气泡减阻技术研究进展

气泡减阻技术研究进展
气泡减阻技术研究进展

方形管道内壁面微结构对湍流减阻效果的影响

2017年第36卷第11期 CHEMICAL INDUSTRY AND ENGINEERING PROGRESS ·3971· 化 工 进 展 方形管道内壁面微结构对湍流减阻效果的影响 李恩田1, 2,吉庆丰1,庞明军3 (1扬州大学水利与能源动力工程学院,江苏 扬州 225127;2常州大学石油工程学院,江苏 常州213016; 3常州大学机械工程学院,江苏 常州 213016) 摘要:利用循环管路系统,对方形管道内壁面微结构对湍流减阻效果的影响进行了试验研究,研究了循环管路系统不同壁面微结构下流动的范宁系数和减阻率。试验采用的肋条结构尺寸为:肋条宽度均为 1.0mm ,肋高分别是h =0.3mm 、0.5mm 、0.7mm 。试验介质为普通自来水,水温控制在25℃±0.5℃,水平管道内流体流速范围为0.03~1.80m/s 。试验研究结果表明:在量纲为1的肋深h +处于4~15范围内,肋条壁面的范宁系数小于光滑壁面的范宁系数,肋条壁面具有减阻效果;肋高h =0.5mm 肋条的减阻效果最好,最大减阻率为11.91%;粒子成像测速仪研究了不同壁面微结构下流体流动的平均速度、雷诺切应力和近壁区的涡量。实验结果表明:肋条的存在使得湍流边界层增厚,雷诺切应力减小,近壁区的涡量降低,从而达到减阻的效果。 关键词:壁面微结构;范宁系数;减阻率;雷诺应力;涡量 中图分类号:O357.5 文献标志码:A 文章编号:1000–6613(2017)11–3971–06 DOI :10.16085/j.issn.1000-6613.2017-0436 Influence of wall microstructure on turbulent drag reduction in square pipe LI Entian 1, 2,JI Qingfeng 1,P ANG Mingjun 3 (1School of Hydraulic Energy and Power Engineering ,Yangzhou University ,Yangzhou 225127,Jiangsu ,China ;2School of Petroleum Engineering ,Changzhou University ,Changzhou 213016,Jiangsu ,China ;3School of Mechanical Engineering ,Changzhou University ,Changzhou 213164,Jiangsu ,China ) Abstract :In the present work, the flow characteristics and drag reduction of a turbulent flow field over a riblets surface plate were investigated experimentally and compared with a smooth surface. Experimental tests were carried out in a closed rectangular duct with 1mm in width and 0.3mm ,0.5mm ,0.7mm in height riblets using particle image velocimetry. Tap water was used in this experiment and test temperature was controlled at 25℃±0.5℃,and the velocity was maintained between 0.03—1.8m/s. The study showed that a notable decrease in fanning friction factor for riblets surfaces can be seen at an h + range of 4–15 compared with flat plate. A maximum rag-reduction of nearly 11.91 percent was acquired over the riblets surface of 1 mm wide and 0.5 mm height. Riblet can thicken the boundary layer and weaken turbulent fluctuation intensity. Furthermore ,both Reynolds shear stress and vorticity and root-mean-square velocity were decreased. Key words :wall microstructure ;fanning friction factor ;drag reduction rate ;Reynolds shear stress ;vorticity 壁面微结构减阻技术始于20世纪60年代。WALSH [1-2]研究了具有肋条或沟槽微结构的壁面的 湍流减阻性能,结果表明,顺流向的微小沟槽壁面和肋条壁面都能够有效降低摩阻。在过去的半个多 收稿日期:2017-03-16;修改稿日期:2017-04-12。 基金项目:国家自然科学基金(51376026)及江苏省高校自然科学研究重大项目(15KJA470001)。 第一作者及联系人:李恩田(1977—),男,副教授,博士研究生,主 要从事湍流减阻方面的研究。E-mail :let@https://www.360docs.net/doc/7d4285914.html, 。 万方数据

湍流减阻的意义及工程应用

湍流减阻的意义及工程应用 摘要:伴随着世界性能源危机的逐渐加剧,节能减排已经成为大势所趋,在能源运输的过程之中,摩擦阻力是主要的耗能来源,所以研究湍流减阻意义十分的重大。为此本文将对于湍流减阻的意义及工程应用展开有关的论述。本文首先论述了推流减租的意义,之后详细的论述了其工程上面的应用。含有肋条、柔顺壁、聚合物添加剂、微气泡、仿生减阻、壁面振动等主要湍流减阻技术最近的研究成果和应用现状,并着重强调了各自的减阻机理。 关键词:能源危机湍流减阻减阻机理 引言 伴随着全球能源消耗的不断提升,科学家门已经将越来越多的警力投入到如何有效的利用与保护能源领域上面。车辆、飞机以及船舶、油气长输管道的数量快速的增加,所以设法减少这些运输工具表面的摩擦阻力,成为人们研究发展节约能源的新技术含有的突破点[1]。 1湍流减阻的意义 节约能源消耗是人类一直追求的目标,其主要的途径就是在各种运输工具设计之中,尽可能的减少表面的摩擦阻力。表面摩擦阻力在运输工具总阻力之中占据很大的比例,在这些运输工具表面的发部分区域,流动都是处于湍流的状态,所以研究推流边界层减租意义十分的重大,已经引起广泛的重视,同时已经被NASA列为21实际航空关键技术之一[2]。 有关减租问题的研究可以追溯到上世纪的30年代,不过一直到上世纪的60年代中期,研究工作主要围绕减小表面的粗糙程度,隐含的假设光滑表面的阻力最小。到了70年代,阿拉伯石油禁运由此引发的燃油价格上涨激起了持续至今的推流减租研究与应用潮流,经过多年的发展,尤其是湍流理论的发展,使得湍流减阻理论与应用都是取得了突破性的进展[3]。

2湍流减阻的工程应用 2.1肋条减阻 20世纪70年代,NASA研究中心发现具有顺流向微小肋条的表面可以有效的降低臂面的摩擦阻力,从而突破了表面越光滑阻力越小的传统思维模式,肋条减阻成为湍流减阻技术研究热点[6]。 最近几年,为了最大限度的实现减租,人们对于肋条进行了很多的实验与应用优化设计[7]。德国的Bechert和Brused等使用一种测量阻力可以精确度达到±0.3%的油管对于各种肋条表面的减阻效果进行了研究。其测试了多种形状的肋条,含有三角形、半圆以及三维肋条,实验的结果显示V形肋条减阻效果最好,可以达到10%以上的减阻幅度[8]。大量的研究工作显示肋条表面减阻的可靠性与可应用性,国外的研究已经进入到了工程实用阶段,空中客车将A320试验机表面积约70%贴上肋条薄膜,到达了节油2%左右。NASA兰利中心对于Learjet 型飞机的飞行试验结果减阻大约在6%左右。国内的李育斌在1:12的运七模型上具有湍流流动的区域顺流向粘贴肋条薄膜之后,试验表面可以减小飞机阻力8%左右[9]。 2.2壁面振动减阻 壁面振动减阻是20世纪90年代才出现的一种新的方法,米兰大学的Baron和Quadrio 利用直接的数字模拟技术研究了壁面振动减阻的总能量节约效果,其发现在壁面振动速度振 幅在大于: h QX8/ 3时,不会节约能源,而是在比较小的振幅时候能量才有节约[10]。 这个里面Qx表示流量,h表示湍流明渠流高度的一半。在振幅为 h QX4/的时候,可 以净节约多达10%的能量。因为试验都是在固定无因次周期为T+=100下进行的,所以人们认为如果应用条件适当,还能节省更多的能量[11]。 2.3仿生减阻 海洋生物长期生活在水中,经过漫长的岁月,进化出了效率很高的游动结构,表面摩擦阻力也相当的低。所以通过仿生学的研究,设计出减阻效果更好的结构,也变成了研究的热点。Bechert对于一种模拟鸟类羽毛被动流体分离控制的方法进行了风洞的测试,在迅游环境里面,对层流翼部分的活动襟翼的测试结果表明机翼上的最大升力增加了20%而未发现有负面影响。一架电动滑翔机飞行测试纪录的阻力数据也证明了这一点[12]。

超空泡减阻技术简介

超空泡减阻技术简介 超空泡是一种物理现象,当物体在水中的运动速度超过185千米/小时后,其尾部就会形成奇异的大型水蒸气沟,将物体与水接触的部分包住,物体接触的介质就由水变成了空气,由于空气密度只有水的1/800,因而就能大幅减少物体所受阻力,物体表面会形成大型空气泡,这就是“超空泡化现象”。 超空泡技术就是在艇体表面和水之间产生一个气体空腔,因此减小了阻力,增大了艇的航速。超空泡现象很长时间一直是令造船工程师们头痛的事,因为超空泡现象经常会在高速旋转的螺旋桨叶片表面产生而使螺旋桨高速“空转”从而损坏螺旋桨叶片。 超空泡技术概述 当航行体与水之间发生高速相对运动时,航行体表面附近的水因低压而发生相变,形成覆盖航行体大部分或全部表面的超空泡。形成超空泡之后,航行体将在气体中航行,由于航行体在水中的摩擦阻力约为在空气中摩擦阻力的850倍,因此,超空泡技术的应用可以使水下航行体的摩擦阻力大幅减小,从而使鱼雷等大尺度水下航行体的速度提高到100m/s的量级,使水下射弹等小尺度水下航行体的航速提高到1000m/s的量级。 超空泡发展过程 当航行体在流体中高速运动时,航行体表面的流体压力就会降低,当航行体的速度增加到某一临界值时,流体的压力将达到汽化压,此时流体就会发生相变,由液相转变为汽相,这就是空化现象。随着航行体速度的不断增加,空化现象沿着航行体表面不断后移、扩大、进而发展成超空化。其发展过程一般可以分为四个状态:游离型空泡、云状空泡、片状空泡和超空泡。 超空泡形成方法 超空泡分为自然超空泡和通气超空泡两种,形成超空泡一般有三种途径: 1)提高航行体的速度; 2)降低流场压力; 3)在低速情况下,利用人工通气的方法增加空泡内部压力。前两种方法形成的为自然超空泡,最后一种方法所得到的就是所谓的通气超空泡。 现有的减阻技术 脊装表面减阻,微气泡减阻,复合材料减阻,超空泡减阻技术。而水下超空泡武器是一种新概念武器,基于这种新概念、新原理设计的水下超空泡武器,其运动速度极高,且不受水声对抗器材的干扰,从而大大提高了水下武器的突防能力。 前苏联海军很早在七十年代就发展了火箭推进的“风雪”超空泡代号为BA-Ⅲ的“暴风”超高速鱼雷,航速已达到370公里/小时(约200节),其气泡一是利用超高速自行产生,二是把鱼雷发动机的尾气引到前面放出。超空泡潜艇的主要问题一是控制运动方向困难,二是气泡长时间的产生。德国正在研究开发的超空泡鱼雷用变换头部来控制运动方向,但是潜艇不太可能变换头部。然而美国人宣称已经解决控制运动方向和长时间产生气泡这两个问题,估计美国的潜艇是用调节气泡喷头的方法来操纵潜艇

无人机机翼减阻技术研究

American Institute of Aeronautics and Astronautics 1 Drag Reduction of Light UA V Wing with Deflectable Surface in Low Reynolds Number Flows Masoud Darbandi * and Ali Nazari ? Sharif University of Technology, Tehran, P.O. Box 11365-8639, Iran Gerry E. Schneider ? University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada The most effective approach to drag reduction is to concentrate on the components that make up the largest percentage of the overall drag. Small improvements on large quantities can become in fact remarkable aerodynamic improvements. Our experience shows that the use of light material in constructing human-powered airplanes and unmanned-air-vehicles UAVs has a few side effects on the aerodynamic characteristics of their wings. One important side effect is the unwanted deflection on wing shell. It is because of high flexibility and low solidity of the light material, which covers the wing skeleton. The created curvature has direct impact on the separation phenomenon occurred over the wing in low Reynolds number flows. In this work, we numerically simulate the flow over a UAV wing with and without considering the generated deflection on its shell. It is shown that the curvature on the wing surface between two supporting airfoil frames causes total drag coefficient reduction. Indeed, this drag reduction is automatically achieved without benefiting from additional drag-reduction devices and/or drag-reduction considerations. The current investigation has been conducted on a UAV wing with fxmp-160 airfoil section. This airfoil normally provides high lift coefficient in low Reynolds flows because of having suitable camber. The drag of a wing with this airfoil section can be reduced by the proper usage of low weight material as its wing shell providing that the wing shell deflects between its supporting frames during stretching the shell in manufacturing stage. Nomenclature α = angles of attack C d = total drag coefficient C dp = profile drag C ds = skin friction drag C l = two-dimensional lift coefficient C L three-dimensional lift coefficient L/D = lift-drag ratio Re = Reynolds number I. Introduction RAG reduction is one of the major objectives to the air vehicle designers and manufacturers 1. The study of air vehicles at their cruise shows that there are two main sources of drag force including lift-induced and skin-friction drags. It is reported that these two sources of drag are approximately one-third and one-half of the total drag, respectively, in civil transport aircraft. Reneaux 2 emphasizes that hybrid laminar flow technology and innovates wing tip devices offer the greatest potential for drag reduction. With respect to lift-induced drag, the classical way to reduce drag has been to increase the wing aspect ratio, which is automatically provided in UAV wings. However, for the wings with low aspect-ratio, it is suggested to use various winglet devices such as wing tip sails, wing grid, * Associate Professor, Department of Aerospace Engineering. ? Graduate Student, Department of Aerospace Engineering. ? Professor and Chair, Department of Mechanical Engineering, AIAA Fellow. D 3rd AIAA Flow Control Conference 5-8 June 2006, San Francisco, California AIAA 2006-3680

脊状表面减阻特性的风洞试验研究

第23卷 第5期2008年10月 实 验 力 学 J OU RNAL OF EXPERIM EN TAL M ECHANICS Vol.23 No.5 Oct.2008 文章编号:100124888(2008)0520469206 脊状表面减阻特性的风洞试验研究 刘占一,宋保维3,胡海豹,黄桥高,黄明明 (西北工业大学航海学院,西安710072) 摘要:利用热线风速仪,对光滑表面和多个脊状表面在低速风洞中进行了表面流场测试。基于测得的边界层速度分布数据,利用对数律区速度分布公式,编程分别计算出光滑表面和脊状表面的壁面摩擦速度和虚拟原点。研究发现,脊状表面最大减阻量达13.5%;有减阻效果的脊状表面使边界层速度曲线上移、湍流强度下降;与光滑表面相比,脊状表面的位移厚度和动量损失厚度明显减小,也表明脊状表面具有减阻效果;位移厚度和动量损失厚度减少量随槽间距s+的增加呈现先变大后变小的趋势,在s+=12时达到最大。 关键词:脊状表面;热线风速仪;摩擦速度;减阻量 中图分类号:O357 文献标识码:A 0 引言 目前的各种湍流减阻方法中,脊状表面减阻技术以其减阻效果显著和易于推广使用的特点,被公认最具使用潜力。该技术起源于仿生学对鲨鱼等鱼类表皮的研究,通过在航行体外表面加工具有一定形状尺寸的脊状结构,来达到很好的减阻效果。该项技术在国外已投入了实际应用,如空中客车将A320试验机表面的约70%贴上脊状表面薄膜,获得了节油1%~2%的效果;NASA兰利中心在Learjet型飞机上开展的类似飞行试验显示,脊状表面的减阻量约为6%左右。 脊状表面减阻的物理机制在于:脊状表面与顺流向的“反向旋转涡对”作用,产生“二次涡”。“二次涡”的产生和发展削弱了“反向旋转涡对”的强度,进而抑制了湍流猝发的形成。脊状表面流场理论研究发现,脊状表面的粘性底层厚度比平板的要厚得多,表明在脊状表面近壁区存在着低速流层,使得边界层外层高速流不直接与壁面接触,而从低速流层上流过,降低了壁面法线方向的速度梯度,从而产生了减阻效果[1,2]。 近些年,为了从微观流动结构方面研究脊状结构的减阻原理,PIV、LDV和热线风速仪等设备越来越多的被应用在减阻研究中。与以前使用测力天平等设备直接测量阻力不同,这些设备测得的是脊状结构表面流场的特性参数,需要计算出壁面摩擦速度,才能间接给出定量的减阻效果。Ant hony Ken2 dall等在文献[3]中提出用Musker和Spalding公式求摩擦速度;D.Hoo shmand等在文献[6]中提到用Clauser方法求摩擦速度。这些方法都要求准确测得包括粘性底层在内的边界层内层速度分布,但是对数律公式仅需要边界层对数律区的速度分布即可。由于准确测量粘性底层比较困难,因此笔者考虑利用对数律区速度分布公式,通过拟合求摩擦速度。 本文利用热线风速仪测量了五种不同尺寸的脊状结构表面流场,不仅从速度分布、湍流度分布方面3收稿日期:2008203218;修订日期:2008210206 基金项目:国家自然科学基金面上项目(10672136);国家自然科学基金重点项目(50835009)资助 通讯作者:宋保维(1963-),男,教授,目前主要研究方向:水下航行器设计、制造,流体力学,系统工程理论及其应用,计算机辅助设计与制造,机电一体化与机器人技术等。E2mail:songbaowei@https://www.360docs.net/doc/7d4285914.html,

高分子减阻剂减阻效果试验研究

高分子减阻剂减阻效果试验研究 指导老师:毛根海 实验成员:薛文洪一红 班级: 土木工程0101结构班 实验日期:2003年12月7日

高分子减阻剂减阻效果试验研究 流体流动存在阻力,产生流体能量损失。在管流中有管道阻力,如长距离输水、石油、天然气等,都必须在流经一定距离之后设置升压泵,以补充损失的能量。同样,在明渠输水、水面必须有水利坡降才能产生顺坡降方向的流动,在同坡降的情况,流动阻力越大,则流速越慢,过流能力越差。 若在水体中添加减阻剂,就能大大减少沿程阻力。这是减小水流沿程阻力的另一种新途径。减阻剂种类很多,不同减阻剂及添加量不同,其减阻效果也不一样。 由于客观条件的限制,我们此次通过“同一减阻剂在不同浓度下减阻效果”的比较,对减阻剂加入水体后的减阻效果进行定性、定量的了解。 本次实验采用的减阻剂是聚丙烯酰胺(又称PAM),初配浓度为0.1%,室温(10o C左右)。采用沿程阻力试验装置进行测定(实验装置如图)。实验地点,土木系水利实验室。

聚丙烯酰胺,别名PAM ,是一种有机高分子聚合物,为玻璃状固体,溶于水,也溶于醋酸、乙二酸、甘油和胺 等有机溶剂。聚丙烯酰胺是重要的水溶性聚合物,而且兼具增稠性、絮凝性、耐剪切性、降阻性、分散性等宝贵性能。 一、试验数据及结果分析如下: 清水实验时:

加入 100ml 3

加入 700ml 0.1%PAM 溶液入水 箱: 各项常数:d=0.675cm L=85cm K=1.993 从如上的数据可以看出,PAM要起到减阻效果是有一定浓度限制的。浓度太小,减阻效果 不明显;浓度太大,反而会增阻。通过粘度计的测定,清水与各浓度溶液的粘度相差很小,(清 水时平均粘度为0.012,加入375ml溶液时平均粘度为0.013)。通过几组实验数据的对比可 得,相同沿程损失的情况下,PAM减阻效果最大的浓度出现在向水箱中加入375ml 0.1%溶液 左右,过流量增大,阻力粘制系数呈下降趋势。(加入400ml该溶液时,过流量已开始减小)。 通过各表的Re与λ关系比较可知,加入PAM后,相同Re下,λ有明显减小(曲线图待 补充),说明PAM起到了一定的减阻效果。同时该减阻剂在层流区几乎不起作用,在紊流区能 够起到一定的作用。但是需要指出的是,通过本次定量实验可以看出,PAM并不是一种十分有 效的减阻剂,虽然阻力粘制系数随PAM加入量的增加一直呈下降趋势,但是过流量的增加并 不显著。

船用气泡减阻技术发展

船用气泡减阻技术发展

船用气泡减阻技术发展 早在十九世纪30年代俄国和瑞典科学家就提出设想:在运动船舶的船体外表面和水之间,引入空气和排气形成气幕,可以大幅减少运动船舶总阻力。然而,这一设计思想在工程技术实践中却并不容易实现。因此,目前真正用于实船的仅为俄罗斯等极少数国家。 气泡船(air cavity craft)也有称作空气润滑船(air-lubricated-hull craft)或气浮船(air ride express)的,它是高性能船型中的一种。其工作原理是把空气引入船底,在船底表面形成气水混合的两相流,从降低液体粘性系数的角度来减小艇体的摩擦阻力,达到高速航运的目的。 1949年底,瑞典哥德堡船模试验池的

Edstrand提出了气膜减阻原理,但由于空气会自由地飘离船体表面,无法形成气膜,试验没有取得成功。60年代后,各国对怎样锁定气膜进行了深入研究,基本上形成了两种思路。 第一种思路是在平底船上开设一个凹进 船底的平面,四周用板材围起来,在船底凹面内通以压缩空气,使大部分气体封存在船底,当然难免还有一小部分气体随船体的移动从 船底边缘逃逸出去。这类技术主要应用在低速运输船上,如驳船、货船和大型油船。在我国黑龙江水运科学研究所研究的垫气驳就属于 这一类,并于1982年在黑龙江航运的驳船上应用成功。在正常运营航速(Vs=9km/h)下,阻力可比原船型减小30%,而消耗在压缩空气上的功率只占总功率的3%,节能效果十分显著。 第二种思路是将船底下的一层薄薄的气 膜扩展成一个增压气室,最终将演变成侧壁式气垫船,成为另一类高性能船型。80年代以来,前苏联、法国、美国、澳大利亚、荷兰等

船舶节能技术的最新发展

目录 目录 (1) abstract (3) 第一章绪论 (4) 1.1 研究目的与意义 (4) 1.1.1 研究目的 (4) 1.1.2 研究意义 (5) 1.2 船舶技术节能潜力与特点 (5) 1.2.1 船舶节能潜力 (5) 1.2.2当前船舶节能技术的特点 (5) 二、船舶节能技术取得的进步 (5) 2.1 节能推进器 (5) 2.1.1低速柴油机 (5) 2.1.2 中速柴油机 (6) 2.1.3正反转螺旋桨 (6) 2.2节能附件 (6) 三、节能型船型的设计 (6) 3.1 小水线面双体船型 (6) 3.2 双艉鳍船型 (7) 3.3 球艉和球鼻艏船型 (7) 3.4 非对称尾船型 (7) 四、节能措施 (7) 4.1 减少船舶阻力 (7) 4.1.1减阻球鼻 (7) 4.1.2 球艉船型 (7) 4.1.3微气泡减阻 (8) 4.1.4采用船尾附体(如加鳍、导流管等) (8) 4.1.5 减少船体的粗糙度 (8) 4.2 提高推进效率 (9) 4.2.1 舵球 (9) 4.2.2 扭曲节能舵 (9) 4.2.3 桨前导流鳍 (9) 4.2.4 桨后自旋助推叶轮 (9) 4.2.5 新型的高效推进器 (9) 4.3 采用混合动力装置 (10) 4.3.1 混合动力装置组成 (10) 4.3.2 混合动力装置余热回收 (10) 4.3.3 热能回收系统的工作模式 (10) 4.3.4 混合动力装置的主要优点 (10) 4.4 绿色船舶 (11) 4.5 提高船舶操作运行技术 (12) 五、结论和展望 (14)

六、致谢 (14) 参考文献 (15)

湍流减阻意义与工程应用

湍流减阻意义与工程应用 摘要:湍流减阻的原理与粘性减阻的定义应用,高分子聚合物在湍流中的原理解释,从不同的方向阐述了当今流体湍流减阻的研究成果,展现了湍流减阻的深入对于科学技术与社会发展产生的重要作用,展望了对于湍流减阻的前景,并对湍流减阻的发展提出了一些建议和设想。 关键词:湍流减阻;粘性减阻;高分子聚合物;湍流 Turbulent drag reduction significance and engineering application Abstract: the principle of turbulent drag reduction and viscous drag reduction the definition of the application of polymer in the turbulence theory to explain, in different directions this paper expounds the current research achievements of fluid turbulent drag reduction, showed the in-depth of turbulent drag reduction for the important role of science and technology and social development, the outlook of the turbulent drag reduction, and puts forward some Suggestions on the development of turbulent drag reduction and ideas Key words: turbulent drag reduction; Viscous drag reduction; Polymer; turbulence 人类很久前就已经观察到湍流运动了,但对它系统地进行研究则仅仅有一百多年的历史。经过一百多年的研究工作,人们的认识日益深化,预测方法不断改进。随着我国飞速发展,所需的战略型资源--化工石油越发紧缺【1】。同时,随着我国大部分油田开发进入中后期,采出油品的流动性不断恶化,使得管道输送阻力急剧增大,运营成本剧增。因此如何降低石油及其产品的管输阻力成为国内外众多学者研究的热点和难点问题。 自从Toms,Kramer先后发现高分子稀溶液或弹性材料护面都能实现减阻以来,减阻现象与边界剪切湍流产生的基本规律密切相联【2-3】。粘性减阻就是通过或从外部改变流体边界条件或从内部改变其边界条件,依靠改变边界材料的物理、化学、力学性质或在流动的近壁区注入物理、化学、力学性质不同的气体、液体来改变近壁区流动的运动和动力学特性,从而达到减阻目的的技术【4】。 1、粘性减阻 当粘性流体沿边界流过时,由于在边界上流速为零,边界面上法向流速梯度异于零,产生了流速梯度和流体对边界的剪力。边壁剪力作功的结果消耗了流体中部分能量,并最终以热量形式向周围发散。边界面的粗糙程度,决定微观的分离和边界的无数小旋涡几何尺寸的差 异,从而决定流体能量消散的差异和阻力系数的差异[5~7]。如想达到粘性减阻,首先要实现壁的光滑减阻;就要改变层流边界层和湍流边界层中层流附面层的内部结构: 1)减小层流边界层和层流附面层贴近边界处的流速梯度值和流体对边界的剪力,减小通过粘性直接发散的能量值,达到减阻。 2)增大层流边界层和层流附面层的厚度,从而达到减阻【8-10】。

船舶吃水差优化的研究

第19卷 第4期 中 国 水 运 Vol.19 No.4 2019年 4月 China Water Transport April 2019 收稿日期:2018-11-03 作者简介:戚可成(1972-),男,上海海华轮船有限公司高级轮机长。 船舶吃水差优化的研究 戚可成1 ,方剑益1 ,曾向明2 ,王 琦2 (1.上海海华轮船有限公司,上海 200080,2.上海海事大学,上海 200080) 摘 要:随着全球经济的快速发展,航运业也更加繁荣,与此同时,也带来了环境污染和能源逐渐枯竭的局面,为此,要提高船舶营运能效、节能减排。本文以”育明”轮为研究对象,通过仿真与试验结合,找出最佳吃水差。利用FLUENT 计算出计算船舶在不同吃水差下的阻力,通过船舶能效监控系统实时测出主机每海里油耗,并比较不同吃水差下船舶阻力的变化趋势和油耗的变化趋势,从中找出最佳吃水差,以供“育明”轮应用于实际航行,同时,也为其他营运船舶提供一个节能减排的新方法。 关键词:吃水差优化;船舶阻力;油耗 中图分类号:U674 文献标识码:A 文章编号:1006-7973(2019)04-0010-04 一、引言 根据国际海事组织(IMO)的统计,全球90%以上的贸易量都是由船舶运输来完成的,但是船舶在运输过程中也给环境带来了污染,如氮氧化物、硫氧化物、温室气体等,已经引起了国际社会的关注。其中,海上运输每年排放的温室气体超过1,000万t,占全球CO 2总排放量的2.7%左右[1]。 在此背景下,提高船舶能效、节能减排已势在必行。目前,航运界提出了多种节能减排的方法,如降速航行、航线优化、气泡减阻等。但是,这些方法都要增加船舶的投资资本或者是降低营运效率,并且这些方法对不同的船舶有不同的适应性,因此不能进行普遍推广。而调整船舶首尾吃水、改变吃水差,从而改变船舶在水中的航行姿态,降低船舶航行的阻力是一种相对简单而且具有普适性的船舶节能方法。 从国内外研究文献来看,1991年,王兴权等人[2]对“松林”号货轮做了纵倾的试验,并证实了通过调整船舶的纵倾状态可以节能;王伟等人[3]通过使用CFD 对KCS 船做了不同纵倾下的阻力预报,并从中得到船舶的最佳纵倾角和其节能效果;张剑在论文[4]中以46,000t 的油轮为研究对象,利用FLUENT 不同浮态下的船舶阻力进行计算,得出船舶处在艉倾3~4m 状态时的阻力最小,与平浮状态下相比可使航行阻力减少了2%;Subramani 和Paterson 等[5]对FF1052 和S60采用CFD 来计算船舶的阻力,然后将计算结果和实验结果对比,发现它们变化的趋势几乎一致,并且计算出的阻力最大值和实验中的最大值也很接近。 本文以“育明”轮为研究对象,使用通用流体计算软件FLUENT 计算船舶在不同吃水差下的阻力,并结合项目组研发的能效监控系统实测的主机油耗相对比,从中找出船舶在不同营运环境下的最佳吃水差,并提出吃水差优化的研究方法。 二、船舶吃水差 由于船舶装载的压载水、货物以及燃料使船舶的重心偏离船舶在正浮时的浮心位置,产生纵倾力矩,从而使船舶艏吃水与艉吃水不同[6]。 船舶的吃水差是指船舶的艏吃水d f 与艉吃水d a 的差,用t 表示,即: f a t =d d - (1) 当艏吃水大于艉吃水时,船舶的浮态为艏倾(Trim by bow);当艏吃水小于艉吃水时,船舶的浮态为艉倾(Trim by stern);当艏吃水等于艉吃水时,船舶的浮态为平浮(Even keel)。 船舶不同的吃水和不同的吃水差都会对船舶的航行性能产生重要的影响。如果船舶的艏倾过大,其首部甲板易上浪,舵叶和螺旋桨入水深度相对减小,如果遇到风浪,舵叶和螺旋桨易露出水面,形成飞车,导致船舶的航行稳定性变差,推进效率也降低。如果船舶的艉倾过大,不仅使首部底板容易受波浪拍打,船舶的操纵性会变差,驾驶台瞭望的盲区增加,还会使航速降低。 因此,船舶要保证在合适的吃水差下航行,如果调整的吃水差使船舶的阻力最小,主机每海里消耗的燃油量最小,能效营运水平最高,此时的吃水差被称为船舶最佳吃水差。 在通常情况下,计算船舶的首尾吃水时可以用下式近似求取: 0.5f m d =d +t (2) 0.5a m d =d t - (3) 除了可以用吃水差t 表示船舶的纵倾状态,还可以用纵倾角φ来表示船舶的纵倾状态,其中纵倾角φ要满足: tan t φ= L (4) 三、建模与计算 1.建立船舶模型

【CN110096749A】基于数值模拟的不同形貌微结构表面减阻效果的评价方法【专利】

(19)中华人民共和国国家知识产权局 (12)发明专利申请 (10)申请公布号 (43)申请公布日 (21)申请号 201910260256.9 (22)申请日 2019.04.02 (71)申请人 江苏理工学院 地址 213001 江苏省常州市中吴大道1801 号 (72)发明人 叶霞 顾江 徐伟 范振敏 张鹏  杨晓红 徐胜 陆磊 冯欢  (74)专利代理机构 常州佰业腾飞专利代理事务 所(普通合伙) 32231 代理人 刘松 (51)Int.Cl. G06F 17/50(2006.01) (54)发明名称基于数值模拟的不同形貌微结构表面减阻效果的评价方法(57)摘要本发明公开了一种基于数值模拟的不同形貌微结构表面减阻效果的评价方法,具体为:(1)建立模型:建立不同微结构表面上的流体模型,根据微结构参数调整流体模型;(2)网格划分:在Ansys的Icem模块中打开流体模型并进行网格划分,得到mesh文件;(3)求解运算:打开mesh文件,选择计算模型和施加边界条件后,求解得到case 文件;(4)导出数据:将case文件中的数据导出,输出关键点处的速度和压力来反应减阻效果的数据;(5)处理数据:对上一步数据进行处理,对比光滑表面与微结构表面的压差值,计算得到减阻率,绘制数据图;(6)分析评价:对数据图形进行分析,寻找不同微结构表面的减阻规律,评价 其减阻效果。权利要求书1页 说明书5页 附图4页CN 110096749 A 2019.08.06 C N 110096749 A

权 利 要 求 书1/1页CN 110096749 A 1.一种基于数值模拟的不同形貌微结构表面减阻效果的评价方法,其特征在于: (1)建立模型:采用Icem、Cad和Caxa软件建立不同微结构表面上的流体模型,根据微结构参数调整流体模型; (2)网格划分:在Ansys的Icem模块中打开步骤(1)所建立的微结构表面上的流体模型并进行网格划分,针对不同的微结构形貌采用不同的网格,需定义模型的出入口和壁面部分,对模型进行块的建立与划分,保证每个微结构作为一个独立的块,划分块之后设置网格信息将划分的块与各个部分进行关联,圆形微结构采用O形网格,三角状微结构采用Y形网格,矩形微结构采用四边形网格,得到mesh文件; (3)求解运算:在Fluent模块打开步骤(2)所得mesh文件,计算求解所使用的计算模型为层流L aminar和VOF模型,材料设置中添加液态水,相位设置中air为第一相,water-liquid为第二相,边界条件采用速度入口与压力出口; (4)导出数据:将步骤(3)所得case文件进行后处理操作,输出关键点处的速度和压力来反应减阻效果的数据; (5)处理数据:对步骤(4)所得数据进行处理,对比光滑表面与微结构表面的压差值,并采用(ΔP光-ΔP微)/ΔP光计算得到减阻率,采用Origin软件绘制数据图; (6)分析评价:对步骤(5)所得数据图形进行分析,寻找不同微结构表面的减阻规律,评价其减阻效果。 2.根据权利要求1所述的基于数值模拟的不同形貌微结构表面减阻效果的评价方法,其特征在于:所述的(2)网格划分步骤,使用Icem软件构建二维半圆凹坑状微结构表面的流体模型,先建立原点,再依次以原点为参考点建立节点。 3.根据权利要求1所述的基于数值模拟的不同形貌微结构表面减阻效果的评价方法,其特征在于所述的(3)求解运算步骤,初始化过程:在Adapt中生成两个寄存器,定义寄存器1微结构内水的体积为0,寄存器2其他流体部分水的体积为1,monitors中计算收敛精度直至残差曲线收敛。 4.根据权利要求1所述的基于数值模拟的不同形貌微结构表面减阻效果的评价方法,其特征在于所述的(4)导出数据步骤:所述的输出关键点处的速度和压力来反应减阻效果的数据;即设置气液交界面以及模型中间二分之一部分的左右两条线作为数据输出的关键点,在plots中用XY plot方式输出交界面速度等参数,在reports选项中选择surface intergal,类型选择为面加权平均值,输出压力为总压力,得到两条线上的加权平均压力值。 5.根据权利要求2所述的基于数值模拟的不同形貌微结构表面减阻效果的评价方法,其特征在于:所述的微结构尺寸维半圆凹坑状微结构表面其凹槽宽与凸起宽的比值即周期间距A为50:1。 2

高聚物减阻机理的研究综述

浙江工程学院学报,第18卷,第1期,2001年3月 Journal of Zhejiang Institute of Science and Technology Vol .18,No .1,Mar 2001 文章编号:1009 4741(2001)01 0015 05 收稿日期:2000-09-06 *教育部博士点基金资助项目 高聚物减阻机理的研究综述 * 邵雪明,林建忠 (浙江大学力学系,浙江杭州310027) 摘要:对有关高聚物减阻机理的代表性研究及进展进行了简要的综述,并对 应力各向异性说 这种较新的观点进行了介绍。 关键词:高分子聚合物;减阻;机理 中图分类号:O357 5 文献标识码:A 1 概 述 高聚物减阻的研究始于1948年,Toms 在第一届国际流变学会议上,发表了关于高聚物减阻机理研究的第一篇论文[1]指出,在氯苯中溶入少量的聚甲基丙烯酸甲酯(PMMA),可大幅度降低液体运动的阻力,因此高聚物减阻又称为Toms 效应。50年代和60年代初期,减阻研究多局限于流变学。在60年代中期以后开始引起流体力学工作者的注意,并开始了广泛的研究工作。 人们重视高聚物减阻的研究,首先是因为这一技术具有很大经济价值,并有两个显著的特点:一是投入量少;二是减阻效果非常显著。所以在国防、工业、交通和消防等领域具有广泛的应用前景,特别是长距离管道输送流体,应用这一技术将大大提高运输量,或节省输送能源的消耗。其次,由于高聚物减阻与湍流密切相关,减阻机理的研究,能促进湍流理论的发展。这正是流体力学工作者瞩目之所在。 迄今为止,虽然有了不少有关高聚物减阻的论著,但现有的理论还没有一种可以圆满解释减阻的系列特征,有待于进行深入的研究,并努力扩大在相关工程中的应用。本文分两个时期对高聚物减阻机理研究的代表性观点和成果进行阐述。 2 分类综述 1990年以前,尤其是60年代之后的10年间,在公开刊物发表的有关高聚物减阻的论文每年约有100篇,密度非常大。所进行的研究可大致被分为三类。 第一类研究的着眼点为高聚物分子,主要研究高聚物分子在剪切、拉伸等流动中的运动特性,由此来推测高聚物的加入对湍流的影响。 1969年Lumley [2]发表了一篇高聚物分子在湍流中运动特性的综述性论文,列举了高聚物分子的主要参数包括分子质量、柔性、分子链长度、构形等的影响,并提出了一个在当时普遍得到认同的观点。他认为高聚物分子在湍流边界层中受到拉伸,会使该处的流体粘度增加,这可能是高聚物引起减阻的主要原因。 White [3](1985年)指出,高聚物分子在静止溶液中各链节随机卷曲,统计图像呈椭球形。溶液运动时分子因剪切而发生变形,与静止状态差别很大。所以如果能观测到分子在剪切流中的构形及动力特征,

相关文档
最新文档