高考物理新力学知识点之万有引力与航天真题汇编及解析(1)

高考物理新力学知识点之万有引力与航天真题汇编及解析(1)
高考物理新力学知识点之万有引力与航天真题汇编及解析(1)

高考物理新力学知识点之万有引力与航天真题汇编及解析(1)

一、选择题

1.已知月球半径为R ,飞船在距月球表面高度为R 的圆轨道上绕月飞行,周期为T 。万有引力常量为G ,则( )

A .月球质量为23

2

16R GT

π B .月球表面重力加速度为22

32R

T π

C .月球密度为

2

3GT π

D .月球第一宇宙速度为

22R

T

π 2.若人造卫星绕地球做匀速圆周运动,则离地面越近的卫星( ) A .线速度越大

B .角速度越小

C .加速度越小

D .周期越大

3.在地球同步轨道上等间距布置三颗地球同步通讯卫星,就可以让地球赤道上任意两位置间实现无线电通讯,现在地球同步卫星的轨道半径为地球半径的6.6倍。假设将来地球的自转周期变小,但仍要仅用三颗地球同步卫星实现上述目的,则地球自转的最小周期约为 A .5小时

B .4小时

C .6小时

D .3小时

4.关于地球同步通讯卫星,下列说法中正确的是( ) A .它的轨道可以是椭圆

B .各国发射的这种卫星轨道半径都一样

C .它不一定在赤道上空运行

D .它运行的线速度一定大于第一宇宙速度

5.由于地球自转和离心运动,地球并不是一个绝对的球形(图中虚线所示),而是赤道部分凸起、两极凹下的椭球形(图中实线所示),A 点为地表上地理纬度为θ的一点,在A 点有一静止在水平地面上的物体m ,设地球对物体的万有引力仍然可看做是质量全部集中于地心O 处的质点对物体的引力,地球质量为M ,地球自转周期为T ,地心O 到A 点距离为R ,关于水平地面对该物体支持力的说法正确的是( )

A .支持力的方向沿OA 方向向上

B .支持力的方向垂直于水平地面向上

C .支持力的大小等于

2

GMm

R D .支持力的大小等于2

22cos GMm m R R T πθ??- ???

6.如图为中国月球探测工程的形象标志,象征着探测月球的终极梦想。假想人类不断向月

球“移民”,经过较长时间后,月球和地球仍可视为均匀球体,地球的总质量仍大于月球的总质量,月球仍按原轨道运行,则以下说法中正确的是( )

A .月地之间的万有引力将变大

B .月球绕地球运动的周期将变小

C .月球绕地球运动的向心加速度将变大

D .月球表面的重力加速度将变小

7.如图所示,一颗人造卫星原来在椭圆轨道1绕地球E 运行,在P 点变轨后进入轨道2做匀速圆周运动.下列说法正确的是: ( )

A .不论在轨道1还是轨道2运行,卫星在P 点的速度都相同

B .不论在轨道1还是轨道2运行,卫星在P 点的加速度都相同

C .卫星在轨道1的任何位置都具有相同加速度

D .卫星在轨道2的任何位置都具有相同动量(动量P =mv ,v 为瞬时速度) 8.关于做匀速圆周运动的人造地球卫星,下列说法中正确的是( ) A .半径越大,周期越大 B .半径越大,周期越小

C .所有卫星的周期都相同,与半径无关

D .所有卫星的周期都不同,与半径无关

9.设想把质量为m 的物体放置地球的中心,地球质量为M ,半径为R ,则物体与地球间的万有引力是( ) A .零

B .无穷大

C .2Mm

G

R

D .无法确定

10.一探月卫星的轨道是圆形的,且贴近月球表面,已知月球的质量约为地球质量的181

,月球半径约为地球半径的1

4

,地球上的第一宇宙速度约为7.9km/s ,则该探月卫星绕月运行的速率约为( ) A .0.4km/s B .1.8km/s C .11km/s

D .36km/s

11.2019年春节期间上映的国产科幻电影《流浪地球》,获得了口碑和票房双丰收。影片中人类为了防止地球被膨胀后的太阳吞噬,利用巨型发动机使地球公转轨道的半径越来越大,逐渐飞离太阳系,在飞离太阳系的之前,下列说法正确的是( ) A .地球角速度越来越大

B .地球线速度越来越大

C .地球向心加速度越来越大

D .地球公转周期越来越大

12.某卫星绕地球做圆周运动时,其动能为E k ,该卫星做圆周运动的心加速度为近地卫星做圆周运动向心加速度的1

9

,已知地球的半径为R ,则该卫星在轨运行时受到地球引力的大小为 A .

23K

E R

B .

3K

E R

C .

29K

E R

D .

9K

E R

13.2018年2月,我国500 m 口径射电望远镜(天眼)发现毫秒脉冲星“J0318+0253”,其自转周期T =5.19 ms ,假设星体为质量均匀分布的球体,已知万有引力常量为

11226.6710N m /kg -??.以周期T 稳定自转的星体的密度最小值约为( )

A .93510kg /m ?

B .123510kg /m ?

C .153510kg /m ?

D .183510kg /m ?

14.地球的质量是月球质量的81倍,若地球吸引月球的力的大小为F ,则月球吸引地球的

力的大小为( ) A .

81

F B .F C .9F D .81F

15.2019年11月5日,我国成功发射了“北斗三号卫星导航系统”的第3颗倾斜地球同步轨道卫星。“北斗三号卫星导航系统”由静止地球同步轨道卫星、倾斜地球同步轨道卫星、中圆地球轨道卫星组成。“同步轨道”卫星的轨道周期等于地球自转周期,卫星运行轨道面与地球赤道面的夹角叫做轨道倾角。根据轨道倾角的不同,可将“同步轨道”分为静止轨道(倾角为零)、倾斜轨道(倾角不为零)和极地轨道。根据以上信息,下列说法中正确的是

A .倾斜地球同步轨道卫星的高度大于静止地球同步轨道卫星的高度

B .倾斜地球同步轨道卫星的线速度小于静止地球同步轨道卫星的线速度

C .可以发射一颗倾斜地球同步轨道卫星,静止在北京上空

D .可以发射一颗倾斜地球同步轨道卫星,每天同一时间经过北京上空

16.一颗卫星绕地球沿椭圆轨道运动,A 、B 是卫星运动的远地点和近地点.下列说法中正确的是( )

A .卫星在A 点的角速度大于

B 点的角速度 B .卫星在A 点的加速度小于B 点的加速度

C .卫星由A 运动到B 过程中动能减小,势能增加

D .卫星由A 运动到B 过程中引力做正功,机械能增大

17.2017年6月19日,“中星9A ”卫星在西昌顺利发射升空。卫星变轨如图所示,卫星先沿椭圆轨道Ⅰ飞行,后在远地点Q 改变速度成功变轨进入地球同步轨道Ⅱ,P 点为椭圆轨道近地点。下列说法正确的是( )

A .卫星在椭圆轨道Ⅰ运行时,在P 点的速度等于在Q 点的速度

B .卫星在椭圆轨道Ⅰ的Q 点加速度大于在同步轨道Ⅱ的Q 点的加速度

C .卫星在椭圆轨道Ⅰ的Q 点速度小于在同步轨道Ⅱ的Q 点的速度

D .卫星耗尽燃料后,在微小阻力的作用下,机械能减小,轨道半径变小,动能变小 18.若地球绕太阳公转周期及公转轨道半径分别为T 和R ,月球绕地球公转周期和公转轨道半径分别为t 和r ,则太阳质量与地球质量之比为( )

A .3232R T r t

B .3232R t r T

C .3223R t r T

D .2323R T r t

19.有研究表明300年后人类产生的垃圾将会覆盖地球1米厚.有人提出了“将人类产生的垃圾分批转移到无人居住的月球上”的设想,假如不考虑其他星体的影响,且月球仍沿着原来的轨道绕地球作匀速圆周运动,运用您所学物理知识,分析垃圾转移前后,下列说法中正确的是

A .地球与月球间的万有引力会逐渐减小

B .月球绕地球运行的线速度将会逐渐变小

C .月球绕地球运行的加速度将会逐渐变大

D .月球绕地球运行的周期将变小

20.如图所示,A 、B 、C 三颗人造地球卫星绕地球做匀速圆周运动,已知三颗卫星的质量关系为A B C m m m =<,轨道半径的关系为A B C r r r <=,则三颗卫星( )

A .线速度大小关系为A

B

C v v v <= B .加速度大小关系为A B C a a a >= C .向心力大小关系为A B C F F F =<

D .周期关系为A B C T T T >=

21.有a 、b 、c 、d 四颗地球卫星,a 还未发射,在地球赤道上随地球表面一起转动, b 处于地面附近近地轨道上正常运动,c 是地球同步卫星,d 是高空探测卫星,各卫星排列位置如图,则有

A .a 的向心加速度等于重力加速度g

B .c 在4 h 内转过的圆心角是 π / 6

C .b 在相同时间内转过的弧长最长

D .d 的运动周期有可能是20 h

22.某空间站在半径为R 的圆形轨道上运行,周期为T :另有一飞船在半径为r 的圆形轨道上运行,飞船与空间站的绕行方向相同。当空间站运行到A 点时,飞船恰好运行到B 点,A 、B 与地心连线相互垂直,此时飞船经极短时间的点火加速,使其轨道的近地点为B 、远地点与空间站的轨道相切于C 点,如图所示。当飞船第一次到达C 点时,恰好与空间站相遇。飞船上有一弹簧秤悬挂一物体。由以上信息可判定:

A .某空间站的动能小于飞船在半径为r 的圆形轨道上运行时的动能

B .当飞船与空间站相遇时,空间站的加速度大于飞船的加速度

C .飞船在从B 点运动到C 点的过程中,弹簧秤的示数逐渐变小(不包括点火加速阶段)

D .空间站的圆形轨道半径R 与飞船的圆形轨道半径r 的关系满足:321)R 23.已知地球质量大约是月球质量的8l 倍,地球半径大约是月球半径的4倍.不考虑地球、月球自转的影响,由以上数据可推算出 ( ) A .地球的平均密度与月球的平均密度之比约为9:8 B .地球表面重力加速度与月球表面重力加速度之比约为9:4

C .靠近地球表面运行的航天器的速度与靠近月球表面运行的航天器的速度之比约为81:4

D .靠近地球表面运行的航天器的周期与靠近月球表面运行的航天器的周期之比约为8:9 24.“嫦娥四号”是人类历史上首次在月球背面软着陆和勘测。假定测得月球表面物体自由落体加速度g ,已知月球半径R 和月球绕地球运转周期T ,引力常数为G .根据万有引力定律,就可以“称量”出月球质量了。月球质量M 为( )

A .2

GR M g

= B .G

gR M 2

= C .23

2

4R M GT π= D .23

2

4T R M G

π=

25.设地球表面的重力加速度为0g ,物体在距离地球表面3(R R 是地球的半径)处,由于地球的作用而产生的加速度为g ,则0

g

g 为( ) A .1

B .

19 C .

14

D .

116

【参考答案】***试卷处理标记,请不要删除

一、选择题 1.B 解析:B 【解析】 【分析】 【详解】

A .根据万有引力定律得

22242(2)Mm G m R R T

π=? 解得月球质量为23

2

32R GT π,故A 错误;

B .月球表面重力加速度

2

Mm

G

mg R = 解得22

32R T π,故B 正确;

C .月球密度为

232443

M GT R πρπ=

=

故C 错误;

D .月球第一宇宙速度为

22Mm v G m R R

=

解得R

v T

=

,故D 错误。 故选B 。

2.A

解析:A 【解析】 【详解】

人造卫星绕地球做匀速圆周运动时,由地球的万有引力提供向心力,则有

222

224Mm v G m m r ma m r r r T

πω==== 则得

v =

,ω=2GM a r =,2T π= 可见,轨道半径越小,线速度、角速度、加速度越大,而周期越小,得知A 正确BCD 错误。 故选A 。

3.B

解析:B 【解析】 【详解】

设地球的半径为R ,则地球同步卫星的轨道半径为r =6.6R ,已知地球的自转周期T =24h , 地球同步卫星的转动周期与地球的自转周期一致,若地球的自转周期变小,则同步卫星的转动周期变小。由

2

224GMm mR R T

π= 公式可知,做圆周运动的半径越小,则运动周期越小。由于需要三颗卫星使地球赤道上任意两点之间保持无线电通讯,所以由几何关系可知三颗同步卫星的连线构成等边三角形并且三边与地球相切,如图。由几何关系可知地球同步卫星的轨道半径为

r ′=2R

由开普勒第三定律得

'

4h T ==≈

故B 正确,ACD 错误。 故选B 。

4.B

解析:B

【解析】

【分析】

地球同步卫星即地球同步轨道卫星,又称对地静止卫星,是运行在地球同步轨道上的人造卫星,星距离地球的高度约为36000 km,卫星的运行方向与地球自转方向相同、运行轨道为位于地球赤道平面上圆形轨道、运行周期与地球自转一周的时间相等,即23时56分4秒,卫星在轨道上的绕行速度约为3.1公里/秒,其运行角速度等于地球自转的角速度.【详解】

同步卫星运行轨道为位于地球赤道平面上空圆形轨道,轨道固定不变,故AC错误;因为

同步卫星要和地球自转同步,即同步卫星周期T为一定值,根据

2

22

4

GMm

F m r

r T

π

==,

因为T一定值,所以 r 也为一定值,所以同步卫星距离地面的高度是一定值,即各国发射的这种卫星轨道半径都一样,故B正确。第一宇宙速度是近地卫星的环绕速度,也是最大的圆周运动的环绕速度。而同步卫星的轨道半径要大于近地卫星的轨道半径,根据v的表

达式

GM

v

r

=可以发现,同步卫星运行的线速度一定小于第一宇宙速度。故D错误;

故选B。

【点睛】

该题主要考查了地球同步卫星的相关知识点,有四个“定”:定轨道、定高度、定速度、定周期.

5.B

解析:B

【解析】

【分析】

【详解】

AB.根据弹力方向可知,支持力的方向应垂直水平线向上,由于地球是椭球形,则OA方向不会垂直水平线,故A错误,B正确;

CD.设支持力方向与赤道平面夹角为α,物体随地球做圆周运动则有

2

22πcos cos ()cos Mm G

N m R R T

θαθ-= 得

22cos 2πcos ()cos cos GMm N m R R T θθ

αα

=

-?

故CD 错误。 故选B 。

6.A

解析:A 【解析】 【分析】 【详解】

A .设地球质量为M ,月球的质量为m ,两者的总质量为0m ,则月地之间的万有引力为

02

()

GM m M F r -=

由质量的乘积0()M m M -为二次函数关系,其中0()M m M =-时取最大值,但在地球的质量M 不断减小仍大于月球质量,可知函数值在最高点右侧,质量乘积逐渐减小,则万有引逐渐变大,故A 正确; B .由万有引力提供向心力,有

2

22()Mm G

m r r T

π= 可得

2T = 则随着地球质量减小,月球的公转周期变大,故B 错误; C .对月球由万有引力提供向心力,有

2Mm

G

ma r = 可得

2GM a r

=

则随着地球质量减小,月球绕地球运动的向心加速度将变小,故C 错误; D .在月球表面的物体所受引力等于重力,有

1

12

1mm G

m g r = 可得月球表面的重力加速度

311221144

33

Gm G g r G r r r ρππρ=

=?=

则随着月球质量增大,月球的半径1r 增大,则月球表面的重力加速度变大,故D 错误。 故选A 。

7.B

解析:B 【解析】 【详解】

从轨道1变轨到轨道2,需要加速逃逸,故A 错误;根据公式2Mm

G

ma r

=可得:2M

a G

r

=,故只要到地心距离相同,加速度就相同,卫星在椭圆轨道1绕地球E 运行,到地心距离变化,运动过程中的加速度在变化,B 正确C 错误;卫星在轨道2做匀速圆周运动,运动过程中的速度方向时刻在变,所以动量方向不同,D 错误.

8.A

解析:A 【解析】 【分析】

匀速圆周运动的人造地球卫星受到的万有引力提供向心力,用周期表示向心力,得到周期的表达式,根据公式讨论选择项。 【详解】

匀速圆周运动的人造地球卫星受到的万有引力提供向心力,即,因此,周

期为:

∵G 、M 一定,∴卫星的周期与半径有关,半径越大,周期越大,因此,选项B 正确,选项B 、C 、D 错误。 故选:A 。 【点睛】

解答本题要根据人造地球卫星受到的万有引力提供向心力来找准卫星的周期的决定因素,由控制变量法讨论选择。

9.A

解析:A 【解析】 【详解】

设想把物体放到地球中心,此时F =G

2

Mm

r 已不适用,地球的各部分对物体的吸引力是对称的,故物体与地球间的万有引力是零,答案为A.

10.B

解析:B

【分析】 【详解】

对于环绕地球或月球的人造卫星,其所受万有引力即为它们做圆周运动所需向心力,即

2

2Mm v G m r r

=, 所以

v =

第一宇宙速度指的是最小发射速度,同时也是近地卫星的环绕速度,对于近地卫星来说,其轨道半径近似等于中心天体半径,所以

29

v v ===月地, 所以

22

7.9km/s 1.8km/s 99

v v ==?=月地.

A. 0.4km/s ,选项A 不符合题意;

B. 1.8km/s ,选项B 符合题意;

C. 11km/s ,选项C 不符合题意;

D. 36km/s ,选项D 不符合题意; 11.D

解析:D 【解析】 【详解】

人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,2

GMm r =m 2v r =m 2

24T

πr =

mω2r =ma ,角速度ω=

故A 错误;线速度v =B 错误;向心加速度a 2GM

r

=

,地球公转轨道的半径越来越大,地球向心加速度越来越

小,故C 错误;公转周期T =2,地球公转轨道的半径越来越大,地球公转周期越

来越大,故D 正确;

12.A

解析:A

【详解】

近地卫星的向心加速度为g ,轨道半径为R ,则有:

2

GM

g R =

该卫星在轨运动时的加速度大小 1

9

a g =

,由万有引力定律可知, 219GM g r

= 卫星的轨道半径为:

3r R =,

则卫星在轨运行时受到地球的引力:

2k

23E v F m r R

==

, 故A 正确,BCD 错误。 故选:A

13.C

解析:C 【解析】

试题分析;在天体中万有引力提供向心力,即

2

2(2)GMm m R R T

π= ,天体的密度公式343

M M

V R ρπ=

=

,结合这两个公式求解. 设脉冲星值量为M ,密度为ρ

根据天体运动规律知:

2

22()GMm m R R T

π≥ 343

M M

V R ρπ=

=

代入可得:153

510kg /m ρ≈? ,故C 正确;

故选C

点睛:根据万有引力提供向心力并结合密度公式

343

M M V R ρπ=

=求解即可. 14.B

解析:B 【解析】

根据牛顿第三定律,相互作用的两个物体间作用力等大反向作用在同一条直线上,所以地

球吸引月球的力等于月球吸引地球的作用力,故答案选B

15.D

解析:D 【解析】 【详解】

A .倾斜地球同步轨道卫星与静止地球同步轨道卫星具有相同的周期(24h ),则由

2

22()Mm G

m r r T

π=可知,两种卫星的轨道半径相等,即倾斜地球同步轨道卫星的高度等于静止地球同步轨道卫星的高度,选项A 错误; B .两种卫星具有相同的周期和角速度,运转半径相同,则根据v=ωr 可知,两种卫星具有相同的线速度,选项B 错误;

CD .同步卫星相对于地球静止,必须为地球赤道面上的同步卫星,因为倾斜地球同步轨道卫星为倾斜轨道,因此不能与地球保持相对静止,但因为周期总为24h ,则可以每天同一时间经过北京上空,选项C 错误,D 正确; 故选D.

16.B

解析:B 【解析】

试题分析:近地点的线速度较大,结合线速度大小,根据v

r

ω=

比较角速度大小.根据牛顿第二定律比较加速度大小.根据万有引力做功判断动能和势能的变化. 近地点的速度较大,可知B 点线速度大于A 点的线速度,根据v

r

ω=知,卫星在A 点的角速度小于B 点的角速度,故A 错误;根据牛顿第二定律得,2F GM

a m r

=

=,可知卫星在A 点的加速度小于B 点的加速度,故B 正确.卫星沿椭圆轨道运动,从A 到B ,万有引力做正功,动能增加,势能减小,机械能守恒,故CD 错误.

17.C

解析:C 【解析】 【分析】 【详解】

A .卫星在椭圆轨道I 运行时,根据开普勒第二定律知,在P 点的速度大于在Q 点的速度,A 错误;

B .卫星经过Q 点时的加速度由万有引力产生,根据牛顿第二定律得

2

GMm

ma r

= 得

2

GM

a r =

可知,卫星在椭圆轨道I 的Q 点加速度等于在同步轨道Ⅱ的Q 点的加速度,B 错误; C .卫星变轨过程,要在椭圆轨道I 上的Q 点加速然后进入同步轨道II ,因此卫星在椭圆轨道Ⅰ的Q 点的速度小于在同步轨道Ⅱ的Q 点的速度,C 正确;

D .卫星耗尽燃料后,在微小阻力的作用下,机械能变小,轨道半径变小,根据

v =

知速度变大,则动能变大,D 错误。 故选C 。

18.B

解析:B 【解析】 【详解】

地球绕太阳公转,由太阳的万有引力提供地球的向心力,则得:

2

224Mm G m R R T

π= 解得太阳的质量为:232

4R M GT π=

月球绕地球公转,由地球的万有引力提供月球的向心力,则得:

'2

'224mm G m r r t

π= 解得地球的质量为:23

2

4r m Gt

π= 所以太阳质量与地球质量之比32

32M R t m r T

=,故B 正确。

19.B

解析:B 【解析】 【分析】 【详解】

设地球质量为M ,月球质量为m ,地球与月球间的万有引力

2Mm F G

r

= 由于M

m >,M 减小、m 增加、M m +固定,故Mm 会增加,故地球与月球间的万有引

力会逐渐增加,直到两者质量相等为止,A 错误; 万有引力提供向心力,根据牛顿第二定律,有

22

224Mm v G m m r ma r r T

π===

解得

22GM

T v a r

===

由于M 减小,故月球的运行速度减小,向心加速度减小,周期将会增大,故B 正确CD 错误。 故选B 。

20.B

解析:B 【解析】 【详解】

人造卫星绕地球做匀速圆周运动,根据万有引力提供向心力,则有:

2222

4GMm mv m r ma r r T

π?===,

解得:v =,2GM a r =,T =

由题意有:A B C r r r <=,

因此可知线速度大小关系为:A B C v v v >=,加速度大小关系为:A B C a a a >=,周期关系为:A B C T T T <=, 根据2

GMm

F r

=

向和A B C m m m =<可知A B F F >,B C F F <, 故选项B 正确,A 、C 、D 错误.

21.C

解析:C 【解析】

试题分析:同步卫星的周期必须与地球自转周期相同,角速度相同,根据2a r ω=比较a 与c 的向心加速度大小,再比较c 的向心加速度与g 的大小.根据万有引力提供向心力,列出等式得出角速度与半径的关系,分析弧长关系.根据开普勒第三定律判断d 与c 的周期关系.

同步卫星的周期必须与地球自转周期相同,角速度相同,则知a 与c 的角速度相同,根据

2

a r ω=知,c 的向心加速度大.由

2GMm mg r =,得2

GM

g r

=,卫星的轨道半径越大,向心加速度越小,则同步卫星的向心加速度小于b 的向心加速度,而b 的向心加速度约为g ,故知a 的向心加速度小于重力加速度g ,故A 错误;c 是地球同步卫星,周期是24h ,

则c 在4h 内转过的圆心角是3π,故B 错误;由2

2GMm v m r r =,得v =

,卫星的半径越大,速度越小,所以b 的速度最大,在相同时间内转过的弧长最长,故C 正确;由开

普勒第三定律3

2R k T

=知,卫星的半径越大,周期越大,所以d 的运动周期大于c 的周期

24h ,不可能为23h ,故D 错误.

22.D

解析:D 【解析】 【分析】

根据万有引力提供向心力能判断二者圆周运动的线速度大小的关系,但是由于二者质量未知,故无法判断动能的关系;根据牛顿第二定律可知加速度与距离有关,从而判断二者在同一点时的加速度大小关系;飞船飞行过程中处于完全失重状态,所以弹簧秤没有示数;根据开普勒第三定律进行判断即可; 【详解】

A 、当空间站和飞船均做圆周运动时,其万有引力提供向心力,即2

2Mm v G m r r

=

则线速度大小为:v =

,由于空间站的半径大于飞船的半径,故空间站的速度的大小小于飞船的速度大小,由于二者的质量关系未知,故根据动能的公式2

12

k E mv =无法判断二者的动能大小关系,故选项A 错误;

B 、当飞船与空间站相遇时,根据牛顿第二定律有:2Mm G ma R =,即2M

a G R

=,可知二者相遇时其加速度的大小相等,故选项B 错误;

C. 飞船在从B 点运动到C 点的过程中,万有引力为合力,在飞行过程中处于完全失重状态,弹簧秤没有示数,故选项C 错误;

D 、设飞船椭圆轨道的周期为'T ,则根据开普勒第三定律可知:3

32'2

2R r R T T +??

???=

由题可知:'1142

T T =

,联立可以得到:)

1r R =,故选项D 正确。

【点睛】

本题主要考查万有引力定律和开普勒第三定律的应用问题,注意飞船在飞行过程处于完全失重状态,弹簧秤没有示数。

23.D

解析:D 【解析】 【分析】 【详解】

A .密度3

43

M M V R ρπ=

=

,已知地球质量大约是月球质量的81倍,地球半径大约是月球半径的4倍,所以地球的平均密度与月球的平均密度之比约为81:64,故A 错误;

B .根据万有引力等于重力表示出重力加速度得:2Mm G

mg R =得:2

GM

g R =,其中R 为星球半径,M 为星球质量.所以地球表面重力加速度与月球表面重力加速度之比约为81:16.故B 错误;

C .研究航天器做匀速圆周运动,根据万有引力提供向心力,列出等式:2

2Mm v G m R R

=,

解得:v =

R 为星球半径,M 为星球质量,所以靠近地球表面沿圆轨道运行的航天器线速度与靠近月球表面沿圆轨道运行的航天器线速度之比约为9:2,故C 错误;

D .研究航天器做匀速圆周运动,根据万有引力提供向心力,列出等式2

22

4Mm G mR R T

π=

解得:T =其中R 为星球半径,M 为星球质量.所以靠近地球表面沿圆轨道运行

的航天器的周期与靠近月球表面沿圆轨道运行的航天器的周期之比约为8:9,故D 正确.

24.B

解析:B 【解析】 【详解】

AB.在月球表面物体受到的万有引力等于重力,根据

2

GMm

mg R

=, 知

G

gR M 2

= 故A 错误,B 正确;

CD.月球绕地球运动的周期为T ,中心天体是地球,所以求不出月球的质量,故CD 错误。

25.D

解析:D 【解析】 【详解】

根据地球表面重力与万有引力近似相等02

GMm

mg R =

,有地球表面处的重力加速度02

GM

g R =

离地球表面3R ,即离地心距离4R 处,根据牛顿第二定律:2

(4)GMm

mg R =

,02

11

1616

GM g g R =

= 即

01

16

g g =,故ABC 错误,D 正确. 故选D

最新高考物理万有引力与航天解题技巧及经典题型及练习题(含答案)

最新高考物理万有引力与航天解题技巧及经典题型及练习题(含答案) 一、高中物理精讲专题测试万有引力与航天 1.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求: (1)该星球表面的重力加速度; (2)该星球的质量。 【答案】(1)02tan v g t θ= (2)202tan v R Gt θ 【解析】 【分析】 平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】 (1)根据平抛运动知识可得 2 00 122gt y gt tan x v t v α=== 解得02v tan g t α = (2)根据万有引力等于重力,则有 2 GMm mg R = 解得2202v R tan gR M G Gt α == 2.宇宙中存在一些离其他恒星较远的三星系统,通常可忽略其他星体对它们的引力作用,三星质量也相同.现已观测到稳定的三星系统存在两种基本的构成形式:一种是三颗星位于同一直线上,两颗星围绕中央星做囿周运动,如图甲所示;另一种是三颗星位于等边三角形的三个顶点上,并沿外接于等边三角形的囿形轨道运行,如图乙所示.设这三个 星体的质量均为 m ,且两种系统中各星间的距离已在图甲、图乙中标出,引力常量为 G , 则: (1)直线三星系统中星体做囿周运动的周期为多少? (2)三角形三星系统中每颗星做囿周运动的角速度为多少?

【答案】(1)3 45L Gm 23 3Gm L 【解析】 【分析】 (1)两侧的星由另外两个星的万有引力的合力提供向心力,列式求解周期; (2)对于任意一个星体,由另外两个星体的万有引力的合力提供向心力,列式求解角速度; 【详解】 (1)对两侧的任一颗星,其它两个星对它的万有引力的合力等于向心力,则: 222 222()(2)Gm Gm m L L L T π+= 3 45L T Gm ∴=(2)三角形三星系统中星体受另外两个星体的引力作用,万有引力做向心力,对任一颗 星,满足:2 222cos30()cos30L Gm m L ω?=? 解得:3 3Gm L ω 3.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M (4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示) 【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) 2hR t 【解析】 (1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t (2)小球做平抛运动时在竖直方向上有:h= 12 gt 2 ,

高中高考物理试卷试题分类汇编.doc

2019年高考物理试题分类汇编(热学部分) 全国卷 I 33. [物理—选修 3–3]( 15 分) (1)( 5 分)某容器中的空气被光滑活塞封住,容器和活塞绝热性能良好,空气可视 为理想气体。初始时容器中空气的温度与外界相同,压强大于外界。现使活塞缓慢移动,直 至容器中的空气压强与外界相同。此时,容器中空气的温度__________ (填“高于”“低于”或“等于”)外界温度,容器中空气的密度__________ (填“大于”“小于”或“等于”)外界空气 的密度。 (2)( 10分)热等静压设备广泛用于材料加工中。该设备工作时,先在室温下把惰性 气体用压缩机压入到一个预抽真空的炉腔中,然后炉腔升温,利用高温高气压环境对放入炉腔 中的材料加工处理,改善其性能。一台热等静压设备的炉腔中某次放入固体材料后剩余的 容积为 m3,炉腔抽真空后,在室温下用压缩机将10瓶氩气压入到炉腔中。已知每瓶氩气的 容积为×10-2 m3,使用前瓶中气体压强为×107Pa,使用后瓶中剩余气体压强为×106Pa;室温温度为 27 ℃。氩气可视为理想气体。 (i)求压入氩气后炉腔中气体在室温下的压强; (i i )将压入氩气后的炉腔加热到 1 227 ℃,求此时炉腔中气体的压强。 全国卷 II 33. [ 物理—选修 3-3] ( 15 分) (1)( 5分)如 p-V 图所示, 1、2、 3三个点代表某容器中一定量理想气体的三个不同 状态,对应的温度分别是 T1、T2、 T3。用 N1、N2、N3分别表示这三个状态下气体分子在单位 时间内撞击容器壁上单位面积的次数,则N1______N2, T1______T3, N2 ______N3。(填“大于”“小于”或“等于”)

曲线运动万有引力与航天测试题带答案

第4章曲线运动万有引力与航天 一、选择题(本大题共15小题) 1.一个物体受到恒定的合力作用而做曲线运动,则下列说法正确的是 A.物体的速率可能不变 B.物体一定做匀变速曲线运动,且速率一定增大 C.物体可能做匀速圆周运动 D.物体受到的合力与速度的夹角一定越来越小,但总不可能为零 2.一物体在光滑的水平桌面上运动,在相互垂直的x方向和y方向上的分运动速度随时间变化的规律如图1所示.关于物体的运动,下列说法正确的是 图1 A.物体做曲线运动 B.物体做直线运动 C.物体运动的初速度大小是50 m/s D.物体运动的初速度大小是10 m/s 3.小船过河时,船头偏向上游与水流方向成α角,船相对静水的速度为v,其航线恰好垂直于河岸.现水流速度稍有增大,为保持航线不变,且准时到达对岸,下列措施中可行的是 A.增大α角,增大船速v B.减小α角,增大船速v C.减小α角,保持船速v不变 D.增大α角,保持船速v不变 4.(2011·上海市闸北调研)质量为2 kg的质点在x-y平面上做曲线运动,在x方向的速度图象和y方向的位移图象如图2所示,下列说法正确的是

图2 A .质点的初速度为5 m/s B .质点所受的合外力为3 N C .质点初速度的方向与合外力方向垂直 D .2 s 末质点速度大小为6 m/s 5.如图3所示,甲、乙、丙三个轮子依靠摩擦转动,相互之间不打滑,其半径分别为r 1、r 2、r 3.若甲轮的角速度为ω1,则丙轮的角速度为 图3 A.r 1ω1r 3 B.r 3ω1 r 1 C. r 3ω1r 2 D.r 1ω1 r 2 6.如图4所示,轻杆的一端有一个小球,另一端有光滑的固定轴O.现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 表示球到达最高点时杆对小球的作用力.则F 图4 A .一定是拉力 B .一定是推力 C .一定等于0 D .可能是拉力,可能是推力,也可能等于0

高中物理万有引力与航天模拟试题

高中物理万有引力与航天模拟试题 一、高中物理精讲专题测试万有引力与航天 1.一名宇航员到达半径为R 、密度均匀的某星球表面,做如下实验:用不可伸长的轻绳拴一个质量为m 的小球,上端固定在O 点,如图甲所示,在最低点给小球某一初速度,使其绕O 点在竖直面内做圆周运动,测得绳的拉力大小F 随时间t 的变化规律如图乙所示.F 1、F 2已知,引力常量为G ,忽略各种阻力.求: (1)星球表面的重力加速度; (2)卫星绕该星的第一宇宙速度; (3)星球的密度. 【答案】(1)126F F g m -=(212()6F F R m -(3) 128F F GmR ρπ-= 【解析】 【分析】 【详解】 (1)由图知:小球做圆周运动在最高点拉力为F 2,在最低点拉力为F 1 设最高点速度为2v ,最低点速度为1v ,绳长为l 在最高点:2 22mv F mg l += ① 在最低点:2 11mv F mg l -= ② 由机械能守恒定律,得 221211222 mv mg l mv =?+ ③ 由①②③,解得1 2 6F F g m -= (2) 2 GMm mg R = 2GMm R =2 mv R 两式联立得:12()6F F R m -

(3)在星球表面:2 GMm mg R = ④ 星球密度:M V ρ= ⑤ 由④⑤,解得12 8F F GmR ρπ-= 点睛:小球在竖直平面内做圆周运动,在最高点与最低点绳子的拉力与重力的合力提供向心力,由牛顿第二定律可以求出重力加速度;万有引力等于重力,等于在星球表面飞行的卫星的向心力,求出星球的第一宇宙速度;然后由密度公式求出星球的密度. 2.某星球半径为6610R m =?,假设该星球表面上有一倾角为30θ=?的固定斜面体,一质量为1m kg =的小物块在力F 作用下从静止开始沿斜面向上运动,力F 始终与斜面平行,如图甲所示.已知小物块和斜面间的动摩擦因数3 μ= ,力F 随位移x 变化的规律如图乙所示(取沿斜面向上为正方向).已知小物块运动12m 时速度恰好为零,万有引力常量11 226.6710 N?m /kg G -=?,求(计算结果均保留一位有效数字) (1)该星球表面上的重力加速度g 的大小; (2)该星球的平均密度. 【答案】2 6/g m s =, 【解析】 【分析】 【详解】 (1)对物块受力分析如图所示; 假设该星球表面的重力加速度为g ,根据动能定理,小物块在力F 1作用过程中有: 2 11111sin 02 F s fs mgs mv θ--=- N mgcos θ=

高中物理万有引力与航天练习题及答案及解析

高中物理万有引力与航天练习题及答案及解析 一、高中物理精讲专题测试万有引力与航天 1.天文学家将相距较近、仅在彼此的引力作用下运行的两颗恒星称为双星.双星系统在银河系中很普遍.利用双星系统中两颗恒星的运动特征可推算出它们的总质量.已知某双星系统中两颗恒星围绕它们连线上的某一固定点分别做匀速圆周运动,周期均为T ,两颗恒星之间的距离为r ,试推算这个双星系统的总质量.(引力常量为G ) 【答案】 【解析】 设两颗恒星的质量分别为m 1、m 2,做圆周运动的半径分别为r 1、r 2,角速度分别为w 1,w 2.根据题意有 w 1=w 2 ① (1分) r 1+r 2=r ② (1分) 根据万有引力定律和牛顿定律,有 G ③ (3分) G ④ (3分) 联立以上各式解得 ⑤ (2分) 根据解速度与周期的关系知 ⑥ (2分) 联立③⑤⑥式解得 (3分) 本题考查天体运动中的双星问题,两星球间的相互作用力提供向心力,周期和角速度相同,由万有引力提供向心力列式求解 2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v = 【解析】

【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】 (1)月球表面附近的物体做自由落体运动 h =1 2 g 月t 2 月球表面的自由落体加速度大小 g 月=2 2h t (2)若不考虑月球自转的影响 G 2 Mm R =mg 月 月球的质量 2 2 2hR M Gt = 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2 v R 月球的“第一宇宙速度”大小 v 【点睛】 结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v . 3.宇航员在某星球表面以初速度v 0竖直向上抛出一个物体,物体上升的最大高度为h .已知该星球的半径为R ,且物体只受该星球的引力作用.求: (1)该星球表面的重力加速度; (2)从这个星球上发射卫星的第一宇宙速度. 【答案】(1)202v h (2) v 【解析】 本题考查竖直上抛运动和星球第一宇宙速度的计算. (1) 设该星球表面的重力加速度为g ′,物体做竖直上抛运动,则2 02v g h =' 解得,该星球表面的重力加速度20 2v g h '= (2) 卫星贴近星球表面运行,则2 v mg m R '= 解得:星球上发射卫星的第一宇宙速度v v = =

2020年高考物理试题分类汇编 3--4

2020年高考物理试题分类汇编:3--4 1.(2020福建卷).一列简谐波沿x轴传播,t=0时刻的波形如图甲所示,此时质点P正沿y轴负方向运动,其振动图像如图乙所示,则该波的传播方向和波速分别是 A.沿x轴负方向,60m/s B.沿x轴正方向,60m/s C.沿x轴负方向,30 m/s D.沿x轴正方向,30m/s 答案:A 2.(1)(2020福建卷)(6分)在“用双缝干涉测光的波长” 实验中(实验装置如图): ①下列说法哪一个是错误 ......的_______。(填选项前的字母) A.调节光源高度使光束沿遮光筒轴线照在屏中心时,应放 上单缝和双缝 B.测量某条干涉亮纹位置时,应使测微目镜分划中心刻线 与该亮纹的中心对齐 C.为了减少测量误差,可用测微目镜测出n条亮纹间的距离a,求出相邻两条亮纹间距x/(1) V =- a n ②测量某亮纹位置时,手轮上的示数如右图,其示数为___mm。 答案:①A ②1.970 3.(2020上海卷).在光电效应实验中,用单色光照射某种金属表 面,有光电子逸出,则光电子的最大初动能取决于入射光的( )

(A )频率 (B )强度 (C )照射时间 (D )光子数目 答案: A 4.(2020上海卷).下图为红光或紫光通过双缝或单缝所呈现的图样,则( ) (A )甲为紫光的干涉图样 (B )乙为紫光的干涉图样 (C )丙为红光的干涉图样 (D )丁为红光的干涉图样 答案: B 5.(2020上海卷).如图,简单谐横波在t 时刻的波形如实线所示,经过?t =3s ,其波形如虚线所示。已知图中x 1与x 2相距1m ,波的周期为T ,且2T <?t <4T 。则可能的最小波速为__________m/s ,最小周期为__________s 。 答案:5,7/9, 6.(2020天津卷).半圆形玻璃砖横截面如图,AB 为直径,O 点为圆心,在该截面内有a 、b 两束单色可见光从空气垂直于AB 射入玻璃砖,两入射点到O 的距离相等,两束光在半圆边界上反射和折射的情况如图所示,则a 、b 两束光 A .在同种均匀介质中传播,a 光的传播速度较大 B .以相同的入射角从空气斜射入水中,b 光的折射角大 C .若a 光照射某金属表面能发生光电效应,b 光也一定能 D .分别通过同一双缝干涉装置,a 光的相邻亮条纹间距大 解析:当光由光密介质—玻璃进入光疏介质—空气时发生折射或全反射,b 发生全反射说明b 的入射角大于或等于临界角,a 发生折射说明a 的入射角小于临界角,比较可知在玻璃中a 的临界角大于b 的临界角;根据临界角定义有n C 1 sin = 玻璃对 (A ) (B ) (C ) (D )

《万有引力与航天》测试题

一、选择题 1. 对于万有引力定律的表述式2 2 1r m m G F =,下面说法中正确的是( ) A.公式中 G 为引力常量,它是由实验测得的,而不是人为规定的 B.当r 趋近于零时,万有引力趋于无穷大 C. m 1与m 2受到的引力大小总是相等的,方向相反,是一对平衡力 D. m 1与m 2受到的引力总是大小相等的,而与m 1、m 2是否相等无关 2.人造卫星在运行中因受高空稀薄空气的阻力作用,绕地球运转的轨道半径会慢慢减小, 在半径缓慢变化过程中,卫星的运动还可近似当作匀速圆周运动。当它在较大的轨道半径r 1 上时运行线速度为v 1,周期为T 1,后来在较小的轨道半径r 2上时运行线速度为v 2,周期为T 2,则它们的关系是 ( ) A .v 1﹤v 2,T 1﹤T 2 B .v 1﹥v 2,T 1﹥T 2 C .v 1﹤v 2,T 1﹥T 2 D .v 1﹥v 2,T 1﹤T 2 3.下列关于地球同步卫星的说法正确的是 ( ) A .它的周期与地球自转同步,但高度和速度可以选择,高度增大,速度减小 B .它的周期、高度、速度都是一定的 C .我们国家发射的同步通讯卫星定点在北京上空 D .我国发射的同步通讯卫星也定点在赤道上空 4.人造卫星在太空绕地球运行中,若天线偶然折断,天线将 ( ) A .继续和卫星一起沿轨道运行 B .做平抛运动,落向地球 C .由于惯性,沿轨道切线方向做匀速直线运动,远离地球 D .做自由落体运动,落向地球 5. 两个质量均为M 的星体,其连线的垂直平分线为AB 。O 为两星体连线的中点,如图,一个质 量为M 的物体从O 沿OA 方向运动,则它受到的万有引力大小变化情况是( ) A.一直增大 B.一直减小 C.先减小,后增大 D.先增大,后减小 6.土星外层上有一个土星环,为了判断它是土星的一部分还是土星的卫星群,可以测量环中各层的线速度v 与该层到土星中心的距离R 之间的关系来判断 ①若v R ∝,则该层是土星的一部分②2 v R ∝,则该层是土星的卫星群.③若1 v R ∝ ,则该层是土星的一部分④若2 1 v R ∝ ,则该层是土星的卫星群.以上说法正确的是 ( ) A. ①② B. ①④ C. ②③ 4. ②④ 7.假如地球自转速度增大,关于物体重力的下列说法中不正确的是 ( ) A 放在赤道地面上的物体的万有引力不变 B.放在两极地面上的物体的重力不变 C 赤道上的物体重力减小 D 放在两极地面上的物体的重力增大 8.我们研究了开普勒第三定律,知道了行星绕恒星的运动轨道近似是圆形,周期T 的平方与轨道半径 R 的三次方的比为常数,则该常数的大小 ( ) A.只跟恒星的质量有关 B.只跟行星的质量有关 C.跟行星、恒星的质量都有关 D.跟行星、恒星的质量都没关 9.在太阳黑子的活动期,地球大气受太阳风的影响而扩张,这样使一些在大气层外绕地球飞行的太空垃圾被大气包围,而开始下落。大部分垃圾在落地前烧成灰烬,但体积较大的则会落到地面上给我们造成威胁和危害.那么太空垃圾下落的原因是 A .大气的扩张使垃圾受到的万有引力增大而导致的 B .太空垃圾在燃烧过程中质量不断减小,根据牛顿第二定律,向心加速度就会不断增大,所以垃圾落向地面 C .太空垃圾在大气阻力的作用下速度减小,那么它做圆运动所需的向心力就小于实际受到的万有引力,因此过大的万有引力将垃圾拉向了地面 D .太空垃圾上表面受到的大气压力大于下表面受到的大气压力,所以是大气的力量将它推向地面的 10.假如一作圆周运动的人造地球卫星的轨道半径增大到原来的2倍,仍作圆周运动,则 ( ) A. 根据公式v=ωr ,可知卫星的线速度将增大到原来的2倍 B. 根据公式2v F m r =,可知卫星所需要的向心力将减小到原来的1 2 C. 根据公式2Mm F G r =,可知地球提供的向心力将减小到原来的1 4 D. 根据上述B 和C 中给出的公式,可知卫星运动的线速度将减小到原来的 2 2

万有引力与航天测试题

万有引力与航天测试题 一、选择题(每小题4分,共48分。在每小题给出的选项中,只有一个选项符合题意,请将符合题意的选项选出。) 1.对于万有引力定律的表达式F =G 2 21r m m ,下面说法中正确的是( ) A .公式中G 为引力常量,它是由实验测得的,而不是人为规定的 B .当r 趋近于零时,万有引力趋近于无穷大 C .m 1与m 2受到的引力大小不相等,且与m 1、m 2大小有关 D .m 1与m 2受到的引力总是大小相等,方向相反的,是一对平衡力 2.我国发射的风云一号气象卫星是极地卫星,卫星飞过两极上空,其轨道平面与赤道平面垂直,周期为12h ;我国发射的风云二号气象卫星是地球同步卫星,周期是24h ,由此可知,两颗卫星相比较 ( ) A .风云一号气象卫星距地面较近 B .风云一号气象卫星距地面较远 C .风云一号气象卫星的质量较小 D .风云一号气象卫星的运动速度较小 3.人造地球卫星在轨道上作匀速圆周运动,它所受到向心力F 跟轨道半径r 之间的关系是( ) A .由公式r mv F 2=可知F 与r 成反比 B .由公式2r Mm G F =可知F 跟2 r 成反比 C .由公式v m F ??=ω可知F 跟r 无关 D .由公式r m F 2 ω?=可知F 与r 成正比 4.常用的通讯卫星是地球同步卫星,它定位于地球赤道正上方。已知某同步卫星离地面的高度为h ,地球自转的角速度为ω,地球半径为R ,地球表面附近的重力加速度为0g ,该同步卫星运动的加速度的大小为( ) A .0 B .0g C .h 2 ωD .)(2 h R +ω 5.一颗小行星环绕太阳作匀速圆周运动的半径是地球环绕半径的4倍,则它的环绕周期是( ) A. 1年 B. 2年 C. 4年 D. 8年

高考(2015-2019)物理真题分项B4版——专题(五)万有引力与航天(试题版)

专题五 万有引力与航天 1、(2019全国Ⅰ卷)在星球M上将一轻弹簧竖直固定在水平桌面上,把物体P轻放在弹簧上端,P 由静止向下运动,物体的加速度a与弹簧的压缩量x间的关系如图中实线所示。在另一星球N上用完全相同的弹簧,改用物体Q完成同样的过程,其a–x关系如图中虚线所示,假设两星球均为质量均匀分布的球体。已知星球M的半径是星球N的3倍,则() A.M与N的密度相等 B.Q的质量是P的3倍 C.Q下落过程中的最大动能是P的4倍 D.Q下落过程中弹簧的最大压缩量是P的4倍 2、(2019全国Ⅱ卷)2019年1月,我国嫦娥四号探测器成功在月球背面软着陆,在探测器“奔向”月球的过程中,用h表示探测器与地球表面的距离,F表示它所受的地球引力,能够描述F随h变化关系的图像是() 3.(2019全国Ⅲ卷)金星、地球和火星绕太阳的公转均可视为匀速圆周运动,它们的向心加速度大小分别为a金、a地、a火,它们沿轨道运行的速率分别为v金、v地、v火。已知它们的轨道半径R金a地>a火B.a火>a地>a金C.v地>v火>v金D.v火>v地>v金 4、(2019北京卷)2019年5月17日,我国成功发射第45颗北斗导航卫星,该卫星属于地球静止轨道卫星(同步卫星)。该卫星() A.入轨后可以位于北京正上方B.入轨后的速度大于第一宇宙速度 C.发射速度大于第二宇宙速度 D.若发射到近地圆轨道所需能量较少 5、(2019天津卷)2018年12月8日,肩负着亿万中华儿女探月飞天梦想的嫦娥四号探测器成功发射,“实现人类航天器首次在月球背面巡视探测,率先在月背刻上了中国足迹”。已知月球的质量为M、半径为R,探测器的质量为m,引力常量为G,嫦娥四号探测器围绕月球做半径为r的匀速圆周运动时,探测器的() A.周期为 23 4πr GM B.动能为 2 GMm R C.角速度为 3 Gm r D.向心加速度为 2 GM R 6、(2019 江苏卷)1970年成功发射的“东方红一号”是我国第一颗人造地球卫星,该卫星至今仍沿椭圆轨道绕地球运动.如图所示,设卫星在近地点、远地点的速度分别为v1、v2,近地点到地心的距离为r,地球质量为M,引力常量为G.则() A. r GM v v v= > 1 2 1 ,B. r GM v v v> > 1 2 1 , C. r GM v v v= < 1 2 1 , D. r GM v v v> > 1 2 1 , 7、(2018全国Ⅰ卷)2017年,人类第一次直接探测到来自双中子星合并的引力波。根据科学家们复原的过程,在两颗中子星合并前约100 s时,它们相距约400 km,绕二者连线上的某点每秒转动12圈,将两颗中子星都看作是质量均匀分布的球体,由这些数据、万有引力常量并利用牛顿力学知识,可以估算出这一时刻两颗中子星() A. 质量之积 B. 质量之和 C. 速率之和 D. 各自的自转角速度 1

高考物理试题分类汇编

20XX 年高考物理试题分类汇编——电磁感应 (全国卷1)17.某地的地磁场磁感应强度的竖直分量方向向下,大小为54.510-?T 。一灵敏电压表连接在当地入海河段的两岸,河宽100m ,该河段涨潮和落潮时有海水(视为导体)流过。设落潮时,海水自西向东流,流速为2m/s 。下列说法正确的是 A .河北岸的电势较高 B .河南岸的电势较高 C .电压表记录的电压为9mV D .电压表记录的电压为5mV 【答案】BD 【解析】海水在落潮时自西向东流,该过程可以理解为:自西向东运动的导体棒在切割竖直向下的磁场。根据右手定则,右岸即北岸是正极电势高,南岸电势低,D 对C 错。根据法拉第电磁感应定律351092100105.4--?=???==BLv E V, B 对A 错。 【命题意图与考点定位】导体棒切割磁场的实际应用题。 (全国卷2)18.如图,空间某区域中有一匀强磁场,磁感应强度方向水平,且垂直于纸面向里,磁场上边界b 和下边界d 水平。在竖直面内有一矩形金属统一加线圈,线圈上下边的距离很短,下边水平。线圈从水平面a 开始下落。已知磁场上下边界之间的距离大于水平面a 、b 之间的距离。若线圈下边刚通过水平面b 、c (位于磁场中)和d 时,线圈所受到的磁场力的大小分别为b F 、c F 和d F ,则 A.d F >c F >b F B.c F b F >d F D.c F

安培力b F ,由于线圈的上下边的距离很短,所以经历很短的变速运动而进入磁场,以后线圈中磁通量不变不产生感应电流,在c 处不受安培力,但线圈在重力作用下依然加速,因此从d 处切割磁感线所受安培力必然大于b 处,答案D 。 【命题意图与考点定位】线圈切割磁感线的竖直运动,应用法拉第电磁感应定律求解。 (新课标卷)21.如图所示,两个端面半径同为R 的圆柱形铁芯同轴水平放置,相对的端面之间有一缝隙,铁芯上绕导线并与电源连接,在缝隙中形成一匀强磁场.一铜质细直棒ab 水平置于缝隙中,且与圆柱轴线等高、垂直.让铜棒从静止开始自由下落,铜棒下落距离为0.2R 时铜棒中电动势大小为1E ,下落距离为0.8R 时电动势大小为2E ,忽略涡流损耗和边缘效应.关于1E 、2E 的大小和铜棒离开磁场前两端的极性,下列判断正确的是 A 、1E >2E ,a 端为正 B 、1E >2E ,b 端为正 C 、1E <2E ,a 端为正 D 、1 E <2E ,b 端为正 答案:D 解析:根据E BLv =,1E B =?, 2E B =?1E <2E 。又根据右手定则判断电流方向从a 到b ,在电源内部,电流是从负极流向正极的,所以选项D 正确。 (北京卷)19.在如图所示的电路中,两个相同的下灯泡L 1和L 2分别串联一个带铁芯的电感线圈L 和一个滑动变阻器R 。闭合开关S 后,调整R ,使L 1和L 2发光的亮度一样,此时流过两个灯泡的电流为I。然后,断开S。若t '时刻再闭合S,则在t '前后的

第六章《万有引力与航天》测试题(含详细解答)

《万有引力与航天》测试题 一、选择题(每小题4分,全对得4分,部分对的得2分,有错的得0分,共48分。) 1.第一次通过实验比较准确的测出引力常量的科学家是( ) A . 牛顿 B . 伽利略 C .胡克 D . 卡文迪许 2.如图1所示a 、b 、c 是在地球大气层外圆形轨道上运动的3颗卫星,下列说法正确的是( ) A .b 、c 的线速度大小相等,且大于a 的线速度; B .b 、c 的向心加速度大小相等,且大于a 的向心加速度; C .c 加速可追上同一轨道上的b ,b 减速可等候同一轨道上的c ; D .a 卫星由于某种原因,轨道半径变小,其线速度将变大 3.宇宙飞船为了要与“和平号“轨道空间站对接,应该:( ) A.在离地球较低的轨道上加速 B.在离地球较高的轨道上加速 C.在与空间站同一高度轨道上加速 D.不论什么轨道,只要加速就行 4、 发射地球同步卫星时,先将卫星发射至近地圆轨道1,然后经点火, 使其沿椭圆轨道2运行,最后再次点火,将卫星送入同步圆轨道3,轨道1、2相切于Q 点,轨道2、3相切于P 点,如图2所示。则在卫星分别在1、2、3轨道上正常运行时,以下说法正确的是:( ) A .卫星在轨道3上的速率大于在轨道1上的速率。 B .卫星在轨道3上的角速度小于在轨道1上的角速度。 C .卫星在轨道1上经过Q 点时的速度大于它在轨道2 上经过Q 点时的速度。 D .卫星在轨道2上经过P 点时的加速度等于它在轨道3 b a c 地球 图1

上经过P 点时的加速度 5、 宇航员在围绕地球做匀速圆周运动的空间站中会处于完全失重中,下列说法中正确的是 ( ) A.宇航员仍受重力的作用 B.宇航员受力平衡 C.宇航员受的重力正好充当向心力 D.宇航员不受任何作用力 6.某星球质量为地球质量的9倍,半径为地球半径的一半,在该星球表面从某一高度以10 m/s 的初 速度竖直向上抛出一物体,从抛出到落回原地需要的时间为(g 地=10 m/s 2 )( ) A .1s B . 91s C .18 1 s D . 36 1 s 7.假如地球自转速度增大,关于物体重力,下列说法正确的是( ) A 放在赤道地面上的万有引力不变 B 放在两极地面上的物体的重力不变 C 放在赤道地面上物体的重力减小 D 放在两极地面上的物体的重力增加 8、设想把质量为m 的物体放在地球的中心,地球的质量为M ,半径为R ,则物体与地球间的万有引力是( ) A.零 B.无穷大 C.2 GMm R D.无法确定 9.对于质量m 1和质量为m 2的两个物体间的万有引力的表达式12 2m m F G r ,下列说法正确的是 ( ) 和m 2所受引力总是大小相等的 B 当两物体间的距离r 趋于零时,万有引力无穷大 C.当有第三个物体m 3放入之间时,m 1和m 2间的万有引力将增大 D.所受的引力性质可能相同,也可能不同 10地球赤道上的重力加速度为g ,物体在赤道上随地球自转的向心加速度为a ,要使赤道上物 体“飘” 起来,则地球的转速应为原来转速的( )

高考物理万有引力与航天及其解题技巧及练习题(含答案)及解析

高考物理万有引力与航天及其解题技巧及练习题(含答案)及解析 一、高中物理精讲专题测试万有引力与航天 1.如图所示,假设某星球表面上有一倾角为θ=37°的固定斜面,一质量为m =2.0 kg 的小物块从斜面底端以速度9 m/s 沿斜面向上运动,小物块运动1.5 s 时速度恰好为零.已知小物块和斜面间的动摩擦因数为0.25,该星球半径为R =1.2×103km.试求:(sin 37°=0.6,cos 37°=0.8) (1)该星球表面上的重力加速度g 的大小. (2)该星球的第一宇宙速度. 【答案】(1)g=7.5m/s 2 (2)3×103m/s 【解析】 【分析】 【详解】 (1)小物块沿斜面向上运动过程00v at =- 解得:26m/s a = 又有:sin cos mg mg ma θμθ+= 解得:2 7.5m/s g = (2)设星球的第一宇宙速度为v ,根据万有引力等于重力,重力提供向心力,则有: 2 mv mg R = 3310m/s v gR ==? 2.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v t = 【解析】 【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】

万有引力与航天试题附答案

万有引力与航天单元测试题 一、选择题 1.关于日心说被人们接受的原因是 ( ) A.太阳总是从东面升起,从西面落下 B.若以地球为中心来研究的运动有很多无法解决的问题 C.若以太阳为中心许多问题都可以解决,对行星的描述也变得简单 D.地球是围绕太阳运转的 2.有关开普勒关于行星运动的描述,下列说法中正确的是( ) A.所有的行星绕太阳运动的轨道都是椭圆,太阳处在椭圆的一个焦点上 B.所有的行星绕太阳运动的轨道都是圆,太阳处在圆心上 C.所有的行星轨道的半长轴的三次方跟公转周期的二次方的比值都相等 D.不同的行星绕太阳运动的椭圆轨道是不同的 3.关于万有引力定律的适用围,下列说法中正确的是( ) A.只适用于天体,不适用于地面物体 B.只适用于球形物体,不适用于其他形状的物体 C.只适用于质点,不适用于实际物体 D.适用于自然界中任意两个物体之间 4.已知万有引力常量G,要计算地球的质量还需要知道某些数据,现在给出下列各组数据,可以计算出地球质量的是( ) A.地球公转的周期及半径 B.月球绕地球运行的周期和运行的半径 C.人造卫星绕地球运行的周期和速率 D.地球半径和同步卫星离地面的高度 5.人造地球卫星由于受大气阻力,轨道半径逐渐变小,则线速度和周期变化情况是( ) A.速度减小,周期增大,动能减小 B.速度减小,周期减小,动能减小 C.速度增大,周期增大,动能增大 D.速度增大,周期减小,动能增大 6.一个行星,其半径比地球的半径大2倍,质量是地球的25倍,则它表面的重力加速度是地球表面重力加速度的( ) A.6倍B.4倍C.25/9倍D.12倍 7.假如一个做圆周运动的人造卫星的轨道半径增大到原来的2倍仍做圆周运动,则( )

高中物理万有引力与航天专题训练答案及解析

高中物理万有引力与航天专题训练答案及解析 一、高中物理精讲专题测试万有引力与航天 1.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月; (2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v . 【答案】(1)22h g t =月 (2)2 2 2hR M Gt =;2hR v t = 【解析】 【分析】 (1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度; (2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】 (1)月球表面附近的物体做自由落体运动 h =1 2 g 月t 2 月球表面的自由落体加速度大小 g 月=2 2h t (2)若不考虑月球自转的影响 G 2 Mm R =mg 月 月球的质量 2 2 2hR M Gt = 质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2 v R 月球的“第一宇宙速度”大小 2hR v g R t 月== 【点睛】 结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v . 2.地球同步卫星,在通讯、导航等方面起到重要作用。已知地球表面重力加速度为g ,地球半径为R ,地球自转周期为T ,引力常量为G ,求: (1)地球的质量M ; (2)同步卫星距离地面的高度h 。 【答案】(1) (2)

高考物理万有引力与航天练习题

高考物理万有引力与航天练习题 一、高中物理精讲专题测试万有引力与航天 1.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体. (1)求M 、N 间感应电动势的大小E ; (2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由; (3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ? 【解析】 【分析】 【详解】 (1)法拉第电磁感应定律 E=BLv 代入数据得 E =1.54V (2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有 2Mm G mg R = 匀速圆周运动 2 2 ()Mm v G m R h R h =++ 解得 2 2gR h R v =- 代入数据得 h ≈4×105m

【方法技巧】 本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不 大,但第二问很容易出错,要求考生心细,考虑问题全面. 2.载人登月计划是我国的“探月工程”计划中实质性的目标.假设宇航员登上月球后,以初速度v 0竖直向上抛出一小球,测出小球从抛出到落回原处所需的时间为t.已知引力常量为G ,月球的半径为R ,不考虑月球自转的影响,求: (1)月球表面的重力加速度大小g 月; (2)月球的质量M ; (3)飞船贴近月球表面绕月球做匀速圆周运动的周期T . 【答案】(1)02v t ;(2)20 2R v Gt ;(3)2【解析】 【详解】 (1)小球在月球表面上做竖直上抛运动,有0 2v t g =月 月球表面的重力加速度大小0 2v g t = 月 (2)假设月球表面一物体质量为m ,有 2=Mm G mg R 月 月球的质量20 2R v M Gt = (3)飞船贴近月球表面做匀速圆周运动,有 2 22Mm G m R R T π??= ??? 飞船贴近月球表面绕月球做匀速圆周运动的周期 2T π= 3.经过逾6 个月的飞行,质量为40kg 的洞察号火星探测器终于在北京时间2018 年11 月27 日03:56在火星安全着陆。着陆器到达距火星表面高度800m 时速度为60m/s ,在着陆器底部的火箭助推器作用下开始做匀减速直线运动;当高度下降到距火星表面100m 时速度减为10m/s 。该过程探测器沿竖直方向运动,不计探测器质量的变化及火星表面的大气阻力,已知火星的质量和半径分别为地球的十分之一和二分之一,地球表面的重力加速度

高考物理万有引力与航天基础练习题

高考物理万有引力与航天基础练习题 一、高中物理精讲专题测试万有引力与航天 1.如图所示,返回式月球软着陆器在完成了对月球表面的考察任务后,由月球表面回到绕月球做圆周运动的轨道舱.已知月球表面的重力加速度为g ,月球的半径为R ,轨道舱到月球中心的距离为r ,引力常量为G ,不考虑月球的自转.求: (1)月球的质量M ; (2)轨道舱绕月飞行的周期T . 【答案】(1)G gR M 2 = (2)2r r T R g π=【解析】 【分析】 月球表面上质量为m 1的物体,根据万有引力等于重力可得月球的质量;轨道舱绕月球做圆周运动,由万有引力等于向心力可得轨道舱绕月飞行的周期; 【详解】 解:(1)设月球表面上质量为m 1的物体,其在月球表面有:11 2Mm G m g R = 1 12 Mm G m g R = 月球质量:G gR M 2 = (2)轨道舱绕月球做圆周运动,设轨道舱的质量为m 由牛顿运动定律得: 2 2Mm 2πG m r r T ??= ??? 222()Mm G m r r T π= 解得:2r r T R g π= 2.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:

(1)该星球表面的重力加速度; (2)该星球的质量。 【答案】(1)02tan v g t θ= (2)202tan v R Gt θ 【解析】 【分析】 平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度;根据万有引力等于重力求出星球的质量; 【详解】 (1)根据平抛运动知识可得 2 00 122gt y gt tan x v t v α=== 解得02v tan g t α = (2)根据万有引力等于重力,则有 2 GMm mg R = 解得2202v R tan gR M G Gt α == 3.a 、b 两颗卫星均在赤道正上方绕地球做匀速圆周运动,a 为近地卫星,b 卫星离地面高度为3R ,己知地球半径为R ,表面的重力加速度为g ,试求: (1)a 、b 两颗卫星周期分别是多少? (2) a 、b 两颗卫星速度之比是多少? (3)若某吋刻两卫星正好同时通过赤道同--点的正上方,则至少经过多长时间两卫星相距最远? 【答案】(1)2R g ,16R g (2)速度之比为2 87R g π 【解析】 【分析】根据近地卫星重力等于万有引力求得地球质量,然后根据万有引力做向心力求得运动周期;卫星做匀速圆周运动,根据万有引力做向心力求得两颗卫星速度之比;由根据相距最远时相差半个圆周求解; 解:(1)卫星做匀速圆周运动,F F =引向, 对地面上的物体由黄金代换式2Mm G mg R =

物理高考题分类汇编

2019高考物理题分类汇编 一、直线运动 18.(卷一)如图,篮球架下的运动员原地垂直起跳扣篮,离地后重心上升的最大高 度为H 。上升第一个4H 所用的时间为t 1,第四个4H 所用的时间为t 2。不计空气阻力,则21 t t 满足() A .1<21t t <2 B .2<21 t t <3 C .3<21t t <4 D .4<21t t <5 25. (卷二)(2)汽车以某一速度在平直公路上匀速行驶司机忽然发现前方有一警示牌立即刹车。从刹车系统稳定工作开始计时,已知汽车第1s 内的位移为24m ,第4s 内的位移为1m 。求汽车刹车系统稳定工开始计时的速度大小及此后的加速度大小。 二、力与平衡 16.(卷二)物块在轻绳的拉动下沿倾角为30°的固定斜面向上匀速运动,轻绳与斜面平行。已知物块与斜面之间的动摩擦因数为3,重力加速度取10m/s 2。若轻绳能承受的最大张力为1500N ,则物块的质量最大为() A .150kg B .1003kg C .200kg D .2003kg 16.(卷三)用卡车运输质量为m 的匀质圆筒状工件,为使工件保持固定,将其置于 两光滑斜面之间,如图所示。两斜面I 、Ⅱ固定在车上,倾角分别为30°和60°。重力加速度为g 。当卡车沿平直公路匀速行驶时,圆筒对斜面I 、Ⅱ压力的大小分别为F 1、F 2,则() A .1233= =F mg F mg , B .1233==F mg F mg , C .121 3== 2F mg F mg , D .1231==2 F mg F mg ,

19.(卷一)如图,一粗糙斜面固定在地面上,斜面顶端装有一光滑定滑轮。一细绳跨过滑轮,其一端悬挂物块N。另一端与斜面上的物 块M相连,系统处于静止状态。现用水平向左的拉力 缓慢拉动N,直至悬挂N的细绳与竖直方向成45°。已 知M始终保持静止,则在此过程中() A.水平拉力的大小可能保持不变 B.M所受细绳的拉力大小一定一直增加 C.M所受斜面的摩擦力大小一定一直增加 D.M所受斜面的摩擦力大小可能先减小后增加 三、牛顿运动定律 20.(卷三)如图(a),物块和木板叠放在实验台上,木板与实验台之间的摩擦可以忽略。物块用一不可伸长的细绳与固定在实验台上的力传感器相连,细绳水平。t=0时,木板开始受到水平外力F的作用,在t=4s时 撤去外力。细绳对物块的拉力f随时间t变化的关 系如图(b)所示,木板的速度v与时间t的关系如 图(c)所示。重力加速度取g=10m/s2。由题给数 据可以得出() A.木板的质量为1kgB.2s~4s内,力F的大小为 C.0~2s内,力F的大小保持不变D.物块与木板之间的动摩擦因数为 四、曲线与天体 19.(卷二)如图(a),在跳台滑雪比赛中,运动员在空中滑翔时身体的姿态会影响其下落的速度和滑翔的距离。某运动员先后两次从同一跳台 起跳,每次都从离开跳台开始计时,用v表示他在竖直方向 的速度,其v-t图像如图(b)所示,t1和t2是他落在倾斜雪 道上的时刻。() A.第二次滑翔过程中在竖直方向上的位移比第一次的小 B.第二次滑翔过程中在水平方向上的位移比第一次的大 C.第一次滑翔过程中在竖直方向上的平均加速度比第一次 的大 D.竖直方向速度大小为v1时,第二次滑翔在竖直方向上所受阻力比第一次的大

相关文档
最新文档