图像处理中的数学方法-BiCMR

图像处理中的数学方法-BiCMR
图像处理中的数学方法-BiCMR

图像处理中的数学方法(Mathematical Image Processing)

授课老师:董彬(数学中心)

?课程简介(中):我们生活在数字的时代,数据的生成、传播、整合、分析和处理已经成为了我们生活中不可缺少的一部分。而图像无疑是最重要的数据种类之一,这不仅是因为我们在日常交流中频繁的使用图像,也因为图像能够十分简洁的呈现物理世界、并在诸多领域被广泛的使用。计算机技术的飞速发展使得我们可以用很深奥精妙的数学工具来为图像处理中的问题设计有效的解决方案,因此,很多图像处理中的数学方法被诸多不同领域接纳并被广泛的使用,其中包括自然科学领域、高新技术领域、社交媒体领域等等。

本课程适合于应用与计算数学、工程、计算机专业的研究生和高年级本科生,课程内容包括(但不限于)变分法、偏微分方程、小波分析及其在图像处理中的应用,其中包括图像去燥、去模糊、分割、配准、医学成像、计算机图形学、计算机视觉等等。

?课程简介(英):

As we are living in a digital world now, the creation, distribution, integration, interpretation and manipulation of data have become an important part of our society.

Digital images are no doubt one of the most important components of data. This is not only because image is a powerful and widely used medium of communication, but also because it is an easy, compact, and widespread way to represent the physical world.

Advances in computer technology have made it possible to apply some of the most

sophisticated developments in mathematics to the design and implementation of fast algorithms running on a large number of processors to process image data. As a result, image processing and analysis techniques are now widely applied to natural sciences, technical disciplines and s ocial medias; and digital images have come into everyone’s life. This course is suitable for both senior undergraduate and graduate students majoring in mathematics, applied mathematics, engineering, computer science, operation research, etc. The topics we will cover in this course include, but not limited to, variational methods, PDE methods, wavelet and wavelet frame based methods in various problems in imaging science such as image denoising, deblurring, inpainting,

segmentation, registration, medical imaging, computer graphics, computer vision etc.

?参考教材

1. Mathematics in Image Processing (IAS/Park City Mathematics Series), Hongkai

Zhao, American Mathematical Society, June 12, 2013. (ISBN: 0821898418)

2. Mathematical Problems in Image Processing: Partial Differential Equations

and the Calculus of Variations (Applied Mathematical Sciences), Gilles Aubert and Pierre Kornprobst, Springer, November 19, 2009. (ISBN: 1441921826)

?其它参考材料

o Image Processing and Analysis: Variational, PDE, Wavelet, and Stochastic Methods,Tony Chan, Jianhong Shen, SIAM, 2005.

o图像处理、分析与机器视觉(第3版),桑卡(Milan Sonka) (作者), 赫拉瓦卡(Vaclav Hlavac) (作者), 博伊尔(Roger Boyle) (作者), 艾海舟(译

者), 苏延超(译者),清华大学出版社,2011.

o UCLA CAM Report:https://www.360docs.net/doc/7e12873642.html,/applied/cam/

o沈佐伟教授个人主页:https://www.360docs.net/doc/7e12873642.html,.sg/~matzuows/publist.html

o任课老师个人主页:https://www.360docs.net/doc/7e12873642.html,/~dongbin/Publications.html

o深度学习短期课程主页:http://www.xn--vjq503akpco3w.top/

?大纲:

我们生活在数据大爆炸的时代,数据的生成、传播、整合、分析和处理已经成为了我们生活中不可缺少的一部分,而图像无疑是最重要的数据种类之一。本课程的目的是介绍近30年中在图像处理领域中被广泛使用的数学工具以及这些工具之间的联系与区别,让学生对这一蓬勃发展的领域有比较系统的了解。

本课程适合于应用与计算数学、工程、计算机、运筹专业的研究生和高年级本科生,要求选课学生熟悉数学分析,高等代数,数值分析,会使用Matlab或者其它计算机语言进行算法编程,另外,实变函数、最优化方法、偏微分方程、偏微分方程数值解也会对本课程的理解有帮助,但仅为建议。

内容提要:

?综述(2-3学时)

?图像复原中的变分模型(4-5学时):Rudin-Osher-Fatemi模型和高阶变分模型、Euler-Lagrange方程、梯度流、离散化模型

?图像复原中的偏微分方程模型(4-5学时):热传导方程、anisotropic diffusion (Perona-Malik)、shock-filter、其它高阶非线偏微分方程、离散化?图像分割中的变分及PDE模型(4-5学时):Mumford-Shah,Chan-Vese模型,Snake,Geodesic active contours、离散化

?小波分析基本理论和快速算法(10学时):多尺度分析(MRA)、小波(框架)系统的刻画及构造、快速分解重构算法

?图像复原、重建、分析中的小波模型(8学时):基于小波框架的三大模型(analysis, synthesis, balanced)、优化算法、图像分割、曲面重建、CT图像重

建、数据驱动紧框架

?不规则数据上的稀疏表征及应用(4-5学时):曲面流形上的(类)小波(框架),基于稀疏逼近的高维数据分析。

?小波模型、变分模型、偏微分方程模型之间的联系与区别(4-5学时)

?神经网络、深度学习在图像问题中的应用(4学时):神经网络介绍、(去燥)自编码、卷及神经网络、循环神经网络、图像重建、分割、识别中的应用

本课成绩由作业和课程项目两部分组成,课程作业每隔2-3周留一次,内容包括笔头作业和程序实现部分,课程项目由学生根据课程内容自由选取,但不得选课程以外的内容作为课程项目,鼓励学生在做项目期间讨论交流,但每个学生要单独提交课程项目。

教学方式:

课堂讲授: 100%

成绩评定:

(1) 4次大作业,包括习题和程序: 40%

(2)课程项目: 60%

要求:

作业和课程项目必须按时提交,迟交不算成绩,抄袭不算成绩

数字图像处理试题及参考答案

一、填空题(每题1分,共15分) 1、列举数字图像处理的三个应用领域医学、天文学、军事 1024?,256个灰度级的图像,需要8M bit。 2、存储一幅大小为1024 3、亮度鉴别实验表明,韦伯比越大,则亮度鉴别能力越差。 4、直方图均衡化适用于增强直方图呈尖峰分布的图像。 5、依据图像的保真度,图像压缩可分为无损压缩和有损压缩 6、图像压缩是建立在图像存在编码冗余、像素间冗余、心理视觉冗余三种冗余基础上。 7、对于彩色图像,通常用以区别颜色的特性是色调、饱和度 亮度。 8、对于拉普拉斯算子运算过程中图像出现负值的情况,写出一种标定方法: 二、选择题(每题2分,共20分) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一类图像进行增强。(B ) A 图像整体偏暗 B 图像整体偏亮 C图像细节淹没在暗背景中D图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。(B ) A 平均灰度 B 图像对比度 C 图像整体亮度D图像细节 3、计算机显示器主要采用哪一种彩色模型( A ) A、RGB B、CMY或CMYK C、HSI D、HSV 4、采用模板[-1 1]T主要检测( A )方向的边缘。 A.水平 B.45? C.垂直 D.135? 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像 7、彩色图像增强时, C 处理可以采用RGB彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加上一常数量以便引入 一些低频分量。这样的滤波器叫 B 。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __ A.一一对应 B.多对一 C.一对多 D.都不 三、判断题(每题1分,共10分) 1、马赫带效应是指图像不同灰度级条带之间在灰度交界处存在的毛边现象。(√)

机器视觉与图像处理方法

图像处理及识别技术在机器人路径规划中的一种应用 摘要:目前,随着计算机和通讯技术的发展,在智能机器人系统中,环境感知与定位、路径规划和运动控制等功能模块趋向于分布式的解决方案。机器人路径规划问题是智能机器人研究中的重要组成部分,路径规划系统可以分为环境信息的感知与识别、路径规划以及机器人的运动控制三部分,这三部分可以并行执行,提高机器人路径规划系统的稳定性和实时性。在感知环节,视觉处理是关键。本文主要对机器人的路径规划研究基于图像识别技术,研究了图像处理及识别技术在路径规划中是如何应用的,机器人将采集到的环境地图信息发送给计算机终端,计算机对图像进行分析处理与识别,将结果反馈给机器人,并给机器人发送任务信息,机器人根据接收到的信息做出相应的操作。 关键词:图像识别;图像处理;机器人;路径规划 ABSTRACT:At present, with the development of computer and communication technology, each module, such as environment sensing, direction deciding, route planning and movement controlling moduel in the system of intelligent robot, is resolved respectively. Robot path planning is an part of intelligent robot study. The path planning system can be divided into three parts: environmental information perception and recognition, path planning and motion controlling. The three parts can be executed in parallel to improve the stability of the robot path planning system. As for environment sensing, vision Proeessing is key faetor. The robot path planning of this paper is based on image recognition technology. The image processing and recognition technology is studied in the path planning is how to apply, Robots will sent collected environment map information to the computer terminal, then computer analysis and recognize those image information. After that computer will feedback the result to the robot and send the task information. The robot will act according to the received information. Keywords: image recognition,image processing, robot,path planning

数字图像处理在医学上的应用

数字图像处理的应用 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号,并通过计算机对图像进行去除噪声、增强、复原、分割、提取特征等处理的方法和技术。 数字图像处理的产生和迅速发展主要受三个因素的影响:一是计算机的发展;二是数学的发展;三是广泛的农牧业、林业、环境、军事、工业和医学等方面的应用需求的增长。 进行数字图像处理所需要的设备包括摄像机、数字图像采集器(包括同步控制器、模数转换器及帧存储器)、图像处理计算机和图像显示终端。 图像是人类获取和交换信息的主要来源,因此,图像处理的应用领域必然涉及到人类生活和工作的方方面面。随着人类活动范围的不断扩大,图像处理的应用领域也将随之不断扩大。 接下来,就讨论一下数字图像处理在医学上的应用。 自发现X射线以来,在医学领域可以用图像的形式揭示更多有用的医学信息,医学的诊断方式也发生了巨大的变化。随着科学技术的不断发展,现代医学已越来越离不开医学图像的信息处理。 目前的医学图像包括CT图像、核磁共振图像、B超扫描图像、数字X 光机图像、X 射线透视图像、各种电子内窥镜图像、显微镜下病理切片图像等。由于人眼识别度等客观因素的影响,大部分的图像需要依靠计算机的帮助。随着数字图像处理技术的发展,对这些图像的分析以及处理,会变得更加快捷,分析的结果也会更加精准。

与其他领域的应用相比较,医学影像等卫生领域信息更具独特性,医学图像较普通图像纹理更多,分辨率更高,相关性更大,存储空间要更大,并且为严格确保临床应用的可靠性,其压缩、分割等图像预处理、图像分析及图像理解等要求更高。 首先,对于一个病例,要进行图像采集,由于采集到的图像因试验测量系统和测量者个人因素存在较多噪声,所以要先通过预处理对图像进行去噪处理和灰度变换处理等使其变得较为清晰。预处理完成后再利用中心路径提取算法对所获取的图像进行进一步处理。 接下来要做的就是图像处理。 先对图像二值化,二值形态学的运算对象是集合给出一个图像集合和一个结构元素集合利用结构元素对图像进行操作。然后做中心线的提取等。 使用计算机进行图像的采集预处理以及二值化和计算排除了人为测 量的不精确性和误差提高了测量结果的可靠性。 随着信息技术的飞速发展和计算机应用水平的不断提高,利用计算机断层成像、正电子放射层析成像、单光子辐射断层摄像、磁共振成像、超声成像及其它医学影像设备所获得的图像被广泛应用于医疗诊断、组织容积定量分析、病变组织定位、解剖结构学习、治疗规划、功能成像数据的局部体效应校正、计算机指导手术和术后监测等各个环节。 医学图像处理借助于计算机图形、图像技术,使医学图像的质量和显示方法得到了极大的改善。这不仅可以基于现有的医学影像设备来极

图像处理的流行的几种方法

一般来说,图像识别就是按照图像地外貌特征,把图像进行分类.图像识别地研究首先要考虑地当然是图像地预处理,随着小波变换地发展,其已经成为图像识别中非常重要地图像预处理方案,小波变换在信号分析识别领域得到了广泛应用. 现流行地算法主要还有有神经网络算法和霍夫变换.神经网络地方法,利用神经网络进行图像地分类,而且可以跟其他地技术相互融合.个人收集整理勿做商业用途 一神经网络算法 人工神经网络(,简写为)也简称为神经网络()或称作连接模型(),它是一种模范动物神经网络行为特征,进行分布式并行信息处理地算法数学模型.这种网络依靠系统地复杂程度,通过调整内部大量节点之间相互连接地关系,从而达到处理信息地目地.个人收集整理勿做商业用途 在神经网络理论地基础上形成了神经网络算法,其基本地原理就是利用神经网络地学习和记忆功能,让神经网络学习各个模式识别中大量地训练样本,用以记住各个模式类别中地样本特征,然后在识别待识样本时,神经网络回忆起之前记住地各个模式类别地特征并将他们逐个于样本特征比较,从而确定样本所属地模式类别.他不需要给出有关模式地经验知识和判别函数,通过自身地学习机制形成决策区域,网络地特性由拓扑结构神经元特性决定,利用状态信息对不同状态地信息逐一训练获得某种映射,但该方法过分依赖特征向量地选取.许多神经网络都可用于数字识别,如多层神经网络用于数字识别:为尽可能全面描述数字图像地特征,从很多不同地角度抽取相应地特征,如结构特征、统计特征,对单一识别网络,其输入向量地维数往往又不能过高.但如果所选取地特征去抽取向量地各分量不具备足够地代表性,将很难取得较好地识别效果.因此神经网络地设计是识别地关键.个人收集整理勿做商业用途 神经网络在图像识别地应用跟图像分割一样,可以分为两大类: 第一类是基于像素数据地神经网络算法,基于像素地神经网络算法是用高维地原始图像数据作为神经网络训练样本.目前有很多神经网络算法是基于像素进行图像分割地,神经网络,前向反馈自适应神经网络,其他还有模糊神经网络、神经网络、神经网络、细胞神经网络等.个人收集整理勿做商业用途 第二类是基于特征数据地神经网络算法.此类算法中,神经网络是作为特征聚类器,有很多神经网络被研究人员运用,如神经网络、模糊神经网络、神经网络、自适应神经网络、细胞神经网络和神经网络.个人收集整理勿做商业用途 例如神经网络地方法在人脸识别上比其他类别地方法有独到地优势,它具有自学习、自适应能力,特别是它地自学能力在模式识别方面表现尤为突出.神经网络方法可以通过学习地过程来获得其他方法难以实现地关于人脸识别规律和规则地隐性表达.但该方法可能存在训练时间长、收敛速度慢地缺点.个人收集整理勿做商业用途 二小波变换 小波理论兴起于上世纪年代中期,并迅速发展成为数学、物理、天文、生物多个学科地重要分析工具之一;其具有良好地时、频局域分析能力,对一维有界变差函数类地“最优”逼近性能,多分辨分析概念地引入以及快速算法地存在,是小波理论迅猛发展地重要原因.小波分析地巨大成功尤其表现在信号处理、图像压缩等应用领域.小波变换是一种非常优秀地、具有较强时、频局部分析功能地非平稳信号分析方法,近年来已在应用数序和信号处理有很大地发展,并取得了较好地应用效果.在频域里提取信号里地相关信息,通过伸缩和平移算法,对信号进行多尺度分类和分析,达到高频处时间细分、低频处频率细分、适应时频信号分解地要求.小波变换在图像识别地应用,包括图形去噪、图像增强、图像融合、图像压缩、图像分解和图像边缘检测等.小波变换在生物特征识别方面(例如掌纹特征提取和识别)同样得到了成功应用,部分研究结果表明在生物特征识别方面效果优于、、傅里叶变换等方

医学图像处理单选题样题

| 姓 名~ 】) 牡丹江医学院医学影像学院 — ]

% % & : > 、 1、医学图像处理是对 A:CRR B:DORI C:MRI D:USA 成像方法及图像处理方法的研究。 。 2、PET A:正电子发射型计算机断层 B:单光子发射型计算机断层 C:磁共振扫描断层 D:多普勒超声技术 3、医学图像前处理包括对 A:光学显微成像的处理 B:电子显微镜图片处理 C:内窥镜图像处理 D:CT的成像方法的研究 - 4、医学图像后处理包括对 A:MRI成像方法的研究 B:医学影像设备所成像的处理与研究 C:USI成像方法的研究 D:CT的成像方法的研究 5、以下医学影像设备正确的是 A:PECT B:SPECT C:MIR D:SUI ( 6、DSA A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 7、fMRI A:数字剪影血管造影 B:磁共振功能成像 C:磁共振血管造影 D:数字放射摄影 - 8、医学超声成像的优点 A:对比度高 B:图形的重复性不依赖于操作人员 C:对人体无辐射损伤 D:可对全身所有器官进行检查

9、CT成像的特点 A:全方位成像 ` B:分辨率差 C:组织重叠 D:可实现断层解剖学成像 10、核医学 成像的特点 A:无放射危害 B:分辨率高 C:功能性成像 D:主要实现断层解剖学成像 11、MRI成像的特点 A:使用造影剂 | B:利用声音回波 C:无电离辐射 D:只能横断面断层 12、哪一个不是医学影像成像 A:PET B:SPECT C:fMRI D:DSAT 13、现代医学影像技术的发展方向 A:数字向模拟方向发展 ~ B:组织形态学成像向功能性成像发展 C:由立体像平面方向发展 D:由融合向单一成像技术发展 14、医学图像可以分为哪两类 A:结构图像与局部图像 B:结构图像与功能图像 C:功能性成像与立体成像 D:静态图像与动态图像 ! * 【 ~ ; 15、核医学成像主要是取决于 A:脏器或组织的血流与细胞功能 B:成像设备的磁场强度 C:成像设备的X射线强度 D:人体组织与器官的氢原子数含量 16、融合技术应用于医学成像的目的是 A:使两张图片更好的连接 B:同时显示功能性信息及解剖学位置 C:方便比较两张医学图片的对比度 ¥ D:实现断层解剖学成像的3D显示 17、分子影像学是 A:探测构成疾病基础的分子异常 B:详细观察体内分子的细微结构 C:研究人体内分子的发光特点 D:研究探针的运动轨迹 18、那种融合技术有应用价值

图像处理中的数学问题

图像处理中的数学问题 在图像处理的发展过程中,数学始终起着举足轻重的作用,并渗透在图像处理的所有分支之中。 到上世纪六七十年代为止,以Fourier分析为代表的线性处理方法占据了几乎整个数字图像处理领域。在此期间,借助于随机过程理论,人们建立了图像模型通过概率论以及在此基础上建立的信息论建立了图像编码的框架;线性滤波(维纳滤波、卡尔曼滤波)方法为低层图像处理提供了有力的理论支持;而FFT则被广泛使用在图像处理的几乎所有分支中。这些数学工具极大地促进了图像处理的发展和应用。 自上世纪八十年代开始,非线性科学开始逐渐渗透到图像处理方法之中,许多新颖的数学工具被引入到图像处理领域,使相关的理论变得多元化。尤其以小波和多尺度分析为代表的信息处理方法,继承和发展了Fourier分析,将函数论和逼近论的最新成果应用在工程应用中,建立起了完整的系统框架,在图像编码、图像分割、纹理识别、图像滤波、边缘检测、特征提取和分析等方面的应用中,已经取得了非凡的成果。目前,小波分析方法业已成为信号处理的基础理论之一 同时,其他非线性的数学工具的应用也取得丰硕的成果:如分形在图像编码和纹理识别中的应用,李群在动态图像弹性形变识别中的应用,多尺度分析在图像检索和识别中的应用,非线性规划在矢量量化和图像编码中的应用等等。另外,图像确定性模型(BV 模型)的建立、模糊数学对图像质量的评价体系、Meaningful 理论对图像距离的研究是对图像本质的进一步刻划,使计算机可以更贴切地描述人类的视觉系统。 同时,其他非线性的数学工具的应用也取得丰硕的成果:如分形在图像编码和纹理识别中的应用,李群在动态图像弹性形变识别中的应用,多尺度分析在图像检索和识别中的应用,非线性规划在矢量量化和图像编码中的应用等等。另外,图像确定性模型(BV 模型)的建立、模糊数学对图像质量的评价体系、Meaningful 理论对图像距离的研究是对图像本质的进一步刻划,使计算机可以更贴切地描述人类的视觉系统。 特别的,基于非线性发展(偏微分)方程的图像处理方法成为近年来图像研究的一个热点。它从分析图像去噪的机理入手,结合数学形态学微分几何、射影几何等数学工具,建立了滤波和偏微分方程相关的公理体系。另外,它在图像重构、图像分割、图像识别、遥感图像处理、图像分析、边缘检测、图像插值、医学图像处理、动态图像修补、立体视觉深度检测、运动分析等方面得到了一定的应用。在研究过程中,人

数字图像处理期末复习题2教学总结

第六章图像的锐化处理 一.填空题 1. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。垂直方向的微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 2. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Roberts交叉微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 3. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Sobel 微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 4. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Priwitt微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 5. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Laplacian微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 6. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。Wallis 微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 7. 在图像的锐化处理中,通过一阶微分算子和二阶微分算子都可以进行细节的增强与检测。水平方向的微分算子属于________________。(填“一阶微分算子”或“二阶微分算子”) 8. 图像微分______________了边缘和其他突变的信息。(填“增强”或“削弱”) 9. 图像微分______________了灰度变化缓慢的信息。(填“增强”或“削弱”) 10. 图像微分算子______________用在边缘检测中。(填“能”或“不能”) 四.简答题 1. 图像中的细节特征大致有哪些?一般细节反映在图像中的什么地方? 2. 一阶微分算子与二阶微分算子在提取图像的细节信息时,有什么异同? 3. 简述水平方向的微分算子的作用模板和处理过程。 4. 简述垂直方向的微分算子的作用模板和处理过程。 5. 已知Laplacian微分算子的作用模板为:,请写出两种变形的Laplacian算子。解答: 1. 图像的细节是指画面中的灰度变化情况,包含了图像的孤立点、细线、画面突变等。孤 立点大都是图像的噪声点,画面突变一般体现在目标物的边缘灰度部分。 2. 一阶微分算子获得的边界是比较粗略的边界,反映的边界信息较少,但是所反映的边界 比较清晰;二阶微分算子获得的边界是比较细致的边界。反映的边界信息包括了许多的细节 信息,但是所反映的边界不是太清晰。 五.应用题 1. 已知Roberts算子的作用模板为:,Sobel算子的作用模板为: 。 设图像为:

图像处理基本方法

图像处理的基本步骤 针对不同的目的,图像处理的方法不经相同。大体包括图像预处理和图像识别两大模块。 一、图像预处理: 结合识别复杂环境下的成熟黄瓜进行阐述,具体步骤如下: · 图像预处理阶段的流程图 对以上的图像流程进行详细的补充说明: 图像预处理的概念: 将每一个文字图像分检出来交给识别模块识别,这一过程称为图像预处理。 图像装换和图像分割以及区域形态学处理都是属于图像处理的基本内容之一。 图像转换:方法:对原图像进行灰度化处理生成灰度矩阵——降低运算速度(有具体的公式和方程),中值滤波去噪声——去除色彩和光照的影响等等。 图像分割:传统方法:基于阈值分割、基于梯度分割、基于边缘检测分割和基于区域图像割等方法。脉冲耦合神经网络 (PCNN)是针对复杂环境下 图像采集 图像采集中注意采集的方法、工具进行介绍。目的是怎样获取有代表性的样本。(包括天气、相机的位置等) 对采集的图像进行特征分析 目标的颜色和周围环境的颜色是否存在干涉的问题、平整度影响相机的拍摄效果、形状 图像转换 图像分割 区域形态学处理

的有效分割方法,分割的时候如果将一个数字图像输入PCNN,则能基于空间邻近性和亮度相似性将图像像素分组,在基于窗口的图像处理应用中具有很好的性能。 区域形态学处理:对PCNN分割结果后还存在噪声的情况下,对剩余的噪声进行分析,归类属于哪一种噪声。是孤立噪声还是黏连噪声。采用区域面积统计法可以消除孤立噪声。对于黏连噪声,可以采用先腐蚀切断黏连部分,再膨胀复原目标对象,在进行面积阙值去噪,通过前景空洞填充目标,最后通过形态学运算,二值图像形成众多独立的区域,进行各连通区域标识,利于区域几何特征的提取。 二、图像识别: 针对预处理图像提取 目标特征 建立LS SVM分类器 得到结果 图像识别流程图 提取目标特征:目标特征就是的研究对象的典型特点,可以包括几何特征和纹理特征。 对于几何特征采用的方法:采用LS-SVM支持向量机对几何特征参数进行处理,通过分析各个参数的分布区间来将目标和周围背景区分开,找出其中具有能区分功能的决定性的几何特征参数。 纹理特征方法:纹理特征中的几个参数可以作为最小二乘支持向量机的辅助特征参数,提高模型的精准度。 最小二乘支持向量机介绍:首先选择非线性映射将样本从原空间映射到特征空间,以解决原空间中线性不可分问题,在此高维空间中把最优决策问题转化为等式约束条件,构造最优决策函数,并引入拉格朗日乘子求解最优化问题,对各个变量求偏微分。 LS SVM分类器:对于p种特征选择q个图像连通区域,作为训练样本。依

图像处理方法

i=imread('D:\00001.jpg'); >> j=rgb2gray(i); >> warning off >> imshow(j); >> u=edge(j,'roberts'); >> v=edge(j,'sobel'); >> w=edge(j,'canny'); >> x=edge(j,'prewitt'); >> y=edge(j,'log'); >> h=fspecial('gaussian',5); >> z=edge(j,'zerocross',[],h); >> subplot(2,4,1),imshow(j) >> subplot(2,4,2),imshow(u) >> subplot(2,4,3),imshow(v) >> subplot(2,4,4),imshow(w) >> subplot(2,4,5),imshow(x) >> subplot(2,4,6),imshow(y) >> subplot(2,4,7),imshow(z)

>> %phi:地理纬度lambda:地理经度delta:赤纬omega:时角lx 影子长,ly 杆长 >> data=xlsread('D:\附件1-3.xls','附件1'); >> X = data(:,2); >> Y = data(:,3); >> [x,y]=meshgrid(X,Y); %生成计算网格 >> fxy = sqrt(x.^2+y.^2); >> %[Dx,Dy] = gradient(fxy); >> Dx = x./fxy; >> Dy = y./fxy; >> quiver(X,Y,Dx,Dy); %用矢量绘图函数绘出梯度矢量大小分布>> hold on >> contour(X,Y,fxy); %与梯度值对应,绘出原函数的等值线图

数字图像处理期末考题

数字图像处理 一、填空题 1、数字图像的格式有很多种,除GIF格式外,还有jpg 格式、tif 格式。 2、图像数据中存在的有时间冗余、空间冗余、结构冗余、信息熵冗余、知识 冗余、视觉冗余。 3、在时域上采样相当于在频域上进行___延拓。 4、二维傅里叶变换的性质___分离性、线性、周期性与共轨对称性、__位 移性、尺度变换、旋转性、平均值、卷积。(不考) 5、图像中每个基本单元叫做图像元素;在早期用picture表示图像时就称为 像素。 6、在图象处理中认为线性平滑空间滤波器的模板越大,则对噪声的压制越 好 ;但使图像边缘和细节信息损失越多; 反之, 则对噪声的压制不好 ,但对图像的细节等信息保持好。模板越平,则对噪声的压制越好 ,但对图像细节的保持越差;反之,则对噪声的压制不好,但对图像细节和边缘保持较好。 7、哈达玛变换矩阵包括___+1 和___—1 两种矩阵元素。(不要) 8、对数变换的数学表达式是t = Clog ( 1 + | s | ) 。 9、傅里叶快速算法利用了核函数的___周期性和__对称性。(不要) 10、直方图均衡化的优点是能自动地增强整个图像的对比度。(不要) 二、选择题 ( d )1.一幅灰度级均匀分布的图象,其灰度范围在[0,255],则该图象的信息量为: a. 0 .255 c ( c )2.采用模板[-1 1]主要检测____方向的边缘。 a.水平 b.45 c.垂直 ( c )3. 下列算法中属于图象平滑处理的是: a.梯度锐化 b.直方图均衡 c. 中值滤波增强 ( b )4.图象与灰度直方图间的对应关系是: a.一一对应 b.多对一 c.一对多 d.都不对 ( a )5.对一幅图像采样后,512*512的数字图像与256*256的数字图像相比较具有的细节。 a.较多 b.较少 c.相同 d.都不对 ( b )6.下列算法中属于点处理的是: a.梯度锐化 b.二值化 c.傅立叶变换 d.中值滤波 ( d )7.二值图象中分支点的连接数为: .1 c ( a )8.对一幅100100像元的图象,若每像元用8bit表示其灰度值,经霍夫曼编码后压缩图象的数据量为40000bit,则图象的压缩比为: :1 :1 c.4:1 :2 ( d )9.下列算法中属于局部处理的是: a.灰度线性变换 b.二值化 c.傅立叶变换 d.中值滤波 ( b )10.下列图象边缘检测算子中抗噪性能最好的是: a.梯度算子算子算子d. Laplacian算子

医学图像处理综述

医学图像处理综述 墨南-初夏2010-07-24 23:51:56 医学图像处理的对象是各种不同成像机理的医学影像。广泛使用的医学成像模式主要分为X射线成像(X—CT) ,核磁共振成像(MRI),核医学成像(NMI)和超声波成像(UI) 这四类。 (1)x射线成像:传统x射线成像基于人体不同器官和组织密度不同。对x射线的吸收衰减不同形成x射线影像。(例如人体中骨组织密度最大,在图像上呈白影,肺是软组织并且含有气体,密度最低,在照片上的图像通常是黑影。)常用于对人体骨骼和内脏器官的疾病或损伤进行诊断和定位。现代的x射线断层成像(x—cT) 发明于20世纪70年代,是传统影像技术中最为成熟的成像模式之一,其速度已经快到可以对心脏实现动态成像。其缺点是医生要在病人接收剂量和片厚之间进行折衷选择,空间分辨率和对比度的还需进一步提高。 (2)核磁共振成像(MIR) 发展于20世纪70年代,到80年代才进入市场,这种成像设备具有在任意方向上的多切片成像、多参数和多核素成像、可实现整个空问的真三维数据采集、结构和功能成像,无放射性等优点。目前MRI的功能成像(fMRI) 是MIR设备应用的前沿领域,广泛应用于大脑功能性疾病的诊断,并为肿瘤等占位性病变提供功能信息。MRI 受到世人的广泛重视,其技术尚在迅速发展

过程中。 (3)核医学成像(NMI ) ,目前以单光子计算机断层成像(SPECT) 和正电子断层成像(PET) 为主,其基本原理是向人体注射放射性核素示踪剂,使带有放射性核素的示踪原子进入人体内要成像的脏器或组织通过测量其在人体内的分布来成像。NMI不仅可以提供静态图像,而且可提供动态图像。 (4)超声波成像(Ultrasonic Imaging ) ,属于非电离辐射的成像模态,以二维平面成像的功能为主,加上血液流动的彩色杜普勒超声成像功能在内,在市场上已经广泛使用。超声成像的缺点是图像对比度差、信噪比不好、图像的重复性依赖于操作人员。但是,它的动态实时成像能力是别的成像模式不可代替的 在目前的影像医疗诊断中,主要是通过观察一组二维切片图象去发现病变体.这往往需要借助医生的经验来判定。至于准确地确定病变体的空间位置、大小、几何形状及与周围 生物组织的空间关系,仅通过观察二维切片图象是很难实现的。因此,利用计算机图像处理技术对二维切片图象进行分析和处理。实现对人体器官,软组织和病变体的分割提取,三维重建和三维显示,可以辅助医生对病变体及其它感兴趣的区域进行定性甚至定量的分

关于数字图像处理问题的理解

关于离散傅里叶变换频谱如何反应原图像的特点的理解与疑惑?答:(1)我的理解:最初不知道傅里叶变换F(u,v)中u、v的具体含义,最后在【数字图像处理】Matlab版78页得到求证“u和v用作频率变量”,同时在此页可以找到这样一句话“直观的分析一个变换的主要方法是计算它的频谱(即F(u,v)的幅度),并将其显示为一幅图像”我的理解是在傅里叶频谱图中(u,v)表示频率,而频率反映了原图像灰度级的变化快慢,频谱中心点为F(0,0),频率最低,距离中心点越远频率越高。频谱图中的亮暗程度是傅里叶变换后相应点的幅值(模值|F(u,v)|),为方便观察我取了一个简单数组,并在草稿纸上按傅里叶变换公式计算了相应的值,和Matlab的运行结果相一致,所做验证如下: 这就是频谱图中亮暗的含义。我们经常看到频谱图中中心较亮,只说

明低频部分相应点的值幅值较大。 (2)我们的疑惑:虽然知道u、v是频率变量,也和空域中的x、y做过比较,但原来接触的都是一维信号,频率也是一个具体值,现在如何用频率解释灰度变化呢?分方向? 频谱中的频率成分和空域中的图像在物理位置上(方向上)有没有对应关系?我们知道点和点之间没有对应关系,但【数字图像处理】124页例4.3的解释让我们的疑惑。 原图像(上)、傅里叶频谱图(下)

书中的解释:“第一个图为一幅集成电路的扫描电子显微镜图像,放大了接近 2500倍。从图中可以看到两个主要特征:大约成正负45度的强边缘和两个因热感应不足而产生的白色氧化突起。傅里叶频谱显示了沿着正负45度方向对应于刚刚提及的边缘突起的部分。沿着垂直轴仔细观察,可以看到在轴偏左的部分有垂直成分。这是由氧化突起的边缘形成的。注意在偏离轴的角度,频率成分如何对应于长的白色元素的水平位移,并且注意在垂直频率成分中的零点如何对应氧化突起的狭窄垂直区域。” (3)今天姬婷婷师姐给我们讲述了她在图像处理中常用的方法,往往不是单纯的去分析一幅图像的频谱,因为提取图像的有效信息确实存在一定困难,而是分析频谱图像灰度级剖面图,这对我来说是一个研究方法上的改变,在今后的学习中我会特别注意。

数字图像处理期末复习

遥感与数字图像处理基础知识 一、名词解释: 数字影像图像采样灰度量化像素 数字影像:数字影像又称数字图像,即数字化的影像。基本上是一个二维矩阵,每个点称为像元。像元空间坐标和灰度值均已离散化,且灰度值随其点位坐标而异。 图像采样:指将在空间上连续的图像转换成离散的采样点集的操作。 灰度量化:将各个像素所含的明暗信息离散化后,用数字来表示。 像素:像素是A/D转换中的取样点,是计算机图像处理的最小单元 二、填空题: 1、光学图像是一个连续的光密度函数。 2、数字图像是一个_离散的光密度_函数。 3、通过成像方式获取的图像是连续的,无法直接进行计算机处理。此外,有些遥感图像是通过摄影方式获取的,保存在胶片上。只有对这些获取的图像(或模拟图像)进行数字化后,才能产生数字图像。数字化包括两个过程:___采样___和__量化___。 4、一般来说,采样间距越大,图像数据量____小____,质量____低_____;反之亦然。 5、一幅数字图像为8位量化,量化后的像素灰度级取值范围是________的整数。设该数字图像为600行600列,则图像所需要的存储空间为________字节。 6、设有图像文件为200行,200列,8位量化,共7个波段,则该图像文件的大小为________。 三、不定项选择题:(单项或多项选择) 1、数字图像的________。 ①空间坐标是离散的,灰度是连续的②灰度是离散的,空间坐标是连续的 ③两者都是连续的④两者都是离散的 2、采样是对图像________。 ①取地类的样本②空间坐标离散化③灰度离散化 3、量化是对图像________。 ①空间坐标离散化②灰度离散化③以上两者。 4、图像灰度量化用6比特编码时,量化等级为________。 ①32个②64个③128个④256个 5、数字图像的优点包括________。 ①便于计算机处理与分析②不会因为保存、运输而造成图像信息的损失 ③空间坐标和灰度是连续的

遥感卫星图像处理方法

北京揽宇方圆信息技术有限公司 遥感卫星图像处理方法 随着遥感技术的快速发展,获得了大量的遥感影像数据,如何从这些影像中提取人们感兴趣的对象已成为人们越来越关注的问题。但是传统的方法不能满足人们已有获取手段的需要,另外GIS的快速发展为人们提供了强大的地理数据管理平台,GIS数据库包括了大量空间数据和属性数据,以及未被人们发现的存在于这些数据中的知识。将GIS技术引入遥感图像的分类过程,用来辅助进行遥感图像分类,可进一步提高了图像处理的精度和效率。如何从GIS数据库中挖掘这些数据并加以充分利用是人们最关心的问题。GIS支持下的遥感图像分析特别强调RS和GIS的集成,引进空间数据挖掘和知识发现(SDM&KDD)技术,支持遥感影像的分类,达到较好的结果,专家系统表明了该方法是高效的手段。 遥感图像的边缘特征提取观察一幅图像首先感受到的是图像的总体边缘特征,它是构成图像形状的基本要素,是图像性质的重要表现形式之一,是图像特征的重要组成部分。提取和检测边缘特征是图像特征提取的重要一环,也是解决图像处理中许多复杂问题的一条重要的途径。遥感图像的边缘特征提取是对遥感图像上的明显地物边缘特征进行提取与识别的处理过程。目前解决图像特征检测/定位问题的技术还不是很完善,从图像结构的观点来看,主要是要解决三个问题:①要找出重要的图像灰度特征;②要抑制不必要的细节和噪声;③要保证定位精度图。遥感图像的边缘特征提取的算子很多,最常用的算子如Sobel算子、Log算子、Canny算子等。 1)图像精校正 由于卫星成像时受采样角度、成像高度及卫星姿态等客观因素的影响,造成原始图像非线性变形,必须经过几何精校正,才能满足工作精度要求一般采用几何模型配合常规控制点法对进行几何校正。 在校正时利用地面控制点(GCP),通过坐标转换函数,把各控制点从地理空间投影到图像空间上去。几何校正的精度直接取决于地面控制点选取的精度、分布和数量。因此,地面控制点的选择必须满足一定的条件,即:地面控制点应当均匀地分布在图像内;地面控制点应当在图像上有明显的、精确的定位识别标志,如公路、铁路交叉点、河流叉口、农田界线等,以保证空间配准的精度;地面控制点要有一定的数量保证。地面控制点选好后,再选择不同的校正算子和插值法进行计算,同时,还对地面控制点(GCPS)进行误差分析,使得其精度满足要求为止。最后将校正好的图像与地形图进行对比,考察校正效果。 2)波段组合及融合 对卫星数据的全色及多光谱波段进行融合。包括选取最佳波段,从多种分辨率融合方法中选取最佳方法进行全色波段和多光谱波段融合,使得图像既有高的空间分辨率和纹理特性,又有丰富的光谱信息,从而达到影像地图信息丰富、视觉效果好、质量高的目的。 3)图像镶嵌

数字图像处理期末复习试题3

1、数字图像:指由被称作像素的小块区域组成的二维矩阵。将物理图像行列划分后,每个小块区域称为像素(pixel)。 数字图像处理:指用数字计算机及其它有关数字技术,对图像施加某种运算和处理,从而达到某种预想目的的技术. 2、8-连通的定义:对于具有值V的像素p和q ,如果q在集合N8(p)中,则称这两个像素是8-连通的。 3、灰度直方图:指反映一幅图像各灰度级像元出现的频率。 4、中值滤波:指将当前像元的窗口(或领域)中所有像元灰度由小到大进行排序,中间值作为当前像元的输出值。 像素的邻域 邻域是指一个像元(x,y)的邻近(周围)形成的像元集合。即{(x=p,y=q)}p、q为任意整数。 像素的四邻域 像素p(x,y)的4-邻域是:(x+1,y),(x-1,y) ,(x,y+1), (x,y-1) 三、简答题( 每小题10分,本题共30 分 ): 1. 举例说明直方图均衡化的基本步骤。 直方图均衡化是通过灰度变换将一幅图象转换为另一幅具有均衡直方图,即在每个灰度级上都具有相同的象素点数的过程。 直方图均衡化变换:设灰度变换s=f(r)为斜率有限的非减连续可微函数,它将输入图象Ii(x,y)转换为输出图象Io(x,y),输入图象的直方图为Hi(r),输出图象的直方图为Ho(s),则根据直方图的含义,经过灰度变换后对应的小面积元相等:Ho(s)ds=Hi(r)dr 直方图修正的例子 假设有一幅图像,共有6 4(6 4个象素,8个灰度级,进行直方图均衡化处理。 根据公式可得:s2=0.19+0.25+0.2l=0.65,s3=0.19+0.25+0.2l+0.16=0.8l,s4=0.89,s5=0.95,s6=0.98,s7=1.00 由于这里只取8个等间距的灰度级,变换后的s值也只能选择最靠近的一个灰度级的值。因此,根据上述计算值可近似地选取: S0≈1/7,s 1≈3/7,s2≈5/7,s3≈6/7,s4≈6/7,s5≈1,s6≈l,s7≈1。 可见,新图像将只有5个不同的灰度等级,于是我们可以重新定义其符号: S0’=l/7,s1’=3/7,s2’=5/7,s3’=6/7,s4’=l。 因为由rO=0经变换映射到sO=1/7,所以有n0=790个象素取sO这个灰度值;由rl=3/7映射到sl=3/7,所以有1 02 3个象素取s 1这一灰度值;依次类推,有850个象素取s2=5/7这一灰度值;由于r3和r4均映射到s3=6/7这一灰度值,所以有656+329=98 5个象素都取这一灰度值;同理,有245+1 22+81=448个象素都取s4=1这一灰度值。上述值除以n=4096,便可以得到新的直方图。 2. 简述JPEG的压缩过程,并说明压缩的有关步骤中分别减少了哪种冗余? 答:分块->颜色空间转换->零偏置转换->DCT变换->量化->符号编码。颜色空间转换,减少了心理视觉冗余;零偏置转换,减少了编码冗余;量化减少了心理视觉冗余;符号编码由于是霍夫曼编码加行程编码,因此即减少了编码冗余(霍夫曼编码)又减少了像素冗余(行程编码)。 JPEG2000的过程:图像分片、直流电平(DC)位移,分量变换,离散小波变换、量化,熵编码。3、Canny边缘检测器 答:Canny边缘检测器是使用函数edge的最有效边缘检测器。该方法总结如下:1、图像使用带有指定标准偏差σ的高斯滤波器来平滑,从而可以减少噪声。2、在每一点处计算局部梯度g(x,y)=[G2x+G2y]1/2 和边缘方向α(x,y)=arctan(Gy/Gx)。边缘点定义为梯度方向上其强度局部最大的点。3、第2条中确定的边缘点会导致梯度幅度图像中出现脊。然后,算法追踪所有脊的顶部,并将所有不在脊的顶部的像素设为零,以便在输出中给出一条细线,这就是众所周知的非最大值抑制处理。脊像素使用两个阈值T1和T2做阈值处理,其中T1

图片处理的基本方法

图片处理的基本方法

《图片处理的基本方法》第1课时 —《利用ACDSee处理图片》教学设计1.教学内容分析 上一节内容讲了获取图片的方法,但获取的图片不一定能符合我们的要求,这就需要对图片进行处理。作为《图片的处理》的第1课时,选取了比较简单的图片处理软件ACDSee,ACDSee不仅有浏览图片的功能,还可以对图片进行简单的处理。本节主要让学生了解常见的图片处理软件,掌握利用ACDSee软件对图片进行色彩的调整、裁剪和旋转。 2.学习者分析 图片是学生最喜爱和最容易感知理解的信息之一,学生对图片处理的兴趣比较大,在生活中喜欢处理自己的照片,如QQ空间的个性相册,但对图片的处理都是通过模板的形式。学生对感兴趣的东西的学习积极性比较高且乐于探索,而ACDSee是一款比较简单的软件,比较适合学生自主探究。根据学生的年龄和特点,教学内容不易过深,重点是要让学生在学习中体验学习的乐趣。学生对图片的处理有探究的欲望,同时学生具备了一定的自学能力,能够通过互帮互学和自主探究较好地完成学习任务。 3.教学目标 (1)知识与技能: ①了解常见的图片处理软件及各个软件的主要功能。 ②了解什么是亮度、对比度和饱和度 ③能利用ACDSee调节图片的色彩 ④能利用ACDSee对图片进行裁剪 ⑤能利用ACDSee对图片进行旋转与翻转 (2)过程与方法:在教师的引导下,学生通过自主探究,利用ACDSee软件完成老师布置的处理图片的任务,在完成任务的过程中掌握ACDSee软件处理图片的基本方法。 (3)情感态度与价值观:体验图片处理的快乐和成就感。 4.教学重难点 重点:利用ACDSee对图片的进行曝光、旋转、裁剪等处理。

数字图像处理每章课后题参考答案范文

数字图像处理每章课后题参考答案 第一章和第二章作业:1.简述数字图像处理的研究内容。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 3.列举并简述常用表色系。 1.简述数字图像处理的研究内容? 答:数字图像处理的主要研究内容,根据其主要的处理流程与处理目标大致可以分为图像信息的描述、图像信息的处理、图像信息的分析、图像信息的编码以及图像信息的显示等几个方面, 将这几个方面展开,具体有以下的研究方向: 1.图像数字化, 2.图像增强, 3.图像几何变换, 4.图像恢复, 5.图像重建, 6.图像隐藏, 7.图像变换, 8.图像编码, 9.图像识别与理解。 2.什么是图像工程?根据抽象程度和研究方法等的不同,图像工程可分为哪几个层次?每个层次包含哪些研究内容? 答:图像工程是一门系统地研究各种图像理论、技术和应用的新的交叉科学。 根据抽象程度、研究方法、操作对象和数据量等的不同,图像工程可分为三个层次:图像处理、图像分析、图像理解。 图像处理着重强调在图像之间进行的变换。比较狭义的图像处理主要满足对图像进行各种加工以改善图像的视觉效果。图像处理主要在图像的像素级上进行处理,处理的数据量非常大。图像分析则主要是对图像中感兴趣的目标进行检测和测量,以获得它们的客观信息从而建立对图像的描述。图像分析处于中层,分割和特征提取把原来以像素描述的图像转变成比较简洁的非图形式描述。 图像理解的重点是进一步研究图像中各目标的性质和它们之间的相互联系,并得出对图像内容含义的理解以及对原来客观场景的解释,从而指导和规划行为。图像理解主要描述高层的操作,基本上根据较抽象地描述进行解析、判断、决策,其处理过程与方法与人类的思维推理有许多相似之处。 第三章图像基本概念

相关文档
最新文档