基于RecurDyn和MATLAB的链传动仿真系统

基于RecurDyn和MATLAB的链传动仿真系统
基于RecurDyn和MATLAB的链传动仿真系统

实验一 基于Matlab的控制系统模型

实验一 基于Matlab 的控制系统模型 姓名 学号 班级 一、实验目的 1) 熟悉Matlab 的使用环境,学习Matlab 软件的使用方法和编程方法。 2) 学习使用Matlab 进行各类数学变换运算的方法。 3) 学习使用Matlab 建立控制系统模型的方法。 二、实验原理 1. 香农采样定理 对一个具有有限频谱的连续信号f (t )进行连续采样,当采样频率满足ωs ≥ωmax 时,采样信号f *(t )能无失真的复现原连续信号。 (1) 作信号f (t )=5e 10t 和f *(t ) =5e 10kT 的曲线,比较采样前后的差异。 0.05 0::0.5 5*(10*) subplot(2,1,1) plot(,) grid subplot(2,1,2) stem(,) grid T t T f exp t t f t f ===- 请改变采样周期T ,观察不同的采样周期下的采样效果。

(2) 频谱曲线 50:1:50 5./(100.^2) (,)w F sqrt w plot w F grid =-=+ 若|F (j ωmax ) |=0.1|F (0)|,选择合理的采样周期T 并验加以证。 400:20:400 200 2*/05/*(1./(100.^2)) 15/*(1./(100().^2)) 25/*(1./(100().^2)) (,0,,1,,2) w ws Ts pi ws F Ts sqrt w F Ts sqrt w ws F Ts sqrt w ws plot w F w F w F grid =-===+=+-=++ 请改变采样频率,观察何时出现频谱混叠? 2. 拉式变换和Z 变换 (1) 使用Matlab 求函数的拉氏变换 拉式变换: 反拉氏变换: ()()()()()()2 222 1exp -*123*exp -*4sin *5exp -*s 11/(1) 21/()31/4/() 51/(*(2)*(*c 3)o ) s *yms syms a w t f a t laplace f f t f t a t f s a f s ilaplace f f s a f s f w s w f s s s w t f a t w t ==+==+====++== (2) 使用Matlab 求函数的Z 变换 Z 变换: 反Z 变换:

APF matlab仿真建模要点

电力电子系统建模与仿真 学院:电气工程学院 年级:2012级 学号:12031236 姓名:周琪俊 指导老师:舒泽亮

二极管钳位多电平APF电压平衡SPWM仿真报告 1 有源电力滤波器的发展及现状 有源电力滤波器的发展最早可以追溯到20 世纪60 年代末,1969 年B.M.Bird 和J.F.Marsh发表的论文中,描述了通过向电网注入三次谐波电流来减少电源电流中的谐波成分,从而改善电源电流波形的新方法,这种方法是APF 基本思想的萌芽。1971年日本的H.Sasaki 和T.Machida 首先提出APF 的原始模型。1976 年美国西屋电气公司的L.Gyugyi 等提出了用PWM 变流器构成的APF 并确立了APF 的概念。这些以PWM 变流器构成的APF 已成为当今APF 的基本结构。但在70 年代由于缺少大功率的快速器件,因此对APF 的研究几乎没有超出实验室的范围。80 年代以来,随着新型电力半导体器件的出现,脉宽调制的发展,以及H.Akagi 的基于瞬时无功功率理论的谐波电流瞬时检测方法的提出,APF有了迅速发展。 现在日本、美国、德国等工业发达国家APF已得到了高度重视和日益广泛的应用。由于理论研究起步较早,目前国外有源电力滤波器的研究已步入工业化应用阶段。随着容量的逐步提高,其应用范围也从补偿用户自身的谐波向改善整个电网供电质量的方向发展。有源电力滤波器的工业化应用对理论研究起了非常大的推动作用,新的理论研究成果不断出现。1976 年美国西屋公司的L.Gyugyi 率先研制出800kV A的有源电力滤波器。在此以后的几十年里,有源电力滤波器的实践应用得到快速发展。在一些国家,已经投入工业应用的有源电力滤波器容量已增加到50MV A。目前大部分国际知名的电气公司如西屋电气、三菱电机、西门子和梅兰日兰等都有相关的部门都已有相关的产品。 我国在有源电力滤波器的研究方面起步较晚,直到20 世纪80 年代末才有论文发表。90 年代以来一些高等院校和科研机构开始进行有源电力滤波器的研究。1991 年12 月由华北电科院、北京供电局和冶金部自动化研究所研制的国内第一台400V/50kV A 的有源电力滤波器在北京某中心变电站投运,2001 年华北电科院又将有源电力滤波器的容量提高到了10kV/480kV A。由中南大学和湖南大学研制的容量为500kV A 并联混合型有源电力滤波器已在湖南娄底早元220kV 变电站挂网运行。在近几年国内的有源电力滤波器产品已有很多应用,本文研制的两种APF都已应用于工业现场。 2 二极管箝位式多电平逆变器 自从日本学者南波江章于1980 年提出三电平中性点箝位逆变器以来,多电平逆变器的拓扑结构就受到人们的普遍关注,很多学者相继提出了一些实际应用

MATLAB Simulink系统建模与仿真 实验报告

MATLAB/Simulink 电力系统建模与仿真 实验报告 姓名:****** 专业:电气工程及其自动化 班级:******************* 学号:*******************

实验一无穷大功率电源供电系统三相短路仿真 1.1 无穷大功率电源供电系统仿真模型构建 运行MATLAB软件,点击Simulink模型构建,根据电路原理图,添加下列模块: (1)无穷大功率电源模块(Three-phase source) (2)三相并联RLC负荷模块(Three-Phase Parallel RLC Load) (3)三相串联RLC支路模块(Three-Phase Series RLC Branch) (4)三相双绕组变压器模块(Three-Phase Transformer (Two Windings)) (5)三相电压电流测量模块(Three-Phase V-I Measurement) (6)三相故障设置模块(Three-Phase Fault) (7)示波器模块(Scope) (8)电力系统图形用户界面(Powergui) 按电路原理图连接线路得到仿真图如下: 1.2 无穷大功率电源供电系统仿真参数设置 1.2.1 电源模块 设置三相电压110kV,相角0°,频率50Hz,接线方式为中性点接地的Y形接法,电源电阻0.00529Ω,电源电感0.000140H,参数设置如下图:

1.2.2 变压器模块 变压器模块参数采用标幺值设置,功率20MVA,频率50Hz,一次测采用Y型连接,一次测电压110kV,二次侧采用Y型连接,二次侧电压11kV,经过标幺值折算后的绕组电阻为0.0033,绕组漏感为0.052,励磁电阻为909.09,励磁电感为106.3,参数设置如下图: 1.2.3 输电线路模块 根据给定参数计算输电线路参数为:电阻8.5Ω,电感0.064L,参数设置如下图: 1.2.4 三相电压电流测量模块 此模块将在变压器低压侧测量得到的电压、电流信号转变成Simulink信号,相当于电压、电流互感器的作用,勾选“使用标签(Use a label)”以便于示波器观察波形,设置电压标签“Vabc”,电流标签“Iabc”,参数设置如下图:

信号与系统的MATLAB仿真

信号与系统的MATLAB 仿真 一、信号生成与运算的实现 1.1 实现)3(sin )()(π±== =t t t t S t f a )(sin )sin()sin(sin )()(t c t t t t t t t S t f a '=' '== ==πππ π ππ m11.m t=-3*pi:0.01*pi:3*pi; % 定义时间范围向量t f=sinc(t/pi); % 计算Sa(t)函数 plot(t,f); % 绘制Sa(t)的波形 运行结果: 1.2 实现)10() sin()(sin )(±== =t t t t c t f ππ m12.m t=-10:0.01:10; % 定义时间范围向量t f=sinc(t); % 计算sinc(t)函数 plot(t,f); % 绘制sinc(t)的波形 运行结果: 1.3 信号相加:t t t f ππ20cos 18cos )(+= m13.m syms t; % 定义符号变量t f=cos(18*pi*t)+cos(20*pi*t); % 计算符号函数f(t)=cos(18*pi*t)+cos(20*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果:

1.4 信号的调制:t t t f ππ50cos )4sin 22()(+= m14.m syms t; % 定义符号变量t f=(2+2*sin(4*pi*t))*cos(50*pi*t) % 计算符号函数f(t)=(2+2*sin(4*pi*t))*cos(50*pi*t) ezplot(f,[0 pi]); % 绘制f(t)的波形 运行结果: 1.5 信号相乘:)20cos()(sin )(t t c t f π?= m15.m t=-5:0.01:5; % 定义时间范围向量 f=sinc(t).*cos(20*pi*t); % 计算函数f(t)=sinc(t)*cos(20*pi*t) plot(t,f); % 绘制f(t)的波形 title('sinc(t)*cos(20*pi*t)'); % 加注波形标题 运行结果:

倒立摆系统的建模及Matlab仿真资料

第1 页共11 页 倒立摆系统的建模及Matlab仿真 1.系统的物理模型 考虑如图(1)所示的倒立摆系统。图中,倒立摆安装在一个小车上。这里仅考虑倒立摆在图面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g l=1m小车的质量:摆杆的长度:2重力加速度:g=9.8m/M=1kg s摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量?≤10%,调节时间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 ?),在u设小车瞬时位置为z,摆心瞬时位置为(作用下,小车及摆均产生加速远 动,sin?lz根据牛顿第二定律,在水平直线远动方向的惯性力应与u平衡,于是有 22dzd?)?sinu?M?m(zl22dtdt???2????z(M?mml?)cos?mlusin? 即:??①

绕摆轴转动的惯性力矩与重力矩平衡,因而有. 第2 页共11 页 2??d??? sin??lcosm(z?lsinmgl)??2dt?????22???????即: nis?l?ocgcosincoszs?ls??② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直?2?????且可忽略则,立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,1sincos??,项。于是有 ???M?zm?u?ml??)(③ ????g?z?l??④联立求解可得1mg?u?z????MM 1)?m(M????u??MlMl 列写系统的状态空间表达式。2.2??T xx,x,x,,选取系统变量则 xx,x,xx?,42134123xx??211mgux???x?32MM x?x?431)(M?mu?x?x? 34MlMl 即00100????z??1mg??????000?z?????d MM??Bu?Ax?xux????????00001???dt????1gm?(M)????000??????? MlMl??????Cx?0?y?xx1001代入数据计算得到:0100????000?1??????T0D,?0??1BA?,?001,C100??1000??00011?? 11 页3 页共第 3.设计控制器3.1判断系统的能控性和稳定性 1100????0011????23BBAABAB?Q?故被控对象完全可控, rank()=4,Q kk??11?0?10??011?10???22???11?。出现大于零的特征值,故被,,0 解得特征值为 0由特征方程0??11I?A?)(控对象不稳定3.2确定希望的极点, 另一对为远极点,认为系统性能主要由主导,选其中一对为主导极点和希望的极点n=4ss21极点决定,远极点只有微小影响。根据二阶系统的关系式,先确定主导极点???42??1????10.?e??t1.67?有,闭环可得;取误差带,于是取,则6.?059?0.02.?0? pns??n2????1?js??=-10.8j,远极点选择使它和原点的距离大于主导极点与原点 距离主导极点为?n,21s??15倍,取的54,33.3采用状态反馈方法使系统稳定并配置极点 ??kkkk?k;状态反馈系统的状态方程,馈状态反的控制规律为为kxu??3102?,其

matlab控制系统仿真.

课程设计报告 题目PID控制器应用 课程名称控制系统仿真院部名称龙蟠学院 专业自动化 班级M10自动化 学生姓名 学号 课程设计地点 C208 课程设计学时一周 指导教师应明峰 金陵科技学院教务处制成绩

一、课程设计应达到的目的 应用所学的自动控制基本知识与工程设计方法,结合生产实际,确定系统的性能指标与实现方案,进行控制系统的初步设计。 应用计算机仿真技术,通过在MATLAB软件上建立控制系统的数学模型,对控制系统进行性能仿真研究,掌握系统参数对系统性能的影响。 二、课程设计题目及要求 1.单回路控制系统的设计及仿真。 2.串级控制系统的设计及仿真。 3.反馈前馈控制系统的设计及仿真。 4.采用Smith 补偿器克服纯滞后的控制系统的设计及仿真。 三、课程设计的内容与步骤 (1).单回路控制系统的设计及仿真。 (a)已知被控对象传函W(s) = 1 / (s2 +20s + 1)。 (b)画出单回路控制系统的方框图。 (c)用MatLab的Simulink画出该系统。

(d)选PID调节器的参数使系统的控制性能较好,并画出相应的单位阶约响应曲线。注明所用PID调节器公式。PID调节器公式Wc(s)=50(5s+1)/(3s+1) 给定值为单位阶跃响应幅值为3。 有积分作用单回路控制系统PID控制器取参数分别为:50 2 5 有积分作用单回路控制系统PID控制器取参数分别为:50 0 5

大比例作用单回路控制系统PID控制器取参数分别为:50 0 0 (e)修改调节器的参数,观察系统的稳定性或单位阶约响应曲线,理解控制器参数对系统的稳定性及控制性能的影响? 答:由上图分别可以看出无积分作用和大比例积分作用下的系数响应曲线,这两个PID调节的响应曲线均不如前面的理想。增大比例系数将加快系统的响应,但是过大的比例系数会使系统有比较大的超调,并产生振荡,使稳定性变坏;

MATLAB的建模和仿真

课程设计说明书 题目:基于Matlab的IIR滤波器设计与仿真班级:2012 级电气五班 姓名:王璐 学号:201295014178 指导教师:张小娟 日期:2015年 1 月12日

课程设计任务书

基于MATLAB的IIR滤波器设计与仿真 前言 数字信号处理(digital signal processing,DSP)是从20世纪60年代以来,随着信息学科和计算机学科的高速发展而迅速发展起来的一门新兴学科。数字信号处理是把信号用数字或符号表示的序列,通过计算机或通用(专用)信号处理设备,用数字的数值计算方法处理(例如滤波、变换、压缩、增强、估计、识别等),以达到提取有用信息便于应用处理的目的。数字信号处理系统有精度高、灵活性高、可靠性高、容易大规模集成、时分复用、可获得高性能指标、二维与多维处理等特点。正是由于这些突出的特点,使得它在通信、语音、雷达、地震测报、声呐、遥感、生物医学、电视、仪器中得到愈来愈广泛的应用。在数字信号处理中起着重要的作用并已获得广泛应用的是数字滤波器(DF,Digital Filter),根据其单位冲激响应函数的时域特性可分为两类:无限冲激响应IIR(Infinite Impulse Response)滤波器和有限冲激响应FIR(Finite Impulse Response)滤波器。MATLAB的基本数据单位是矩阵,它的指令表达式与数学、工程中常用的形式十分相似,故用MATLAB来结算问题要比用C,FORTRAN等语言完成相同的事情简捷得多,并且MATLAB也吸收了像Maple等软件的有点,使MATLAB成为一个强大的数学软件,在新的版本中也加入了对C,FORTRAN,C++,JA V A的支持。可以直接调用,用户也可以将自己编写的实用程序导入到MATLAB函数库中方便自己以后调用。 1 数字滤波器概述 数字滤波器是对数字信号实现滤波的线性时不变系统。数字滤波实质上是一种运算过程,实现对信号的运算处理。输入数字信号(数字序列)通过特定的运算转变为输出的数字序列,因此,数字滤波器本质上是一个完成特定运算的数字计算过程,也可以理解为一台计算机。描述离散系统输出与输入关系的卷积和差分方程只是给数字信号滤波器提供运算规则,使其按照这个规则完成对输入数据的处理。时域离散系统的频域特性:Y(eωj)=X(eωj)H(eωj) 其中Y(eωj)、X(eωj)分别是数字滤波器的输出序列和输入序列的频域特性(或称为

Matlab控制系统计算机辅助设计

实验目录 实验一:Matlab环境熟悉与基本运算(设计型)实验二:Matlab语言程序设计(设计型) 实验三:控制系统模型的建立(设计型) 实验四:Simulink仿真入门(验证型) 实验五:控制系统时域仿真分析(设计型) 实验六:Simulink环境下时域仿真 实验七:控制系统根轨迹仿真分析 实验八:控制系统频域仿真分析(设计型)

1、矩阵运算(1)矩阵的乘法 A=[1 2;3 4]; B=[5 5;7 8]; y=A^2*B y = 105 115 229 251 (2)矩阵除法 A=[1 2 3;4 5 6;7 8 9]; B=[1 0 0;0 2 0;0 0 3]; y1=A\B 警告: 矩阵接近奇异值,或者缩放错误。结果可能不准确。RCOND = 1.541976e-18。y1 = 1.0e+16 * -0.4504 1.8014 -1.3511 0.9007 -3.6029 2.7022 -0.4504 1.8014 -1.3511 y2=A/B y2 = 1.0000 1.0000 1.0000 4.0000 2.5000 2.0000 7.0000 4.0000 3.0000 (3)矩阵的转置及共轭转置 A=[5+i,2-i,1;6*i,4,9-i]; y1=A.' y1 = 5.0000 + 1.0000i 0.0000 + 6.0000i 2.0000 - 1.0000i 4.0000 + 0.0000i 1.0000 + 0.0000i 9.0000 - 1.0000i y2=A' y2 = 5.0000 - 1.0000i 0.0000 - 6.0000i 2.0000 + 1.0000i 4.0000 + 0.0000i 1.0000 + 0.0000i 9.0000 + 1.0000i 实验名称:Matlab环境熟悉与基本运算(设计型)

三相变压器建模及仿真及MATLAB仿真

XXXXXXX学院课程设计报告 课程名称: 系部: 专业班级: 学生姓名: 指导教师: 完成时间: 报告成绩: 学院教学工作部制

目录 摘要 (3) 第一章变压器介绍 (4) 1.1 变压器的磁化特性 (4) 1.2 变压器保护 (4) 1.3 励磁涌流 (7) 第二章变压器基本原理 (9) 2.1 变压器工作原理 (9) 2.2 三相变压器的等效电路及联结组 (10) 第三章变压器仿真的方法 (11) 3.1 基于基本励磁曲线的静态模型 (11) 3.2基于暂态磁化特性曲线的动态模型 (13) 3.3非线性时域等效电路模型 (14) 第四章三相变压器的仿真 (16) 4. 1 三相变压器仿真的数学模型 (16) 4.2电源电压的描述 (20) 4.3铁心动态磁化过程简述 (21) 第五章变压器MATLAB仿真研究 (25) 5.1 仿真长线路末端电压升高 (25) 5.2 仿真三相变压器 T2 的励磁涌流 (28) 5.3三相变压器仿真模型图 (34) 5.4 变压器仿真波形分析 (36) 结论 (40) 参考文献 (41)

摘要 在电力变压器差动保护中,励磁涌流和内部故障电流的判别一直是一个关键问题。文章阐述了励磁涌流的产生及其特性,利用 MATLAB 对变压器的励磁涌流、内部故障和外部故障进行仿真,对实验的数据波形分析,以此来区分故障和涌流,目的是减少空载合闸产生的励磁涌流对变压器差动保护的影响,提高保护的灵敏性。 本文在Matlab的编程环境下,分析了当前的变压器仿真的方法。在单相情况下,分析了在饱和和不饱和的励磁涌流现象,和单相励磁涌流的特征。在三相情况下,在用分段拟和加曲线压缩法的基础上,分别用两条修正的反正切函数,和两条修正的反正切函数加上两段模拟饱和情况的直线两种方法建立了Yd11、Ynd11、Yny0和Yy0四种最常用接线方式下三相变压器的数学仿真模型,并在Matlab下仿真实现。通过对三相励磁涌流和磁滞回环波形分析,三相励磁涌流的特征分析,总结出影响三相变压器励磁涌流地主要因素。最后,分析了两种方法的优劣,建立比较完善的变压器仿真模型。 关键字: 变压器;差动保护;励磁涌流;内部故障;外部故障;波形分析;仿真;数学模型

基于Matlab、Simulink 的AM通信系统仿真设计与研究

天津理工大学计算机与通信工程学院通信工程专业设计说明书 基于Matlab/Simulink 的AM通信系统仿真设计与研究 姓名杜艳玮 学号 20092177 班级 09通信-2 指导老师赵健 日期2012/12/16

目录 摘要 (3) 第一章前言 (4) 1.1专业设计任务及要求 (4) 1.2 Matlab简介 (4) 1.4 通信系统模型 (6) 第二章 AM调制原理及仿真 (7) 2.1 AM调制原理 (7) 2.1.1 AM介绍 (7) 2.1.2 AM调制原理框图 (8) 2.2 AM调制方式的Matlab仿真 (8) 2.2.1 载波信号分析 (8) 2.2.2 AM调制 (9) 2.3 AM调制方式Matlab-simulink仿真 (10) 2.3.1 仿真框图 (10) 2.3.2 仿真结果 (11) 第三章 AM解调 (13) 3.1 AM解调原理 (13) 3.2 AM解调方式Matlab仿真 (13) 3.2.1 滤波前AM解调信号波形 (13) 3.2.2 AM调制信号解调 (15) 3.3 AM解调方式的Matlab-simulink仿真 (17) 3.3.1 仿真框图 (17) 3.3.2 仿真结果 (18) 第四章结论 (19) 参考文献 (20)

摘要 学习AM调制原理,AM调制就是由调制信号去控制高频载波的幅度,使之随调制信号作线性变化的过程。在波形上,幅度已调信号的幅度随基带信号的规律而呈正比地变化。解调方法利用相干解调。解调就是实现频谱搬移,通过相乘器与载波相乘来实现。通过相干解调,通过低通滤波器得到解调信号。相干解调时,接收端必须提供一个与接受的已调载波严格同步的本地载波,它与接受的已调信号相乘后,经低通滤波器取出低频分量,得到原始的基带调制信号。通过信号的功率谱密度的公式,得到功率谱密度。利用Matlab和Matlab-Simulink仿真建立AM调制的通信系统模型,用Matlab仿真程序画出调制信号、载波、已调信号、相干解调之后信号的波形以及功率频谱密度,分析所设计系统性能。用Matlab-Simulink仿真建立基于相干解调的AM仿真模型,详细叙述模块参数的设置,分析仿真结果。 关键字:AM调制相干解调 Matlab仿真 Matlab-Simulink仿真

用MATLAB处理线性系统数学模型

实验一 用MATLAB 处理线性系统数学模型 [说明] 一个控制系统主要由被控对象、测量装置、控制器和执行器四大部分构成。MATLAB 软件的应用对提高控制系统的分析、设计和应用水平起着十分重要的作用。采用MATLAB 软件仿真的关键问题之一是在MATLAB 软件平台上怎样正确表示被控对象的数学模型。 [实验目的] 1.了解MATLAB 软件的基本特点和功能; 2.掌握线性系统被控对象传递函数数学模型在MATLAB 环境下的表示方法及转换; 3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法; 4. 掌握在SIMULINK 环境下系统结构图的形成方法及整体传递函数的求取方法; 5.了解在MATLAB 环境下求取系统的输出时域表达式的方法。 [实验指导] 一、被控对象模型的建立 在线性系统理论中,一般常用的描述系统的数学模型形式有: (1)传递函数模型——有理多项式分式表达式 (2)传递函数模型——零极点增益表达式 (3)状态空间模型(系统的内部模型) 这些模型之间都有着内在的联系,可以相互进行转换。 1、传递函数模型——有理多项式分式表达式 设系统的传递函数模型为 111011 1......)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++= =---- 对线性定常系统,式中s 的系数均为常数,且a n 不等于零。 这时系统在MATLAB 中可以方便地由分子和分母各项系数构成的两个向量唯一地确定,这两个向量常用num 和den 表示。 num=[b m ,b m-1,…,b 1,b 0] den=[a n ,a n-1,…,a 1,a 0]

倒立摆系统的建模及Matlab仿真

倒立摆系统的建模及Matlab 仿真 1.系统的物理模型 考虑如图(1)面内运动的二维问题。 图(1)倒立摆系统 假定倒立摆系统的参数如下。 摆杆的质量:m=0.1g 摆杆的长度:l =1m 小车的质量: M=1kg 重力加速度:g=9.8m/2s 摆杆的质量在摆杆的中心。 设计一个控制系统,使得当给定任意初始条件(由干扰引起)时,最大超调量δ ≤10%,调节时 间ts ≤4s ,通过小车的水平运动使倒立摆保持在垂直位置。 2.系统的数学模型 2.1建立倒置摆的运动方程并将其线性化。 为简化问题,在数学模型中首先假设:1)摆杆为刚体;2)忽略摆杆与支点之间的摩擦;3)忽略小车与接触面间的摩擦。 设小车瞬时位置为z,摆心瞬时位置为(θsin l z +),在u 作用下,小车及摆均产生加速远动,根据牛顿第二定律,在水平直线远动方向的惯性力应与u 平衡,于是有 u l z dt d m dt z d M =++)sin (22 22θ 即: u ml ml z m M =-++θθθθsin cos )(2&&&&& ① 绕摆轴转动的惯性力矩与重力矩平衡,因而有

θθθsin cos )sin (22mgl l l z dt d m =??? ????+ 即: θθθθθθθsin cos sin cos cos 22g l l z =-+&&&&& ② 以上两个方程都是非线性方程,为求得解析解,需作线性化处理。由于控制的目的是保持倒立摆直 立,在试驾合适的外力条件下,假定θ很小,接近于零时合理的,则1cos ,sin ≈≈θθθ,且可忽略θ θ2&项。于是有 u ml z m M =++θ&&&& )( ③ θθg l z =+&&&& ④ 联立求解可得 u Ml Ml m M u M M mg z 1)(1 -+=+- =θθθ&&&& 2.2列写系统的状态空间表达式。 选取系统变量4321,,,x x x x , []T x x x x x 4321,,,=则 u Ml x Ml m M x x x u M x M mg x x x 1 )(134433221-+= =+-==&&&& 即 []Cx x x y Bu Ax u Ml M x Ml g m M M mg z z dt d x ===+=?????? ? ???????-+?????????? ??? ? +- =???? ????????=000110100)(0 010 0000000 1 1θθ&&& 代入数据计算得到: [][]0,0001,1010,01100 1000010000 1 0==-=? ? ??? ? ??? ???-=D C B A T

自动控制原理MATLAB仿真实验报告

实验一 MATLAB 及仿真实验(控制系统的时域分析) 一、实验目的 学习利用MATLAB 进行控制系统时域分析,包括典型响应、判断系统稳定性和分析系统的动态特性; 二、预习要点 1、 系统的典型响应有哪些 2、 如何判断系统稳定性 3、 系统的动态性能指标有哪些 三、实验方法 (一) 四种典型响应 1、 阶跃响应: 阶跃响应常用格式: 1、)(sys step ;其中sys 可以为连续系统,也可为离散系统。 2、),(Tn sys step ;表示时间范围0---Tn 。 3、),(T sys step ;表示时间范围向量T 指定。 4、),(T sys step Y =;可详细了解某段时间的输入、输出情况。 2、 脉冲响应: 脉冲函数在数学上的精确定义:0 ,0)(1)(0 ?==?∞ t x f dx x f 其拉氏变换为: ) ()()()(1 )(s G s f s G s Y s f === 所以脉冲响应即为传函的反拉氏变换。 脉冲响应函数常用格式: ① )(sys impulse ; ② ); ,(); ,(T sys impulse Tn sys impulse ③ ),(T sys impulse Y = (二) 分析系统稳定性 有以下三种方法: 1、 利用pzmap 绘制连续系统的零极点图; 2、 利用tf2zp 求出系统零极点; 3、 利用roots 求分母多项式的根来确定系统的极点 (三) 系统的动态特性分析 Matlab 提供了求取连续系统的单位阶跃响应函数step 、单位脉冲响应函数impulse 、零输入响应函数initial 以及任意输入下的仿真函数lsim.

matlab控制系统传递函数模型

MATLAB及 控制系统仿真 实验 班级:智能0702

姓名:刘保卫 学号: 06074053(18) 实验四控制系统数学模型转换及MATLAB实现 一、实验目的 熟悉MATLAB 的实验环境。 掌握MATLAB 建立系统数学模型的方法。 二、实验内容 (注:实验报告只提交第2 题) 1、复习并验证相关示例。 (1)系统数学模型的建立 包括多项式模型(Transfer Function,TF),零极点增益模型(Zero-Pole,ZP),状态空间模型 (State-space,SS); (2)模型间的相互转换 系统多项式模型到零极点模型(tf2zp),零极点增益模型到多项式模型(zp2tf),状态空间模 型与多项式模型和零极点模型之间的转换(tf2ss,ss2tf,zp2ss…); (3)模型的连接 模型串联(series),模型并联(parallel),反馈连接(feedback) 2、用MATLAB 做如下练习。 (1)用2 种方法建立系统的多项式模型。 程序如下: %建立系统的多项式模型(传递函数) %方法一,直接写表达式 s=tf('s') Gs1=(s+2)/(s^2+5*s+10) %方法二,由分子分母构造 num=[1 2]; den=[1 5 10]; Gs2=tf(num,den) figure pzmap(Gs1) figure pzmap(Gs1) grid on 运行结果:

易知两种方法结果一样 Transfer function: s Transfer function: s + 2 -------------- s^2 + 5 s + 10 Transfer function: s + 2 -------------- s^2 + 5 s + 10 (2)用2 种方法建立系统的零极点模型和多项式模型。 程序如下: %方法一 s=tf('s') Gs1=10*(s+1)/((s+1)*(s+5)*(s+10)) % zpk模型 ZPK=zpk(Gs1) %方法二 % tf模型 num=[10 10]; den=conv([1 1],conv([1 5],[1 10])); Gs2=tf(num,den) % zpk模型 ZPK=zpk(Gs2) figure pzmap(Gs1) figure pzmap(Gs1) grid on 运行结果: 易知两种方法结果一样 Transfer function: s Transfer function:

四旋翼飞行器建模与仿真Matlab

四轴飞行器的建模与仿真 摘要 四旋翼飞行器是一种能够垂直起降的多旋翼飞行器,它非常适合近地侦察、监视的任务,具有广泛的军事和民事应用前景。本文根据对四旋翼飞行器的机架结构和动力学特性做详尽的分析和研究,在此基础上建立四旋翼飞行器的动力学模型。四旋翼飞行器有各种的运行状态,比如:爬升、下降、悬停、滚转运动、俯仰运动、偏航运动等。本文采用动力学模型来描述四旋翼飞行器的飞行姿态。在上述研究和分析的基础上,进行飞行器的建模。动力学建模是通过对飞行器的飞行原理和各种运动状态下的受力关系以及参考牛顿-欧拉模型建立的仿真模型,模型建立后在Matlab/simulink软件中进行仿真。 关键字:四旋翼飞行器,动力学模型,Matlab/simulink Modeling and Simulating for a quad-rotor aircraft ABSTRACT The quad-rotor is a VTOL multi-rotor aircraft. It is very fit for the kind of reconnaissance mission and monitoring task of near-Earth, so it can be used in a wide range of military and civilian applications. In the dissertation, the detailed analysis and research on the rack structure and dynamic characteristics of the laboratory four-rotor aircraft is showed in the dissertation. The dynamic model of the four-rotor aircraft areestablished. It also studies on the force in the four-rotor aircraft flight principles and course of the campaign to make the research and analysis. The four-rotor aircraft has many operating status, such as climbing, downing, hovering and rolling movement, pitching movement and yawing movement. The dynamic model is used to describe the four-rotor aircraft in flight in the dissertation. On the basis of the above analysis, modeling of the aircraft can be made. Dynamics modeling is to build models under the principles of flight of the aircraft and a variety of state of motion, and Newton - Euler model with reference to the four-rotor aircraft.Then the simulation is done in the software of Matlab/simulink. Keywords: Quad-rotor,The dynamic mode, Matlab/simulink

基于Matlab的电力系统自动重合闸建模与仿真讲解

实践课程设计报告 课程名称:Matlab上机 题目:基于MATLAB的电力系统自动重合闸 所在学院: 学科专业: 学号: 学生姓名: 指导教师: 二零一五年四

摘要 分析了单相自动重合闸的工作特性,并利用MATLAB软件搭建了220kv电力系统的自动重合闸的仿真模型,模拟系统发生单相接地、三相相间短路故障,断路器跳闸后自动重合闸的工作过程。 关键词:电力系统自动重合闸MATLAB 短路故障

目录 1 引言 (1) 2 模型中主要模块的选择和参数 (2) 2.1同步发电机模块 (2) 2.2 变压器模块 (2) 2.3 输电线路模块 (3) 2.3.1 150km线路模块 (3) 2.3.2 100km线路模块 (4) 2.1 电源模块 (5) 2.3 负载模块 (6) 2.3.1 三相串联RLC负载Load1 (6) 2.3.2 三相串联RLC负载Load4 (7) 2.4 断路器模块 (8) 2.5 测量模块 (9) 2.6 显示模块 (9) 2.7 其他模块 (9) 2.8 仿真参数设置 (10) 3 仿真结果及波形分析 (10) 3.1 线路单相重合闸 (10) 3.2 线路三相重合闸 (12) 总结 (13) 参考文献 (14)

基于Matlab的电力系统自动重合闸 1 引言 随着技术的发展,电力系统的规模越来越复杂。从实际条件与安全角度考虑,不太可能进行电力系统科研实验,因而电力系统数字仿真成为了电力系统研究、规划和设计的重要手段。电力系统仿真软件如BPA,EMTP,PSCAD/ EMTDC ,NETOMAC,PSASP,MATLAB等,正向着多功能,具有更高的可移植性方向发展。其中在MATLAB 中,电力系统模型可以在Simulink环境下直接搭建,Simulink电力系统元件库中有多种多样的电气模块,电力系统大多数元件都包含。其中,可以直接调用。电力系统大部分故障是瞬时性故障,因此采用自动重合闸后,电力系统发生瞬时性故障时供电的连续性、系统的稳定性得到很大的提高。此外,自动重合闸有效纠正由于断路器或继电保护误动作引起的误跳闸。 本文以MATLAB为工具,对简单系统的线路单相重合闸和线路三相重合闸进行分析与研究。 1.1 仿真模型的设计和实现 电力系统正常运行时可以认为是三相对称的,即电压、电流对称,且具有正弦波形。下图为理想情况下220kv电力系统的模型。 图 1 220kv电力系统模型

Matlab通信系统建模与仿真例题源代码-第三章

% ch3example1A.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=buttord(f_p,f_s,R_p,R_s, 's'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=butter(n, Wn, 's'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example1B.m clear; f_p=2400; f_s=5000; R_p=3; R_s=25; % 设计要求指标 [n, fn]=ellipord(f_p,f_s,R_p,R_s,'s'); % 计算阶数和截止频率 Wn=2*pi*fn; % 转换为角频率 [b,a]=ellip(n,R_p,R_s,Wn,'s'); % 计算H(s) f=0:100:10000; % 计算频率点和频率范围 s=j*2*pi*f; % s=jw=j*2*pi*f H_s=polyval(b,s)./polyval(a,s); % 计算相应频率点处H(s)的值 figure(1); subplot(2,1,1); plot(f, 20*log10(abs(H_s))); % 幅频特性 axis([0 10000 -40 1]); xlabel('频率Hz');ylabel('幅度dB'); subplot(2,1,2); plot(f, angle(H_s)); % 相频特性 xlabel('频率Hz');ylabel('相角rad'); figure(2); freqs(b,a); % 也可用指令freqs直接画出H(s)的频率响应曲线。 % ch3example2A.m f_N=8000; % 采样率 f_p=2100; f_s=2500; R_p=3; R_s=25; % 设计要求指标 Ws=f_s/(f_N/2); Wp=f_p/(f_N/2); % 计算归一化频率 [n, Wn]=buttord(Wp,Ws,R_p,R_s); % 计算阶数和截止频率 [b,a]=butter(n, Wn); % 计算H(z) figure(1); freqz(b,a, 1000, 8000) % 作出H(z)的幅频相频图, freqz(b,a, 计算点数, 采样率)

一阶、二阶系统时域和频域仿真

西安交通大学 基于MATLAB/Simulink 的一阶、二阶系统的时域和频 域仿真 ——以单位阶跃信号为输入信号 日期:2013年4月 一阶系统时域和频域仿真 1、建立一阶系统典型数学模型 ()1 1 G s Ts =+ 2、建立simulink 仿真方框图

1T.s+1 Transfer Fcn Step Scope ① 时间常数T=1时,一阶系统时域响应为 12345678 910 00.5 1 一阶系统时域相应(T=1) Matlab 程序: %一阶系统仿真编程 num=[1]; den=[1 1]; bode(num,den); grid on ; gtext('低频段频率-20dB/dec'); 运行程序,有时间常数T=1时,一阶系统的频域响应为

10 -210 -1 10 10 1 10 2 -90-45 一阶系统频域响应 P h a s e (d e g ) Bode Di a gram Frequency (rad/s) -40-30-20-100 低频段斜率-20dB/dec System: sys Frequency (rad/s): 1.01Magni t ude (dB): -3.07 M a g n i t u d e (d B ) ② 时间常数T=3时,一阶系统单位阶跃时域响应 12345678910 00.5 1 一阶系统单位阶跃响应(T=3) Matlab 程序: %一阶系统仿真编程 num=[1]; den=[3 1]; bode(num,den);

grid on ; gtext('低频段频率-20dB/dec'); 运行程序,有时间常数T=3时,一阶系统的频域响应为 10 -210 -1 10 10 1 -90-45 P h a s e (d e g ) Bode Di a gram Frequency (rad/s) -30-20-100 低频段频率-20dB/dec System: sys Frequency (rad/s): 0.334Magni t ude (dB): -3.03 M a g n i t u d e (d B ) 3、分析以上一阶系统在不同时间常数下的单位阶跃响应,可以看出时间常数越小,系统响应越快;而且一阶系统的转角频率为1/T ,在转角频率以上时,幅频特性曲线以-20dB/dec 下降,而相频特性以0°和90°为渐近线。

相关文档
最新文档