速度是联系两端物体速度关系的纽带,它在绳的两端往往又扮演着不同角色,可能等于物体速度,也可能是物体速度的一个分量。 判断方法是:看绳端物体速度方向是否沿着绳子方向,如果绳端速度沿着绳子的方向,那么绳身移动的速度就是物体的速度。例如题1中,绳身移动速度在左端等于人的速度v; 若绳端物体速度方向与绳子有一定夹角时,则绳身速度就是物体的一个分速度,例如题1中,绳身移动速度在右端就是小船速度V的一个分量。 3,绳身的“转动”速度:当绳身移动速度作为绳子某端物体速度的一个分速度时,该绳端物体速度的另一个分速度,就是与绳子垂直的“转动”速度,该速度反映绳子以滑轮为轴,向上或向下转动的快慢。例如题1中,小船靠岸的过程中,绳右端绕滑轮向下转动,则绳右端转动速度的方向是垂直于绳子向下的。 研究对象: 从问题入手,求船速V的大小,以小船为研究对象,那我们分析小船在靠岸的过程中,是一直向前走的,这不能是我们得打答案。题目中给了人的速度v,怎样把人和小船联系起来呢?

速度关联类问题求解速度的合成与分解

速度关联类问题求解·速度的合成与分解 编辑 杨国兴 运动物体间速度关联关系,往往是有些高考命题的切入点.而寻找这种关系则是考生普遍感觉的难点 ●难点 1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平面的夹角分别为α和β时,B 车的速度是多少? 2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少? ●案例探究 [例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大? 命题意图:考查分析综合及推理能力,B 级要求. 错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分解,从而得出错解v 物=v 1=v cos θ. 解题方法与技巧:解法一:应用微元法 设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB ,当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度. 由图可知:BC = θ cos BD ① 由速度的定义:物体移动的速度为v 物= t BC t s ?=??1 ② 人拉绳子的速度v = t BD t s ?=??2 ③ 由①②③解之:v 物= θ cos v 解法二:应用合运动与分运动的关系 绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解. 其中:v =v 物cos θ,使绳子收缩. v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动. 所以v 物= θ cos v 解法三:应用能量转化及守恒定律 由题意可知:人对绳子做功等于绳子对物体所做的功. 人对绳子的拉力为F ,则对绳子做功的功率为P 1=Fv ;绳子对物体的拉力,由定滑轮的特点可知,拉力大小也为F ,则绳子对物体做功的功率为P 2=Fv 物cos θ,因为P 1=P 2所以v 物= θ cos v 图5-7 [例2](★★★★★)一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ). 命题意图:考查综合分析及推理能力.B 级要求. 错解分析:①不能恰当选取连结点B 来分析,题目无法切入.②无法判断B 点参与的分运动方 向. 解题方法与技巧:选取物与棒接触点B 为连结点.(不直接选A 点,因为A 点与物块速度的 v 图 5-1 图 5-2 图5-3 图5-4 图5-5 图5-6

5关联速度问题

关联速度问题 考点规律分析 ①对“关联速度”的理解 用绳、杆相牵连的物体在运动过程中的速度通常不同,但两物体沿绳或杆方向的分速度大小相等。 ②“关联速度”问题的解题步骤 a.确定合速度:牵连物端点的速度(即所连接物体的实际速度)是合速度。 b.分解合速度:按平行四边形定则进行分解,作好矢量图。合运动所产生的实际效果:一方面产生使绳或杆伸缩的效果;另一方面产生使绳或杆转动的效果。两个分速度的方向:沿绳或杆方向和垂直于绳或杆方向。常见的模型如图所示: c.沿绳或杆方向的分速度大小相等,列方程求解。例如:v=v∥(甲图);v∥′(乙图、丙图)。 =v ∥ 例题讲解 (多选)如图所示,做匀速直线运动的汽车A通过一根绕过定滑轮的长绳吊起一重物B,设重物和汽车的速度的大小分别为v B、v A,则()

A.v A=v B B.v A<v B C.v A>v B D.重物B的速度逐渐增大 [规范解答]如图所示,汽车的实际运动是水平向左的运动,它的速度v A可以产生两个运动效果:一是使绳子伸长,二是使绳子与竖直方向的夹角增大,所以车的速度v A应有沿绳方向的分速度v0和垂直绳的分速度v1,由运动的分解可得v0=v A cosα;又由于v B=v0,所以v A>v B,故C正确。因为随着汽车向左行驶,α角逐渐减小,所以v B逐渐增大,故D正确。 [完美答案]CD 绳(杆)联问题,关键点是把合速度沿杆垂直杆,沿绳垂直绳分解。沿杆或者沿绳分速度相等。另外,实际运动方向就是合速度方向。 举一反三作业 1.如图所示,用船A拖着车B前进时,若船匀速前进,速度为v A,当OA绳与水平方向夹角为θ时,则: (1)车B运动的速度v B为多大? (2)车B是否做匀速运动? 答案(1)v A cosθ(2)不做匀速运动

专题:小船渡河及绳子末端速度的分解问题(学校学案)

专题:小船渡河及绳子末端速度的分解问题 小船渡河问题: (1)处理方法:轮船渡河是典型的运动的合成与分解问题,小船 在有一定流速的水中过河时,实际上参与了两个方向的分运动,即随水流的运动(水冲船的运动)和船相对水的运动(即在静水中的 船的运动),船的实际运动是合运动。 1.渡河时间最少:如右图所示,在河宽、船速一定 时,在一般情况下,渡河时间θ υυsin 1 船d d t = = ,显然,当?=90θ时,即 船头的指向与河岸 垂直,渡河时间最小为v d ,合运动沿v 的方向进行。 2.位移最小 若水船υυ>, 结论:船头偏向上游,使得合速度垂直于河岸,位移为河宽,偏离上游的角度为船 水 υυθ= cos 若水船v v <,则不论船的航向如何,总是被水冲向下游,怎样才能使漂 下的距离最短呢?如图所示, 设船头v 船与河岸成θ角。合速度v 与河岸成α角。可以看出:α角越大,船漂下的距离x 越短,那么,在什么条件下α 角最大呢? 以v 水的矢尖为圆心,v 船为半径画圆,当v 与圆相切时,α角最大,根据水 船v v =θcos 船头与河岸的 夹角应为水 船v v arccos =θ,船沿河漂下的最短距离为: θ θsin )cos (min 船船水v d v v x ? -= 此时渡河的最短位移:船 水v dv d s == θcos 处理“速度关联类问题”时,必须要明白“分运动”与“合运动”的关系: 1 独立性:一物体

同时参与几个分运动时,各分运动独立进行,各自产生效果,彼此间互不干扰。 2 同时性:合运动与分运动同时开始、同时进行、同时结束。 3 等效性:合运动是由各分运动共同产生的总运动效果。合运动与各分运动同时发生、同时进行、同时结束,经历相等的时间,合运动与各分运动总的运动效果可以相互替代。 1.(湖南长沙一中11-12学年高一下学期期中)一人游泳渡河 以垂直河岸不变的划速向对岸游去 河水流动速度恒定,下列说法中正确的是( ) A 河水流动速度对人渡河无任何影响 B 人垂直对岸划水 其渡河位移是最短的 C 由于河水流动的影响 人到达对岸的时间与静水中不同 D 由于河水流动的影响 人到达对岸的位置向下游方向偏 2. (河北正定中学08 09学年高一下学期月考)某河水的流速与离河岸距离的变化关系如图所示 河宽 300 船在静水中的速度与时间的关系如图乙所示 若要使船以最短时间渡河 则( ) A 船渡河的最短时间是75s B 船在行驶过程中 船头始终与河岸垂直 C 船在河水中航行的轨迹是一条直线 D 船在河水中的最大速度是5m/s 绳末端速度的分解问题 在学习“运动的合成和分解”这一部分内容时,会遇到这样一类题:跟不可伸长的绳有关,解题时要进行绳末端速度的分解。学生在学习时表现出困惑和不理解,同时这是学生学习中的难点和易错点。现就这类题结合例题说明,并举一反三,进行解题的提高。 题 1. 如图1,人在岸上用跨过滑轮的绳,拉水中小船,人以速度v 匀速前进,求当船头绳与水平方向的夹角为θ时,船速V 的大小。 学生常见错误: 把船速看作是绳速v 的一个分速度,画成这样的速度

5.1专题:小船渡河及绳子末端速度的分解问题

专题 姓名: 一、小船渡河问题 小船渡河问题一般有渡河时间最短和渡河位移最短两类问题: (1)渡河时间最短问题 若要渡河时间最短,由于水流速度始终沿河道方向,不能提供指向河对岸的分速度.因此只要使船头垂直于河岸航 行即可.由图3可知,此时t短=V船,此时船渡河的位移x=sin冷,位 移方向满足tan 0=— V水 (2)渡河位移最短问题(V水VV船) 最短的位移为河宽d,此时渡河所用 时间t=—,船头与 V船sin 0 上游河岸 夹角0满足V船cos 0 = V 水,如图4所示. 【例1】小船在200 m宽的河中横渡,水流速度是2 m/s,小船 在静水中的航速是4 m/s.求: (1)要使小船渡河耗时最少,应如何航行? (2)要使小船航程最短,应如何航行? 延伸思考当船在静水中的航行速度V1大于水流速度V2时,船航行的最短航程为河宽.若水流速度V2大于船在静水中的航行速度 V1,则怎样才能使船的航程最短?最短航程是什么? 二、“绳联物体”的速度分解问题 “绳联物体”指物拉绳(杆)或绳(杆)拉物问题(下面为了方便,统一说“绳”)?解题原则是:

把物体的实际速度分解为垂直于绳和平行于绳的两个分量,根据沿绳方向的分速度大小与绳上各点的速率相同求解. 1.合速度方向:物体实际运动方向 2.分速度方向: (1)沿绳方向:使绳伸(缩) (2)垂直于绳方向:使绳转动 3.速度投影定理:不可伸长的绳,若各点速度不同,各点速度沿绳方向的投影相同. 【例2】如图5所示,汽车甲以速度V1拉汽车乙前进,乙的速度为V2,甲、乙都在水平面上 运动,拉汽车乙的绳子与水平方向夹角为a求V1 : V2. 练习题 1.关于运动的合成与分解,以下说法正确的是 A .合运动的速度大小等于分运动的速度大小之和 B .物体的两个分运动若是直线运动,则它的合运动一定是直线运动 C.合运动和分运动具有等时性 D .若合运动是曲线运动,则其分运动中至少有一个是曲线运动 2.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变 化的规律如图6所示.关于物体的运动,下列说法正确的是 ( A .物体做曲线运动 B .物体做直线运动 C.物体运动的初速度大小为50 m/s D .物体运动的初速度大小为10 m/s 3.如图7所示,某人用绳通过定滑轮拉小船,设人匀速拉绳的速度为 向夹角为a,则船的运动性质及此时刻小船水平速度 V x为( A .船做变加速运动,V x = —V0- cos a 40 20 O -20 -40 u/(m ? s ') 3 4/A V0, ) 绳某时刻与水平方 B .船做变加速运动,V x = V o cos a V O C .船做匀速直线运动,V x= cos a D .船做匀速直线运动,V x= v o cos a

培优十速度关联类问答求解

培优十速度关联类问题求解 1、如图所示,在一光滑水平面上放一个物体,人通过细绳跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v运动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大? 2、(多选)如图所示,一块橡皮用细线悬挂于O点,用钉子靠着线的左侧,沿与水平方向成30°角的斜面向右以速度v匀速运动,运动中始终保持悬线竖 直,下列说法正确的是( ). A.橡皮的速度大小为2v B.橡皮的速度大小为3v C.橡皮的速度与水平方向成60°角 D.橡皮的速度与水平方向成45°角 3、如图所示,物体A置于水平面上,A前固定一滑轮B,高台上有一定滑轮D,一根轻绳一端固定在C点,再绕过B、D.BC段水平,当以速度v0拉绳子自由端时,A沿水平面前进,求:当跨过B的两段绳子夹角为α时A的运动速度v 4、一根长为L的杆OA,O端用铰链固定,另一端固定着一个小球A,靠在一个质量为M,高为h的物块上,如图所示,若物块与地 面摩擦不计,试求当物 块以速度v向右运动 时,小球A的线速度v A(此时杆与水平方向夹角为θ) 5、如图所示,A、B两车通过细绳跨接在定滑轮两侧,并分别置于光滑水平面上,若A车以速度v0向右匀速运动,当绳与水平面的夹角分别为α和β时,B车的速度是多少? 6、如图所示,质量为m的物体置于光滑的平台上,系在物体上的轻绳跨过光滑的定滑轮. 由地面上的人以恒定的速度v0向右匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45°处,在此过程中人对物体所做的功为多少?

7、如图所示,均匀直杆上连着两个小球A、B,不计一 切摩擦.当杆滑到如图位置时,B球水平速度为v B,加速 度为a B,杆与竖直夹角为α,求此时A球速度和加速度 大小 8、一轻绳通过无摩擦的定滑轮在倾角为30°的光滑斜面 上的物体m1连接,另一端和套在竖直光滑杆上的物体 m2连接.已知定滑轮到杆的距离为3m.物体m2由静 止从AB连线为水平位置开始下滑1 m时,m1、m2恰受 力平衡如图所示.已知重力加速度为g,试求: (1)m2在下滑过程中的最大速度 (2)m2沿竖直杆能够向下滑动的最大距离 9、如图所示,S为一点光源,M为一平面镜,光屏与平 面镜平行放置.SO是垂直照射在M上的光线,已知 SO=L,若M以角速度ω绕O点逆时针匀速转动,则转 过30°角时,光点S′在屏上移动的瞬时速度v为多大?

绳杆连接物的关联速度

绳(杆)连接物的关联速度 ---梁志亮 绳子末端速度的分解问题,是“运动的合成与分解”中的一个难点也是易错点。同学们在处理此类问题时,往往因搞不清哪一个是合速度(实际速度),哪一个是分速度而导致解题失败。希望能通过下面几个例题,帮助同学们消除解题中的困惑。 例1:如图1的A所示,在河岸上利用定滑轮拉绳使小船靠岸,拉绳的速度为v,当绳与水平面成θ角时,船的速度是多少? 解析: 方法一: 图1 1、找关联点(A点) 2、判断合速度(水平向左) 3、速度的合成与分解(沿绳子与垂直绳子) 4、验证正误(新位置在两坐标轴方向上) 船的实际运动是水平运动,它产生的实际效果可以从图B中的A

点为例说明:A是绳子和船的公共点,一是A点沿绳的收缩方向的运动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。由图可知:v=v1/cosθ 方法二:微元法:如图C 1、关联点在很短时间内经过一小位移S 2、绳子缩短了S′=OA-OB=PA=Scosθ

关联速度问题

关联速度问题 1. 在一光滑水平面上放一个物体,人通过细绳跨过高处 的定滑轮拉物体,使物体在水平面上运动,人以大小不 变的速度v 运动.当绳子与水平方向成θ角时,物体前进 的瞬时速度是多大? 2. A 、B 两车通过细绳跨接在定滑轮两侧,并分别置于光 滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水 平面的夹角分别为α和β时,B 车的速度是多少? 3.均匀直杆上连着两个小球A 、B ,不计一切摩擦.当杆滑到如图位置 时,B 球水平速度为v B ,加速度为a B ,杆与竖直夹角为α,求此时 A 球速度和加速度大小. 4. 一根长为L 的杆OA ,O 端用铰链固定,另一端固定着一个小球A ,靠在一个质量为M ,高为h 的物块上,如图5-7所示,若物块与地面摩擦不计,试求当物块以速度v 向右运动时,小球A 的线速度v A (此时杆与水平方向夹角为θ). 5. S 为一点光源,M 为一平面镜,光屏与平面镜平行放置.SO 是 垂直照射在M 上的光线,已知SO =L ,若M 以角速度ω绕O 点逆 时针匀速转动,则转过30°角时,光点 S ′在屏上移动的瞬时速 度v 为多大?

Solutions to the Exercises 1、绳子牵引物体的运动中,物体实际在水平面上运 速度v物是合速度,将v物按如图5-6所示进行分解. 其中:v=v物cosθ,使绳子收缩. v⊥=v物sinθ,使绳子绕定滑轮上的A点转动. v 所以v物= cos 2、v B cosα=v A cosβ 3、v A=v B tanα;a A=a B tanα 4、选取物与棒接触点B为连结点.(不直接选A点,因为A点与物块速度的v的关系不明显).因为B点在物块上,该点运动方向不变且与物块运动方向一致,故B点的合速度(实际速度)也就是物块速度v;B点又在棒上,参与沿棒向A点滑动的速度v1和绕O点转动的线速度v2.因此,将这个合速度沿棒及垂直于棒的两个方向分解,由速度矢量分解图得:v2=v sinθ. 设此时OB长度为a,则a=h/sinθ. 令棒绕O点转动角速度为ω,则:ω=v2/a=v sin2θ/h. 故A的线速度v A=ωL=vL sin2θ/h. 5、由几何光学知识可知:当平面镜绕O逆时针转过30°时,则:∠SOS′=60°, OS′=L/cos60°. 选取光点S′为连结点,因为光点S′在屏上,该点运动方向不变,故该点实际速度(合速度)就是在光屏上移动速度v;光点S′又在反射光线OS′上,它参与沿光线OS′的运动.速度v1和绕O点转动,线速度v2;因此将这个合速度沿光线OS′及垂直于光线OS′的两个方向分解,由速度矢量分解图5′—1可得: v1=v sin60°,v2=v cos60° 又由圆周运动知识可得:当线OS′绕O转动角速度为2ω. 则:v2=2ωL/cos60° vc os60°=2ωL/cos60°,v=8ωL.

绳子末端速度的分解问题

绳子末端速度的分解问题 信阳高中陈庆威 绳子末端速度的分解问题,是“运动的合成与分解”中的一个难点也是易错点。同学们在处理此类问题时,往往因搞不清哪一个是合速度(实际速度),哪一个是分速度而导致解题失败。下面通过对几个典型例题的详细分析,希望能帮助同学们消除解题中的困惑。 例1:如图A所示,在河岸上利用定滑轮拉绳绳使小船靠岸,拉绳的速度为v,当绳与水平面成θ角时,船的速度是多少? 解析: 方法一: 1、找关联点(A点) 2、判断合速度(水平向左) 3、速度的合成与分解(沿绳子与垂直绳子) 4、验证正误(新位置在两坐标轴方向上) 船的实际运动是水平运动,它产生的实际效果可以A点为例说明:一是A点沿绳的收缩方向的运动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。由图可知:v=v1/cosθ 方法二:微元法: 1、关联点在很短时间内经过一小位移S 2、绳子缩短了S′=OA-OB=PA=Scosθ 3、速度比即是位移比。 例2.如图2所示,一辆匀速行驶的汽车将一重物提起,在此过程中,重物A的运动情况是【】

A. 加速上升,且加速度不断增大 B. 加速上升,且加速度不断减小 C. 减速上升,且加速度不断减小 D. 匀速上升 解析物体A的速率即为左段绳子上移的速率,而左段绳子上移的速率与右段绳子在沿着绳长方向的分速率是相等的。右段绳子实际上同时参与两个运动:沿绳方向拉长及向上摆动。将右段绳子与汽车相连的端点的运动速度v沿绳子方向和与绳子垂直方向分解,如图3所示,则沿绳方向的速率即为物体A的速率v A=v1=vsinθ。随着汽车的运动,θ增大,v A=v1增大,故A应加速上升。 由v-t图线的意义知,其斜率为加速度,在0°~90°范围内,随θ角的增大,曲线y=sin θ的斜率逐渐减小,所以A上升的加速度逐渐减小。 答案 B 点评本题主要考查了运动的分解,解题的关键是要分清合速度与分速度。一般情况下,物体相对于给定的参考系(一般为地面)的实际运动就是合运动,本例中,汽车的实际运动就是合运动。另外,运动的分解要按照它的实际效果进行。 例3.如图所示,以速度v沿竖直杆匀速下滑的物体A用轻绳通过定滑轮拉物体B,当绳与水平面夹角为θ时,物体B的速度为() A.v B.v sinθC.v cosθD. v sin θ 解:将A的速度分解为沿绳子方向和垂直于绳子方向, 根据平行四边形定则得,v B=vsinθ.故B正确,A、C、D错误. 故选B.

关联速度问题(高一)

关联速度问题(高一) 河南省信阳高级中学陈庆威 2015.02.02 绳子末端速度的分解问题,是“运动的合成与分解”中的一个难点也是易错点。同学们在处理此类问题时,往往因搞不清哪一个是合速度(实际速度),哪一个是分速度而导致解题失败。希望能通过下面几个例题,帮助同学们消除解题中的困惑。 例1:如图1的A所示,在河岸上利用定滑轮拉绳使小船靠岸,拉绳的速度为v,当绳与水平面成θ角时,船的速度是多少? 解析: 方法一: 图1 1、找关联点(A点) 2、判断合速度(水平向左) 3、速度的合成与分解(沿绳子与垂直绳子) 4、验证正误(新位置在两坐标轴方向上) 船的实际运动是水平运动,它产生的实际效果可以从图B中的A 点为例说明:A是绳子和船的公共点,一是A点沿绳的收缩方向的运

动,二是A点绕O点沿顺时针方向的转动,所以,船的实际速度v可分解为船沿绳方向的速度v1和垂直于绳的速度v2,如图1所示。由图可知:v=v1/cosθ 方法二:微元法:如图C 1、关联点在很短时间内经过一小位移S 2、绳子缩短了S′=OA-OB=PA=Scosθ

高考物理必考难点秒杀技法(5)速度关联类问题求解-速度的合成与分解(含解析)

难点5 速度关联类问题求解·速度的合成与分解 ●难点磁场 1.(★★★)如图5-1所示,A 、B 两车通过细绳跨接在定滑轮两侧, 并分别置于光滑水平面上,若A 车以速度v 0向右匀速运动,当绳与水平 面的夹角分别为α和β时,B 车的速度是多少? 2.★★★★如图5-2所示,质量为m 的物体置于光滑的平台上,系 在物体上的轻绳跨过光滑的定滑轮.由地面上的人以恒定的速度v 0向右 匀速拉动,设人从地面上的平台开始向右行至绳与水平方向夹角为45° 处,在此过程中人对物体所做的功为多少? ●案例探究 例1]★★★如图5-3所示,在一光滑水平面上放一个物体,人通过细绳 跨过高处的定滑轮拉物体,使物体在水平面上运动,人以大小不变的速度v 运 动.当绳子与水平方向成θ角时,物体前进的瞬时速度是多大? 错解分析:弄不清合运动与分运动概念,将绳子收缩的速度按图5-4所示分 解,从而得出错解v 物=v 1=v cos θ. 解题方法与技巧:解法一:应用微元法 设经过时间Δt ,物体前进的位移Δs 1=BC ,如图5-5所示.过C 点作CD ⊥AB , 当Δt →0时,∠BAC 极小,在△ACD 中,可以认为AC =AD ,在Δt 时间内,人拉绳 子的长度为Δs 2=BD ,即为在Δt 时间内绳子收缩的长度. 由图可知:BC =θcos BD ① 由速度的定义:物体移动的速度为v 物=t BC t s ?=??1 ② 人拉绳子的速度v = t BD t s ?=??2 ③ 由①②③解之:v 物=θcos v 解法二:应用合运动与分运动的关系 绳子牵引物体的运动中,物体实际在水平面上运动,这个运动就是合运动,所以物体在水平面上运动的速度v 物是合速度,将v 物按如图5-6所示进行分解.其中:v =v 物cos θ,使绳子收缩. v ⊥=v 物sin θ,使绳子绕定滑轮上的A 点转动.所以v 物= θ cos v 图5-1 图5-2 图5-3 图5-4 图5-5 图5-6

速度的关联讲解

所谓关联速度就是两个通过某种方式联系起来的速度.比如一根杆上的两个速度通过杆发生联系,一根绳两端的速度通过绳发生联系.常用的结论有: 1,杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度. 2,接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同. 3,线状相交物系交叉点的速度是相交双方沿对方切向运动分速度的矢量和. 4,如果杆(或张紧的绳)围绕某一点转动,那么杆(或张紧的绳)上各点相对转动轴的角速度相同· 类型1 质量分别为m1、m2和m3的三个质点A、B、C位于光滑的水平桌面上,用已拉直的不可伸长的柔软轻绳AB和BC连接,∠ABC=π-α,α为锐角,如图5-1所示.今有一冲量I沿BC方向作用于质点C,求质点A开始运动时的速度.(全国中学物理竞赛试题) 图5-1 图5-2 类型2 绳的一端固定,另一端缠在圆筒上,圆筒半径为R,放在与水平面成α角的光滑斜面上,如图5-2所示.当绳变为竖直方向时,圆筒转动角速度为ω(此时绳未松弛),试求此刻圆筒轴O的速度、圆筒与斜面切点C的速度.(全国中学生奥林匹克物理竞赛试题) 类型3 直线AB以大小为v1的速度沿垂直于AB的方向向上移动,而直线CD以大小为v2的速度沿垂直于CD的方向向左上方移动,两条直线交角为α,如图5-3所示.求它们的交点P的速度大小与方向.(全国中学生力学竞赛试题)

图5-3图5-4 以上三例展示了三类物系相关速度问题.类型1求的是由杆或绳约束物系的各点速度;类型2求接触物系接触点速度;类型3则是求相交物系交叉点速度.三类问题既有共同遵从的一般规律,又有由各自相关特点所决定的特殊规律,我们若能抓住它们的共性与个性,解决物系相关速度问题便有章可循. 首先应当明确,我们讨论的问题中,研究对象是刚体、刚性球、刚性杆或拉直的、不可伸长的线等,它们都具有刚体的力学性质,是不会发生形变的理想化物体,刚体上任意两点之间的相对距离是恒定不变的;任何刚体的任何一种复杂运动都是由平动与转动复合而成的.如图5-4所示,三角板从位置ABC移动到位置A′B′C′,我们可以认为整个板一方面做平动,使板上点B移到点B′,另一方面又以点B′为轴转动,使点A到达点A′、点C到达点C′.由于前述刚体的力学性质所致,点A、C及板上各点的平动速度相同,否则板上各点的相对位置就会改变.这里,我们称点B′为基点.分析刚体的运动时,基点可以任意选择.于是我们得到刚体运动的速度法则:刚体上每一点的速度都是与基点速度相同的平动速度和相对于该基点的转动速度的矢量和.我们知道转动速度v=rω,r是转动半径,ω是刚体转动角速度,刚体自身转动角速度则与基点的选择无关. 根据刚体运动的速度法则,对于既有平动又有转动的刚性杆或不可伸长的线绳,每个时刻我们总可以找到某一点,这一点的速度恰是沿杆或绳的方向,以它为基点,杆或绳上其他点在同一时刻一定具有相同的沿杆或绳方向的分速度(与基点相同的平动速度).因此,我们可以得到下面的结论. 结论1 杆或绳约束物系各点速度的相关特征是:在同一时刻必具有相同的沿杆或绳方向的分速度. 我们再来研究接触物系接触点速度的特征.由刚体的力学性质及“接触”的约束可知,沿接触面法线方向,接触双方必须具有相同的法向分速度,否则将分离或形变,从而违反接触或刚性的限制.至于沿接触面的切向接触双方是否有相同的分速度,则取决于该方向上双方有无相对滑动,若无相对滑动,则接触双方将具有完全相同的速度.因此,我们可以得到下面的结论. 结论2 接触物系接触点速度的相关特征是:沿接触面法向的分速度必定相同,沿接触面切向的分速度在无相对滑动时相同.

相关文档
最新文档