石蜡/纳米石墨复合相变储热材料的换热与放热效率

石蜡/纳米石墨复合相变储热材料的换热与放热效率
石蜡/纳米石墨复合相变储热材料的换热与放热效率

石墨烯复合材料的研究及其应用

石墨烯复合材料的研究及其应用 任成,王小军,李永祥,王建龙,曹端林 摘要:石墨烯因其独特的结构和性能,成为物理化学和材料学界的研究热点。本文综述了石墨烯复合材料的结构和分类,主要包括石墨烯-纳米粒子复合材料、石墨烯-聚合物复合材料和石墨烯-碳基材料复合材料。并简述石墨烯复合材料在催化领域、电化学领域、生物医药领域和含能材料领域的应用。 关键词:石墨烯;复合材料;纳米粒子;含能材料 Research and Application of Graphene composites ABSTRACT: Graphene has recently attracted much interest in physics,chemistry and material field due to its unique structure and properties. This paper reviews the structure and classification of graphene composites, mainly inclouding graphene-nanoparticles composites, graphene-polymer composites and graphene-carbonmaterials composites. And resume the application of graphene composites in the field of catalysis, electrochemistry, biological medicine and energetic materials. Keywords: graphene; composites; nanoparticles; energetic materials 石墨烯自2004年曼彻斯特大学Geim[1-3]等成功制备出以来,因其独特的结构和性能,颇受物理化学和材料学界的重视。石墨烯是一种由碳原子紧密堆积构成的二维晶体,是包括富勒烯、碳纳米管、石墨在内的碳的同素异形体的基本组成单元。石墨烯的制备方法主要有机械剥离法,晶体外延法,化学气相沉积法,插层剥离法以及采用氧化石墨烯的高温脱氧和化学还原法等[4-10]。与碳纳米管类似,石墨烯很难作为单一原料生产某种产品,而主要是利用其突出特性与其它材料体系进行复合.从而获得具有优异性能的新型复合材料。而氧化石墨烯由于其特殊的性质和结构,使其成为制备石墨烯和石墨烯复合材料的理想前驱体。本文综述了石墨烯复合材料的结构、分类及其在催化领域、电化学领域、生物医药领域和含能材料领域的应用。

石墨烯纳米材料及其应用

墨烯纳米材料及其应

二?一七年十二月

摘要 ................. 错误!未定义书签 1引言................ 错误!未定义书签 2石墨烯纳米材料介绍......... 错误!未定义书签 3石墨烯纳米材料吸附污染物...... 错误!未定义书签金属离子吸附........... 错误!未定义书签 有机化合物的吸附......... 错误!未定义书签 4石墨烯在膜及脱盐技术上的应用..… 错误!未定义书签石墨烯基膜............ 错误!未定义书签 采用石墨烯材料进行膜改进..... 错误!未定义书签 石墨烯基膜在脱盐技术的应用??… 错误!未定义书签5展望................ 错误!未定义书签

石墨烯因为其独特的物理化学方面的性质,特别是其拥有较高的比表面积、 较高的电导率、较好的机械强度和导热性,使其作为一种新颖的纳米材料赢得了越来越广泛的关注。 关键词:石墨烯;碳材料;环境问题;纳米材料 1引言 随着世界人口的增长,农业和工业生产出现大规模化的趋势。空气,土壤和水生生态系统受到严重的污染;全球气候变暖等环境问题正在成为政治和科学关注的重点。目前全球已经开始了解人类活动对环境的影响,并开发新技术来减轻相关的健康和环境影响。在这些新技术中,纳米技术的发展已经引起了广泛的关注。 纳米材料由于其在纳米级尺寸而具有独特的性质,可用于设计新技术或提高现有工艺的性能。纳米材料在水处理,能源生产和传感方面已经有了诸多应用,越来越多的文献描述了如何使用新型纳米材料来应对重大的环境挑战。 石墨烯引起了诸多研究人员的关注。石墨烯是以sp2杂化连接的碳原子层构成的二维材料,其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯还具有特殊的电光热特性,包括室温下高速的电子迁移率、半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度, 被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛的应用前景。在环境领域,石墨烯已被应用于新型吸附剂或光催化材料,其作为下一代水处理膜的构件,常用作污染物监测。 2石墨烯纳米材料介绍 单层石墨烯属于单原子层紧密堆积的二维晶体结构()。在石墨烯平面内,碳原子以六兀环形式周期性排列,每个碳原子通过C键与临近的二个碳原子相连,S Px和Py三个杂化轨道形成强的共价键合,组成sp2杂化结构,具有120° 的键角。石墨烯可由石墨单层剥离而产生,最初是通过微机械剥离,使用胶带依次将石墨粘黏成石墨烯来实现。Geim和Novoselov

水热合成Fe2O3石墨烯纳米复合材料及其电化学性能研究

常熟理工学院学报(自然科学)Journal of Changshu Institute Technology (Natural Sciences )第26卷第10Vol.26No.102012年10月Oct.,2012 收稿日期:2012-09-05 作者简介:季红梅(1982—),女,江苏启东人,讲师,工学硕士,研究方向:无机功能材料.水热合成Fe 2O 3/石墨烯纳米 复合材料及其电化学性能研究 季红梅1,于湧涛2,王露1,王静1,杨刚1 (1.常熟理工学院化学与材料工程学院,江苏常熟215500;2.吉林石化公司研究院,吉林吉林132021) 摘要:利用水热法成功合成了Fe 2O 3/石墨烯(RGO )锂离子电池负极材料.导电性能良好的石墨烯网络起到连接导电性能极差的Fe 2O 3和集流体的作用.电化学性能测试表明,180℃下得到的 Fe 2O 3/RGO 具有良好的比容量和循环稳定性.在不同倍率充放电过程中,初始放电比容量为1023.6mAh/g (电流密度为40mA/g ),电流密度增加到800mA/g 时,放电比容量维持在406.6 mAh/g ,大于石墨的理论放电比容量~372mAh/g.在其他较高的电流密度下比容量均保持基本不变.该Fe 2O 3/RGO 有望成为高容量、低成本、低毒性的新一代锂离子电池负极材料.关键词:Fe 2O 3;石墨烯;负极材料中图分类号:TM911文献标识码:A 文章编号:1008-2794(2012)10-0055-05 自从P.Poizot [1]等报道过渡金属氧化物可以作为锂离子电池负极材料这一研究后,金属氧化物负极便逐渐引起人们的重视.铁的氧化物具有比容量大、倍率性能好和安全性能高等优点,且原料来源丰富、价格低廉、环境友好,因此是一类很有发展潜力的动力锂离子电池负极材料.Fe 2O 3作为一种常温下最稳定的铁氧化合物,理论容量为1005mAh/g ,远高于石墨类材料的理论比容量,已经成为锂离子电池负极材料的一个研究热点.近年来,石墨烯由于其高的电传导性,大的比表面积,良好的化学稳定性和柔韧性而被尝试用于与活性锂离子电池负极材料复合,提升材料的电化学性能.比如,Cui Y [2]课题组在溶剂热条件下两步法得到Mn 3O 4与石墨烯的复合材料,改善了Mn 3O 4的比容量和循环性能.Co 3O 4,Fe 3O 4等金属氧化物材料与石墨烯复合也有被研究,本课题组在石墨烯和金属氧化物材料复合方面也做了大量的工作[3].本文通过水热法一步合成Fe 2O 3/石墨烯纳米复合材料,并研究了其电化学性能,合成过程中采用三乙烯二胺提供反应的碱性环境,并控制Fe 2O 3的粒子生长.1 实验 1.1试剂和仪器 三乙烯二胺(C 6H 12N 2);无水三氯化铁(FeCl 3);石墨;硝酸钠(NaNO 3);浓硫酸(H 2SO 4);高锰酸钾(KMnO 4);双氧水(H 2O 2)和盐酸(HCl ),以上试剂均为分析纯.实验用水为去离子水.日本理学H-600型透射电子显微镜;日本理学D/max2200PC 型X 射线衍射仪;德国Bruker Vector 22红外光谱仪;日本JEOL-2000CX 透射电镜;美国Thermo Scientific Escalab 250Xi 光电子能谱仪;LAND 电池

各种塑料性能对比比较

工程塑料的性能比较 1.工程塑料的工作温度 2.工程塑料的硬度 3.工程塑料的耐冲击强度 4.工程塑料的抗撕裂强度 5.工程塑料的耐化学性 6.工程塑料的耐紫外辐射性能 7.工程塑料的耐伽玛射线性能 1.工作温度 选择材料时需要考虑的一个关键因素就是材料的耐热性。 通常来讲,如果想使材料的最大工作温度提高就相应需要增加更多的成本。 填充剂的加入能够极大地提高材料的硬度和热变形温度,而且,对于高性能的和专用的聚合物来廛,玻璃纤维的加入能使成本大辐下降。因为这些,在聚合物中填充玻璃纤维经常用于 替代金属一途。 图1比较了常用来替代金属的玻璃纤维填充聚合物的最大工作温度和热变形温度。

图1: 填充30%玻璃纤维的聚合物的最大工作温度和热变形温度 在高性能材料中加入碳纤维可以使材料的硬度和热变形温度大辐提高。与填充玻璃纤维相比 填充碳纤维有以下优点: 更高的硬度 更低的密度 良好的导电性 良好的摩擦性能 因为这些原因,碳纤维经常被用在汽车的燃料输送线和燃料系统上。 2.硬度 金属比较于塑料最大的优点之一就是它们具有很高的硬度(平均值比较要比塑料的高8倍)。然而,在许多实际应用中,并不需要这么高的硬度,如果有必要的话,还可以通过灵活的设计、骨架增强和低密度来进行补充。在很多情况下,硬度也是一个关键的性能。 填充剂和纤维的影响 填充剂和纤维的加入都可以极大地提高材料的硬度。T 当表面外观并不是一个主要关心的问题时,玻璃纤维由于其高的性价比被经常使用。然而,玻璃纤维会使材料产生各向异性,降低了它的加工性能,同时易磨损。

当需要关注产品的外观时,则可以加入一些矿石填充剂,如碳酸钙、滑石、硅灰石、云母都是很好的选择。然而材料的硬度和热变形温度都要比填充玻璃纤维的材料低很多。 档次较高的产品,可以选用碳纤维作为填充剂,它可以赋予材料非常高的硬度。填充碳纤维 的其它优点有: 导电性 极好的摩擦性能 低密度 图1比较了常用来替代金属的聚合物的硬度(未填充的和填充了30%玻璃纤维的材料)。 填充玻璃纤维的高结晶度的聚合物的弯曲模量高于10GPa:聚丁二醇酯PBT,聚甲醛POM,聚乙二醇酯PET,聚苯硫醚PPS,聚醚醚酮PEEK,液晶树脂LCP。在这些材料中,液晶树脂 LCP具有最高的硬度且有最高的各向异性。

纳米石墨烯的特性以及应用

纳米石墨烯的特性以及应用 摘要:石墨烯是指从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。在石墨烯中,碳原子之间以σ键相连接,这些σ键赋予了石墨烯极其强大的机械性能;同时,由于碳原子的结合方式为SP2杂化,因此每个碳原子都有一个孤电子,从而赋予了其优秀的导电性。而近年来,纳米石墨烯以及其氧化物,由于自身良好的生物相容性以及较大的表面积,在生物医药等领域的应用取得了极大的进展,本文将简述石墨烯以及其氧化物的特性,并举例分析其在生物载药工厂中的作用。 关键词:纳米石墨烯;纳米氧化石墨烯;生物医药;药物传递 一.纳米石墨烯以及氧化纳米石墨烯自身特性 1.1 纳米石墨烯自身特性 纳米石墨烯与石墨烯的概念容易混淆,但本质上是同一个物质。纳米石墨烯代表的是厚度在纳米级别的石墨烯。一般程度上严格定义的石墨烯都是单层的,而纳米石墨烯则有可能是多层的。纳米石墨烯常常被称为石墨烯纳米片,也被称为碳纳米片( CNFs )或碳纳米壁( CNWs)。人们所熟悉的富勒烯,碳纳米管,石墨等碳材料,本质的基础单元就是石墨烯。 石墨烯最迷人的地方在于它的纯粹。单层原子的结构使得石墨烯具有极薄的性质,但由于碳原子之间强韧的σ键以及整个二维晶体平面的拉伸性能,使得石墨烯同时具有了非常高的强度性能,杨氏模量为1100Gpa,而断裂强度则达到惊人的125Gpa,这样的机械性能使得石墨烯几乎可以被利用在任何需要高强度材料的领域。 而与此同时,石墨烯二维晶体表面流动的孤电子赋予了它优越的导电性能。由于自身电阻率非常小,石墨烯被视为下一个可以取代“硅”的导电原材料,人们希望能制备出具有更高性能的现代计算机芯片或处理器。 1.2 氧化纳米石墨烯自身特性 氧化纳米石墨烯,英文缩写为GO,顾名思义是石墨烯的氧化物。氧化石墨烯保留了原有的层状结构,通过强氧化剂(例如高锰酸钾)开环,使得部分双键断裂,引入了许多含氧的官能团,例如羧基,羟基,环氧基等。这些活泼的含氧功能团赋予了石墨烯更为活泼的性能。

高分子_石墨烯纳米复合材料研究进展

高分子/石墨烯纳米复合材料研究进展 高秋菊1,夏绍灵1,2* ,邹文俊1,彭 进1,曹少魁2 (1.河南工业大学材料科学与工程学院,郑州 450001;2.郑州大学材料科学与工程学院,郑州 450052 )收稿:2012-01-09;修回:2012-04- 24;基金项目:郑州科技攻关项目(0910SGYG23258- 1);作者简介:高秋菊(1984—),女,硕士研究生,主要从事高分子复合材料的研究。E-mail:gaoqiuj u2008@yahoo.com.cn;*通讯联系人,Tel:0371-67758722;E-mail:shaoling _xia@haut.edu.cn. 摘要: 石墨烯以其优异的力学、光学、电学和热学性能,得到日益广泛的关注和研究。本文介绍了石墨烯的结构、性能和特点,并对石墨烯的改性方法进行了概括。本文着重综述了高分子/石墨烯纳米复合材料的研究现状和进展,并介绍了高分子/石墨烯纳米复合材料的三种制备方法,即原位插层聚合法、溶液插层法和熔融插层法。此外,还对高分子/石墨烯纳米复合材料的应用前景进行了展望,并对石墨烯复合材料研究存在的问题和未来的研究方向进行了讨论。 关键词:石墨烯;高分子;纳米复合材料;研究进展 引言 石墨烯是以sp2 杂化连接的碳原子层构成的二维材料, 其厚度仅为一个碳原子层的厚度。这种“只有一层碳原子厚的碳薄片”,被公认为目前世界上已知的最薄、最坚硬、最有韧性的新型材料。石墨烯具 有超高的强度,碳原子间的强大作用力使其成为目前已知力学强度最高的材料。石墨烯比钻石还坚硬, 强度比世界上最好的钢铁还高100倍[1] 。石墨烯还具有特殊的电光热特性, 包括室温下高速的电子迁移率、 半整数量子霍尔效应、自旋轨道交互作用、高理论比表面积、高热导率和高模量、高强度,被认为在单分子探测器、集成电路、场效应晶体管等量子器件、功能性复合材料、储能材料、催化剂载体等方面有广泛 的应用前景[ 2] 。石墨烯是一种疏松物质,在高分子基体中易团聚,而且石墨烯本身不亲油、不亲水,在一定程度上也限制了石墨烯与高分子化合物的复合,尤其是纳米复合。因而,很多学者对石墨烯的改性进行了大量的研究,以提高石墨烯和高分子基体的亲和性,从而得到优异的复合效应。 1 石墨烯的改性方法 1.1 化学改性石墨烯 该方法基于改性Hummers法[3] 。首先,由天然石墨制得石墨氧化物, 再通过几种化学方法获得可溶性石墨烯。其化学方法包括:氧化石墨在稳定介质中的还原[4]、通过羧基酰胺化的共价改性[5] 、还原氧化石墨烯的非共价功能化[ 6]、环氧基的亲核取代[7]、重氮基盐的耦合[8] 等。此外,还出现了对石墨烯的氨基化[9]、酯化[10]、异氰酸酯[11] 改性等。用化学功能化的方法对石墨烯进行改性,不仅可以提高其溶解性 和加工性能,还可以增强有机高分子间的相互作用。1.2 电化学改性石墨烯 利用离子液体对石墨烯进行电化学改性已见报道[12] 。用电化学的方法,使石墨变成用化学改性石 墨烯的胶体悬浮体。石墨棒作为阴极,浸于水和咪唑离子液的相分离混合物中。以10~20V的恒定电 · 78· 第9期 高 分 子 通 报

石墨烯及其纳米复合材料发展.

河北工业大学 材料科学与工程学院 石墨烯及其纳米复合材料发展概况 专业金属材料 班级材料116 学号111899 姓名李浩槊 2015年01月05日

摘要 自从2004年,英国曼彻斯特大学物理学家安德烈·海姆和康斯坦丁·诺沃肖洛夫,成功地在实验中从石墨中分离出石墨烯,石墨烯因其优异的力学、电学和热学性能已经成为备受瞩目的研究热点。 石墨烯的碳原子排列与石墨的单原子层雷同,是碳原子以sp2混成轨域呈蜂巢晶格(honeycomb crystal lattice)排列构成的单层二维晶体。石墨烯可想像为由碳原子和其共价键所形成的原子尺寸网。石墨烯是世上最薄也是最坚硬的纳米材料,它几乎是完全透明的,只吸收2.3%的光;导热系数高达5300 W/(m·K),高于碳纳米管和金刚石,常温下其电子迁移率超过15000 cm2 /(V·s),又比纳米碳管或硅晶体高,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的材料。因为它的电阻率极低,电子跑的速度极快,因此被期待可用来发展出更薄、导电速度更快的新一代电子元件或晶体管。由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板,甚至是太阳能电池。 石墨烯的结构非常稳定,石墨烯内部的碳原子之间的连接很柔韧,当施加外力于石墨烯时,碳原子面会弯曲变形,使得碳原子不必重新排列来适应外力,从而保持结构稳定。这种稳定的晶格结构使石墨烯具有优秀的导热性。 但是,因为石墨烯片层之间存在很强的范德华力,导致其很容易堆积团聚,在一般溶剂中的分散性很差,所以其应用领域受到了限制。本文通过收集、查阅多篇有关石墨烯研究的论文,分析、整理了石墨烯及其纳米复合材料的制备技术发展及其应用的相关知识、理论。 关键词:石墨烯纳米材料制备复合材料

常用金属材料中各种化学成分对性能的影响

常用金属材料中各种化学成分对性能的影响 1.生铁: 生铁中除铁外,还含有碳、硅、锰、磷和硫等元素。这些元素对生铁的性能均有一定的影响。 碳(C):在生铁中以两种形态存在,一种是游离碳(石墨),主要存在于铸造生铁中,另一种是化合碳(碳化铁),主要存在于炼钢生铁中,碳化铁硬而脆,塑性低,含量适当可提高生铁的强度和硬度,含量过多,则使生铁难于削切加工,这就是炼钢生铁切削性能差的原因。石墨很软,强度低,它的存在能增加生铁的铸造性能。 硅(Si):能促使生铁中所含的碳分离为石墨状,能去氧,还能减少铸件的气眼,能提高熔化生铁的流动性,降低铸件的收缩量,但含硅过多,也会使生铁变硬变脆。 锰(Mn):能溶于铁素体和渗碳体。在高炉炼制生铁时,含锰量适当,可提高生铁的铸造性能和削切性能,在高炉里锰还可以和有害杂质硫形成硫化锰,进入炉渣。 磷(P):属于有害元素,但磷可使铁水的流动性增加,这是因为硫减低了生铁熔点,所以在有的制品内往往含磷量较高。然而磷的存在又使铁增加硬脆性,优良的生铁含磷量应少,有时为了要增加流动性,含磷量可达1.2%。 硫(S):在生铁中是有害元素,它促使铁与碳的结合,使铁硬脆,并与铁化合成低熔点的硫化铁,使生铁产生热脆性和减低铁液的流动性,顾含硫高的生铁不适于铸造细件。铸造生铁中硫的含量规定最多不得超过0.06%(车轮生铁除外)。 2.钢: 2.1元素在钢中的作用 2.1.1 常存杂质元素对钢材性能的影响 钢除含碳以外,还含有少量锰(Mn)、硅(Si)、硫(S)、磷(P)、氧(O)、氮(N)和氢(H)等元素。这些元素并非为改善钢材质量有意加入的,而是由矿石及冶炼过程中带入的,故称为杂质元素。这些杂质对钢性能是有一定影响,为了保证钢材的质量,在国家标准中对各类钢的化学成分都作了严格的规定。 1)硫 硫来源于炼钢的矿石与燃料焦炭。它是钢中的一种有害元素。硫以硫化铁(FeS)的形态存在于钢中,FeS和 Fe 形成低熔点(985℃)化合物。而钢材的热加工温度一般在1150~1200℃以上,所以当钢材热加工时,由于 FeS 化合物的过早熔化而导致工件开裂,这种现象称为“热脆”。含硫量愈高,热脆现象愈严重,故必须对钢中含硫量进行控制。高级优质钢:S<0.02%~0.03%;优质钢:S <0.03%~0.045%;普通钢:S<0.055%~0.7%以下。 2)磷 磷是由矿石带入钢中的,一般说磷也是有害元素。磷虽能使钢材的强度、硬度增高,但引起塑性、冲击韧性显著降低。特别是在低温时,它使钢材显著变脆,这种现象称"冷脆"。冷脆使钢材的冷加工及焊接性变坏,含磷愈高,冷脆性愈大,故钢中对含磷量控制较严。高级优质钢: P <0.025%;优质钢: P<0.04%;

高分子石墨烯纳米复合材料的前沿与趋势

石墨烯聚合物纳米复合材料的前沿与趋势 聚合物与其他塑料结合形成混纺纤维,与滑石粉及云母混合形成填充系统,和与其他非均质加固物进行模型挤压生产复合材料和杂化材料。这种简单的“混合搭配”方法使得塑料工程师们能够利用聚合物团生产一系列能够控制极端条件的有用的材料。在这种方法中最后加入的事石墨烯------人们早就了解到它的存在但是知道2004年才被制备与鉴定出的碳单原子层。英国曼彻斯特大学的Andre K.Geim和Konstantin S.Novoselov因为分离出碳单原子层而被授予诺贝尔物理学奖。他们的成就导致了聚合物纳米材料的蓝图发生了变化。人们已经长期熟知碳基材料,像金刚石,六方碳和石墨烯。但是聚合物纳米材料研究团体重新燃起的热情主要由于石墨烯可与塑料结合的特性以及它来自于廉价的先驱体。石墨烯的性价比优势在纳米复合材料、镀膜加工、传感器和存储装置的应用上正挑战着碳纳米管。接着,这些只能被想象出来的应用将会出现。事实上,Andre Geim说过“石墨烯对于它的名字来说就是一种拥有最佳性能的非凡的物质。”这能够在目前大量发表的文献中可以看出。石墨烯为什么能够这样引起人们的兴趣呢?本篇综述尝试去处理在石墨烯纳米复合材料新兴潮流中所产生的这类问题。这个工作的范围被石墨烯聚合物纳米复合材料(GPNC)研究员提出期望的发展潜力进行了拓展。 神奇的石墨烯 石墨烯被频繁引用的性能是它的电子传输能力。这意味着一个电子可以在其中不被散射或无障碍地通行。石墨烯的电子迁移率可达到20000cm2/Vs,比硅晶体管高一个数量级。一片最近的综述表明,以改良样品制备的石墨烯,电子迁移率甚至可以超过25000cm2/Vs。石墨烯是否缺少禁带以及大量合成纯石墨烯是否可行只有将来的研究可以解释。目前,非凡的电子传导性能使得石墨烯居于各类物质之首。所以,利用石墨烯代替硅作为基质的可能性将指日可待。虽然石墨烯的电子传导能力要比铜高得多,但是其密度只有铜的1/5。文献中大量记载了石墨烯的电子传导性能极其影响方面的细节。 由于它固有的特性人们开始对它在纳米复合材料的应用产生了兴趣。据预测,一个单层无缺陷的石墨烯薄膜的抗拉强度要比其他任何物质都要大。事实上,James Hone’s小组已经用原子力显微镜研究了独立的单层石墨烯薄膜的断裂强度。他们测得的平均断裂力为1700nN。他们还发现石墨烯这种物质可以抵挡超高的应力(约25%)。这些测量值使得这个团队计算出无缺陷石墨烯薄片的内在强度为45Nm-1。这儿的内在强度被规定为无缺陷的纯物质在断裂之前所能承受的最大应力。石墨烯如此卓越的是由于它相当于1.0Tpa的杨氏模量。在其他的特性中Paul McEuen和同事们只有一个原子厚度的石墨烯薄膜即可隔绝气体,包括氦气。即石墨烯在实际应用中可作为密闭的微室。石墨烯所表现出的热传导性能要比铜高出很多倍。这就意味着石墨烯能够很容易地进行散热。最近对大块石墨烯薄膜的研究表明其热传导系数是600W/(m.K)。石墨烯另外的一个特性是其具有高的比表面积,计算值为2630m2g-1,而碳纳米管仅为1315m2g-1,这使得石墨烯在储能装置应用上成为一个候选材料。Rod Ruoff’s小组通过改性的石墨烯演示了其具有的超高电容性能。对石墨烯的新奇属性的详细描述随处可见石墨烯与碳纳米管相比有一个截然相反的属性是其不含杂质(不含金属),这对构建可靠的传感器和储能装置来说是一个重要的优势。,更进一步,由于它形状与结构,石墨烯或许有更低的毒性,这也成为目前研究的主题。 独立的纳米材料的这些性质使得物理学家,化学家,和材料学家,不论作为理论学家还是实验学家,都为石墨烯的潜力而感到振奋。然而,最重要的问题是去区分炒作还是现实。

常用金属材料的密度表

常用金属材料的密度表 材料名称 密度,克/ 立方厘米材料名称 密度,克/ 立方厘米 灰口铸铁 6.6~7.4不 锈 钢1Crl8NillNb、Cr23Ni187.9 白口铸铁7.4~7.72Cr13Ni4Mn98.5 可锻铸铁 7.2~7.43Cr13Ni7Si2 8.0 铸钢7.8纯铜材8.9工业纯铁7.8759、62、65、68黄铜8.5普通碳素钢7.8580、85、90黄铜8.7优质碳素钢7.8596黄铜8.8碳素工具钢7.8559-1、63-3铅黄铜8.5易切钢7.8574-3铅黄铜8.7锰钢7.8190-1锡黄铜8.8 15CrA铬钢7.7470-1锡黄铜8.54 20Cr、30Cr、40Cr铬钢7.8260-1和62-1锡黄铜8.5 38CrA铬钢7.8077-2铝黄铜8.6铬钒、铬镍、铬镍钼、铬锰、 硅、铬锰硅镍、硅锰、硅铬钢7.85 67-2.5、66-6-3-2、60-1-1铝黄铜8.5 镍黄铜 8.5 铬镍钨钢7.80锰黄铜8.5铬钼铝钢7.65硅黄铜、镍黄铜、铁黄铜8.5含钨9高速工具钢8.35-5-5铸锡青铜8.8含钨18高速工具钢8.73-12-5铸锡青铜8.69高强度合金钢`7.826-6-3铸锡青铜8.82轴承钢7.817-0.2、6.5-0.4、6.5-0.1、4-3锡青铜8.8 不锈钢0Cr13、1Cr13、2Cr13、3Cr13、 4Cr13、Cr17Ni2、Cr18、9Cr18、 Cr25、Cr28 7.754-0.3、4-4-4锡青铜8.9 Cr14、Cr177.74-4-2.5锡青铜8.75 0Cr18Ni9、1Cr18Ni9、 1Cr18Ni9Ti、 2Cr18Ni9 7.855铝青铜8.2 1Cr18Ni11Si4A1Ti7.52锻 铝 LD8 2.77 7铝青铜 7.8LD7、LD9、LD10 2.8 19-2铝青铜7.6超硬铝 2.85 9-4、10-3-1.5铝青铜7.5LT1特殊铝 2.75 10-4-4铝青铜7.46工业纯镁 1.74 铍青铜8.3变 形 镁 MB1 1.76 3-1硅青铜8.47MB2、MB8 1.78 1-3硅青铜8.6MB3 1.79 1铍青铜8.8MB5、MB6、MB7、MB15 1.8 0.5镉青铜8.9铸镁 1.8 0.5铬青铜8.9工业纯钛(TA1、TA2、TA3) 4.5 1.5锰青铜8.8 钛 合 金 TA4、TA5、TC6 4.45 5锰青铜8.6TA6 4.4 白 铜 B5、B19、B30、BMn40-1.58.9TA7、TC5 4.46 BMn3-128.4TA8 4.56 BZN15-208.6TB1、TB2 4.89 BA16-1.58.7TC1、TC2 4.55 BA113-38.5TC3、TC4 4.43 纯铝 2.7TC7 4.4 防 锈 铝 LF2、LF43 2.68TC8 4.48 LF3 2.67TC9 4.52 LF5、LF10、LF11 2.65TC10 4.53 LF6 2.64纯镍、阳极镍、电真空镍8.85 LF21 2.73镍铜、镍镁、镍硅合金8.85 硬 铝 LY1、LY2、LY4、LY6 2.76镍铬合金8.72 LY3 2.73锌锭(Zn0.1、Zn1、Zn2、Zn3)7.15 LY7、LY8、LY10、LY11、LY14 2.8铸锌 6.86 LY9、LY12 2.784-1铸造锌铝合金 6.9 LY16、LY17 2.844-0.5铸造锌铝合金 6.75 锻 铝 LD2、LD30 2.7铅和铅锑合金11.37 LD4 2.65铅阳极板11.33 LD5 2.75

(整理)常用金属材料密度表

精品文档 精品文档 常用金属材料密度表,包括黑色、有色金属材料及其合金材料的密度。 密度(10^3kg/m^3)(g/cm^3) 材料名称 密度 克/厘米3 材料名称 密度 克/厘米3 灰口铸铁 6.6~7.4 不锈钢 1Crl8NillNb 、Cr23Ni18 7.9 白口铸铁 7.4~7.7 2Cr13Ni4Mn9 8.5 可锻铸铁 7.2~7.4 3Cr13Ni7Si2 8.0 铸钢 7.8 纯铜材 8.9 工业纯铁 7.87 59、62、65、68黄铜 8.5 普通碳素钢 7.85 80、85、90黄铜 8.7 优质碳素钢 7.85 96黄铜 8.8 碳素工具钢 7.85 59-1、63-3铅黄铜 8.5 易切钢 7.85 74-3铅黄铜 8.7 锰钢 7.81 90-1锡黄铜 8.8 15CrA 铬钢 7.74 70-1锡黄铜 8.54 20Cr 、30Cr 、40Cr 铬钢 7.82 60-1和62-1锡黄铜 8.5 38CrA 铬钢 7.80 77-2铝黄铜 8.6 铬钒、铬镍、铬镍钼、铬锰、硅、 铬锰硅镍、硅锰、硅铬钢 7.85 67-2.5、66-6-3-2、60-1-1铝黄铜 8.5 镍黄铜 8.5 铬镍钨钢 7.80 锰黄铜 8.5 铬钼铝钢 7.65 硅黄铜、镍黄铜、铁黄铜 8.5 含钨9高速工具钢 8.3 5-5-5铸锡青铜 8.8 含钨18高速工具钢 8.7 3-12-5铸锡青铜 8.69 高强度合金钢 7.82 6-6-3铸锡青铜 8.82 轴承钢 7.81 7-0.2、6.5-0.4、6.5-0.1、4-3锡青铜 8.8 不 锈 钢 0Cr13、1Cr13、2Cr13、3Cr13、4Cr13、 Cr17Ni2、Cr18、9Cr18、Cr25、Cr28 7.75 4-0.3、4-4-4锡青铜 8.9 Cr14、Cr17 7.7 4-4-2.5锡青铜 8.75 0Cr18Ni9、1Cr18Ni9、Cr18Ni9Ti 、 2Cr18Ni9 7.85 5铝青铜 8.2 1Cr18Ni11Si4A1Ti 7.52 锻铝 LD8 2.77 7铝青铜 7.8 LD7、LD9、LD10 2.8 19-2铝青铜 7.6 超硬铝 2.85 9-4、10-3-1.5铝青铜 7.5 LT1特殊铝 2.75 10-4-4铝青铜 7.46 工业纯镁 1.74 铍青铜 8.3 变形镁 MB1 1.76 3-1硅青铜 8.47 MB2、MB8 1.78 1-3硅青铜 8.6 MB3 1.79 1铍青铜 8.8 MB5、MB6、MB7、MB15 1.8

基于石墨烯的复合纳米材料在生物传感器中的应用

基于石墨烯的复合纳米材料在生物传感器中的应用 摘要:石墨烯作为新型材料在化学、材料等科学领域得到了极大的关注。因其优良的导电性和生物相容性,被广泛的运用到生物传感器的研究中。由于纳米级的石墨烯在水溶液中极易聚沉,所以在使用石墨烯时就需要对其修饰。对石墨烯的修饰包括共价键修饰、非共价键修饰和金属颗粒及金属离子修饰。添加各种修饰过后的石墨烯能增加的灵敏度和降低传感器的检测线。 关键词:石墨烯修饰生物传感器 1、引言 最近,石墨已成为一个迅速崛起的明星在材料科学领域。它的问世引起了全世界的研究热潮。自2004年英国曼彻斯特大学Geim团队首次从石墨中剥离出石墨烯以来,人们便对这种具有独特物化性质的纳米材料寄予厚望。此后关于石墨烯的研究不断出现重要进展,并在材料、化学、微电子、量子物理及生物等众多领域表现出许多令人振奋的性能和潜在的应用前景,已成为当前研究热点之一。石墨烯不仅是已知材料中最薄的一种,还非常牢固坚硬;作为单质,它在室温下传递电子的速度比已知导体都快。石墨烯是一个二维(平面)晶体,组成单层碳原子排列在蜂巢网络与六元环,为二维碳结构。在概念上石墨烯可以看作是一无限延长二维芳香族大分子。 石墨烯在原子尺度上结构非常特殊。石墨烯中各碳原子之间的连接非常柔韧,当施加外部机械力时,碳原子面就弯曲变形,从而使碳原子不必重新排列来适应外力,也就保持了结构稳定。这种稳定的晶格结构使碳原子具有优秀的导电性。而且石墨烯中的电子在轨道中移动时,不会因晶格缺陷或引入外来原子而发生散射。由于原子间作用力十分强,在常温下,即使周围碳原子发生挤撞,石墨烯中的电子受到的干扰也非常小。[1,2] 因此, 石墨烯奇特的物理、化学性质, 也激起了物理、化学、材料等领域科学家极大的兴趣。这篇论文主要介绍了基于石墨烯的纳米材料在电化学生物传感器中的运用。 2、石墨烯的修饰 然而,正如其它的同素异形体的新发现如碳富勒烯和碳纳米管(CNTs),材料可用性和加工一直是限制着石墨烯的应用。对于石墨烯,最关键的挑战,在材料合成与加工的中克服石墨层之间强的π-π型层堆叠剥离能,这种高凝聚力范德

石墨烯纳米材料(论文)

《应用胶体化学》论文大作业 ——石墨烯纳米材料 姓名:杨晓 学号:200900111143 年级:2009级 2011-12-11

摘要:石墨烯是继富勒烯、碳纳米管之后发现的一种具有二维平面结构的碳纳米材料,它自 2004 年发现被以来,成为凝聚态物理与材料科学等领域的一个研究热点。石墨烯是目前发现的唯一存在的二维自由态原子晶体, 它是构筑零维富勒烯、一维碳纳米管、三维体相石墨等sp2 杂化碳的基本结构单元, 具有很多奇异的电子及机械性能。因而吸引了化学、材料等其他领域科学家的高度关注。本文简要介绍了石墨烯的性能特点、制备方法,着重对石墨烯纳米复合材料进行了介绍,对石墨烯纳米材料的制备方法、理化性质、国内外研究进展、石墨烯纳米材料的优缺点及应用前景进行了详细介绍。 关键词:石墨烯纳米材料复合物特性制备应用

目录 引言 (4) 一石墨烯纳米材料的理论与实际意义 (4) 二石墨烯纳米材料的国内外研究现状及比较分析 (5) 2.1 石墨烯纳米材料的国内外研究 (5) 2.1.1 国外研究 (5) 2.1.2 国内研究 (8) 2.2 石墨烯纳米材料的国内外研究比较分析 (11) 三文献中石墨烯纳米材料的研究方案 (11) 3.1 聚乳酸/ 纳米羟基磷灰石/ 氧化石墨烯(PLA/n-HA/GO)纳米复合膜的制备及生物性 (11) 3.1.1 实验试剂 (11) 3.1.2 PLA/n-HA/GO纳米复合膜的制备 (11) 3.2 石墨烯负载Pt催化剂的制备及催化氧还原性能[43] (12) 3.2.1 试剂和仪器 (12) 3.2.2 石墨烯负载Pt催化剂的制备 (12) 3.3 石墨烯的制备和改性及其聚合物复合的研究进展[44] (12) 3.3.1 石墨烯的制备 (12) 3.3.2 制备聚合物基复合材料 (14) 3.4 石墨烯/聚合物复合材料的研究进展[45] (14) 3.4.1 石墨烯的制备 (14) 3.4.2 石墨烯/聚合物复合材料的制备 (15) 3.5 石墨烯的合成与应用[46] (16) 3.5.1 微机械分离法(micromechanical cleavage) (16) 3.5.2 取向附生法———晶膜生长(eqitaxial growth) (16) 3.5.3 加热SiC的方法 (17) 3.5.4 化学分散法 (17) 四结合胶体理论与性质比较分析各种石墨烯纳米材料的优缺点 (17) 4.1 石墨烯 (17) 4.2 氧化石墨烯 (18) 4.3 石墨烯/无机物纳米材料 (18) 4.4 石墨烯/聚合物纳米材料 (18) 五展望石墨烯纳米材料的应用前景 (18) 参考文献 (20)

常用塑料的性能比较及选择

常用塑料的性能比较及选择 由于合成材料有着卓越的性能,因而在包装领域中被大量应用。大多塑料都可用于饮料食品包装和塑料瓶的制备,其中用量最大的是价格低廉的聚烯烃。常用的塑料种类有:聚乙烯(PE)、聚氯乙烯(PVC)、聚丙烯(PP)、聚酯(PET或PETP)、聚偏二氯乙烯(PVDC)及聚碳酸酯(PC)。 聚乙烯(PE) 聚乙烯是世界上产量最大的合成树脂,也是消耗量最大的塑料包装材料,约占塑料包装材料的30%。 低密度聚乙烯(LDPE)透明度较好,柔软、伸长率大,抗冲击性与耐低温性较HDPE为优,在各类包装中用量仍较大,但作为食品包装材料其缺点较明显。 高密度聚乙烯(HDPE)具有较高的结晶度,允许较高的使用温度,其硬度、气密性、机械程度、耐化学药品性能都较好,所以大量采用吹塑成型制成瓶子等中空容器。由于它具有较高的耐油脂性能,广泛用于盛装牛奶、牛奶制品,包装天然果汁和果酱之类的食品。 不过HDPE的保香性差,装食品饮料不宜久藏。但可利用它具有热封性能好的特点,将其作为复合薄膜的内层材料。如二层、三层复合材料,已大量应用于饮料包装,美国采用玻璃纸/粘合剂/PE的复合瓶专盛柠檬汁。 聚氯乙烯(PVC) PVC塑料大致可分为硬制品、软制品和糊状制品三类。硬制品增塑剂一般少于5%,软制品中增塑剂多达20%以上。 硬质PVC因不含或很少含有增塑剂,其成品无增塑剂的异味,而且机械强度优良,质轻,化学性质稳定,所以制成的PVC容器广泛用于饮料包装。用注拉吹法生产的PVC瓶子无缝线,瓶壁厚薄均匀,可用于盛装碳酸饮料如可口可乐等。 PVC材料的安全性一直是人们关注的问题。用于包装的PVC树脂中的氯乙烯含量不能高于1×10-6,即1千克PVC树脂只允许含1毫克氯乙烯单体,用这种PVC树脂生产的瓶子包装饮料,在食品中测不出氯乙烯单体。 聚丙烯(PP) 聚丙烯薄膜是高结晶结构,渗透性为聚乙烯的1/4~1/2,透明度高,光洁,加工性能高,广泛用于制备纤维、成型制品,但主要是塑料薄膜。 目前,具有气密性、易热合性的聚丙烯的涂布薄膜及与其它薄膜、玻璃纸、纸、铝箔等复合的复合材料已大量生产,用PP复合材料制作的容器可用于饮料包装。 各类PP都有一个带静电的共同特点,为解决这个问题,一般在薄膜上涂布防静电剂或者将防静电剂混炼于薄膜中。在薄膜上涂布气密性好的聚偏二氯乙烯类树脂可提高PP的抗氧化性。

石墨烯纳米复合材料

文献阅读报告 文献标题:Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites 文章来源:Original Research ArticleCarbon, Volume 50, Issue 15, December 2012, Pages 5380-5386 文章作者:S. Chatterjee, F. Nafezarefi, N.H. Tai, L. Schlagenhauf, F.A. Nu ¨esch , B.T.T. Chu A Laboratory for Functional Polymers, EMPA, Swiss Federal Laboratories for Materials Science and Technology, Du¨bendorf, Switzerland B Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, Taiwan C Institut des Mate ′riaux, EPFL, Ecole Polytechnique Fe′de′rale de Lausanne, Lausanne, Switzerland 一、作者所做的内容: 改性多壁碳纳米管与石墨烯微片增强聚芳醚腈复合材料 二、作者此项工作的原因: 聚芳醚腈(PEN),作为特种工程塑料,其具有高强度,高模量,耐高温 等性能,在航天,军工,电子等特殊领域具有广阔的应用前景。聚芳醚腈上的 极性氰基基团具有一定的粘结性,且聚芳醚腈容易成型,因此是制备先进复合 材料的优秀载体。 三、作者的实验原理及步聚: 为了进一步扩大聚芳醚腈在介电,机械以及热学领域的应用价值,本论文 以价格低廉的双酚A型聚芳醚腈为基体,以多壁碳纳米管和石墨烯微片为填料,通过对多壁碳纳米管和石墨烯微片的氰基化改性,有效阻止了多壁碳纳米管和 石墨烯微片的团聚。

常用金属材料的密度表 钢 材 基 本 常 识

常用金属材料的密度表

钢材基本常识 (一) 敬告:本刊自即日起将连续刊登钢材的基本常识,敬请关注! 一、钢材的一般常识与管理 (一)普通结构钢普通结构钢简称普通钢。普通钢对硫、磷含量限制较宽,硫的含量不大于0.045%(≤0.045%)、磷的含量不大于0.045%(≤0.045%);普通结构钢主要用于一般要求的建筑和工程结构;普通结构钢主要包括碳素结构钢、低合金结构钢及由他们派生出来的专门用途的普通结构钢。 普通结构钢又可分为以下两类: (1)碳素结构钢(简称普碳钢),其中按屈服点分为Q195、Q215、Q235、Q255、Q275五种牌号;按硫、磷的含量分为A、B、C、D四个质量等级。A级含硫、磷

量高,D级含硫、磷量低;按脱氧程度分为沸腾钢、半镇静钢、镇静钢和特殊镇静钢(见GB700-88标准)。 (2)低合金结构钢按钢的组织分为三类:铁素体珠光体钢,通常在热轧状态下交货;低碳贝氏体钢,通常在热轧或正火状态下交货;低碳马氏体钢,通常在淬火—回火状态下交货。以上三类组织的钢最常用的是铁素体珠光体钢。选用时,可在屈服点相同的钢号级别中选用。(二)合金结构钢合金结构钢是在优质碳素结构钢的基础上加入一种或数种合金元素组成的钢种。常加入的合金元素有Mn、Si、Cr、Ni、W、Mo、V、Ti、B、Nb等。合金结构钢含碳量小于0.55%;与碳素结构钢比较,具有高的淬透性,用于制造性能要求高、尺寸大、形状复杂的机构设备结构零件。 合金结构钢有以下四种分类: (1)按硫、磷含量不同分为三类:优质合金结构钢。钢中含S≤0.035%,P≤0.035%;高级优质合金结构钢,牌号后加“A”,钢中含S≤0.025%,P≤0.025%;特级优质合金结构钢,牌号后加“E”钢中含S≤0.015%,P≤0.025%。 (2)按合金元素含量分为三类:低合金钢(合金元素总含量﹤5%);中合金钢(合金元素总含量5%-10%);高合金钢(合金元素总含量﹙﹥10%)。 (3)按使用加工方法不同分为两类:压力加工用钢——热压力加工或冷拔坯料;切削加工用钢。钢材的使用加工方法应在合同中注明,未注明者,按切削加工用钢交货。 (4)按热处理方法不同分为调质钢和渗碳钢两类. 二、钢材的分类与相关概念钢材品种繁多,根据截面积形状的特点,可归纳为型材、板材、管材和金属制品四大类。 (一)分类 1、型钢特别是异型型钢,其截面形状与所要制成的构件或机构零件较适应或基本相同,不必加工或稍经加工即可使用,而且具有较高的抗弯、抗扭能力。大量用作各种建筑结构和工程结构,也大量用作各种机械零件和工具。 2、钢板钢板具有很大的表面积,有很大的覆盖和包容能力,可按使用要求进行剪裁和组合(焊接、铆接和咬接),可进行弯曲和冲压成型,不仅广泛用于制造各种结构件、容器、车辆和各种工业炉、反应塔器的壳体、机械零部件及日常

相关文档
最新文档