爆炸特性

爆炸特性
爆炸特性

一、爆炸分类

(一)按照爆炸能量的来源分类

按照爆炸能量来源的不同,爆炸可分为:

1. 物理性爆炸。是由物理变化(温度、体积和压力等因素)引起的。在物理性爆炸的前后,爆炸物质的性质及化

学成分均不改变.

锅炉的爆炸是典型的物理性爆炸,其原因是过热的水迅速蒸发出大量蒸汽,使蒸汽压力不断提高,当压力超过锅炉的极限强度时,就会发生瀑炸。又如氧气钢瓶受热升温,引起气体压力增高,当压力超过钢瓶的极限强度时即发生爆炸。发生物理性爆炸时,气体或蒸气等介质潜藏的能量在瞬间释放出来,会造成巨大的破坏和伤害。上述这些物理性爆炸是蒸气和气体膨胀力作用的瞬时表现,它们的破坏性取决于蒸气或气

体的压力。

2.化学性爆炸。是物质在短时间内完成化学变化,形成其它物质,同时产生大量气体和能量的现象。例如用来制

作炸药的硝化棉在爆炸时放出大量热量,同时生成大量气体(CO、CO2、H2和水蒸汽等),爆炸时的体积竟会突然增大47万倍,燃烧在几万分之一秒内完成。由于一方面生成大量气体和热量,另一方面燃烧速度又极快,在瞬间内生成的大量气体来不及膨胀而分散开,因此仍占据着很小的体积。由于气体的压力同体积成反比,即PV=K(常数),气体的体积越小,压力就越大,而且这个压力产生极快,因而对周围物体的作用就象是急剧的一击,这一击连最坚固的钢板,最坚硬的岩石也经受不住。同时,爆炸还会产生强大的冲击波,这种冲击波不仅能推倒建筑物,对在场人员还具有杀伤作用。

化学反应的高速度,同时产生大量气体和大量热量,这是化学性爆炸的三个基本要素。

(二)按照爆炸反应的相分类

按照爆炸反应的相的不同,爆炸可分为:

1.气相爆炸。包括可燃性气体和助燃性气体混合物的爆炸;气体的分解爆炸;液体被喷成雾状物在剧烈燃烧时引起的爆炸。称喷雾爆炸,飞扬悬浮于空气中的可燃粉尘引起

的爆炸等。如表1所示。

2.液相爆炸。包括聚合爆炸、蒸发爆炸以及由不同液体混合所引起的爆炸。例如硝酸和油脂,液氧和煤粉等混合时引起的爆炸;熔融的矿渣与水接触或钢水包与水接触时,由于过热发生快速蒸发引起的蒸汽爆炸等。如表2 所示。

表1 气相爆炸

类别爆炸原理举例

混合气体爆炸可燃性气体和助燃气体以适

当的浓度混合,由于燃烧波

或爆炸波的传播而引起的爆

空气和氢气、丙烷、

乙醚等混合气的爆

气体的分解爆炸单一气体由于分解反应产生

大量的反应热引起的爆炸

乙炔、乙烯、氯乙烯

等在分解时引起的

爆炸

粉尘爆炸空气中飞散的易燃性粉尘,

由于剧烈燃烧引起的爆炸

空气中飞散的铝粉、

镁粉等引起的爆炸

喷雾爆炸空气中易燃液体被喷成雾状

物在剧烈的燃烧时引起的爆

油压机喷出的油珠、

喷漆作业引起的爆

表2 液相、固相爆炸

类别爆炸原因举例

混合危险物质的爆

炸氧化性物质与还原

性物质或其他物质

混合引起爆炸

硝酸和油脂、液氧和煤粉、高

锰酸钾和浓酸、无水顺丁烯二

酸和烧碱等混合时引起的爆

易爆化合有机过氧化物、硝基丁酮过氧化物、三硝基甲苯、

物的爆炸化合物、硝酸酯燃烧

引起爆炸和某些化

合物的分解反应引

起爆炸硝基甘油等的爆炸;偶氮化铅、乙炔酮等的爆炸

导线爆炸

在有过载电流流过

时,使导线过热,金

属迅速气化而引起

爆炸

导线因电流过载而引起的爆

蒸气爆炸由于过热,发生快速

蒸发而引起爆炸

熔融的矿渣与水接触,钢水与

水混合爆炸

固相转化时造成爆

磁滞特性

實驗11 磁滯現象 目的:觀察鐵磁性物質因磁場強度變化而產生的磁滯曲線。 原理: (a)導磁率(μ)及磁域 導磁率(permeability)是以描述材料被磁化之難易程度,亦即導通磁力線之能力。材料之化學成分、合金成分、熱處理及冷作狀況與溫度等因素均會影響導磁率大小。一般導磁率表示為 μo:4π×10-7 H/m,真空導磁率 μr:相對導磁率= ( 材料所產生之磁化程度) ÷( 真空所產生之磁化程度) μ= μ0-μr 對相同材料而言,導磁率並非一個定常數,其與外加磁場強度( H )及磁通密度( B )之比例有關,即B :磁通密度;Tesla = wb / m2 H :磁場強度;A / m 導磁率,μ: B = μ0( 1 + χm) H = μH ( 如圖1 ) μr = 1 +χm 圖1 導磁係數(μ)依磁通密度(B)變化的情形 (b)材料磁化特性 (1) 反磁性材料 若材料在強磁場內,其電子群磁矩改變甚微,且感應磁場方向與外加磁場相反,而生斥力者,稱為反磁性材料;例如水、石英、鉍、汞等。 反磁性:if μr ≦ 1 ;χm<0 ,︱χm︱<< 1 (2) 順磁性材料 若材料在強磁場內,其電子群自旋運動所產生之磁矩會趨向外加磁場方向排列,但此效應甚小,造成磁場方向之磁化程度不大,而表現出順磁特性,例如鋁、氧等。 順磁性:if μr ≧ 1 ;χm>0 ,︱χm︱<< 1

(3) 鐵磁性材料 含有大量磁田,容易被磁化。在未被磁化時,磁田之磁矩方向分佈雜亂,其總合磁矩幾乎為零,但外加強磁場時,磁田之磁矩沿極化方向整齊排列,因而形成高磁性。例如鐵鈷、鎳。 鐵磁性:if μr >> 1 (c)磁化曲線 在磁區內的磁矩排列成同一方向,形成自生磁化,各磁區的自生磁化合成後可從零變化到自生磁化之值,也就是飽和磁化之值。雖然,鐵磁性物質的磁區內有自生磁化,但是,當鐵磁性物質處在去磁狀態(Demagnetized)時,材料整體的淨磁化為零。假如外加磁場於鐵磁性物質,表現出來的磁化量變化如圖2: 圖2 鐵磁性物質的磁化曲線 (d)磁滯曲線 (1)圖2為典型強磁性材質的BH曲線,未經磁化之強磁性材質在磁場強度(H) 增加時,磁通密度(B)之變化情形,如圖3由o點至a點之曲線。 (2)如圖3,當磁場強度(H)減少時,曲線由a點移動至b點,而未順著原本 之o點至a點之曲線回來,此乃大部分磁性材質均具頑磁性(Retentivity)。 (3)當磁場強度(H)為0時,在磁性材質中由於磁性(或剩性)會產生相對應 之磁通密度Br的值,稱之為“殘餘磁通密度(Residual Flux Density)”,因有殘餘磁通密度,才有永久磁鐵的產生。 (4)若欲消除殘餘之磁通(即使B=0),則必須供應反向之電流通過線圈,此 時產生之反向磁場強度,使磁通密度B=0(曲線由b點至c點之部分),而在c點這個磁力──Hc可用來強迫磁通密度(B),使其減少至0,稱之為“矯頑磁力(coercive Force)”,可用來測量磁性材質之矯頑性。(5)當反向磁場強度繼續增強,則又再度發生飽和狀態(曲線由c點至d點之部 分); (6)接下來將磁場強度(H)反過來,使之回到零(曲線由d點至e點之部分), 則強磁性材質內之磁通密度(B)會減少至e點,

爆炸现象的最主要特征是什么

爆炸现象的最主要特征是什么 爆炸现象的最主要特征足什么?( ) A.温度升高 B.压力急剧升高 C.周围介质振动 查看答案解析 【正确答案】 B 一般来说,爆炸现象具有以下特征: (1)爆炸过程高速进行; (2)爆炸点附近压力急剧升高,多数爆炸伴有温度升高; (3)发出或大或小的响声; (4)周围介质发生震动或邻近的物质遭到破坏; 【注】爆炸点附近压力急剧升高是爆炸最主要的特征; 爆炸是物质从一种状态迅速转变成另一状态,并在瞬间放出大量能量,同时产生声响的现象。火灾过程有时会发生爆炸,从而对火势的发展及人员安全产生重大影响,爆炸发生后往往又易引发大面积火灾。 1.爆炸的定义 由于物质急剧氧化或分解反应产生温度、压力增加或两者同时增加的现象,称为爆炸。爆炸是由物理变化和化学变化引起的。 2.爆炸的分类 爆炸有着不同的分类,按物质产生爆炸的原因和性质不同,通常将爆炸分为物理爆炸、化学爆炸和核爆炸三种。物理爆炸和化学爆炸最为常见。 考点:爆炸极限 1.气体和液体的爆炸极限 气体和液体的爆炸极限通常用体积百分比%表示。 2.可燃粉尘的爆炸(浓度)极限 粉尘的爆炸极限通常用单位体积中粉尘的质量(g/m2)表示。 3.爆炸混合物浓度与危险性的关系 爆炸性混合物在不同浓度时发生爆炸所产生的压力和放出的热量不同,因而具有的危险性也不同。 4.爆炸极限在消防上的应用

物质的爆炸极限是正确评价生产、储存过程的火灾危险程度的主要参数,是建筑、电气和其他防火安全技术的重要依据。 考点:爆炸危险源 1.引起爆炸的直接原因 通常,引起爆炸事故的直接原因可归纳为以下几方面:物料原因、作业行为原因、生产设备原因、生产工艺原因。 2.常见爆炸点火源 点火源是发生爆炸的必要条件之一,常见引起爆炸的点火源主要有机械火源、热火源、电火源及化学火源。 3.最小点火能量 所谓最小点火能量,是指每一种气体爆炸混合物,都有起爆的最小点火能量,低于该能量,混合物就不爆炸,目前都采用毫焦(mJ)作为最小点火能量的单位。

炸药的性能.doc

第六章 炸药的性能 随着科学技术和经济建设的发展,炸药已成为一种特殊的能源,其用途日益广泛,不仅消耗量逐年增加,而且对炸药的性能提出了新的要求。在制造炸药产品、改进炸药品种的过程中,只有通过性能的研究和测试,才能提供充分的数据,说明该炸药的引爆和爆轰性能是否满足使用要求,说明在生产、运输、储存和使用过程中是否安全可靠。研究炸药的性能对推动炸药品种和使用的发展,确保产品制造质量,起着极其重要的作用。 炸药的性能,一是决定于它的组成和结构,二是决定于它的加工工艺,三是决定于它的装药状态和使用条件。各种不同的炸药及其使用领域,对其性能有不同的要求。本章主要介绍炸药的密度、爆速、爆压、做功能力、猛度、殉爆距离、有毒气体产物等知识。 6.1 炸药的密度 密度是炸药,特别是实际使用的装药形式炸药的一个很重要的性质。机械力学性能、爆炸性能和起爆传爆性能等均与密度有密切的关系。 6.1.1 理论密度 对于爆炸化合物,理论密度指炸药纯物质的晶体密度,或称最大密度。 对于爆炸混合物,理论密度则取决于组成该混合炸药各原料的密度。定义混合炸药的理论密度等于各组分体积分数乘以各自密度的加权平均值,其表达式为: /i i i T i i i m V V m ρρρ == ∑ ∑∑∑ (6-1) 式中 T ρ—炸药的理论密度;i m —第i 组分的质量;i V —第i 组分的体积; i ρ—第i 组分的理论(或最大)密度 炸药的理论密度是指理论上炸药可能达到的最大装药密度。实际上所得到的炸药装药密度,不论采用何种装药工艺,均小于理论密度。 6.1.2 实际装药密度和空隙率 炸药装药中总存在一定的空隙,空隙率可由下式定义: 0(1)100%T ερρ=-? (6-2) 而装药的实际密度可由下式求得: (1)(1)i i T i m m V V ρερε==-=-∑∑∑ (6-3) 式中:0ρ—装药的实际密度;ε—空隙率;V —装药的实际体积 例1、已知某炸药T ρ=1.833g cm -,装药密度0ρ=1.61~1.693g cm -,求其空隙率。 解:0(1)100%T ερρ=-?=12.7%~7.8%

爆破伤害和炸药爆炸危险性分析示范文本

爆破伤害和炸药爆炸危险性分析示范文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

爆破伤害和炸药爆炸危险性分析示范文 本 使用指引:此解决方案资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 爆破在矿山生产中占有很重要的地位。炸药和起爆器 材以及由它们组装成的爆炸装置都是易燃、易爆的危险 物。因此,在爆破材料的加工、炸药的储存、使用、运 输、以及爆破作业(施工准备、炮位验收、起爆体加工、 装药、堵塞、起爆、检查等)任何一个环节中,稍有不慎 就有可能发生爆炸事故。 炸药储存保管造成事故 炸药临时存放点是矿山的要害部位,如果设置不符合 国家标准如库房设在有山洪、泥石流、滑坡、崩塌等易发 位置、未加防护、库房照明、通电线路不合规定,消防、 通讯、报警、防雷未按规定设置或管理不善和保卫不严,

都将会引起爆炸事故。炸药房的爆炸,一般由于火花或热源(如火柴、照明线漏电、照明线发火发热等)引起,炸药雷管一起保管、炸药渗漏的硝化甘油未及时处理,在库房内用灯泡烤雷管、炸药,穿铁钉鞋进入炸药库等都有引起炸药库爆炸的危险。 点炮方法不当、导火线质量不良造成事故 点炮事故在爆破事故中占有较高的比例。一次点炮数目较多时仍然采用逐个点火,导火线过短、或在潮湿的工作面导火线受潮,导火线质量不好,一面割线,时间拖得太长,都容易引起爆破事故。采用不合适的点火工具,如电石灯、烟头、火柴等,常常拖延点火时间,也会造成爆破事故。 盲炮处理不当、打残眼造成事故 在爆破工作中,由于各种原因造成起爆药包(雷管或导爆索)瞎火,部分或全部未爆的现象叫做盲炮,爆破中

瓦斯爆炸特性及其防治技术现状样本

瓦斯爆炸特性及其防治技术现状 摘要瓦斯是煤矿特有可燃、可爆性气体,瓦斯爆炸从来都是煤矿重要灾害之一。近年来,瓦斯爆炸事件在煤矿频发,严重危及了国家安全生产,矿工生命安全导致了极大威胁。为防止瓦斯爆炸事故,必要较好理解瓦斯爆炸发生、发展规律。本文分析了煤矿安全现状、煤矿瓦斯爆炸特性、基本条件和重要危害方式,重点简介了瓦斯爆炸防治办法,阐明瓦斯爆炸事故防治是煤矿安全工作一项系统工程,除了在技术上不断提高外,安全制度制定也必要作为安全工作重点,只有这样才干从主线上解决瓦斯爆炸事故。 核心词瓦斯爆炸爆炸特性防治技术 1 前言 煤炭是国内最重要能源,它占国内一次能源消耗构成75%~80%。在开采煤炭资源过程中会随着着各种灾害事故发生,如瓦斯爆炸、煤尘爆炸、煤与瓦斯突出、中毒、窒息、火灾、透水、顶板冒落等。虽然国内在煤矿安全保证方面采用了许多办法,投入了大量人力、物力,但随着煤矿开采机械化、自动化限度、产量不段增长,煤矿事故呈现出事故数量下降,死亡人数下降,但特别重大事故一次性死亡人数略有增长趋势。其中瓦斯爆炸无疑是最严重,它不光是导致损失最大,发生频率也是最大,依照每年国家煤监局事故记录来看,煤矿发生一次死亡10人以上特大事故中,绝大多数是瓦斯爆炸,约占特大事故总数70%左右,为此,瓦斯可称为煤矿安全最大威胁者。 鉴于瓦斯爆炸事故对国内煤矿安全生产导致严重威胁,无论从煤矿安全管理或从煤矿安全监察角度看,都极有必要研究瓦斯爆炸事故机理和特性,以便对瓦斯爆炸事故防治、瓦斯爆炸事故技术勘察等工作,提供理论和技术上指引和支持。 2 瓦斯爆炸特性及其危害 2.1 瓦斯爆炸特性

井下瓦斯是指从煤与围岩中涌出有毒有害气体总称,重要有4CH 、2CO 、CO 、S H 2、42H C 、62H C 、83H C 、2SO 、2O 等气体,其中4CH 为重要成分,瓦斯爆炸即指甲烷爆炸。瓦斯爆炸是瓦斯和空气混合后,在一定条件下遇高温热源发生激烈连锁反映,并伴有高温高压现象,在瓦斯爆炸过程中,火焰从火源占据空间不断地传播到爆炸性混合气体整个空间。 瓦斯爆炸化学反映式如下: l 882.6kJ/m o O 2H CO 2O CH 2224++→+ (1) 或 l 882.6kJ/m o 7.52N O 2H CO )79/21N 2(O CH 222224+++→++ (2) 应当指出,瓦斯爆炸是一种复杂化学反映过程,以上化学式所示只是其最后成果。许多研究工作证明,瓦斯爆炸是连锁反映(热—链式反映)。当爆炸性混合气体吸取一定能量(热能)后,反映分子链断裂,离解成两个或两个以上游离基(又称自由基),游离基有进一步分解,在产出两个或两个以上游离基,这样分解下去,游离基愈来愈多,化学反映也愈来愈快,最后就可以发展为燃烧或爆炸式氧化反映。 瓦斯爆炸必要具备三个条件: ⑴瓦斯浓度处在爆炸范畴内(在常温常压下,形成5%~15%4CH 积存); ⑵氧浓度超过错爆氧浓度(在2CO 惰化下,氧浓度>12%,在2N 惰化下,氧浓度>9%); ⑶引火源能量不不大于最小点燃能量(0.28mJ ),温度高于最低点燃温度(595℃)且点燃时间长于感应期。 普通状况下,矿井内氧浓度是满足,只要瓦斯积存和火源同步具备,就也许发生瓦斯爆炸。依照近年对煤矿瓦斯爆炸事故记录分析,可以发现瓦斯爆炸有如下某些特点:①瓦斯爆炸多为特大事故,导致损失巨大;②事故地点多发生在采煤与掘进工作面;③瓦斯爆炸导致破坏波及范畴大,破坏力极强;④多为火花引

水下爆炸特征分析

水下爆炸特征分析 6.4.1水下爆炸试验特征分析 6.4.1.1水下爆炸试验背景 水下爆炸试验工程是指以确保完成水下爆炸试验任务为根本目的,为发展水下爆炸试验技术、具备水下爆炸试验能力而进行的科学技术研究活动。水下爆炸试验工程不能等同于实船爆炸试验任务。实船爆炸试验是水下爆炸试验工程的中心内容,也是检验水下爆炸工程的唯一标准,而水下爆炸工程既包含了实船爆炸试验,也包含了与实船爆炸试验相关的其他许多科学技术活动。水下爆炸试验工程是研究为达到不同试验目的的最佳试验方式,研究冲击响应测量的理论、技术和方法,研究兵器和舰艇在水下爆炸作用下的仿真与评估理论、技术和方法,研究涉及多单位、多学科且周期长、耗资大的试验工程理论、方法和技术。 6.4.1.2水下爆炸试验工程系统 水下爆炸试验工程是一项系统工程,它包含了许多子系统,这些子系统间既相互联系又相互制约。为了从总体上把握系统间互相联系、互相制约的要素及变化,首先应该研究该系统的结构和相互关系,充分利用和挖掘系统潜力,才能更好地完成水下爆炸试验。

6.4.1.2.1统结构及其相互关系 水下爆炸试验工程系统是一个集中控制的多层次结构,如下图所示。每个子系统又由若于更低层次的子系统组成,以此类推。一个子系统的功能是由其所属的下级子系统的功能共同实现的。这里所说“共同实现"的关系,可能是互相独立的“并联" 关系,也可能是互相依赖的“串联"关系。例如舰船冲击响应测量包括加速度测量、应变测量、速度测量等子系统,各子系统是“并联"关系,而组成每一参数测量子系统的传感器、信号调理模块和数据处理模块则为串联关系。 图4-1 海上爆炸试验工程系统功能结构 6.4.1.2.2系统功能结构关系 水下爆炸试验工程系统功能结构见图4-1。它是一个集科学、技术、工程为一体的系统。所谓系统功能结构是从技术层次上分析研究进行爆炸试验所必需的结构。从功能上说每个子系统至少完成一个确定的技术目标。由于每次爆炸试验的目的、规模、要求、试验方式各不相同,各级子系统与其所属下级子系统所需的

基于ABAQUS软件的舰船水下爆炸研究

万方数据

?38?哈尔滨工程大学学报第27卷 限元动力分析软件(例如ABAQUS、LS—DYNA、MsC/DYT础N等),这使得有限元仿真成为计算舰船冲击响应的切实可行的办法.LS—DYNA和DYT砘气N在分析舰船水下爆炸过程中均采用√蛆点算法,而ABAQUS采用声固耦合方法.m正算法用状态方程描述流体和炸药,通过欧拉单元计算冲击波的传播过程;而声固耦合算法采用一种声学介质来描述流体,冲击波在声学单元中传播.国内用AI点算法研究水下爆炸的文献比较多[1qJ,文中采用声固耦合方法模拟舰船水下爆炸. 1水下爆炸特点 首先简单的介绍一下水下爆炸气泡的形成,水下爆炸一般呈现2个阶段,冲击波阶段和气泡脉动阶段[4].在冲击波阶段,冲击波波头具有突跃的特点,幅值迅速达到最大,突越后紧接着近似于按指数规律衰减,衰减持续时间不超过数毫秒;当冲击波过后,水下爆炸进入气泡脉动阶段,爆炸的气体生成物(气泡)由于惯性的作用,以逐渐衰减的速度继续膨胀,气泡内压力不断减少直到小于环境压力.当气泡半径达到最大时,此时气泡内部压力最小,气泡开始收缩.由于此时环境比气泡内部压力大得多,气泡半径迅速缩至最小,随后气泡又开始膨胀,向外流场辐射二次压力波.在气泡半径第二次达到最大时,气泡又开始收缩.同样的膨胀收缩重复好几次.在气泡脉动期间,由于浮力的作用下气泡不断往上升,当气泡到达自由表面时气泡破灭,形成水冢.在冲击波阶段,水下爆炸容易造成舰船结构局部板的严重破损;在气泡脉动阶段,水下爆炸容易使船体产生振荡,从而造成严重的总体结构破损.并且,气泡脉动的周期、最大半径与药包的爆心和装药量有一定的关系. 2爆炸载荷作用下舰船的总体响应文中以某I型水面舰船为例分析舰船在爆炸载荷(包括冲击波载荷和气泡脉动载荷)作用下舰船的响应.计算的坐标系统为:原点为中纵剖面、中横剖面和基线的交点,z轴正向指向船首方向,Y轴正向指向左舷方向,z轴正向为铅直向上,其有限元模型如图1所示. 鉴于仿真计算的实船模型节点个数达到了数十万个,要想将气泡作用的响应现象计算出来,至少在时间步上设置为1S,这样的计算量是极其巨大的,在目前的硬件条件下难以实现.于是将船体简化为一个箱形梁,内部设3层甲板,3个纵壁,3个横壁,通过调节各板厚,根据结构动力学相似原理,使得该箱形梁一阶垂向总振动频率与实船保持一致,均为1.1FIz.所建立的箱型梁有限元模型如图2所示. 图1I型舰实船有限元模型 Fig.1Meshingsketchmapofthefiniteelement modelof1warship 图2箱型梁有限兀模型 Fig.2Meshingsketchmapofthefiniteelementmodelofthesimplemodelof1warship 2.1水下爆炸威力与气泡脉动频率之间的关系众所周知,当激励力频率与结构的固有频率接近时,就会引起结构共振,此时结构的破坏最为严重.通过公式T:2.11罢芸b3(w为药包的装药量,kg;Z。为药包与自由液面的垂直距离)可以估算出炸药爆炸后形成的气泡脉动周期.为了研究不同药包在不同水深爆炸时形成气泡脉动载荷对船体总纵强度的影响,假设一系列工况,药包均设置在船体的中下方,以考核该舰中横剖面的应力变化.定义: 口=了J0,(11 J1 卢=丁.D1,(2) ∑si sm2}?(3)式中:^为气泡脉动压力的频率,^舰船一阶垂向 固有频率,s,为仅冲击波载荷作用下舰船中横剖面  万方数据

爆炸品特性(通用版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 爆炸品特性(通用版) Safety management is an important part of production management. Safety and production are in the implementation process

爆炸品特性(通用版) (一)爆炸性强 爆炸品都具有化学不稳定性,在一定外因的作用下,能以极快的速度发生猛烈的化学反应,产生的大量气体和热量在短时间内无法逸散开去,致使周围的温度迅速升高并产生巨大的压力而引起爆炸。 例如,黑火药的爆炸反应:2KNO3+S+3C=K2S+N2↑+3CO2↑+热量显然,黑火药的爆炸反应就具备化学爆炸的三个特点:反应速度极快,瞬间即进行完毕,产生大量气体(280L/kg),放出大量的热(3015kJ/kg),火焰温度高达2100℃以上。 煤在空气中点燃后,虽然也能放出大量的热和气体:C十02=C02↑十热量 但由于煤的燃烧速度比较慢,产生的热量和气体逐渐地扩散开去,不能在其周围产生高温和巨大压力,所以只是燃烧而不是爆炸。

(二)敏感度高 各种爆炸品的化学组成和性质决定了它具有发生爆炸的可能性,但如果没有必要的外界作用,爆炸是不会发生的。也就是说,任何一种爆炸品的爆炸都需要外界供给它一定的能量——起爆能。 不同的炸药所需的起爆能不同,某一炸药所需的最小起爆能,即为该炸药的敏感度(简称感度)。起爆能与敏感度成反比,起爆能越小,敏感度越高。 从储运的角度来讲,希望敏感度低些,但实际上如炸药的敏感度过低,则需要消耗较大的起爆能,造成使用不便,因而各使用部门对炸药的敏感度都有一定的要求。了解各种爆炸品的敏感度,在生产、储存、运输、使用中适当控制,确保安全。 爆炸品的感度主要分热感度(如:加热、火花、火焰等),机械感度(如:冲击、针刺、摩擦、撞击等),静电感度(如:静电、电火花等),起爆感度(如雷管、炸药等)等;不同的爆炸品的各种感度数据是不同的。爆炸品在储运中必须远离火种、热源及防震等要求就是根据它的热感度和机械感度来确定的。

水下爆炸冲击波的传播特性试验研究

水下爆炸冲击波的传播特性试验研究 水下爆炸对构筑物的破坏主要表现为冲击波和气泡脉动效应。一般而言,气泡脉动通常起附加破坏作用,而冲击波起决定性作用。水下爆炸冲击波的传播规律及其动力效应是水利水电工程、航运工程和爆破工程等领域关注的一个重要问题,直接关系到水下设施的安全和容器状构筑物爆破拆除参数的合理选取,因而具有重要的工程价值和理论意义。本文以水下爆炸冲击波效应为研究契机,在有限的钢板水箱水域内开展了水冲击波试验研究。 首先,通过现场试爆及其现象分析,得出了药包布置原则;其次,利用高速摄影技术再现了水下爆炸冲击波波阵面的动态传播过程,并得出波阵面传播速度及其传播规律;根据水冲击波波阵面传播速度,得出不同距离处的峰值压力,并对水冲击波峰值压力、传播距离及药量关系进行分析,从而得出了小药量水下爆炸冲击波压力计算经验公式。最后,选取水压爆破拆除工程实例,对试验结果进行验证,说明了药包布置原则的合理性、实用性。主要得出以下结论:(1)利用高速摄影技术来观测水下爆炸冲击波的传播过程及测试其峰值压力是切实可行的;(2)试验条件一定,水下爆炸冲击波波阵面传播速度从零急剧上升到某一值,随后以波动形式迅速衰减,最终趋向于某一稳定值;(3)相同试验条件下,药量越大,水冲击波波阵面传播速度上升及衰减越快,且二次波峰值压力越大:(4)根据冲击波波阵面水动力学量之间的关系,得出水下爆炸冲击波波阵面传播速度所对应的峰值压力,并对其峰值压力、传播距离及药量进行分析,从而得出了小药量水下爆炸冲击波峰值压力计算经验公式,即当比例半径r/r0>5.649 时,Pm=105.472(Q1/3/R)1.65;(5)在水压爆破工程中,对于开口式容器状构筑物,为提高炸药能量利用率,降低其能量损耗,则要求药包的入水深度h至少要大于容器内壁到爆心的距离R,即h>R;(6)药包布置位置要尽可能使冲击波波阵面同一时刻达到容器状构筑物侧壁,使容器状构筑物受力均匀为原则;(7)为减少自由水面卸载所造成的能量损失,条件适合时可在开口式容器状构筑物中注满水并对顶部做封闭措施。

电磁波界面反射特性理解 + 仿真分析

电磁波界面反射特性理解 + 仿真分析 要求 一束 5W 的线偏振光以φ= 45 度方位角振动,垂直入射到玻璃 - 空气表面, 该光束波长 0.6 m ,玻璃介质折射率 1.54 @0.6 m ,当入射角 从 0-70 度变化时, 通过给定条件,分别完成如下要求: 1 建立反射光强 ()?θ,,n I 的数学模型; 2 画出该光束反射光的光强曲线()θ-I ; 3 分析该反射光束的偏振方向或者偏振态变化,画出偏振方向变化曲线()θφ-和偏振光束相位变化曲线()θφ-。 (注:光束从光密到光疏的界面,在入射角θ从 0-70 度变化中,包括了临界角c θ) 1.反射光的光强曲线()θ-I 数学模型: 将这三种光波的电矢量振动方向都分解成两个分量,一个垂直于入射面,称为垂直分量s ;另一个平行于入射面,称为平行分量p ,这两个分量互相垂直。而任何偏振光都可以分解为互相垂直的两个分量,可以得出反射光强公式: 212212'21'11'1**,/,/,p p s s p p p s s s p s A r A r I A I A A r A A r I I I +=∴===+=

菲涅尔公式有:()()()() 21212121tan tan ,sin sin θθθθθθθθ+--=+--=p s r r ;因为偏振光以φ= 45 度方位角振动,所以2/11I A A p s ==,折射定律有2211sin sin θθn n =,由此可以求出反射光的光强曲线()θ-I 。 仿真: 分析:入射角从0°增加,刚开始大部分入射光发生折射,少数入射光发生反射,所以光强值很小,随着入射角的增加,在接近临界角时大部分光发生反射,少部分光发生折射,此时反射光强快速增加,当入射角大于临界角后发生全反射,反射光强与入射光强相等。 2.偏振方向变化曲线()θφ- 数学模型: 反射光有'1'1tan p s A A =φ ,其中φ为偏振方向,因为 p p p s s s A A r A A r 1'11'1/,/==,且p s A A 11=,可得p s r r /tan =φ。可以得到偏振方向变化曲线()θφ-。

导磁材料与磁导特性

3.1.2 导磁材料与磁导特性 各种电机都是通过磁感应作用而实现能量转换的,磁场是它的媒介。因此,电机中必须具有引导磁通的磁路。为了在一定的励磁电流下产生较强的磁场,电机和变压器的磁路都采用导磁性能良好的铁磁材料制成。试验表明,所有非铁磁材料的导磁系数都接近于真空的导磁系数。而铁磁材料的导磁系数远远大于真空的导磁系数。因此,在同样的电流下,铁心线圈的磁通比空心线圈的磁通大得多。 铁磁材料之所以具有高导磁性能,在于其内部存在着强烈磁化了的自发磁化单元,称为磁畴。在正常情况下,磁畴是杂乱无章的排列着,因而对外不显示磁性。但在外磁场的作用下,磁畴沿着外磁场的方向作出有规则的排列,从而形成了一个附加磁场迭加在外磁场上。由于铁磁材料的每个磁畴原来都是强烈磁化了的,具有较强的磁场。因此,它们所产生的附加磁场的强度,要比非铁磁物质在统一外磁场下所产生的磁场强得多。所以铁磁物质得导磁系数比非铁磁物质的大得多。 在非铁磁材料中,磁感应强度(即磁通密度)B与磁场强度H成正比,即,它们之间呈线性关系。铁磁材B与H之间是一种非线性关系,即B=f(H)是一条曲线,称为磁化曲线,如图0-6所示。在磁化的开始阶段(0a段),由于外磁场较强,随着H的增加、B迅速增加。在bc段,外磁场进一步加强时,磁畴大都已转到与外磁场一致的方向,这时它们所产生的附加磁场已接近最大值,即使H再增大,B的增加也很有限。这种现象称为磁饱和现象,也叫做磁饱和。 铁磁材料的磁化曲线可通过试验测绘,在测试时,H由零上升到某个最大值时,B值是沿磁化曲线0a上升(见图0-7)。当H由下降到零时,B不是沿a0

下降,而是沿着另一条ab线变化。当H由零变化到,即进行反向磁化时,B沿着曲线bcd变化。当H由回升到时,B沿着曲线defa变化。这样将铁磁材料磁化一个循环时,得到一个闭合回线abcdefa,称为铁磁材料的磁滞回线。 从图0-7可以看出,磁化曲线的上升段与下降段不重合。下降时,B的变化滞后于H的变化,当H下降为零时,B不为零,而是下降到某一数值,这种现象称为磁滞,称为剩余磁感应强度。由于存在磁滞现象,所以铁磁材料的磁化过程是不可逆的。在某一H下的B值,取决于该H值之前的磁化状态。磁滞现象的产生,是由于铁磁材料中的磁畴,在外磁场作用下进行排列时,彼此之间产生“摩擦”。由于这种“摩擦”的存在,当外磁场停止作用后,磁畴与外磁场方向一致的排列,被部分的保留下来,从而形成了磁滞现象和剩磁。 同一铁磁材料在不同的值下,有不同的磁滞回线。所以用不同的值可测绘出许多不同的磁滞回线。把这些磁滞回线的顶点连接起来而得到的磁化曲线,称为铁磁材料的基本磁化曲线,也称为平均磁化曲线。工程上所谓的磁化曲线就是指平均磁化曲线。 铁磁材料在交变磁场的作用下而反复磁化时,磁畴之间不断的发生摩擦,必然消耗一定的能量,产生损耗。这种损耗称为磁滞损耗。试验表明,在交变磁化时,铁磁材料的磁滞损耗与磁通的交变频率f成正比,与磁通密度的幅值的次方成正比,即: 对于常用的硅钢片,当时,。由于硅钢片的磁滞回线的面积比较小,所以电机和变压器的铁心都采用硅钢片。

湍流状态下甲烷爆炸特性的实验研究正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 湍流状态下甲烷爆炸特性的实验研究正式版

湍流状态下甲烷爆炸特性的实验研究 正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 煤矿井下瓦斯爆炸事故是最为严重的矿井灾害之一,为了预防和控制矿井瓦斯爆炸,国内外学者对瓦斯爆炸特性进行了大量的研究,取得的研究成果多是基于宏观静止状态下的瓦斯气体爆炸。但是,煤矿井下大量瓦斯集中喷出或涌出时,释放到井巷风流中,由于浓度梯度和风流脉动作用在风流中逐渐扩散稀释,被风流携带而流动 [1]。所以,研究流动气体爆炸问题具有重要的实际应用价值。H.W.Emmons 等[2]推算过拟动态条件下爆炸的管道出口压力;陈爱平[3]研究了管道内流动气体流

动阻碍作用和流量对爆炸特性的影响;王宝兴[4]研究了通风对强瓦斯爆炸的作用。湍流是井下气体最常见的流动状态,尤其在瓦斯爆炸过程中,由于爆炸激波受巷道内障碍物及巷道尺寸变化等因素的诱导可产生强烈的湍流。为此,本文利用20L 近球形气体爆炸反应装置,测试甲烷在宏观静止和湍流两种状态下的爆炸极限、爆炸压力、爆炸压力上升速率及爆炸压力峰值时间等基本参数,分析湍流对甲烷爆炸特性的影响,可为有效防治矿井瓦斯爆炸灾害提供一定的指导。 1 实验概述 1.1 实验系统的构成 实验系统主要由20L 爆炸反应罐、配

铁磁物质磁化特性曲线的测定 - 武汉大学物理实验教学中心

实验3 -13 铁磁物质磁化特性曲线的测定 铁磁物质的磁化曲线,是指给予它的不同的磁化场H 与相应而生的随磁化场而改变的磁感应强度B 之间的关系曲线,即B -H 曲线。 影响铁磁物质的磁化曲线的因素很多。材料的杂质含量、晶体结构、加工方式、外界温度、内部的应力以及磁化历史等都会对磁化特性产生影响。由于影响磁化特性的因素很多,因此B -H 的关系就特别复杂。直至今天,人们还未从理论上定量描述、确定磁化曲线的分析表达式。于是人们就用实验的方法来测定其磁化曲线。 【实验目的】 1.了解铁磁物质的基本磁化特性。 2.掌握铁磁物质磁化特性曲线的测量方法。 【仪器用具】 1.冲击电流计。 2.标准互感器:0.05H ,额定电流0。15A 。 3.螺绕环。 4.多量程的直流安培计:0.1/0.3…15/30A 。 5.滑线电阻器。 6.转盘电阻箱:0.1~9999.9Ω. 7.晶体管稳压电源:0~30V,0~5A. 8.单相调压变压据。 9.交流安培计。 【实验原理】 1.H 、B 的测量原理 如图3-13-1所示,T 为一铁环,其横截面的半径为r .环的半径为R ,且有2πR =L >>r 。在铁环上均匀、紧密地绕满N 1匝线圈,这就构成一个为铁心所充满的螺绕环。如果线圈通过电流I ,则铁心中的磁场强度可根据安培环路定律得出: I L N H 1 (3-13-1) 铁心中的磁感应强度B 可用冲击法测量。为获取磁通量的变化量以测量B ,特在磁环 上绕了N 2匝副线圈。 2.起始磁化曲线 铁磁质从没有被磁化的状态(即H =0时。铁磁质的B =0)开始,从零单调地增大磁场H ,求出相对应的B ,这样测绘出来的曲线称为起始磁化曲线,如图 3-13-2所示。由图可见,铁磁

水下爆破知识总结

水下爆破 一、专有名词基本概念 (1)爆炸:广义地讲,爆炸是指一物质系统在发生迅速的物理和化学变化时,系统本身的能量借助于气体的急剧膨胀而转化为对周围介质做机械功,同时伴随有剧烈的放热、发光和声响等效应。广义的爆炸过程包括爆轰和爆燃。爆炸是一种常见的现象,分析各种爆炸现象,大致可以将其归纳为三大类。 ①物理爆炸:仅仅是物质形态发生变化,而化学成份和性质没有改变的爆 炸现象,称为物理爆炸。最常见有自行车轮胎爆炸、锅炉爆炸等现象。 ②化学爆炸:由物质化学结构发生急剧变化而引起的爆炸现象,称为化学 爆炸。炸药的爆炸就是属于化学爆炸现象。在工程爆破中,广泛应用的 是化学爆炸,而且主要是利用其破坏作用。 ③核子爆炸:由于核裂变,或核聚变反应放出巨大的能量,使裂变或聚变 产物形成高温高压的蒸汽而迅速膨胀作功,造成巨大的破坏作用。这种 由核裂变或核聚变释放出巨大的能量所引起的爆炸现象,称为核爆炸。 (2)爆轰:物质的势能或内能在极短的时间内转变成冲击波能、热辐射能、光能和声能,并在爆炸中心形成高温、高压、高能量密度气体产物区,且气体产物迅速膨胀,能对周围介质和物体产生剧烈的破坏作用的现象。 (3)爆破:利用炸药爆炸时所产生的冲击波及气体膨胀力来破坏物体,以破坏的形式达到新的建设目的一种方式。 (4)炸药:一种能把它所集中的能量在外部激发能作用下能瞬间释放出来的物质。炸药的能量,主要是由其中所含的碳、氢等可燃物与助燃物质氧相化合而产生的。为了产生集中能,炸药的状态必须是液体或固体。 (5)火药:也称低级炸药,只发生燃烧,而不发生爆轰(可以简单称为爆炸)。 (6)猛炸药:也称高级炸药,这类炸药具有相当大的稳定性。也就是说,它们比较钝感,需要有较大的能量才能引起爆炸。常用的有梯恩梯、黑索金、太安及其它军用混合炸药。乳化炸药属于民用猛炸药。 (7)冲击波:是指在介质中以比音速还要快的速度传播的波。冲击波在气体、液体、固体中都存在。冲击波通常是纵波(疏密波)。炸药爆炸时产生冲击波。

(完整版)植物反射波谱特征

健康的绿色植被的光谱反射特征 地面植物具有明显的光谱反射特征,不同于土壤、水体和其他的典型地物,植被对电磁波的响应是由其化学特征和形态学特征决定的,这种特征与植被的发育、健康状况以及生长条件密切相关。 在可见光波段内,各种色素是支配植物光谱响应的主要因素,其中叶绿素所起的作用最为重要。健康的绿色植被,其光谱反射曲线几乎总是呈现“峰和谷”的图形,可见光谱内的谷是由植物叶子内的色素引起的。 例如叶绿素强烈吸收波谱段中心约0.45um和0.67um(常称这个谱带为叶绿素吸收带)的能量。植物叶子强烈吸收蓝区和红区的能量,而强烈反射绿区能量,因此肉眼觉得健康的植被呈绿色。除此之外,叶红素和叶黄素在0.45um(蓝色)附近有一个吸收带,但是由于叶绿素的吸收带也在这个区域内,所以这两种黄色色素光谱响应模式中起主导作用。 如果植物受到某种形式的抑制而中断了正常的生长发育,它会减少甚至停止叶绿素的产生。这将导致叶绿素的蓝区和红区吸收带减弱,常使红波段反射率增强,以至于我们可以看到植物变黄(绿色和红色合成)。 从可见光区到大约0.7um的近红外光谱区,可看到健康植被的反射率急剧上升。在0.7-1.3um区间,植物的反射率主要来自植物叶子内部结构。 健康绿色植物在0.7-1.3um间,的光谱特征的反射率高达(45%-50%),透过率高达(45%-50%),吸收率低至(<5%)。植物叶子一般可反射入射能量的40%-50%,其余能量大部分透射过去,因为在这一光谱区植物叶子对入射能量的吸收最少(一般少于5%)。 在光谱的近红外波段,植被的光谱特性主要受植物叶子内部构造的控制。在可见光波段与近红外波段之间,即大约0.76um附近,反射率急剧上升,形成“红边”现象,这是植物曲线的最为明显的特征,是研究的重点光谱区域。 许多种类的植物在可见光波段差异小,但近红外波段的反射率差异明显。同时,与单片叶子相比,多片叶子能够在光谱的近红外波段产生更高的反射率(高达85%),这是因为附加反射率的原因,因为辐射能量透过最上层的叶子后,将被第二层的叶子反射,结果在形式上增强了第一层叶子的反射能量。

水下爆炸冲击问题的物质点法研究

水下爆炸冲击问题的物质点法研究 开展水下爆炸以及结构在水下爆炸载荷作用下的动力响应研究在军事国防 和民用建设领域均具有重要意义。水下爆炸及其结构的冲击响应研究是十分复杂的问题,它涉及爆轰物理学、冲击动力学、流固耦合、弹塑性动力学等诸多学科,对其进行理论分析和实验研究是一个巨大的挑战。近年来,随着计算机技术的不断提高以及各种数值方法的迅速发展,数值模拟已经成为水下爆炸问题研究领域中的重要研究手段。流场或结构的极大变形、运动物质交界面、多相介质耦合作用以及自由表面等特性存在于水下爆炸整个过程中,这使得采用传统基于网格的数值方法对水下爆炸问题进行研究成为一项非常困难的工作。 物质点法(Material Point Method, MPM)是一种新型的无网格粒子算法,它结合了基于物质描述的拉格朗日方法和基于空间描述的欧拉方法二者的优点,在处理大变形时不存在基于网格的数值方法出现的网格畸变问题,而且物质点法能方便的跟踪材料的变形历史以及实现对物质界面的精确描述,这些优点使物质点法在冲击动力学诸多领域中得到了广泛应用。本文在前人研究的基础上,进一步发展了物质点算法,并将物质点法扩展到水下爆炸冲击研究领域中。推导了物质点法控制方程的空间以及时间离散格式,给出了物质点法显式积分算法,编写了基于物质点法基本理论的计算程序。建立了高能炸药爆轰计算模型,采用物质点法数值模拟了高能炸药爆轰过程,计算得到的爆轰波主要表征参数与解析解和实验数据吻合较好,为下一步水下爆炸冲击问题研究奠定了基础。 针对水下爆炸冲击波在自由场中传播具有球面对称性质这一特点,本文提出了球对称形式的物质点法,为了验证所提方法的准确性,对球形炸药水下爆炸问题进行了数值计算,计算结果与实验数据以及经验公式计算结果吻合较好。在此基础上提出了基于物质点法的重映射算法,采用此方法可有效提高三维水下爆炸问题的求解效率。建立了二维水下爆炸计算模型,数值模拟了二维水下爆炸问题,数值计算结果与光滑粒子流体动力学方法(Smoothed ParticleHydronamics, SPH)计算结果以及经验公式计算结果进行了比较,结果吻合较好,物质点法与SPH 算法计算精度相当,但在物质交界面的处理上物质点法具有明显的优势。对近自由面水下爆炸一系列物理现象进行了数值模拟。 给出了物质点法多介质耦合求解过程,研究了自由表面对冲击波的切断现象,

有源频率选择表面反射特性的分析

- 1 - 有源频率选择表面反射特性的分析 寇松江 东南大学毫米波国家重点实验室,南京 (210096) E-mail :kousongjiang@https://www.360docs.net/doc/7d8091941.html, 摘 要:本文使用CST 仿真分析软件,采用电抗加载的方法研究了有源频率选择表面的反射特性,分析了工作于X 频段的方环缝隙型、四腿环缝型、Y 形环缝型三种透波型FSS 结构,给出了其谐振特性与所加载电抗的变化关系。有源FSS 中的有源器件可等效为某种形式的电抗,通过电抗加载的分析,可为有源FSS 的分析与设计提供理论依据。 关键词:有源频率选择表面,电抗加载,反射系数 中图分类号:TN011 1.引言 频率选择表面(FSS )是军事隐身技术的重要组成部分,在军事领域有着非常重要的作用。使用无源FSS 构成的装备,一旦成型,其谐振频率、工作带宽等电磁特性均无法改变,不能灵活地适应外部电磁环境的变化。使用有源FSS ,就可以克服这些缺陷。有源FSS 是指在FSS 中加入PIN 管或变容二极管等有源器件构成的FSS 结构,通过调节有源器件偏置电压或偏置电流,可改变FSS 的谐振特性[1]。从等效电路角度看,有源器件可等效为电抗,而电抗加载可以改变FSS 的谐振特性[2] [3],因此,通过对FSS 进行电抗加载的分析,可以为有源FSS 的分析提供依据 [4]。 本文使用CST 仿真分析软件,利用电抗加载的方法研究有源FSS 。首先对文献中记载的算例进行了仿真分析,并与文献结果进行比对,证明了此种分析方法的可行性;然后分析了工作于X 频段的方环缝隙型、四腿环缝型、Y 形环缝型三种有源FSS 的谐振特性,给出了反射系数与所加载电抗的变化关系,为有源FSS 的分析提供依据。 2.仿真结果与文献的对比(圆环缝隙型有源FSS 的分析) 图1 圆环缝隙型FSS 单元结构 图2 仿真结果与文献的对比 A.E.Martynyuk 等学者对圆环缝隙单元组成的FSS 进行了电抗加载的分析[5],圆环缝隙型FSS 单元结构如图1,该单元被印刷在厚0.102mm 的介质板上,介质板的介电常数为r ε=2.4,圆环外径r 1=4.03mm,内径r 2=3.5mm,阵列周期D x =11.43mm,D y =10.13mm, 电抗加载

炸药威力测试的技术概述

1.1课题背景 炸药是人们经常利用的巨大能源之一,它不仅用于军事目的,而且广泛应用于国民经济各个部门[ 1,2],前者称为军用炸药,后者称为民用炸药(也叫工业炸药)。随着国民经济的发展,我国工业炸药发展十分迅速,新产品不断涌现。爆破理论提出和实践证明:为使矿山爆破作业能获得较好效果,除了对矿岩的物理力学性质有足够的了解之外,还必须详知所用炸药的爆炸性能[3]。了解炸药的爆破性能,需要做爆力、猛度、爆速和殉爆距离等项检测试验。炸药的猛度、爆速和殉爆距离三项,一般炸药生产厂和矿山都能做,炸药爆力因检测比较复杂,价格昂贵,通常很少有人去做。但是炸药爆力性能对爆破破岩效果的好坏起着很大作用,因为,炸药爆力是爆破的基本因素,炸药的威力是爆炸强度、爆破作用或做功能力的一个度量,表征炸药爆炸所产生的冲击波和爆轰气体产物作用于介质,对介质产生压缩、破碎和抛移的作功能力[4,5]。炸药的威力取决于爆热的大小和爆炸生成气体的体积[6,7]。从宏观来看,炸药的爆力愈大,破坏岩石的量就愈多。而炸药的其它检测项目,因其作用不同是不能代替炸药爆力试验的,因此,炸药爆力这项重要试验,不论是生产炸药的工厂还是矿山都应该经常进行检测的。 长期以来,人们对炸药的生产工艺有较大改进和提高,而炸药威力测试技术 件重71kg 便;弹道臼炮法可以测出功的数值,直接衡量炸药威力,但设备较复杂。国内对 展,对炸药测试技术提出了更高要求。目前,我国工业炸药的威力测试普遍采用 [8],不仅对于含水的乳化炸药、粉状乳化炸药等新型工业炸药不能真实反映其实际威力,而对于一些对非雷管感度的炸药更是束手无策,因此寻找更佳方法来评定工业炸药是十分必要的。

相关文档
最新文档