振动台试验(终极版)

振动台试验(终极版)
振动台试验(终极版)

一、前言

模拟地震振动台可以很好地再现地震过程和进行人工地震波的试验,它是在试验室中研究结构地震反应和破坏机理的最直接方法,这种设备还可用于研究结构动力特性、设备抗震性能以及检验结构抗震措施等内容。另外它在原子能反应堆、海洋结构工程、水工结构、桥梁工程等方面也都发挥了重要的作用,而且其应用的领域仍在不断地扩大。模拟地震振动台试验方法是目前抗震研究中的重要手段之一。

20世纪70年代以来,为进行结构的地震模拟试验,国内外先后建立起了一些大型的模拟地震振动台。模拟地震振动台与先进的测试仪器及数据采集分析系统配合,使结构动力试验的水平得到了很大的发展与提高,并极大地促进了结构抗震研究的发展。

二、常用振动台及特点

振动台可产生交变的位移,其频率与振幅均可在一定范围内调节。振动台是传递运动的激振设备。振动台一般包括振动台台体、监控系统和辅助设备等。常见的振动台分为三类,每类特点如下:

1、机械式振动台。所使用的频率范围为1~100Hz,最大振幅±20mm,最大推力100kN,价格比较便宜,振动波形为正弦,操作程序简单。

2、电磁式振动台。使用的频率范围较宽,从直流到近10000Hz,最大振幅±50mm,最大推

力200kN,几乎能对全部功能进行高精度控制,振动波形为正弦、三角、矩形、随机,只有极低的失真和噪声,尺寸相对较大。

3、电液式振动台。使用的频率范围为直流到近2000Hz,最大振幅±500mm,最大推力

6000kN,振动波形为正弦、三角、矩形、随机,可做大冲程试验,与输出力(功率)相比,尺寸相对较小。

4、电动式振动台。是目前使用最广泛的一种振动设备。它的频率范围宽,小型振动台频率

范围为0~10kHz,大型振动台频率范围为0~2kHz,动态范围宽,易于实现自动或手动控制;加速度波形良好,适合产生随机波;可得到很大的加速度。原理:是根据电磁感应原理设置的,当通电导体处的恒定磁场中将受到力的作用,半导体中通以交变电流时将产生振动。振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。组成部分:基本上由驱动线圈及运动部件、运动部件悬挂及导向装置、励磁及消磁单元、台体及支承装置。

三、组成及工作原理

地震模拟振动台的组成和工作原理

1.振动台台体结构

振动台台面是有一定尺寸的平板结构,其尺寸的规模由结构模型的最大尺寸来决定。台体自重和台身结构是与承载试件的重量及使用频率范围有关。一般振动台都采用钢结构,控制方便、经济而又能满足频率范围要求,模型重量和台身重量之比以不大于2为宜。振动台必须安装在质量很大的基础上,基础的重量一般为可动部分重量或激振力的10~20倍以上,这样可以改善系统的高频特性,并可以减小对周围建筑和其他设备的影响。

2.液压驱动和动力系统

液压驱动系统给振动台以巨大的推力,按照振动台是单向(水平或垂直)、双向〔水平一水平或水平一垂直)或三向(二向水平一垂直)运动,并在满足产生运动各项参数的要求下,各向加载器的推力取决于可动质量的大小和最大加速度的要求;自前世界上已经建成的大中型的地震模拟振动台,基本是采用电液伺服系统来驱动。它在低频时能产生大推力,故被广泛应用。

3.控制系统

在目前运行的地震模拟振动台中有两种控制方法:一种是纯属于模拟控制;另一种是用

数字计算机控制。模拟控制方法有位移反馈控制和加速度信号输入控制两种。在单纯的位移反馈控制中,由于系统的阻尼小,很容易产生不稳定现象,为此在系统中加入加速度反馈,增大系统阻尼从而保证系统稳定。与此同时,还可以加入速度反馈,以提高系统的反应性能,由此可以减小加速度波形的畸变。为了能使直接得到的强地震加速度记录推动振动台,在输入端可以通过二次积分,同时输入位移、速度和加速度三种信号进行控制。

为了提高振动台控制精度,采用计算机进行数字迭代的补偿技术,实现台面地震波的再现。试验时,由振动台台面输出的波形是期望再现的某个地震记录或是模拟设计的人工地震波。由于包括台面、试件在内的系统的非线性影响,在计算机给台面的输入信号激励下所得到的反应与输出的期望之间必然存在误差。这时,可由计算机将台面输出信号与系统本身的传递函数(频率响应)求得下一次驱动台面所需的补偿量和修正后的输入信号。经过多次迭代,直至台面输出反应信号与原始输人信号之间的误姜小与预先给定的量值,完成佚代补偿并得到满意的期望地震波形。

4.测试和分析系统

测试系统除了对台身运动进行控制而测量其位移、加速度等外,还可对被测试模型进行多点测量,一般是测量位移、加速度和应变等,根据需要来了解整个模型的反应。位移测量多数采用差动变压器式和电位计式的位移计,可测量模型相对于台面的位移或相对于基础的位移;加速度测量多采用应变式加速度计、压电式加速度计,近年来也有采用差容式或伺服式加速度计。

电液式激振器的优点是重量轻、体积小,但却能产生很大的激振力,这种电液式激振器又称为动力千斤顶、电液伺服千斤顶、加振器、作动器等。电液式振动台推力可达几十kN~几百kN,主要用于大型结构物的振动试验,诸如汽车的行驶模拟试验、工程结构的抗震试验、飞行器的动力试验以及电工、电子产品的整机环境试验、筛选试验等。

四、加载设计

1、地震模拟振动台试验的加载设计

地震模拟振动台试验的加载设计是非常重要的,荷载选取过大,试件可能很快进人塑性阶段甚至破坏倒塌,难以完整地量测和观察到结构的弹性和弹塑性反应的全过程,甚至可能发生安全事故。荷载选取太小,不能达到预期日的。产生不必要的重复。影响试验进展,而且多次加载能对试件产生损伤积累。因此,为获得系统的试验资料,必须周密地考虑试验加载程序的设计。

进行结构抗震动力试验,振动台台面的输人一般选用地面运动的加速度。常用的地震波谱有天然地霞记录和拟合反应谱的人工地震波。

振动台是一个非线性系统,直接用地震波信号通过D/A转换和模拟控制系统放大后驱动振动台,在台面上无法得到所要求的地震波。在实际试验时,地展模拟振动台的计算机系

统将根据振动台的频谱特性。对输入的地震波进行分析、计算,经处理后再进行D/转换和模拟放大,使振动台能够再现的地震波。

2、在选择和设计台面的输人运动时,需要考虑下列有关因素:

(1)试验结构的周期

如果模拟长周期结构并研究它的破坏机理,就要选择长周期分量占主导地位的地震记录或人工地震波,以便使结构能产生多次瞬时共振而得到清晰的变化和破坏形式

(2)结构所在的场地条件

如果要评价建立在某一场地土上的结构的抗震能力,就应选择与这类场地土相适应的地震记录,即要求选择地震记录的频谱特性尽可能与场地的频谱特性相一致,并需要考虑地震烈度和震中距离的影响。在进行实际工程地震模拟振动台试验时,这个条件尤其重要。(3)考虑振动台台面的输出能力

主要考虑振动台台面的输出的频率范围、最大位移、速度和加速度、台面承载能力等性能,在试验前应认真核查振动台台面特性曲线是否满足试验要求。

3、地震模拟振动台试验的加载过程和试验方法

地震模拟振动台试验的加载过程包括:结构动力特性试验、地震动力反应试验和量测结构不同工作阶段(开裂、屈服、破坏阶段)自振特性变化等试骏内容。

结构动力特性试验,是在结构模型安装在振动台以前,采用自由振动法或脉动法进行试验量测。试验时应将模型基础底板或底梁固定。模型安装在振动台上以后则可采用小振幅的白噪声输人振动台台面,进行激振试验,量侧台面和结构的加速度反应。通过传递函数、功率谱等频谱分析,求得结构模型的自振频率、阻尼比和振型等参数。也可采用正弦波输人连续扫频,通过共振法测得模型的动力特性。当采用正弦波扫频试验时,应特别注意由于共振作用对结构模型强度所造成的影响,避免结构开裂或破坏。

根据试脸目的的不同,在选择和设计振动台台面输人加速度时程曲线后,试验的加截过程可以是一次性加载或多次加载的不同方案。

五、加载过程及试验方法

1、一次性加载

一次性加载试验的特点是:结构从弹性阶段、弹性阶段直至破坏阶段的全过程是在一次加载过程中全部完成的。试验加载时要选择一个适当的地震记录,在它的激励下能使试验结构产生全部要求的反应。在试验过程中,连续记录结构的位移、速度、加速度和应变等输出信号,观察记录结构的裂缝形成和发展过程,以研究结构在弹性、弹塑性以及破坏阶段的各种性能,如刚度变化、能量吸收能力等,并且还可以从结构反应确定结构各个阶段的周期和阻尼比。这种加载过程的主要特点是:可以较好地连续模拟结构在一次强烈地震中的整个表现与反应。但是因为是在振动台台面运动的情况下进行观测,所以对试验过程中的量测和观察设备要求较高,在初裂阶段,往往很难观攀到结构各个邵位上的细微裂缝。破坏阶段的观测更具危险,这时只能采用高速摄影或摄像的方法记录试验过程,因此在没有足够经验的情况下很少采用这种加载方法。

2、多次性加载

目前,在地震模拟振动台试验中,大多数的研究者都采用多次性加载的方案进行试验研究。一般情况下可以分为以下几个阶段:

(1)动力特性试验。测定结构在各试验阶段的各种不同动力特性。

(2)振动台台面输入振动信号,使结构产生中的程度的开裂。例如结构底层墙、柱微裂缝或结构薄弱部位的微裂缝。

(3)加大台面输入的振动信号,使结构产生中等程度的开裂。例如剪力墙、梁柱节点等部位产生明显的裂缝,停止加载后裂缝不能完全闭合。

(4)加大台面输入的加速度幅值,使结构变为机动机构,若稍加荷载就会发生破坏,受拉、受压钢筋屈服,裂缝进一步发展并贯穿整个截面,但结构还具有一定的承载能力。

(5)继续加大振动台台面的振动幅值,使结构变为机动机构,若稍加荷载就会发生破坏倒塌。

在各个试验阶段,被试验结构各种反应的测量和记录与一次性加载时相同,可以明确地得到结构在每个试验阶段的周期、阻尼、振动变形、刚度退化、能量吸收能力和滞回特性等。但由于采用多次加载,对结构将产生变形积累的影响。

六、观测及测量反应

1、地震模拟振动台试验的观测设计和反应量测

地震模拟振动台试验,一般需观测结构的位移、加速度、应变反应,结构的开裂部位、裂缝的发展、结构的破坏部位和破坏形式等。在试验中位移和加速度测点一般布置在产生最大位移或加速度的部位,对于整体结构的房屋模型试验,则在主要楼面和顶层高度的位置上布置位移和加速度传感器(要求传感器的频响范围为。0~100 Hz)。当需要测量层间位移时,应在相邻两楼层布置位移或加速度传感器,将加速度传感器测到的信号,通过二次积分即可转化为位移信号。在结构构件的主要受力部位和截面,应测量钢筋和混凝土的应变、钢筋和棍凝土的粘结滑移等参数。测得的位移、加速度和应变传感器的所有信号被连续输人计算机或专用数据采集系统进行数据采集和处理,试验结果可由计算机终端显示或利用绘图仪、打印机等外围设备输出。

七、安全措施

1、地震模拟振动合试验的安全措施

试件在模拟地震作用下将进人开裂和破坏阶段,为了保证试验过程中人员和仪器设备的安全,振动台试验必须采取以下安全措施:

(1)试件设计时应进行吊装验算,避免试件在吊装过程中发生破坏.

(2)试件与振动台的安装应牢固,对安装螺栓的强度和刚度应进行验算。

(3)试验人员在上下振动台台面时应注意台面和基坑地面之间的间隙,防止发生坠人或摔伤事故。

(4)传感器应与试件牢固连接,并应采取预防掉落的措施,避免因振动引起传感器掉落或损坏。

(5)有可能发生倒塌的试件,应在振动台四周铺设软垫,并利用吊车通过绳索或钢丝绳进行保护,防止试件倒塌时损坏振动台和周围设备。进行倒塌试验时,应将传感器全部拆除、同时认真做好摄像记录工作。

(6)试验过程中应做好警戒标志,防止与试验无关的人员进入试验区。

八、振动台试验实例

例题高层建筑结构模型地震模拟振动台试验

上海星海大厦位于江宁路普陀路口,该大厦地下2层,地上24层(局部25层),立面从4层至20层开有巨大门洞。由于受建筑造型的限制,结构采用门式结构,两门框之间成20°。试验模型为l:25微粒混凝土整体模型。通过模拟地震振动台试验研究该结构的自振频率、振型,研究结构在遭受7度多遇、基本烈度和罕遇地震作用时的加速度、位移和应变反应以及结构的开裂、破坏部位和破坏形式。

(1)模型设计与制作

结构动力模型设计时,很难完全满足模型与原型之间的相似关系。该试验主要研究地震时结构的性能,因此设计主要应满足抗侧力构件相似关系。使墙、柱、梁、板构件及其节点满足尺寸、配筋(配筋按等强度换算)等相似关系,用设置配重的方法满足质量和荷载的相似关系。模型包括地下室、裙房和上部结构。模型相似系数见表1。

表1 模型相似系数

物理量相似系数物理量相似系数

长度1/25 弹性模量1/3.516

时间0.075 应力1/3.516

频率13.333 位移1/25

密度 1.0 加速度7.110

模型主体采用微粒混凝土和镀锌铁丝制作,墙、柱、梁、板等构件尺寸及配筋由相似关系计算得出。柱中纵向钢筋与箍筋的连接采用焊锡焊接。梁、板中配有点焊铁丝网或镀锌铁丝。

微粒混凝土设计强度为C12. 8、C11. 4和C 10.0,弹性模量为9528~8532N/mm2,实测结果见表2 。弹性模量与理论值较接近,强度都低于理论值。小比例模型在弹性阶段与原型相似较好,破坏阶段只能供参考。本试验尽量满足弹性模量相似,使模型与原型在自振频率方面相似较好,但开裂烈度模型小于原型,破坏程度模型大于原型。

由于模型比例较小,制作精度要求较高,因此对施工精度有特殊要求。该模型采用有机玻璃板作为外模,可以在浇筑过程中及时发现问题,保证浇筑密实。内模采用泡沫塑料。使用这种材料易于拆模。实际模型外形见图形。

表2 微粒混凝土强度及弹性模量(N/mm2)

楼层fcu Ec

实测值理论值实测值理论值

地下2~地上3 10.0 12.8 9524 9528 4~13 8.73 11.4 9474 9243

14~19 5.31 8.5 6338 8532

20~屋顶7.84 11.4 8955 9243

(2)振动台试验方法

①试验采用的波形

上海星海大厦场地类别为IV类场地土。根据原型场地条件以及原型结构的动力特性,

输人波形选用EL-Cen tro波、San-Fernando波及拟合规范反应谱的人工地震波。试验时,分为多遇地震、基本烈度地震和罕遇地震三种加速度,依次输人上述三种波形。

②测点布置

沿模型高度在3个主轴方向布置了23个加速度传感器。测量模型的加速度反应,同时布置了21.片应变片,测量模型关键部位主要构件的应变反应。

(3)试验结果

①试验现象

在七度多遇地震作用下,未发现可见裂缝.但在输人三向San-Fernando地震波时.模型自振频率下降,表明结构刚度下降,模型已出现微细裂缝。

在输入罕遇地震波时,3、4、5层剪力墙发现可见裂缝;输入San-Fernando地震波时,裂缝数量增多,部分剪力墙钢筋鼓出;输入人工地震波时,裂缝扩张,数量进一步增多。

在输入罕遇地震波时,裂缝进一步扩大,许多部位裂缝贯通,钢筋屈服,部分剪力墙出现斜裂缝。试验结束后模型并未倒塌。

②模型动力特性

台面输入地震波前,用白噪声对模型进行扫频,得到模型的固有谐振频率和阻尼比(见表3),

该结构的自振特性有以下特点:

表3 模型自振频率(Hz)及阻尼比

频率序号 1 2 3 4 5 6

频率(Hz)9.766 13.021 39.714 41.667 43.620 48.177

阻尼比0.0423 0.0578 0.0319 0.0244 0.0139 0.0157

振型形式斜向扭转X向东塔Y 东塔X 西塔Y

①模型的第一振型为斜向振型。其他振型多为空间振型。

②东、西塔楼有各自的局部振动,由于两塔楼的质量和刚度不完全一致(施工和使用所至),使两塔楼的自振频率有差异,结构的振型密集。

根据各次地震波输人时模型加速度反应的频谱分析可知,输人多遇三向地震波

(San-Fernando)时,x向自振频率下降、结构刚度开始改变,表明结构出现微裂缝。随着地展波输入幅值的增大,结构刚度不断减小。输人七度罕遇地震EL-Centro地震波时,模型x方向第一自振频率降至4. 557Hz, Y方向的第一自振频率降至2.604Hz。Y方向的开裂程度比x 方向的开裂程度严重,刚度蜕化也很严重。模型开裂后自振频率下降,振型变化很大。第一振型由试验前的斜向振动变成Y向振动,第二振型变成X向振动,表明结构的主惯性轴发生较大转动。

(4)模型加速度反应

①结构东西两方面的加速度反应不一致,这是由于高振型和扭转振型所致模型开裂后,在两塔楼的中部,加速度反应较大,且随着开裂程度的加剧,自振频率降低,高振型与地震波卓越频率合拍,导致塔楼中部引起较大的加速度反应。

②动力放大系数随地震烈度提高而减小,说明模型刚度下降,阻尼增大,结构进入非线性阶段后,使动力放大系数有所降低。

③在相同烈度水平下,模型加速度反应一般以输入人工波时为最大。

(5)模型位移反应

①模型东西两侧位移反应不一致,产生的原因主要是:

a.结构不对称。

b.结构反应为空间反应(翘曲,扭转等)。

②在同一烈度的不同地震波作用下,模型的位移反应一般以输入人工波时位移反应最大。

(6)模型应变反应

①剪力墙应变

在7度多遇地震作用下,最大应变出现在第3层,应变值为290με,表明剪力墙出现微细裂缝;在7度基本烈度地震作用下,最大应变仍出现在第3层,应变值为720με,剪力墙已经开裂;在7度罕遇地震作用下,最大应变仍出现在第3层,应变值为949με。

②柱应变

在7度多遇地震作用下,最大应变出现在底层,应变值为135με,相应的应力为1. 16MPa;在7度基本烈度地震作用下,最大应变仍出现在底层,应变值为289με,柱出现微裂;在7度罕遇地震作用下。最大应变还出现在底层,应变值为448με,柱已经开裂。

③梁应变

梁的最大应变出现在第21层深梁底,在7度多遇地震作用下,应变值为129με,相应的应力为1.16MPa;在7度基本烈度地震作用下,应变值为697με,侧点处已经开裂;在7度罕遇地震作用下下,应变值为999με。3层深梁的应变反应很小,表明该处深梁有较大的强度储备。

由21层深梁底应变反应可知,门洞处深梁跨度小应力大,跨度大应力小。总之,结构中剪力墙的应变反应最大,为梁、柱应变反应的两倍多,因此在试验中剪力墙首先开裂,且破坏最为严重。

振动台常用公式

振动台在使用中经常运用的公式 1、 求推力(F )的公式 F=(m 0+m 1+m 2+ ……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、 加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 2.1 A=ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) 2.2 V=ωD ×10-3 ………………………………………………公式(3) 式中:V 和ω与“2.1”中同义 D —位移(mm 0-p )单峰值 2.3 A=ω2 D ×10-3 ………………………………………………公式(4) 式中:A 、D 和ω与“2.1”,“2.2”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“2.3”中同义,但A 的单位为g 1g=9.8m/s 2 所以: A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 3.1 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6 ………………………………………公式(5) 式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。

3.2 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=- …………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 3.3 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??2 3 )2(10π ……………………………………公式(7) 式中:f A-D — 加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“3.3”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、 扫描时间和扫描速率的计算公式 4.1 线性扫描比较简单: S 1= 1 1 V f f H - ……………………………………公式(8) 式中: S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 4.2 对数扫频: 4.2.1 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 4.2.2 扫描速率计算公式 R= T Lg f f Lg L H 2/ ……………………………公式(10) 式中:R —扫描速率(oct/min 或)

振动试验机的基本操作方法

振动试验机的基本操作方法 1 范围 本标准规定了振动试验机的一般要求、基本参数、技术要求、检验方法和检验规则等。 本标准适用于额定正弦激振力或随机激振力不大于200 kN试验用振动试验机。 激振力大于200 kN的振动试验机宜由用户和制造者或供应商参照本标准协商达成协议。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用的这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 2298机械振动与冲击术语(GB/T 2298—1991,neq ISO 2041:1990) GB/T 2611 2007试验机通用技术要求 JB/T 6147—2007试验机包装、包装标志、储运技术要求 3 术语和定义 GB/T 2298确立的以及下列术语和定义适用于本标准。 3.1 额定负载 rated mass 有关技术文件规定的最大试验负载。 3.2 额定正弦激振力 rated excitation force under sinnsoidal conditions 不同试验负载下所有最大正弦激振力的最小值。 3.3 额定正弦加速度 rated sinusoidal acceleration 正常工作时,台面允许达到的最大加速度。 3.4 极限特性 limit characteristic 在不同的试验负载下随频率变化的位移速度一加速度的极限值,一般用极限曲线表示。3.5 额定频率范围 rated frequency range 极限特性曲线的最低频率至最高频率的范围。 3.6 额定随机激振力 rated random excitation force 任一试验负载下随机激振力的最小值。该力与频率上、下限之间的均匀加速度功率谱密度对应。 4 振动试验机的组成 振动试验机由以下部分组成: a)振动试验机台体; b)功率放大器; c)振动控制仪(可按照用户要求配置); d)冷却风机或热交换器等辅助设备。 5 基本参数与参数系列 5.1 振动试验机应给出下列基本参数: a)额定正弦激振力; b)额定随机激振力; c)额定频率范围; d)额定加速度; e)额定速度; f)额定位移; g)额定负载。 5.2振动试验机参数系列见表l,并优先选用表1的参数。

了解振动试验的目的和振动台技术参数

了解振动试验的目的和必要性 现今世界经济潮流,已从过去地域性的经济模式而走向全球性的经济贸易。无论是地域性市场或进军全球市场,高质量的表现是不容讳言的。而振动测试更是协助您产品跃入高质量行列中不可缺乏的利器。 产品达到用户手中,在此过程中将有不同状态之振动产生,造成产品不同程度的损坏。而对于产品有任何损坏都不是厂商及客户所愿意见到的,然而运送过程所发生的振动却是难以避免,若一味的提高包装成本,必将带来严重而不必要的浪费,反之脆弱的包装却造成产品的高成本,并丧失了产品形象及市场,这些都不是我们所愿见到的。 振动测试约在四、五十年前开始萌芽,理论建立时,并无助于人们相信它的重要性,直到二次大战时,许多的飞行器、舰艇、车辆及器材在使用后,意外的发现机件失零的比例相当高,经研究的结果发现,大都由于其结构无法承受其本身所产生的长时间共振,或搭载物品承受运送共振所引起之,组件松脱、崩裂,而致机件失零甚而造成巨大损失。当这项结果公布后,振动测试才受到各界重视,纷纷投入大笔经费、人力去研究。尔后,对于振动量测分析以至模拟分析的近代理论建立后,对振动测试的方法及逻辑亦不断改进。尤其现今货物的流通频繁,使振动测试更显重要。 然而振动测试的目的,是在于实验中作一连串可控制的振动模拟,测试产品在寿命周期中,是否能承受运送或振动环境因素的考验,也能确定产品设计及功能的要求标准。据统计的数据显示提升3%的设计水平,将增加20%的回收及减少18%的各项不必要支出。振动模拟依据不同的目的也有不同的方法如共振搜寻、共振驻留、循环扫描、随机振动及应力筛检等,而振动的效应计有:一、结构的强度。二、结合物的松脱。三、保护材料的磨损。四、零组件的破损。五、电子组件之接触不良。六、电路短路及断续不稳。七、各件之标准值偏移。 八、提早将不良件筛检出。九、找寻零件、结构、包装与运送过程间之共振关系,改良其共振因素。而振动测试的程序,须评估订定试验规格,夹具设计之真实性,测试过程中之功能检查及最后试件之评估、检讨和建议。 振动测试的要义在于确认产品的可靠度以及提前将不良品在出厂前筛检出,并评估其不良品的失效分析以期成为一个高水平、高信赖度的产品。 欢迎您与我们连络,我们提供给予您的不只是一部高质量的振动测试机,更是提升贵公司产品水平及形象的最佳利器,拥有它您的产品将无往不利。 一、产品用途: 振动试验机模拟产品在制造,组装运输及使用过程中所遭遇的各种环境,用以鉴定产品是否忍受环境振动的能力,适用于电子、机电、光电、汽机车、玩具……等各行各业的研究、开发、品管、制造。振动试验机能让我们提早知道产品或产品中的部件的耐振寿命,从而确定产品设计及功能的要求标准。 二、检测范围: 1、产品结构的强度。 2、结合物的松脱。 3、保护材料的磨损。 4、零部件的破损。 5、电子组件的接触不良。 6、电路短路及断续不稳。 7、各零件之标准值偏移。 8、提早将不良件筛检。 9、找寻零件、结构、包装与运送过程间之共振关系。

振动试验基本知识

专业知识 1、振动试验基本知识 1.1 振动试验方法 试验方法包括试验目的,一般说明、试验要求、严酷等级及试验程序等几个主要部分。为了完成试验程序中规定的试验,在振动试验方法中又规定了“正弦振动试验”和“随机振动试验”两种型式的试验方法。 正弦振动试验 正弦振动试验控制的参数主要是两个,即频率和幅值。依照频率变和不变分为定频和扫频两种。 定频试验主要用于: a)耐共振频率处理:在产品振动频响检查时发现的明显共振频率点上,施加规定振动参数振幅的振动,以考核产品耐共振振动的能力。 b)耐予定频率处理:在已知产品使用环境条件振动频率时,可采用耐予定频率的振动试验,其目的还是为考核产品在予定危险频率下承受振动的能力。 扫频试验主要用于: ●产品振动频响的检查(即最初共振检查):确定共振点及工作的稳定性,找出产品共振频率,以做耐振处理。 ●耐扫频处理:当产品在使用频率范围内无共振点时,或有数个不明显的谐振点,必须进行耐扫频处理,扫频处理方式在低频段采用定位移幅值,高频段采用定加速度幅值的对数连续扫描,其交越频率一般在55-72Hz,扫频速率一般按每分钟一个倍频进行。 ●最后共振检查:以产品振动频响检查相同的方法检查产品经耐振处理后,各共振点 有无改变,以确定产品通过耐振处理后的可靠程度。 随机振动试验 随机振动试验按实际环境要求有以下几种类型:宽带随机振动试验、窄带随机振动试验、宽带随机加上一个或数个正弦信号、宽带随机加上一个或数个窄带随机。前两种是随机试验,后两种是混合型也可以归入随机试验。 电动振动台的工作原理是基于载流导体在磁场中受到电磁力作用的安培定律。 1.2 机械环境试验方法标准 电工电子产品环境试验国家标准汇编(第二版)2001年4月 汇编中汇集了截止目前我国正式发布实施的环境试验方面的国家标准72项,其中有近50项不同程度地采用IEC标准,内容包括:总则、名词术语、各种试验方法、试验导则及环境参数测量方法标准。 其中常用的机械环境试验方法标准: (1)GB/T 2423.5-1995 电工电子产品环境试验第2部分:试验方法 试验Ea和导则:冲击 (2)GB/T 2423.6-1995 电工电子产品环境试验第2部分:试验方法 试验Eb和导则:碰撞 (3)GB/T 2423.7-1995 电工电子产品环境试验第2部分:试验方法 试验Ec和导则:倾跌与翻倒(主要用于设备型产品) (4)GB/T 2423.8-1995 电工电子产品环境试验第2部分:试验方法 试验Ed和导则:自由跌落 (5)GB/T 2423.10-1995 电工电子产品环境试验第2部分:试验方法 试验Fc和导则:振动(正弦) (6)GB/T 2423.11-1997 电工电子产品环境试验第2部分:试验方法

国内外振动台与振动试验的研究现状

1.国内外振动台与振动试验的研究现状 1.1国内外振动台研究现状 一、各类振动台的优缺点 用于振动试验的振动台系统从其激振方式上可分为三类:机械式振动台、电液式振动台和电动式振动台。从振动台的激振方向,即工作台面的运动轨迹来分,可分为单向(单自由度)和多向(多自由度)振动台系统。从振动台的功能来分,可分为单一的正弦振动试验台和可以完成正弦、随机、正弦加随机等振动试验和冲击试验的振动台系统。 1.机械式振动台 机械式振动台可分为不平衡重块式和凸轮式两类。不平衡重块式是以不平衡重块旋转时产生的离心力来激振振动台台面,激振力与不平衡力矩和转速的平方成正比。这种振动台可以产生正弦振动,其结构简单,成本低、但只能在约50Hz~100Hz的频率范围工作,最大位移为6mm峰一峰值,最大加速度约10g,不能进行随机振动。 凸轮式振动台运动部分的位移取决于凸轮的偏心量和曲轴的臂长,激振力随运动部分的质量而变化。这种振动台在低领域内,激振力大时,可以实现很大的位移(如100mm)。但这种振动台工作频率仅限于低频,上限额率为20Hz左右。最大加速度为3g左右,加速度波形失真很大。 对于所应用的机械式振动试验台具有几个共同的优点:结构简单、容易安装、造价较低、运用及维修简单可以、可以进行较长时间的试验。但也有共同的缺点:试验范围小、波形失真度大、不能采用反馈控制、很难实现随机振动及几个机械式振动台同步运行。 2.电液式振动台 电液式振动台的工作方式是用小的电动振动台驱动可控制的伺服阀,通过油压使传动装置产生振动。在实际应用中主要有力马达滑阀式电液振动台和喷嘴一挡板式电液振动台。这类振动台的主要优点是:能产生很大的激振力和位移(如激振力可以达104N,位移可达2.5m)、工作频率下限可以达到零赫兹、可以采用反馈控制、能实现随机振动及几个电液振动台进行同步运行。同时电液振动台的缺点是:难于在高频区工作,适用于在低频区及中频区进行振动试验。液压系统的性能容易受温度的影响,对油液要求高、造价贵、维修复杂。由于油泵的压力脉动,油液压缩性引起的共振、液压密封件的摩擦等,使得波形失真比电动振动台大。 这种振动台因其大推力、大位移可以弥补电动振动台的不足,在未来的振动试验中仍将发挥作用,尤其是在船舶和汽车行业会有一定市场。 3.电动式振动台 电动式振动台是根据电磁感应原理设计的,当通电导体处在恒定磁场中将受到力的作用,当导体中通以交变电流时将产生振动。振动台的驱动线圈正式处在一个高磁感应强度的空隙中,当需要的振动信号从信号发生器或振动控制仪产生并经功率放大器放大后通到驱动线圈上,这时振动台就会产生需要的振动波形。 电动式振动台是振动环境试验中广泛使用的一种振动设备,与其它振动设备相比,它主要的优点具有:工作频率范围宽、波形失真度小、频率稳定、控制方便、可以采用反馈控制。特别是它的高频特性,一般能工作到3kHz。对于几公斤推力的电动式振动台工作频率上限甚至可以扩展到10kHz以上,所以被广泛应用于航空、航天、护电器、仪器仪表、建筑、水利、交通运输和家电等各个领域。电动振动台的缺点是单台的激振力及振幅不够大,台面有漏磁场的影响,价格贵,维修复杂。 二、国内外振动台发展状况 1.国内振动台的研究现状 中国航天第702所拥有完整的振动环境试验手段和丰富的振动环境经验,按照GB2423、GBJ150、MIL-STD-810等各项标准进行产品的振动环境试验,建立了推力从7.5kN、10kN、

电磁振动试验机振动频率

电磁振动试验机振动频率 一、设备用途: 用于模拟电工、电子、汽车零部件以及其它涉及到运输的产品和货物在运输过程中的环境,检测其产品的耐振性能。实现振动试验需要的所有功能:正弦波、调频、扫频、可程式、倍频、对数、最大加速度,调幅,时间控制,全功能电脑控制,简易定加速度/定振幅。设备通过连续无故障运转3个月测试,性能稳定,质量可靠。 二、定频操作: 1、首先设定CD065=0,CD041=1(一般出厂前已调好),CD012=CD013=0.1(设定调频前的引导值); 2、设定试验所需的频率:调CD000=X(X为所要设定的频率(1~3000HZ)); 3、设定振动试验台的振动试验时间:CD087=X(X为执行一次的时间(0~65500秒)); 4、设定运转次数:CD064为CD087的运行的次数(那么总时间=CD087(秒)×CD064(次)); 5、设定CD020到CD027=0,CD080到CD086=0,CD088到CD094=0,CD098到CD105=0; 6、调CD003与CD005为调幅开关(CD003>CD005,两者数值相差越大则振动相对越大,反之则小,视设定频率大小而设定,说明书上有设定对照表); 7、面板选择开关(启动开关(下图))打到垂直(上下)面板即可运行当前设定的参数; 8、HZ灯亮(『000.0画面状态)看到运行频率; 9、STOP/RESET为停止开关,RUN键为运行开关(一般不建议使用,物理按键经常使用容易失灵,该功能可使用控制箱面板上的启动开关控制); 10、当设定时间结束后,振动试验台会自动停止,按复位总开关显示C00即可重新运行。其他四种振动方式的操作步骤在这里就不一一罗列出来了,一般客户按照振动试验台使用说明书上面的操作步骤就可以设定。 11、定频操作步骤:对着操作面板,打开电源开关后(控制箱后面),按住复位总开关不动,直至出现C00(可按方向键进行闪标修改)就可以进行频率设定了。 三、技术指标: 1、振动台面尺寸LW(cm):50*50 2、台体尺寸LHW(cm):垂直50*20*50/水平50*25*50 3、振动方向:垂直+水平(X+Y+Z轴) 4、最大试验负载:100KG 5、调频功能(1~600HZ):在频率范围内任频率必须在(最大加速度20g最大振幅5mm) 6、扫频功能(1~600HZ):(上频率/下频率/时间范围)可任意设定真正标准来回扫频 7、可程式功能(1~600HZ):15段每段可任意设定(频率/时间)可循环 8、倍频功能(1~600HZ):15段成倍数增加,①.低到高频②.高到低频③.低到高再到低频/可循环 9、对数功能(1~600HZ):①.下到上频②.上到下频③.下到上再到下频--3种模式对数/可循环 10、振动机功率(KW):2.2 11、振幅(可调范围mmp-p):0~5mm 12、最大加速度:20g

振动加速度计算公式

1、振动方向:垂直(上下)/水平(左右) 2、最大试验负载:(50HZ、1~600HZ)100 kg. (1~5000HZ)50 kg. 3、调频功能(1~600HZ、1~5000HZ客户自定)在频率围任何频率必须在(最大加速度<20g 最大振幅<5mm); 4、扫频功能(1~600HZ、1~5000HZ客户自定):(上限频率/下限频率/时间围)可任意设定真正标准来回扫频; 5、可程式功能(1~600HZ、1~5000HZ客户自定):15段每段可任意设定(频率/时间)可循环. 6、倍频功能(1~600HZ):15段成倍数增加,①.低频到高频②.高频到低频③.低频到高频再到低频/可循环; 7、对数功能(1~600HZ、1~5000HZ客户自定):①.下频到上频②.上频到下频③.下频到上频再到下频--3种模式对数/可循环; 8、振动机功率:2.2 KW. 9、振幅可调围:0~5mm 10、最大加速度:20g (加速度与振幅换算1g=9.8m/s2) 11、振动波形:正弦波. 12、时间控制:任何时间可设(秒为单位) 13、电源电压(V):220±20% 14、最大电流:10 (A) 15、全功能电脑控制(另购):485通讯接口如要连接电脑做控制,储存,记录,打印之功能需另买介面卡程式电脑. 16、精密度:频率可显示到0.01Hz,精密度0.1Hz . 17、显示振幅加速度(另购):如需看出振幅、加速度、最大加速度、准确数字需另购测量仪. 18、最大加速度20g(单位为g). 最大加速度=0.002×f 2(频率HZ)×D(振幅p-pmm) 举例:10HZ最大加 Foxda振动仪HG-V4最小加速度=0.002×102×5=1G Foxda振动仪HG-V4最大加速度=0.002×2002×5=400G 在任何頻率下最加速度不可大于20G 19、最大振幅5mm 最大振幅=20/(0.002×f2) 举例:100Hz最大振幅=20/(0.002×1002)=1mm 在任何频率下振幅不可大于5mm 20、加速度与振幅换算1g=9.8m/s2 21、频率越大振幅越小 四.符合标准: GB/2423;IEC68-2-6(FC);JJG189-97;GB/T13309-91.

振动试验常用公式

振动台在使用中经常运用的公式 1、求推力(F )的公式 F=(m 0+m 1+m 2+……)A …………………………公式(1) 式中:F —推力(激振力)(N ) m 0—振动台运动部分有效质量(kg ) m 1—辅助台面质量(kg ) m 2—试件(包括夹具、安装螺钉)质量(kg ) A — 试验加速度(m/s 2) 2、加速度(A )、速度(V )、位移(D )三个振动参数的互换运算公式 =ωv ……………………………………………………公式(2) 式中:A —试验加速度(m/s 2) V —试验速度(m/s ) ω=2πf (角速度) 其中f 为试验频率(Hz ) =ωD ×10-3………………………………………………公式(3) 式中:V 和ω与“”中同义 D —位移(mm 0-p )单峰值 =ω2D ×10-3………………………………………………公式(4) 式中:A 、D 和ω与“”,“”中同义 公式(4)亦可简化为: A=D f ?250 2 式中:A 和D 与“”中同义,但A 的单位为g 1g=s 2 所以:A ≈D f ?25 2 ,这时A 的单位为m/s 2 定振级扫频试验平滑交越点频率的计算公式 加速度与速度平滑交越点频率的计算公式 f A-V = V A 28.6………………………………………公式(5)

式中:f A-V —加速度与速度平滑交越点频率(Hz )(A 和V 与前面同义)。 速度与位移平滑交越点频率的计算公式 D V f D V 28.6103?=-…………………………………公式(6) 式中:D V f -—加速度与速度平滑交越点频率(Hz )(V 和D 与前面同义)。 加速度与位移平滑交越点频率的计算公式 f A-D =D A ??23 )2(10π……………………………………公式(7) 式中:f A-D —加速度与位移平滑交越点频率(Hz ),(A 和D 与前面同义)。 根据“”,公式(7)亦可简化为: f A-D ≈5× D A A 的单位是m/s 2 4、扫描时间和扫描速率的计算公式 线性扫描比较简单: S 1= 1 1 V f f H -……………………………………公式(8) 式中:S1—扫描时间(s 或min ) f H -f L —扫描宽带,其中f H 为上限频率,f L 为下限频率(Hz ) V 1—扫描速率(Hz/min 或Hz/s ) 对数扫频: 倍频程的计算公式 n=2Lg f f Lg L H ……………………………………公式(9) 式中:n —倍频程(oct ) f H —上限频率(Hz ) f L —下限频率(Hz ) 扫描速率计算公式 R= T Lg f f Lg L H 2/……………………………公式(10)

电动振动试验说明书

DLS-3000-40-07 电动振动试验系统 使 用 说 明 书 SM 苏 州 苏 试 试 验 仪 器 有 限 公 司

S T I目录 目 录 1. 安全须知 2. DLS-3000-40-07 电动振动试验系统概述 3. DLS-3000-40-07 电动振动试验系统构成 4. DLS-3000-40-07电动振动试验系统方框图 5. DLS-3000-40-07振动试验系统技术参数 6. 系统各组成部分详细说明 6.1 SA-40开关功率放大器 6.2 DLS-3000-40-07电动振动试验系统台体 6.3 振动系统的地基和安装 7. 系统运行 7.1 电动振动台部分的备 7.2 SL-0707水平滑台运行前的准备 7.3 传感器的安装 7.4 运行操作 7.5 停机 8. 注意事项 9. 保护动作和复位方法 10. 试验样品 11. 附图

1. 安全须知 为安全起见,请注意下述事项(由于是作一般性的说明,可能有些项目本装置中没有)。 1.1 占有区域 为安全起见,在振动试验装置及电缆的四周设置一个设备占有区域(可能的话在5 m2以上)。 保持占有区域清洁,不需要物品不可放在占有区域内。占有区域以外也可能因噪音等对人体构成伤害。除设备专门操作者,他人不可进入占有区域。 1.2 培训 对本装置的操作者必须详细阅读使用说明书,有条件的进行专门培训。 1.3 检查 为了您的使用安全,请做定期检查。 1.4 设置 振动试验装置的主操作面板应该设置在能看到振动台、功率放大器的位置。 1.5 设备电源 变更电源的场合,风机、马达等可能会产生倒转现象。请确认旋转方向,用箭头表示正确的旋转方向。 1.6 其它注意事项 a. 噪声 振动试验装置会产生较大的噪声,故对周围的工作人员应采取保护措施(耳塞等)。我公司推荐隔音室作为防噪对策。

标准振动试验介绍

标准振动试验介绍 简介 振动试验是评定元器件、零部件及整机在预期的运输及使用环境中的抵抗能力. 物体或质点相对于平衡位置所作的往复运动叫振动。振动又分为正弦振动、随机振动、复合振动、扫描振动、定频振动。描述振动的主要参数有 动频率为f时D 振动试验标准GJB 150.25-86 GB-T 4857.23-2003 GBT4857.10-2005 目前可以进行该试验的试验室有测量控制设备及系统实验室、环境可靠性与电磁兼容试验中心、苏州电器科学研究所。在现场或实验室对振动系统的实物或模型进行的试验。振动系统是受振动源激励的质量弹性系统 现在已被推广到动力机械、交通运输、建筑等各个工业部门及环境保护、劳动保护方面 及振动环境试验等内容。响应测量主要是振级的测量。为了检验机器、结构或其零部件的运行品质、安全可靠性以及确定环境振动条件各种实际工况下 ;对平稳随机振动, 级的度量。选定 动态特性参量的测定 动态特性参量的简易测定方法 ①固有频率测定用敲击或突然卸载 使系统产生自由振动,记录其衰减波形并与仪器中的时标信号比较,或将信号发生器产生的 ②振型测定手持木质或铝质探针接触被测 致判断振型。③阻尼测定可采用衰减振动法、共振法和相位法。衰减振动法是用记录仪 出阻尼值。机械导纳方法机械导纳是系统频域的特征参量(见机械阻抗)。大型复杂结构的固有频率多而密集, 图 时域识别方法直接利用振动的时间 (系统的时域特性参量之一,其傅里叶变换即机械导纳)的关系直接计算模态参量。对受迫振动,可以用数字

载荷识别指分析和确定振源的 谱分析或相关分析方法得出。振动环境试验为了了解产品的耐振寿命和性能指标的稳定 环境的振动、冲击条件下进行 法分两大类:①标准试验,包括耐预定频率试验、耐共振试验、正弦扫描试验、宽带随机振动 机振动试验、随机波再现试验、正弦波和随机波混合试验等。(见振动环境试验) 振动试验数据处理和分析 理法。振动试验意义和使用在运输 运输 振动摆放方位会影响到货 运箱、它的内包装、封装和内在产品。测试允许分析这些部件的相互作用。更改其中一个或 方法 A1重复振动(垂直运动) 测试 A2重复振动(旋转运动)测试 B单个货运箱共振(垂直运动)测试 C水平负载、复合负载、垂直负载共振测试 用性。这些方法符合ISO8318和ISO2247。方法A1和方法A2 在运输车里没有受到任何限制的单个货运箱及因单个负载或堆放负载的放大振动而受到重复振动的货运箱。备注1A1和方法A2产生不同 导致不同的损坏类型和强度。两种测试方法的测试结果不能相互关联。 B方法B 备注2 用方法C来测试。方法C 放。 4.8(包括测试强度、频率范围、测试周期) 这些测试的结果是相互不同的。振动试验设备使用方法仪器测试方法A1-重复振动 测试(垂直运动) 面的运动曲线类似垂直正弦输入(平面旋转振动是不接受的)的设备支撑。振动的双幅位移应

振动试验台安全技术操作规程示范文本

振动试验台安全技术操作规程示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

振动试验台安全技术操作规程示范文本使用指引:此操作规程资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 ?物品放置:将振动试验的物品放入试验台上的夹具 中,用扳手将固定螺丝拧紧,防止振动中物品脱落损坏; ?开机:打开启动按钮,此时听到“嗒”的一声,表示 振动台电源接通,如果没有声音,则先按停止按钮再重新 按启动按钮; ?振动频率调节:根据实际情况,把频率调节旋钮旋到 合适位置,在调整频率过程中,需缓慢调节,以防瞬间频 率过高,将物品振坏; ?关机:振动实验结束后.先把频率按钮调至0Hz, 然后按下停止按钮,取下试验物品,关闭振动台电源; ?振动台要固定位置,防止滑动; ?振动台所放物品一定要保持平衡,以防物品不平衡而

在振动过程中损坏; ?插拔电源插头时,要小心操作,以防被电击伤; ?振动过程中,切忌用手触摸被振物品,以防振动中的物品将手击伤; ?试验台经常保持清洁,长期不用应套好塑料防尘罩,放置在干燥的环境内。 请在此位置输入品牌名/标语/slogan Please Enter The Brand Name / Slogan / Slogan In This Position, Such As Foonsion

振动试验台技术参数指标及分析

振动试验台技术参数指标及分析 1、动圈的函数关系 激振力和加速度、负载质量的函数关系,F=m*a F,振动激振力(N);m,负载质量(KG),包括产品、台面、振动动圈、夹具的质量和;a,加速度(m/s2) 加速度和频率、振幅的函数关系,a=(2πf)2*D/1000 速度和频率、振幅的函数关系,V=2πf*D/1000 a,加速度;f,频率(Hz);D,振幅(mm)(O-P);V,速度(m/s)。 2、振动工作原理 1.5-38Hz,A=1.2G 38HZ-50HZ,D=0.4MM 50-500HZ,A=2G 2.5-200HZ,0.015G2/HZ 200-500HZ,-6DB/OCT A=2.16GRMS 3.5-25Hz1.2MM(0-P) 25-500Hz3.0G 每分钟1个OCT 3、应用概述 电动振动试验台是根据载流导体在磁场中受力而发生运动的原理,采用先进的机械结构和先进的工艺制作,主要特点为:磁路采用双磁路强磁场结构,动圈采用无骨架绕组,动圈支撑系统采用悬臂支架和空气弹簧支撑,功放采用先进的开关放大电路,系统保护功能齐全,采用智能式控制,冷却形式为强迫风冷。该系统技术指标符合相关标准,充分满足航天、航空、仪器、仪表、汽车、摩托车零部件等各个领域进行产品研制和生产可靠性试验的需要。

电动振动试验台各项技术指标均符合GB/T 13310-91《电动振动台技术条件》和企标Q/320502SN001-2002《DV、DC系列电动振动试验系统》的要求。 4、结构与特点 宽频带电动振动台,工作频率范围5~4000Hz,既可作正弦振动也可作随机振动,其结构是(1)由驱动线圈、骨架、台面构成活动系统;(2)活动系统的支撑导向系统;(3)磁路系统等部分组成。在活动系统支撑结构中采用了独特的摇臂式导向和轴向空气弹簧悬挂方式,因此具有横向负载强,波形精度高的特点,即使在额定负载下也能达到额定的25mmP-P 位移值。 磁路由磁缸、中心磁极、上下极板以及励磁线圈构成。直流电流输入励磁线圈。 磁缸悬挂于耳轴结构上,可以垂直、水平90°旋转,因此很容易选择试验所需的振动方向。在耳轴结构里采用隔振弹簧和直线导向的悬挂方式,结构中的隔振装置消除了内外部振动相互干扰的影响。 用T型内六角扳手拧紧台体左右上部耳轴压盖固定螺钉,如不压紧,则在振动中振动台体会发生倾斜,造成工作不正常。 在做5~20Hz,位移大于10mmP-P的振动试验,若台体产生共振时,可以旋紧悬挂系统左右耳轴座内上下各两只内六角螺钉,其余情况均为松开状态。 试件安装在台面上后,必须调整台面高度(即调整气室里空气量),使台面螺钉平面与台面高度指示尺相平,若螺钉平面高于台面高度指示尺,则使充气阀放气(少许),若螺钉平面低于台面高度指示尺,则从充气阀处充气(附件中有打气筒)。(见图3)

振动台试验方案设计实例

一、振动台试验方案 1试验方案 1.1工程概况 本工程塔楼结构体系为“三维巨型空间框架-钢筋混凝土核心筒”结构体系,主要由4个核心筒、钢骨混凝土(SRC)外框架、3个避难层联系桁架三部分构成,图1-2、图1-3分别是B塔结构体系构成示意图和建筑效果图。特别指出的是本工程在14、24楼层的联系桁架的腹杆以及32、48楼层的斜撑为防屈曲支撑(UBB)构件。设计指标为小震不屈服,大震屈服耗能。具体位置示意见图1-4。 本工程的自振周期约为 6.44秒,超过了《建筑抗震设计规范》(GB-50011-2001)设计反应谱长为6秒的规定。本工程存在5个一般不规则和2个特别不规则类型,5个一般不规则类型分别是扭转不规则、凹凸不规则、刚度突变、构件间断和承载力突变。2个特别不规则是高位转换和复杂连接。 1.2 模拟方案 1、模拟方案选择 动力试验用的结构模型必须根据相似律进行设计,模型动力相似律的建立以结构运动方程为基础,选择若干主要控制参数作为模拟控制的对象,依据Buckingham的π定理,经无量纲分析导出控制参数的无量纲积,据此确定各控制参数的相似比率。 结构动力试验的相似模型大致分为四种: (1)弹塑性模型理论上可以重现结构反应的时间过程,使模型和原型的应力分布一致,并可模拟结构的破坏。由于要严格考虑重力加速度对应力反应的影响,必须满足S a=S g=1(S a=模型加速度/原型加速度,S g为重力加速度相似系数,各相似系数之间的关系见表1),即模型加速度反应与原型加速度反应一致,这一要求大大限制模型材料的选择。因为在缩尺模型中,几何比(S l)很小,在Sa=Sg=1的条件下,要满足Sa=S E/S l Sρ=1,即S l=S E/Sρ,必须使模型材料的弹模

SW系列电磁振动台操作要点

SW型电磁吸式振动试验台 使用说明书 若能明确了解振动试验的目的就必能了解振动试验的必要性. 现今世界经济潮流,已从过去地域性的经济模式而走向全球性的经济贸易。无论是地域性市场或进军全球市场,高品质的表现是不容讳言的。而振动测试更是协助您产品跃入高品质行列中不可缺乏的利器。 产品达到用户手中,在此过程中将有不同状态之振动产生,造成产品不同程度的损坏。而对于产品有任何损坏都不是厂商及客户所愿意见到的,然而运送过程所发生的振动却是难以避免,若一味的提高包装成本,必将带来严重而不必要的浪费,反之脆弱的包装却造成产品的高成本,并丧失了产品形象及市场,这些都不是我们所愿见到的。 振动测试约在四、五十年前开始萌芽,理论建立时,并无助于人们相信它的重要性,直到二次大战时,许多的飞行器、舰艇、车辆及器材在使用后,意外的发现机件失零的比例相当高,经研究的结果发现,大都由于其结构无法承受其本身所产生的长时间共振,或搭载物品承受运送共振所引起之,元件松脱、崩裂,而致机件失零甚而造成巨大损失。当这项结果公布后,振动测试才受到各界重视,纷纷投入大笔经费、人力去研究。尔后,对于振动量测分析以至模拟分析的近代理论建立后,对振动测试的方法及逻辑亦不断改进。尤其现今货物的流通频繁,使振动测试更显重要。 然而振动测试的目的,是在于实验中作一连串可控制的振动模拟,测试产品在寿命周期中,是否能承受运送或振动环境因素的考验,也能确定产品设计及功能的要求标准。据统计的数据显示提升3%的设计水准,将增加20%的回收及减少18%的各项不必要支出。振动模拟依据不同的目的也有不同的方法如共振搜寻、共振驻留、循环扫描、随机振动及应力筛检等,而振动的效应计有:一、结构的强度。 二、结合物的松脱。三、保护材料的磨损。四、零组件的破损。五、电子组件之接触不良。六、电路短路及断续不稳。七、各件之标准值

JIS_D1601-1995_汽车零部件振动试验方法(中文版)

IDC 629.113.01 : 620.173.5 D 1601 汽车零件振动试验方法 JIS D 1601 平成7年2月1日修改 日本工业标准调查会审议 (日本标准协会发行)

日本工业标准JIS 汽车零件振动试验方法D1601-1995 1.适用范围 本标准规定了汽车零件(以下称零件)的振动试验方法。 2.试验种类 试验种类分以下几类。 ⑴ 共振点检测试验 求零件共振振动频率的试验 ⑵ 振动性能试验 研究施振时零件性能的试验 ⑶ 振动耐久试验 研究以一定的振动频率激振,相对于振动的零件耐久性的试验 ⑷ 扫描振动耐久试验 研究按同样的比例连续增减振动频率激振,相对于振动的零件耐久性的试验 3.振动条件分类 振动性能试验及振动耐久试验的振动条件分以下几种。 ⑴ 零件的振动条件,按被安装的汽车的种类分: 1种 主要指轿车系列 2种 主要指公共汽车系列 3种 主要指货车系列 4种 主要指二轮汽车系列 ⑵ 零件振动条件按,被安装的状态分: A种 安装在车体或悬架装置的弹簧上,振动较小时 B种 安装在车体或悬架装置的弹簧上,振动较大时 C种 安装在发动机上,振动较小时 D种 安装在悬架装置的弹簧下和安装在发动机上,振动较大时,振动条件分类及相应产品示例如参考表1。 4.试验条件 4.1试验顺序 试验按共振点检测试验,振动性能试验,振动耐久试验或扫描振动耐久试验的顺序 进行。不过,共振点检测试验和振动性能试验,或共振点检测试验和振动性能试验及扫描振动耐久试验同时进行也可以。 4.2 零件的安装 零件安装在振动试验台上的状态原则上应接近于零件的使用状态。 4.3 零件的动作 试验原则上要按零件的动作状态进行。 4.4 施振方法 相对于零件的安装状态,按顺序施加上下、左右、前后垂直的简谐振动。但是,简谐振动的高次谐波含有率⑴,原则上在振动加速度的25%以内。 注⑴:简谐振动的高次谐波含有率的计算如下: ⑴以正弦波振动的振动加速度±a(m/s2),按下式计算: a=Kf2A×10-3 其中,K=2π2≈19.74 f:振动频率(Hz) A:全振幅(mm)

振动试验机使用说明书

随机振动控制系统使用说明书 (WINDOWS界面) 2002年10月

随机振动控制系统使用说明书(WINDOWS界面) 1. 引言 本振动控制系统主要是用作振动和冲击试验控制。从振动试验的历史来看,试验是从定频正弦→正弦扫频→随机振动发展的。正弦定频试验可以对选定的一个或数个频率(通常选为试件的共振频率)下对试件进行振动试验,由于不可能测出试件所有的共振频率,再由于非线性因素和结构损伤的影响,共振频率本身在试验过程中也是变化的,于是就发展了正弦扫频试验,试验过程中对试件所有的共振频率都能考核到。为什么又要进行(宽带)随机振动试验呢?一是实际飞机、火箭、船舶、车辆上测得的振动环境接近于宽带随机,二是计算机技术飞速发展和快速数字谱分析算法(FFT)的发明使得技术上有了实现的可能;从对试件损伤和工作可靠性的影响来看,正弦扫频与宽带随机也有很大的差别,举例来说,正弦扫频时试件各共振频率依次发生共振,而宽带随机试验时,试件各共振频率同时发生共振,若有一继电器常开触点的两弹簧片有不同的共振频率,可能它们依次共振时不相碰,但同时共振时就相碰,而造成仪器工作的不正常。这个例子可以形象地说明正弦扫频与随机振动试验的差别。一句话,随机振动试验更接近于实际振动环境,对试件的考核也较严格,从而更容易保证您的产品的质量。美军标MIL-STD-810F更推荐随机试验时频率分辨率采用800谱线,本系统能满足此要求。 对于涡轮螺桨式飞机,直升机,和机载炮击振动,主要振动环境为宽带随机加窄带随机或宽带随机加多频正弦振动,美军标MIL-STD-810D~F规定要作这两种模拟,窄带及正弦频率一般不变。本系统能完成宽带加窄带随机和正弦加随机试验,窄带及正弦频率可以扫频。 关于冲击试验,早先多半采用跌落式,凸轮式等机械冲击试验装置,这些装置结构简单,但对冲击参数(冲击加速度、波形、冲击时间等)的调整较麻烦,波形不准确。在实际冲击环境中有两种理想的加速度冲击波形:半正弦波模拟了完全弹性碰撞;后峰锯齿波模拟了完全塑性碰撞,冲击时间常取11ms和6ms。本系统能够很方便地在振动台上模拟这两种波形和不同时间不同加速度的冲击试验,且有较高的精度。 从美军标MIL-STD-810D冲击试验规范开始,要求首先满足规定的冲击响应谱而对波形却不作规定,它认为这种模拟方式最能准确地模拟冲击环境对产品不同自振频率的部件产生同样严格的冲击效果。为适应这种冲击试验要求发展的趋势,本系统开发了冲击谱合成的功能,圆满地解决了此问题,这是任何机械式系统所不可能完成的。 2 系统性能 2.1 正弦扫频 控制和测量通道 1~8 频率范围 5~5000Hz 扫频包线等幅、等速度、等加速度 分析方式 RMS、跟踪滤波 扫频方式线性—对数、正反扫、定频 2.2 随机振动(包括宽带加窄带和宽带加正弦) 控制和测量通道 1~8 频率范围 5000Hz 宽带谱线数 100~800线 控制谱动态范围 >55dB(自闭环) 窄带谱或正弦谱线数 0~10 2.3 冲击试验控制 脉冲时间 1~30ms 波形半正弦、三角、锯齿、方波 冲击谱合成频谱范围 5~2000Hz

振动试验台技术方案

注:一下内容仅供参考。如有雷同,纯属巧合。 振动试验台技术方案 本技术方案是依据要求方提出的振动试验台主要技术参数和标准GB/T8419-2007、GB/T18707.1-2002编制,用于对工程机械座椅、工程机械车灯以及其它零部件进行振动试验的液压振动台系统。详细介绍如下: 一、液压振动台系统的构成和原理方框图 液压振动台系统由液压振动台(含振动台体、台面、电液伺服阀等)、液压油源和管路系统、油源电控、模拟和数字控制系统等几部分构成。 液压振动台系统原理方框图如下。 图 1 液压振动台系统原理方框图

二、液压振动台的设计 液压振动台包括振动台体、台面、伺服阀、传感器及连接过渡等部分,作为执行元件直接带动控制对象动作。 1、要求的主要技术参数 1.1 频率范围:0.5~200Hz 1.2 加速度:0~ 2.5g 1.3 振幅:0~±160 mm 1.4 有效负载:0~400 kg, 1.5 台面大小:1米x 1米 2、最大功能曲线的设计估算 2.1 按规范的PSD设计 可以认为是窄带随机,且是多个试验曲线,我们可以取它们的包络作为评估依据。 表1: EM1 EM2 EM3 EM4 EM5 EM6 EM7 EM8 EM9 Freq 2 2.25 2.25 2.25 3.25 8.5 3.25 3.75 4.5 1.33 RMS 1.39 1.75 1.48 0.82 1.42 1.39 1.82 0.87

图2 根据表1和图2,最大速度发生在EM2,按3∑准则,此处的速度为:0.372m/Sec。但按振幅160mm(O-P),则等速度与等位移段交越频率为:0.37Hz。而主要技术指标中指定下限频率为0.5Hz,这样一来,160mm(o-P)的行程则浪费。 2.2 按行程、速度和加速度设计 依据标准GB/T8419-2007中5.1条《注:在EM1和EM2的情况下,振动器能够产生振幅最少为±7.5cm,频率为2Hz的模拟正弦振动(见5.4.1)》。此时的速度要达到0.94m/s。 按振幅160mm(O-P),则等速度与等位移段交越频率为:0.94Hz;按最大加速度2.5g,则等速度与等加速度段交越频率为:4.18Hz。均在要求的工作频率范围内。 2.3 最大功能曲线 综上所述,按照最大行程±160mm,最大速度0.94m/s,最大加速度2.5g和要求的工作频率,最大功能曲线如图3。 频率(Hz) 0.5 0.94 2 4.19 150 200 位移(mm) 160 160 75 35 0.028 0.0038 速度(m/s) 0.5 0.94 0.94 0.94 0.026 0.0048 加速度(g) 0.32 0.56 1.2 2.5 2.5 0.62

相关文档
最新文档