对单脉冲雷达角度跟踪系统的干扰仿真研究

对单脉冲雷达角度跟踪系统的干扰仿真研究
对单脉冲雷达角度跟踪系统的干扰仿真研究

单脉冲雷达

雷达大作业 单脉冲雷达在测角方面的应用 班级: 1302019 姓名: 指导教师:魏青

一、引言 1、背景 对目标的定向,是雷达的主要任务之一,单脉冲定向是雷达定向的一个重要方法。之所以叫“单脉冲”,是因为这种方法只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。单脉冲技术由于其良好的测角、角跟踪性能和抗干扰能力,因此除了在跟踪雷达中应用之外,还广泛应用到各种武器平台的控制雷达当中。本文分析了标定方法确定天线方向图信息的理论有效性,给出利用标定结果进行宽带单脉冲测角的方法。 2、简介 宽带单脉冲雷达是将传统的单脉冲雷达加载宽带信号。在宽带信号观测下,目标可认为由一系列孤立的散射点组成。从而宽带单脉冲雷达测角实际上是测定一系列散射点的角度。宽带单脉冲雷达测角具有广泛的应用价值,除了标跟踪,还可以应用于三维成像。根据对宽带单脉冲测角的基本原理分析可知,天线方向图在测角中发挥了重要的作用,目前的文献在讨论宽带单脉冲测角时,通常都是采取与文献类似的方法: 根据理论模型,设定方向图函数。对于实际的宽带单脉冲雷达系统,方向图函数通常并不是严格的满足理论模型。此外,精确测量实际雷达系统的方向图际雷达系统进行标定来为测角提供必要的方向图信息。 二、单脉冲雷达的自动测角系统中的优势 1、角度跟踪精度 与圆锥扫描雷达相比,单脉冲雷达的角度跟踪精度要高得多。其主要原因有以下两点: 第一,圆锥扫描雷达至少要经过一个圆锥扫描周期后才能获得角误差信息,在此期间,目标振幅起伏噪声也叠加在圆锥扫描调制信号(角误差信号)上形成干扰,而自动增益控制电路的带宽又不能太宽,以免将频率为圆锥扫描频率的角误差信号也平滑掉,因而不能消除目标振幅起伏噪声的影响,在锥扫频率附近一定带宽内的振幅起伏噪声可以进入角跟踪系统,引起测角误差。而单脉冲雷达是在同一个脉冲内获得角误差信息,且自动增益控制电路的带宽可以较宽,故目标振幅起伏噪声的影响基本可以消除。 第二、圆锥扫描雷达的角误差信号以调制包络的形式出现,它的能量存在于上、下边频的两个频带内,而单脉冲雷达的角误差信息只存在于一个频带内。故圆锥扫描雷达接收机热噪声的影响比单脉冲雷达大一倍。单脉冲雷达的角跟踪精度比圆锥扫描雷达的要高一个量级,约为0.1-0.2密位。

雷达抗有源干扰技术的应用现状

雷达抗有源干扰技术的应用现状 发表时间:2019-06-17T11:54:52.620Z 来源:《中国西部科技》2019年第7期作者:杨文超高金宝袁义[导读] 检测目标以及跟踪与识别目标,是现代社会应用雷达的主要目的。雷达有源干扰对上述工作的顺利开展带来极大阻碍。因此,针对复杂电磁环境下雷达抗有源干扰技术展开的探究十分必要。雷达抗有源干扰技术复杂性较强,涉及到多个环节,最明显的是雷达信号以及信息处理。在探究雷达抗有源干扰技术后可明确该项技术在体制层面、波形设计以及信号与数据处理等层面的关键点。并在客观分析其不 足的基础上制定恰当策略,对其进行逐步完善。中国人民解放军91411部队军用雷达在全新的发展背景下面临巨大挑战,加之受到雷达电子对抗技术的影响,军用雷达使用面临的问题不断增加。雷达工作电磁环境因超大规模集成电路的影响而呈现出日渐恶劣的状态。固态电路技术的不断发展以及有源干扰等都与雷达工作电磁环境之间存在直接联系。高功率、高逼真度是有源干扰的明显特征,在智能化方面也占据一定优势。这些都是影响雷达生存与使用的直接因素。应用雷达抗有源干扰技术是改善上述问题的基础与前提。 一、系统与体制层面抗干扰应用现状 1.系统层面抗有源干扰措施(1)对于大功率饱和干扰,可通过调整接收机信号动态范围防止出现饱和状态。相关的方法主要包括时间灵敏度控制、自动增益控制、快时间常数以及宽限窄接收机等技术,但该类方法将影响雷达灵敏度和线性特性。(2)通过调查可以发现,噪声调制类干扰普遍存在于跟踪雷达当中。一般需要借助装备干扰检测器的方式来检测上述干扰。在加装干扰检测器时,需要进行波门设置工作,在选定感兴趣目标后,将其恰当设置在目标两侧。雷达系统因干扰检测器的影响,而向干扰跟踪模式不断转化。波门后拖干扰是制约跟踪雷达的重要因素,现阶段已经有前沿的跟踪技术打破上述限制。保护波门技术并不是随意使用,而是在距离信息并不重要的情况下开展,这类信息虽然精确,但不在重要参数的涵盖范围内。部门会在假目标信号转移后重新开始跟踪工作,系统在此过程中发挥自身作用与价值,重置各类参数,维持对原有感兴趣目标的跟踪。真正改善雷达检测概率较差的问题,是针对系统设计层面开展抗干扰工作的基础。当干扰处于某种特定情境时可取得理想效果,例如平稳以及线性等。但该措施仍然存在一定的缺陷。干扰被大功率压制后无法使用该种措施,或者涉及到较为密集的假目标时,该类措施仍无法发挥自身作用。 2.天线极化抗干扰措施干扰机天线会利用多种方式进行极化,也正是因为这种方式,有源干扰极化状态会发生不同程度的改变,极化方式是影响有源干扰极化状态的先决条件。干扰天线极化方式与雷达天线极化方式直接存在较大差异,一般情况下不会保持在相同状态。这是将更为科学的理论提供给抗有源干扰,是极化信息发挥自身价值的直观体现。国防科技大学在天线极化抗干扰方面的研究始终处于领先水平。一般是从极化滤波器设计角度着手,开展抗有源压制干扰工作的研究。极化抗干扰会利用多种方式开始作业,最为普遍的一种方法为有源干扰,现阶段目标回波极化方式差异的应用范围也有所拓宽,作为极化抗干扰开展各项作业的有效手段。无论是在稳健性还是在可靠性方面,上述两种技术都占据一定优势,并在不断应用与实践的同时,完善自身技术体系。其应用范围不断拓宽,对空监视以及导弹制导等都可结合实际恰当应用上述两种技术,成像雷达在作业过程中也可对其进行有效使用。但上述技术在发展过程中仍然会受到一定的阻碍,最为明显的就是实施条件较窄,只能在某种特定情况下使用。因其他因素会影响到抗干扰性能,例如在全极化发射天线时,抗干扰性能的发挥就会受到破坏性影响。 二、波形设计与接收机层面抗干扰应用状态 1.发射波形管理抗干扰作为一种改进思路,分集理论可以打破雷达方在抗干扰被动的局面。脉冲分集技术不仅可以增加干扰方截获与存储雷达信号的难度,而且可以通过对发射与接收信号集的分析与处理获得干扰信息,因而被应用于雷达有源欺骗干扰抑制。设计转向慢时域、频域及其联合域分集波形设计,其结构简单且计算量相对较低。分集信号将提高雷达复杂度,影响雷达基本功能,这个缺点将严重阻碍其工程实现。 2.天线空时自适应处理抗干扰空时自适应处理技术的出现时间相当早,并且经过较长时间的使用。机载雷达的杂波抑制是最开始应用该技术的范围。科学预估有源干扰特征参数,可以说是阵列技术取得成就的直观体现。部分新体制雷达在处理特征测数时,还要接收各项数据,将多个雷达接收阵元科学设置在其中。真正改善干扰信号抑制的问题,其对消出现的可能性大幅降低。STAP类抗干扰方法通过在特定方向设置零陷,从空域滤除干扰。其缺点较为明显:由于不具有距离维的自由度,当干扰和目标同向时,将严重影响真实目标检测概率。 三、明确信号与数据处理层面抗干扰应用现状 1.信号处理层面这类方法主要利用目标回波和干扰的多域表征差异进行抗干扰。针对LFM信号,利用分数阶傅里叶变换和经验模态分解抑制压制类干扰;通过匹配滤波和小波变换对干扰进行抑制;建立映射原则,研究目标回波和干扰的典范相关分析特征向量差异性,分离出回波从而抑制干扰。通过极化滤波的方法抑制干扰,该方法能较高程度地保留目标回波信息。对于利用多域滤波与子空间分离的方法,分辨率成为影响性能的最重要因素之一。 2.信号及数据处理层面抗有源欺骗干扰现代有源欺骗干扰通常由DRFM辅助产生,通过DRFM干扰机的工作流程分析可知,干扰机对截获的雷达发射信号进行距离、多普勒调制,产生欺骗干扰。由于干扰机的频率变换环节、射频功率放大器等器件的非线性,引入的非线性失真对调制产生的信号进行二次调制,所产生的假目标带有干扰机的指纹特征,这种特征为信号层面有源欺骗干扰感知提供了依据。结语:通过深入分析雷达抗有源干扰理论可明确其关键技术与各项要点,也可通过分析国内外发展现状的方式,完善雷达在应用方面存在的多种不足。雷达抗有源干扰技术可以说是将最为坚固的物质保障提供给电子对抗领域。雷达抗有源干扰技术的发展前景与空间相当广阔,无论是在理论方面,还是在工程方面,都具备极大的发展平台。雷达工程师需要在这一过程中转变自身的研究思路与观念。从设计阶段着手,实现雷达体制设计抗干扰算法与抗干扰技术以及需求指导之间的科学转换。参考文献:

基于Web的DLD—100A型单脉冲二次雷达远程监控系统

基于Web的DLD—100A型单脉冲二次雷达远程监控系统 基于Web的航管二次雷达的远程监控可供雷达维护人员远程的掌握雷达的运行状态、故障情况,便于即使的采取措施,保障雷达的正常运行。本项目主要探讨了运用Tomcat架构的服务器为远程客户端提供雷达数据接入。这样可以达到远程监控二次雷达运行情况的目的。 标签:单脉冲二次雷达;Tomcat;远程监控 引言 中国民航飞行学院广汉机场二次雷达站是国家重点建设工程项目,使用的是中国电子科技集团公司南京十四所研发的DLD-100A单脉冲二次雷达。该二次雷达在本地有两个监控席位,用网线分别接到两台电脑上进入雷达监控软件。该监控席位主要是为雷达站值班人员提供实时的雷达原始数据,方便对雷达的运行状态进行监控。雷达维护人员除了在雷达站本地观察雷达运行状态外,不能进行远程监视,给日常维护工作带来一定的限制。如果能通过网络解决对雷达本地的原始数据监视,维护人员可以远程的掌握雷达的运行状态、故障情况,便于即使的采取措施,保障雷达的正常运行。 1 课题描述 国内外对雷达远程监控的研究比较多,主要有基于硬件传输的远程监控和基于单片机的远程监控系统的研究。上述研究均需要有专有通信设备、通信线路的支持,成本都比较高,设计不灵活,不易改进等缺陷。 现今Internet的技术的高度发展,数据通过Internet可以方便传输到任何地方。基于WEB的雷达监视能通过网络解决对雷达本地的原始数据监视,维护人员可以在任何可以上网的地方掌握雷达的运行状态、故障情况,便于及时的采取措施,保障雷达的正常运行。 基于web的远程控制软件开发毕业设计的主要任务是要求能够从web的远程监视并控制二次雷达运行状况。采用服务器(Server),客户端(Client)模式,使用Tomcat服务器上运行JSP(Java Server Pages)和Servlet(一种服务器端的Java应用程序,实现基本的远程监视控制要求。 2 相关技术 2.1 Tomcat 服务器 是一个免费的开放源代码的Web 应用服务器。Tomcat 运行时占用的系统资源小,扩展性好,支持负载平衡与邮件服务等开发应用系统常用的功能;而且它还在不断的改进和完善中,任何一个感兴趣的程序员都可以更改它或在其中加入

单脉冲雷达理以及应用

单脉冲定向原理 对目标的定向,即测定目标的方向,是雷达的主要任务之一。单脉冲定向是雷达定向的一个重要方法。所谓“单脉冲”,是指使用这种方法时,只需要一个目标回波脉冲,就可以给出目标角位置的全部信息。根据从回波信号中提取目标角信息的特点,可以将单脉冲定向分为两种基本的方法:振幅定向法和相位定向法,分别见于下图。除了上述两种方法外,由它们合成的振幅—相位定向法(或称为综合法)也得到了广泛的应用。 图2-1 单脉冲振幅定向法 图2-2单脉冲相位定向法 2.1 振幅定向法 振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。 如图所示,平面两波束相互部分交叠,其等强信号轴的方向已知,两波束中心轴与等强信号轴的偏角0θ也已知。假设目标回波信号来向与等强信号轴向的夹角为θ,天线波束方向图函数为F(θ),则两个子波束的方向图函数可分别写成 ()()()???-=+=θθθθθθ02 01)(F F F F (2-1) 两波束接收到的目标回波信号可以表示成:

()()()()()()???-==+==θθθθθθθθ022 011F K F K u F K F K u a a a a (2-2) 其中a K 为回波信号的幅度系数。 对于比幅法,直接计算两回波信号的幅度比值有: ()()()() θθθθθθ-+=0021F F u u (2-3) 根据上式比值的大小可以判断目标回波信号偏角θ的方向,再通过查表就可以估计出θ的大小。 对于和差法,由()θ1u 和()θ2u 可计算得到其和值()θ∑u 及差值()θ?u 分别如下: ()()()()()()()()()()()()???--+=-=-++=+=? ∑θθθθθθθθθθθθθθ00210021F F K u u u F F K u u u a a (2-4) 其中()()()θθθθθ-++=∑00)(F F F 称为和波束方向图; ()()()θθθθθ--+=?00)(F F F 称为差波束方向图。 若θ很小(在等强信号轴附近),根据泰勒公式可以将 ()θθ+0F 和()θθ-0F 展 开近似为: ()()()()()()()()()()()()???'-=+'-=-'+≈+'+=+θ θθθθθθθθθθθθθθθθθ002000002000F F o F F F F F o F F F 进一步可以得到: ()()()()???'≈≈? ∑θθθθθ0022F K u F K u a a (2-5) 归一化和差信号值可得: ()()()() υθθθθθθ='=∑?00F F u u (2-6) 其中()()00θθυF F '= 是天线方向图在波束偏转角0θ处的归一化斜率系数。

简述雷达抗有源干扰技术现状与展望

龙源期刊网 https://www.360docs.net/doc/7e12747142.html, 简述雷达抗有源干扰技术现状与展望 作者:王红许文琳 来源:《科学与信息化》2020年第08期 摘要雷达能够测量位置参数、运动参数并提取目标特征信息,因此被广泛应用。但随着干扰形式的多变、干扰能力的增强、干扰范围的扩大,雷达的检测能力、检测的准确性都需要不断提升,因此对抗干扰技术尤其是抗有源干扰进行研究具有十分重要的意义。 关键词雷达;抗干扰技术;组网;自适应抗干扰 引言 雷达有源干扰主要是利用雷达干扰设备发射干扰电磁波扰乱雷达的正常工作或降低检测能力,有源干扰主要有欺骗性干扰、噪声阻塞式干扰,因此抗干扰的技术主要从天线、发射机、接收机、信号信息处理和系统几个方面着手研究。 1 目前抗干扰技术 1.1 系统抗干扰技术 (1)常用体制雷达抗干扰技术。常见的抗干扰技术大致分为以下四种:①大时宽带宽积技术,雷达需要足够的回波能量来发现远距离目标,可通过发射大时宽带宽脉冲信号来增加平均功率,同时对回波信号进行脉压处理,获得必要的距离分辨力,以达到抗干扰的目的。②旁瓣对消技术,它利用的是副瓣对消技术,消除从副瓣进入的强脉冲干扰和强杂波干扰、具有空间滤波功能,从而达到抗干扰目的。③重频参差和抖动技术,重频功能技术,通过重频参差和脉冲前言抖动,对付欺骗式干扰非常有效。④扇区静默技术,扇区静默设置理论主要是在抗干扰方向控制雷达发射机的发射功率,降低敵方电子侦察的探测概率,从而达到抗干扰目的。 (2)新体制雷达抗干扰技术。新体制雷达中的认知雷达具有感应和推断能力,能够感知外部的环境,感受外部干扰信号的强度,进而可以有效避免信号干扰影响,提高检测准确性,推断能力能够检测干扰源的方向,快速避开干扰源干扰。由于新体制雷达的重大作用和意义,在国际上越来越多的研究者开始研究新型雷达。 (3)组网抗干扰技术。组网抗干扰最有特点的地方就是能够完成信息的整合处理,满足信息整合的要求。通过跟踪、检测信息的传播途径和传播方式,确定抗干扰方式,增加检测的准确性和可靠性,这种技术能够增加抗干扰能力,而且装备也较为简便,可以运用到多处场合中。

一次雷达和二次雷达

1 一次雷达与二次雷达 二次雷达与一次雷达基本上是并行发展的。与一次雷达相比,二次雷达有回波强、无目标闪烁效应、询问波长与应答波长不等的特点,从而消除了地物杂波和气象杂波的干扰。单脉冲技术应用于二次雷达,可以方便地基于多个波束对目标测量,进而有效地增加数据冗余度,提高角度测量的精度。对应答处理而言,单脉冲技术的应用,大大提高了在混叠或交织情况下对应答码的解码能力,使单脉冲二次雷达与常规二次雷达相比实现了一次质的飞跃。 二次雷达与一次雷达的根本区别是工作方式不同。一次雷达依靠目标对雷达发射的电磁波的反射机理工作,它可以主动发现目标并对目标定位;二次雷达则是在地面站和目标应答机的合作下,采用问答模式工作。目前的航管二次雷达共有七种询问模式,分别称为1、2、3/A、B、C、D和S模式。根据询问脉冲P1与P3的间距决定(S模式除外)各种询问模式。 机载应答机发出的应答码由16个信息码位组成,这些码位的代号依次是 F1、C1、A1、C2、A2、C4、A4、X、B1、D1、B2、D2、B4、D4、F2 和SPI。每个码位都有两种状态,即有脉冲或无脉冲。有脉冲时为“1”,无脉冲时为“0”。F1与F2的0.5电平处的脉冲前沿间隔为20.3±0.1μs,称为框架脉冲,它们是二次雷达应答信号的标志脉冲,均恒为“1”状态。X位是备用状态,恒为“0”。两个框架脉冲(F1与F2)之间的12个信息码位,可以编成4 096个独立的应答码。SPI是特殊定位识别码,当两架飞机相互接近或者应答码相同时,调度员可以要求其中的一架飞机在已回答的12个码位基础上再增加一个SPI脉冲,以便准确识别。二次雷达应答信号组成如图1所示。 2 应答处理器系统组成 单脉冲二次雷达应答信号处理的基本流程如图2所示。 在视频预处理器中,和与差支路的∑、△视频信号,经A/D转换器进行数字化处理后,变成两组8位的数字信号传送给应答处理机;将∑接收单元与△接收单元的信号经相位鉴别器,生成表示目标在波束中心左侧或右侧的轴向指示信号BI(2位),送应答处理器;∑与ΩSLS(1位);接收信号 经6dB检测、反窄处理、二分层产生PSV(处理后的和视频,1位)。视频预处理器产生上述信号并输入给应答处理机,进行框架检测、和差比计算、码装配等处理,最终形成应答报告输出给点/航迹处理计算机。应答处理机系统的组成如图3。 在应答处理机中选用了Lattice公司的EPLD作为主处理芯片(ispLSI1032E)。该芯片有64个I/O端,8个指定输入端,6 000个逻辑门,192个寄存器,最大时延≤12ns,通过简单的5线接口,即可用PC机对线路板上菊花链结构的最多8个芯片进行编程。PC104是嵌入式计算机,其CPU是一片兼容的64位第六代处理器,运行速度可达300MHz,其图形处理器可支持各种LCD及TFT显示屏,同时支持PS/2键盘、PS/2鼠标、两串行接口、一并行接口、USB接口、声卡功能。 应答处理机的工作原理:1位PSV、8位和视频、8位差视频、2位轴向指示及1位接收旁瓣抑制信号,在经过输入缓冲并与系统时钟信号同步后,其中的PSV信号进入边沿产生电路,所产生的前沿延迟一个框架时间(20.3μs)后与未延迟的前沿信号相与给出目标框架,启动4个解码器中处于空闲状态的装配器开始解码工作,产生解码需要的定时脉冲序列。同时和视频、差视频、轴向指示、旁瓣抑制信号送入视频采样电路,经过视频采样产生的SVA(和视频幅度)和DVA(差视频幅度)经和差比计算电路产生SDR值,SVA、DVA、SDR送数字寄存器进行延迟,延迟及未延迟的SVA、SDR、轴向指示、接收旁瓣抑制和目标前沿信号一起送入代码装配器,在定时脉冲的作用下,对目标应答信息进行解码、去除幻影应答、解旁瓣应答和军事告急应答。经过进一步相关、确认和修正后,将目标的SVA和SDR代码、综合的代码置信度信息及一些标志信息送代码装配总线,在输出控制的情况

振幅和差单脉冲雷达

振幅和差单脉冲雷达振幅和差单脉冲雷达在自动测角中的应用 姓名: 学号: 2014-12-20 西安电子科技大学 信息对抗

摘要: 在雷达系统中,为了确定目标的位置,不仅需要知道距离参量,同时也需要知道目标的空间方位,为此需要知道目标的方位角和俯仰角。雷达测角的物理基础是电磁波在均匀介质中沿直线传播和雷达天线具有方向性。测角的方法可分为振幅法和相位法两大类。在雷达测角中,为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据传送到计算机中。在自动测角系统中,有一种典型的方式——单脉冲自动测角系统。单脉冲自动测角属于同时波瓣测角法,单脉冲雷达的种类很多,最常用的是振幅和差单脉冲雷达。 关键字:雷达自动测角系统振幅和差单脉冲雷达 一、单脉冲雷达 什么是单脉冲雷达? 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 单脉冲雷达通常有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类(本次只研究振幅比较法)。它有较高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。在军事上主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。 二、振幅和差单脉冲雷达 振幅定向法是用天线接收到的回波信号幅度值来进行角度测量的,该幅度值的变化规律取决于天线方向图以及天线的扫描方式。振幅定向法可以分为最大信号法和等信号法两大类,其中等信号法又可以分为比幅法和和差法。此次试验只研究和差式雷达。

雷达有源干扰信号监测方法研究

?乂程盜用?航天电子对抗2019年第3期 雷达有源干扰信号监测方法研究 赵严冰,张新立 (中国人民解放军91336部队,河北秦皇岛066326) 摘要:针对雷达抗干扰试验训练中有源干扰信号的监测需求,在剖析有源干扰信号特点的基础上,提出了一种合作式的干扰信号监测方法,研究了关键技术及实现途径。通过实际验 证表明,该方法可以满足试验训练中任务中的信号监测需求。 关键词:试验训练;雷达抗干扰;有源干扰;监测方法 中图分类号:TN97文献标识码:A Research on monitoring method of radar active jamming signal Zhao Yanbing,Zhang Xinli (Unit91336of PLA,Qinhuangdao066326,Hebei,China) Abstract:Aiming at monitoring demand o£active jamming signal for radar anti-jamming testtraining,a collaborative monitoring method is proposed on the basis of the characteristics of active jamming signal,and the key technologies and implementation are studied.The practical test results prove that this method can sat- isfy the monitoring demand of signal for radar anti-jamming test&training. Key words:test&training;radar anti-jamming;active jamming;monitoring method o引言 贴近实战,构设复杂逼真、分层分级、可调可控的电磁环境是试验训练的核心要求。目前在构设雷达装备试验训练电磁环境中,雷达有源干扰环境是重点内容,但是由于缺乏针对性、相关性、实效性的雷达干扰环境有感监测手段⑴,不能对特定信号的状态进行监视和测量,无法获得特定信号的特征参量,不能支撑构建环境和预测环境的等效性评价,导致在雷达装备抗干扰评估上难以准确界定外界干扰环境对雷达的影响程度和影响机理,甚至在问题溯源上,难以清晰判定是干扰所为、还是雷达固有缺陷所致,严重影响了试验鉴定和训练考评的科学性和权威性。 本文在分析试验训练任务详细需求的基础上,提出了一种用于岸基、舰载雷达的合作式有源干扰监测方法,该方法可有效获取基于受体有感干扰环境的功率、频率、时间和特征参数,并进行了典型配置条件的应用验证。 收稿日期:2019-03-28S2019-04-30修回. 作者简介:赵严冰(1972-),男,高工,硕士,研究方向为电子对抗。1雷达有源干扰信号监测的需求分析 电磁环境监测是为了感知掌握电磁环境的状态,采用与构建电磁环境的信号特性相适应的监测设备、监测技术及方法,对各种或特定信号的状态进行监视和测量的过程阂。实现复杂电磁环境构设的适应性和实效性,很重要一个环节就是电磁环境的动态精确感知。雷达有源干扰环境监测作为电磁环境监测的重要内容,就是要在雷达试验训练任务中准确掌握特定雷达装备所面临有源干扰电磁环境在时域、空域、频域和能域的特征和参数范围。与雷达辐射源信号环境监测不同,雷达有源干扰环境监测不适用宽开方式的“盲侦盲测”,这也是由雷达有源干扰信号的特点决定的,很重要的就是雷达有源干扰信号与雷达辐射源信号具有明显的不同: 1)它只作用于特定的对象,信号样式与干扰对象匹配; 2)在信号特征上,具有一定的随机性,既有连续信号,也有脉冲信号,既有窄带信号,也有宽带信号; 3)干扰信号在时间、空间、能量上是不断变化的,具有一定的人为因素; 4)对于特定的受体对象,干扰信号常常与目标回波信号、杂波信号混合在一起。 —23—

振幅和差单脉冲雷达

[文档标题] [文档副标题] 姓名: 学号: 摘要: 在雷达系统中,为了确定目标的位置,不仅需要知道距离参量,同时也需要知道目标的空间方位,为此需要知道目标的方位角和俯仰角。雷达测角的物理基础是电磁波在均匀介质中沿直线传播和雷达天线具有方向性。测角的方法可分为振幅法和相位法两大类。在雷达测角中,为了快速地提供目标的精确坐标值,要采用自动测角的方法。自动测角时,天线能自动跟踪目标,同时将目标的坐标数据传送到计算机中。在自动测角系统中,有一种典型的方式——单脉冲自动测角系统。单脉冲自动测角属于同时波瓣测角法,单脉冲雷达的种类很多,最常用的是振幅和差单脉冲雷达。 关键字:雷达 自动测角系统 振幅和差单脉冲雷达 一、 单脉冲雷达 什么是单脉冲雷达? 单脉冲雷达是一种精密跟踪雷达。它每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。 单脉冲雷达通常有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类(本次只研究振幅比较法)。它有较 高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。在军事上主要用 于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。 2014-12-20 信息对抗

单脉冲雷达角度跟踪技术研究

单脉冲雷达角度跟踪技术研究 【摘要】简单介绍了单脉冲雷达的特点及工作原理,重点分析了多部干扰机对单脉冲雷达的角度干扰问题,并对相干干扰和非相干干扰的干扰效果进行了讨论,指出两点源非相干干扰是实际工程中一种比较理想的干扰方式。 【关键词】单脉冲雷达、角度跟踪、相干干扰、非相干干扰 一、引言 对雷达进行干扰要对准雷达的四个系统:显示系统、距离跟踪系统、速度跟踪系统和角度跟踪系统。在雷达发展的早期,只要对前三个系统中的一个(或两个)系统进行有效地干扰,就可达到破坏雷达角跟踪系统正常工作的目的。现在随着新体制雷达的出现和抗干扰技术的不断提高,尤其是单脉冲雷达体制的出现,使很多干扰技术难以奏效。本文以振幅和差式单脉冲雷达为例,讨论了用多部干扰机对单脉冲雷达实施干扰的情况。 二、分析 1.单脉冲雷达 ◆定义 单脉冲雷达是指由单个回波脉冲即可获得目标空间角信息的雷达。 ◆特点 单脉冲雷达是一种精密跟踪雷达。它有较高的测角精度、分辨率和数据率,但设备比较复杂。单脉冲雷达早在60年代就已广泛应用。美国、英国、法国和日本等国军队大量装备单脉冲雷达,主要用于目标识别、靶场精密跟踪测量、弹道导弹预警和跟踪、导弹再入弹道测量、火箭和卫星跟踪、武器火力控制、炮位侦察、地形跟随、导航、地图测绘等;在民用上主要用于中交通管制。目前使用的单脉冲雷达基本上都实现了模块化、系列化和通用化,具有多目标跟踪、动目标显示、故障自检、维修方便等特点。 ◆分类 根据从回波中获取角信息的方式(测角法)不同,单脉冲雷达可分为振幅法(比幅)、相位法(比相)和综合法(振幅相位)3种。这3种测角法又可用3种角度鉴

别器(振幅式、相位式、和差式)中的任何一种来获得目标的角度信息,因此综合起来有9种形式的单脉冲雷达系统,其中以振幅和差式单脉冲雷达系统用的最多。通常分为有振幅比较单脉冲雷达和相位比较单脉冲雷达两大类。 工作原理 单脉冲雷达每发射一个脉冲,天线能同时形成若干个波束,将各波束回波信号的振幅和相位进行比较,当目标位于天线轴线上时,各波束回波信号的振幅和相位相等,信号差为零;当目标不在天线轴线上时,各波束回波信号的振幅和相位不等,产生信号差,驱动天线转向目标直至天线轴线对准目标,这样便可测出目标的高低角和方位角,从各波束接收的信号之和,可测出目标的距离,从而实现对目标的测量和跟踪。它具有圆锥扫描雷达所没有的优点:获得角误差信息的时间短(以微秒计算);不受回波振幅起伏变化的影响;测角精度高(0.1~0.5mil);测角支路抗幅度调制干扰(如回答式倒相干扰)的能力强。振幅和差式单脉冲雷达系统的基本工作原理:将两个比幅天线方向图所得的幅度不同的信号经过和差变换器之后,再把和信号(U∑ )、差信号(U△ )加到鉴相器得出差信号。 2 雷达角跟踪技术 2.1 信号处理和测量技术 PD采用一种合适的且可以适当改变的配置方式及数据处理算法,可成功的实现跟踪低仰角目标。假定一种处理算法,地面的反射系数应有一个确定的模型(如镜面反射和几何光学原理),重要的是要估计这样的算法偏离假定的反射模型的灵敏度如何。在一个真实系统中,这样的偏差肯定会发生。即使是光滑的镜面表面(理想的镜面反射),当雷达位于几倍天线直径大的该表面时,由物理光学原理即菲涅尔区,也需要校正。关键的问题是,在反射的雷达信号中有多少是未知量,要确定这些未知量,雷达需要测量的量是多少,很明显,在多路径效应下,未知数的数量会增加。雷达必须做更多的测量才能获得反射平面的信息以鉴别目标的真实仰角。但是更多的工作是需要找到最优的算法,需要确定它们对不同反射系数模型的灵敏度。

单脉冲雷达的改进方法

收稿日期225 作者简介刘才斌(2 ),男,湖北公安人,硕士、副教授, 主要研究方向雷达教学与研究。 文章编号:1002206402(2008)增刊20027202 单脉冲雷达的改进方法 刘才斌,王大鹏,张仲华 (武汉军械士官学校,湖北 武汉 430075) 摘 要:单脉冲体制的雷达以其在测角、跟踪方面的优越性,现在被广泛应用于各电子侦察部(分)队。但该体制也由于和、差通道的幅相特性的不一致,产生了测角误差,进而影响了系统的测角及跟踪性能。某型雷达由于在接收机中采用幅度、相位实时自动调整系统,使幅相一致性得到明显的提高,从而使测角误差大大减小。 关键词:单脉冲体制,测角误差,跟踪特性中图分类号:TP 391 文献标识码:A The Si n gle Pulse System Ra da r M ea sur es the Ca pe an d Follows the I m pr ovem en t of the Character ist i c L I U C ai 2bin,W AN G D a 2peng,ZHAN G Zhong 2hua (W uha n O rdnancy N on 2co mm issioned Of f icer A ca de my of PL A ,W uha n 430075,China ) Abstra ct:T he radar of the single pulse syste m th ink s it s in the asp ect s of m easuring t he Cap e and fo llow of super i o r ,now w a s p robed a brigade in each elect ron ics by the ex tensive appl ica t i on 1B u t that system too because of and,differ an inconfo r m ity fo r m utual ly characteristic of the pa ssage,produce to m ea sure the Cap e erro r m argin ,then affected the system m easure the C ape and fol l ow the funct ion 1Som e type rada r becau se of adop t ing the range in rece ive m achine ,m u tua lly an exa ltat ion fo r solidly hour au tom a t ic adjustm ent system ,m aking first m utually the consistency ge ts obvi ously,from but m ake m ea sure the Cap e erro r m argin to let up consum edly . Key words :the single p ulse syste m m easures ,m easure the e rror m argin of the angle ,i mp rovem ent m ethod 引 言 在战场侦察系统中使用的雷达,必须快速且准确地提供单个目标坐标(距离、方位)的精确数值并跟踪目标。 雷达测角的物理基础是电波在均匀介质中传播的直线性和雷达天线的方向性。为了快速地提供目标的精确值,要采用自动测角的方法。当目标方向偏离天线轴线(即出现了 误差角Ε )时,就能产生一误差电压,误差电压的大小正比于误差角Ε,其极性随偏离方向不同而改变。此误差电压经跟踪系统变换、放大、处理后,控制天线向减小误差角的方向运动,使天线轴线对准目标[1]。 图1 雷达和差波束图 单脉冲测角就是确定角度误差所必须的全部信息在单脉冲的基础上获得,单脉冲天线接收的目标回波信号经多模馈源后,在和、差支路中形成和 (2)、差(?)信号。雷达和差波束 图如图1所示。和波束回波信号主要用于作为相位基准以确定信号正负号,差波束回波信号主要用于测角。当目标在波束 (和波束)中心时,左右馈源收 到的回波信号相同,经多模馈 源后和(2)信号最大,差(?)信号为零;当目标偏离和波束中心时,单脉冲天线接收到的回波差(?)信号大小及差(?)信号极性符号代表了目标偏离波束中心的程度和方向。雷达计算机软件据此计算出代表方位误差大小的值,送至伺服系统 V o l .33,Sup p l em ent A p ril,2008 火力与指挥控制 Fire Co nt ro l and Comm and Co n tro l 第33卷增 刊 :2007101:1972:

单脉冲雷达设计

1 雷达距离方程: 其中, P t 为发射功率,G 为天线增益,σ为目标雷达横截面积,λ为传播波长,S min 为最小可检测信号。但是由于: (1) 最小可检测信号的统计特征(接收机噪声决定)。 (2) 目标雷达横截面积的起伏和不确定性。 (3) 雷达系统的损耗。 (4) 地球表面和大气层引起的传播效应。 因此,距离指标必须包括雷达探测一个特定距离上规定目标的概率,且在无目标回波出现时有规定的虚假检测概率。雷达作用距离将是检测概率P d 和虚警概率P fa 的函数。 检测概率和虚警概率是由用用户对系统的要求所确定。根据确定的检测概率和虚警概率,可以求出最小的信噪比S/N 。 关于三者之间的关系,Albersheim 研究出一个简单的检经验公式: S/N=A+0.12AB+1.7B 注:信噪比是一个数字,不用dB 表示。 式中: A=ln[0.62/P fa ]和B=ln[P d /(1-P d )] 2 脉冲积累对检测性能的改善: 多个脉冲积累后可以有效提高信噪比,从而改善雷达的检测能力。实际情况下,利用检波后积累都存在积累损耗。 利用统计检测理论,可以求得检波后积累效率和所要求的每个脉冲信噪比(S/N )n ,积累损耗和积累改善因子可由书本查出,他们()4max 322max 422min 44R G P R A P S P t r t i r πσλπλσ===

只随检测概率和虚警概率稍稍变化。 如果同样的n个脉冲由理想的检波后积累器积累,得到信噪比要小于单个信噪比的n倍。则存在损耗,检波后积累效率可定义为: E i(n)=(S/N)1/n(S/N)n 积累损耗(dB)定义为: L i(n)=10log[1/E i(n)] 积累n个脉冲后,雷达方程为: R max4=P t GA eσ/(4π)2kT0BF n(S/N)n 方程中除(S/N)n是n个要积累的相同脉冲中每个脉冲的信噪比以外,其余参数与先前使用相同。当n为确定参数时,查询表可得E i(n)。每个脉冲信噪比可由Albersheim经验公式得到: (S/N)n=-5lg n +[6.2+4.54/(n-0.44)0.5]*lg(A+0.12AB+1.7B) 积累损耗或效率是理论上的损耗,在雷达中用于实现积累过程的实际方法也会引起损耗。 3 匹配滤波器接收机: 定义:雷达接收机输出信号峰值-噪声(功率)比最大将使目标可检测性最大,能做到这一点的线性网络称为匹配滤波器。 匹配滤波器的冲击响应函数:h(t)=G a s(t m-t) 总结: (1)匹配滤波器的输出峰值信号-平均噪声比仅与接收信号的总能量和单位带宽的噪声功率有关。 (2)最大输出信噪比:2E/N

浅谈雷达干扰与反干扰技术

浅谈雷达干扰与抗干扰技术 近年来,由于电子对抗技术的不断进步,干扰与抗干扰之间的斗争亦日趋激烈。面对日益复杂的电子干扰环境,雷达必须提高其抗干扰能力,才能在现代战争中生存,然后才能发挥其正常效能,为战局带来积极影响。 一、雷达干扰技术 1、对雷达实施干扰的目的和方法 雷达干扰的目的是使敌方雷达无法获得探测、跟踪、定位及识别目标的信息,或使有用的信息淹没在许多假目标中,以致无法提取真正的信息。 根据雷达工作原理,雷达是通过辐射电磁波在空间传播至目标,由目标散射回波被雷达接收实现探测目标。因此对雷达实施干扰可以从传播空间和目标这两处着手。具体来说就是辐射干扰信号,反射雷达信号,吸收雷达信号三个方面。 为了实现对雷达实现有效的干扰,一般需要满足下面几个条件。空间上,干扰方向必须对准雷达,使得雷达能够接收到干扰信号。频域上,干扰频率必须覆盖雷达工作频率或者和雷达工作频点相同。能量上,干扰的能量必须足够大,使得雷达接收机接收的能量大于其最小可接收功率(灵敏度)。极化方式上,干扰电磁波的极化方式应当和雷达接收天线的极化方式尽量接近,使得极化损失最小。信号形式上,干扰的信号形式应当能够对雷达接收机实施有效干扰,增加其信号处理的难度。 2、雷达干扰分类 雷达面临的复杂电子干扰可分为有意干扰和无意干扰两大类,这两者又分别包括有源和无源干扰,具体如下图所示。

有意干扰无意干扰有源干扰无源干扰有源干扰 无源干扰遮盖性干扰欺骗性干扰自然界的人为的欺骗性干扰遮盖性干扰自然界的人为的噪声调频干扰复合调频干扰噪声调相干扰随机脉冲干扰距离欺骗干扰角度欺骗干扰速度欺骗干扰等箔条走廊干扰箔条区域干扰反雷达伪装雷达诱饵宇宙干扰雷电干扰等工业干扰友邻干扰等鸟群干扰等 人工建筑干扰 地物、气象干扰 {友邻物体干扰{{{{{{{{{{{{{{ 雷达干扰 二、雷达抗干扰技术 雷达抗干扰的主要目标是在与敌方电子干扰对抗中保证己方雷达任务的顺利完成。雷达抗干扰措施可分为两大类:(1)技术抗干扰措施;(2)战术抗干扰措施。技术抗干扰措施又可分为两类:一类是使干扰不进入或少进入雷达接收机中;另一类是当干扰进入接收机后,利用目标回波和干扰的各自特性,从干扰背景中提取目标信息。这些技术措施都用于雷达的主要分系统如天线、发射机、接收机、信号处理机中。 1、与天线有关的抗干扰技术 雷达通过天线发射和接收目标信号,但同时可能接收到干扰信号,可以通过在天线上采取某些措施尽量减少干扰信号进入接收机。如提高天线增益,可提高雷达接收信号的信干比;控制天线波束的覆盖与扫描区域可以减少雷达照射干扰机;采用窄波束天线不仅可以获得高的天线增益,还能增大雷达的自卫距离、提高能量密度,还可以减少地面反射的影响,减小多径的误差,提高跟踪精度;采用低旁瓣天线可以将干扰限制在主瓣区间,还可以测定干扰机的角度信息,并能利用多站交叉定位技术,测得干扰机的距

现代有源干扰技术发展探讨

现代有源干扰技术发展探讨 【摘要】介绍了现代有源干扰技术。论述了舰艇的雷达有源隐身技术和舰载雷达有源干扰机。探讨了舰载激光致盲武器与烟幕干扰技术。重点论述了有源光电干扰设备和红外干扰机。最后,对现代有源干扰技术的发展进行了探讨。 【关键词】有源干扰技术;舰载干扰武器;红外干扰 1.引言 目前,海面舰艇面临着日趋严重的反舰导弹威胁。反舰导弹可从空中、岸上、舰上和水下不同的场合发射,其制导方式有雷达制导、红外制导、雷达/红外复合制导、电视制导、激光制导和红外成像制导等等。装备各种不同反舰导弹的国家已有70多个,反舰导弹已发展到第5代。 为了有效对抗反舰导弹威胁,大力发展舰载电子战技术就具有十分重要的意义。舰载电子战技术主要包括舰艇隐身、电子侦察告警、雷达无源干扰与有源干扰、激光致盲武器与烟幕等等。本文主要对现代有源干扰技术作以综述。 2.有源干扰技术 电子干扰是电子战中最重要的部分,而又以有源干扰为主。有源干扰主要包括以下几种机制:1)调辐载波干扰,即对恒定周期的载波进行幅度调制,它对雷达的作用距离有非常明显的影响。2)角度干扰,当扫描火控雷达的方位和高度信息存在于回波脉冲的调制成分中时所采用的一种对抗技术。干扰这个脉冲的办法是发射一个和雷达脉冲类似,但其调制信息与回波目标角度调制信息反相的脉冲。3)异步脉冲干扰,被认为是最有效的一种干扰方式,干扰脉冲频率几乎和雷达脉冲重复频率完全匹配,而且,干扰机还能发射该频率的倍数频率,如果干扰脉冲宽度大于雷达脉冲宽度,干扰效果更好。4)阻塞干扰,即对各个波段同时进行干扰。5)欺骗性干扰,一种特殊的电子干扰,主要用于对付火控雷达和寻的系统,它不是消除目标信息,而是阻止敌方建立有益的目标信息。它又分为人为性欺骗和模仿欺骗两种形式,人为性欺骗包括改变或模拟己方的电磁辐射来进行欺骗,模仿性欺骗包括将电磁辐射引进敌人的信道,以模拟敌人的发射波。6)插入,也是一种欺骗技术,即以任何一种方式在微波传输途径中插入额外的电磁成分,以欺骗*作人员或引起混乱。7)视频堵塞,指直接放大不含载频的白噪声,使雷达接收机的噪声电平达到饱和。 3.舰艇的雷达有源隐身技术 理论上,雷达发射电磁波照射目标后,其接收机接收到的目标回波功率等于雷达照射目标的功率密度、目标的散射功率密度的大小及分布和雷达接收天线的等效接收面积等三项的乘积。而减少这三项中的任一项,都可降低雷达所接收到的功率,从而达到隐身的目的。所以,雷达有源隐身技术就是通过有源干扰技术,

相关文档
最新文档