第二类曲面积分的计算方法定稿版

第二类曲面积分的计算方法定稿版
第二类曲面积分的计算方法定稿版

第二类曲面积分的计算

方法

HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第二类曲面积分的计算方法

赵海林张纬纬

摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公

式,积

分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解.

关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形

1 引言

曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程

中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面

广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用.

2 预备知识

2.1第二型曲面积分的概念

2.1.1 流量问题(物理背景)

设稳定流动的不可压缩流体(假定密度为1)的速度为

(,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++,

∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ.

若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量

cos cos cos n i j k αβ=++

若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ.

(1) 分割

将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

(2) 近似

(,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替

i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和

(4) 取极限

2.1.2 定义

.S S i i 的面积,他们的符号由的方向来确定若的法线正向与轴正向成锐角时,

z .S xy i i i S xoy S z ?在平面的投影区域的面积为正反之,若法线正向与轴正向成钝角时,

.S xy i i xoy S ?他在平面的投影区域的面积为负在各个小曲面上任取一点,(,)

i i i ξηζ.

lim

1

T n

i P →=∑,(,)i i

i

ξηζyz

i

S ?0

lim

1

T n

i Q →=+

∑,(,)i i

i

ξηζzx

i S

?0

lim

1

T n

i R →=+

∑,(,)i i

i

ξηζxy

i

S ?存在,

或者

(,,)(,,)(,,)S

S

S

P x y z dydz Q x y z dzdx R x y z dxdy ++??????.

S 据此定义,某流体以速度在单位时间内从曲面的负侧流向正侧的总流量为

2.2 第二型曲面积分的性质

性质1 (方向性) 设向量值函数v 在定向的光滑曲面S 上的第二型曲面积分存在.记S -为与S 取相反侧的曲面,则v 在S -上的第二型曲面积分也存在,且成立S

S

v ndS v ndS -?=-?????.注意这个等式两边的n 是方向相反的.

性质2 (线性性) 若i

i i S

Pdydz Q dzdx R dxdy ++?? (1,2,k i =…,)存在,则有 1

1

1

()()()k k k i i

i i

i i

i i i S

c P dydz c Q dzdx c R dxdy ===++∑∑∑??=1

k

i

i

i

i

i S

c Pdydz Q dzdx R dxdy =++∑??,

其中i c i 12k =?(,

,,)是常数. 性质3 (曲面可加性) 若曲面S 是由两两无公共内点的曲面块12,,S k S S …,所组成,且

存在,则有

2.3 第二型曲面积分的数量表达式

记{cos ,cos ,cos }{,,}dS n dS dS dS dS dydz dzdx dxdy αβγ=?==,称dS 为曲面 从而

S

S

A ndS Pdydz Qdzdx Rdxdy ?=++????.

(,,)S

S

A x y z ndS Pdydz Qdzdx Rdxdy ?=++????,dydz 是dS 在yoz 面上的投影;

dzdx 是dS 在zox 面上的投影;dxdy 在dS 在xoy 面上的投影. 他们的取值可

正、可负、也可为零.如当cos 0α<时,dxdy 取符号.

特殊形式:

(,,)S

P x y z dydz ??称为P 对坐标,y z 的曲面积分;

(,,)S

Q x y z dzdx ??称为Q 对坐标,z x 的曲面积分;

(,,)S

R x y z dxdy ??称为R 对坐标,x y 的曲面积分.

2.4 介绍两类曲面积分之间的联系

与曲线积分一样,当曲面的侧确定之后,可以建立两种类型曲面积分的联系.设S 为光滑曲面,并以上侧为正侧,R 为S 上的连续函数,曲面积分在S 的正侧进行.因而有

1

lim

(,,)(,,)xy

n

i

i

i

i T i S

R x y z dxdy R S

ξηζ→==?∑??

(1)

由曲面面积公式1

cos i xy

i S S dxdy γ

?=??

,其中γ是曲面i S 的法线方向与z 轴正向的交角,它是定义在xy i S 上的函数.因为积分沿曲面正侧进行,所以γ是锐角 .又由S 是光滑的,所以cos γ在闭区域xy i S 上连续.应用中值定理,在xy i S 内必存在一点,使这点的法线方向与z 轴正向的夹角i γ*满足等式1

cos xy i i i S S γ*

?=

?或cos xy i i i S S γ*?=??.

于是(,,)(,,)cos xy i i i i i i i i i R S R S ξηζξηζγ*?=?. n 个部分相加后得

1

1

(,,)(,,)cos xy n

n

i i i i i i i i i i i R S R S ξηζξηζγ*==?=?∑∑ (2)

现在以cos i γ表示曲面i S 在点(,,)i i i x y z 的 法线方向与z 轴正向夹角的余弦,则由

cos γ的连续性,可推得当0T →时,(2)式右端极限存在.因此由(1)式得到

(,,)(,,)cos S

S

Q x y z dzdx Q x y z dS β=???? (3)

这里注意当改变曲面的侧向时,左边积分改变符号,右边积分中角γ改为γπ±.因而cos γ也改变符号,所以右边积分也相应改变了符号.

同理可证:

(,,)(,,)cos S

S

Q x y z dzdx Q x y z dS

β=???? (4)

其中,αβ分别是S 上的法线方向与x 轴正向和与y 轴正向的夹角.一般地有

[(,,)cos (,,)cos (,,)cos ]S

P x y z Q x y z R x y z dS

αβγ=++?? (5)

3 介绍第二型曲面积分的多种计算方法

在数学分析课程中,有关曲面积分,尤其是第二型曲面积分的计算是一个重点、也是一个难点问题,学生在学习过程中往往对这一问题感到束手无策、无从下手。这一方面是由于曲面积分计算本身的复杂性,它既要考虑到曲面的形状及其投影区域,又要注意到曲面的侧;另一方面,也表明学生对这一计算问题缺乏必要而又行之有效的方法.第二型曲面积分常用的计算方法主要有定义法,参数法,单一坐标平面投影法,分项投影法,利用高斯公式求解,利用stokes 公式求解,利用积分区间对称性,向量法以及利用两类曲面积分之间的联系等方法进行求解.

3.1 直接利用定义法进行计算

若(,,)R x y z 在光滑有向曲面:S ()()z ,,,xy z x y x y D =∈上连续,则(,,)d d S

R x y z x y ??存

在,且有计算公式:

其中xy D 表示S 在xoy 面上的投影区域,当曲面取上侧时公式(1)的右端取“+”号,取下侧时取“-”号.这一公式表明,计算曲面积分(x,y,z)dxdy S

R ??时,只要把其

中变量z 换为表示∑的函数(,)z z x y =,然后xy D 在S 的投影区域上计算二重积分,并考虑到符号的选取即可,这一过程可总结成口诀:“一代二投三定向”.

类似地,如果曲面∑的方程(,)y y z x =,则

如果曲面∑的方程为(,)x x y z =,则

例1 计算积分:

其中S 是球面2221x y z ++=在第一、八卦限的部分,取球面外侧. (如图1)

解 设S =12∑?∑,曲面在第一、八卦限部分的方程分别为:

1∑∶ 1z

2∑∶ 2z =

它们在xoy 面上的投影区域xy D 都是单位圆在第一象限的部分. ∴ S

xyzdxdy ??1

xyzdxdy ∑=??+2

xyzdxdy ∑??

图1

计算第二型曲面积分时,千万不能与二重积分等同或混淆,第二型曲面积分是按一定规则化为投影区域上的二重积分进行计算的,所以在计算过程中一定要牢记口诀:“一代二投三定向”.请看下例:

例2 计算:

2S

I x dydz =??+2y dzdx +2z dxdy ,

其中曲面S 为球面2221x y z ++=限于220x y x +-≤,0z ≥内的部分外侧 (如图2).

解 对于2S

x dydz ??,要将S 投影到yoz 面上,且S 方程表示

x =取前侧,由222221,0x y z x y x ++=+-=,消去x 得

y =±,因此投影区域yz D :—

y ≤≤

,于是

计算2S

y dzdx ??,要将S 投影到zox 面上,此时S 方程表示为

y =不是单值的),再把S 分为左片(即0y <的部分)且取左侧和右

片(即0y >的部分)且取右侧,S 在zox 面上投影域为zx D

:≤z

注意投影区域不是一条曲线),因此

2zx

D dzdx =-??

+2zx

D dzdx ??

对于2S

z dxdy ??,要将S 投影到xoy 面上,投影域为xy D :220x y +≤,此时S

方程应

为z =,且取上侧,于是

2S

z dxdy ??

=2

xy

D dxdy ??

= cos 22

52(1)32d r rdr π

θ

θπ-=

??

,故38510532

I π=+. 图2

3.2 利用参数方程的计算方法

如果光滑曲面S 由参数方程给出:

:(),()()D S x x u v y y u v z u v u v ===∈,,,z ,),(,.

若在D 上各点他们的函数行列式

(,)(,)(,)

,,(,)(,)(,)

y z z x x y u v u v u v ??????不同时为零,则分别有

(,)

((,),(,),(,))

(,)S

D

y z Pdydz P x u v y u v z u v dudv u v ?=±????? (1)

(,)

((,),(,),(,))

(,)

S

D

z x Qdzdx Q x u v y u v z u v dudv u v ?=±????? (2)

(,)

((,),(,),(,))

(,)

S

D

x y Rdydz R x u v y u v z u v dudv u v ?=±????? (3) 注 (1),(2),(3)三式中的正负号分别对应曲面S 的两个侧,特别当uv 平面的正方向对应于曲面S 所选定的正向一侧时,取正号,否则取负号.

(4)

例如若S 为:()

,()z z x y x y D =∈,,,则S 可以看成参数为,x y 的参数方程确定的曲面,则由于

(,)(,)(,),,1(,)(,)(,)

x y y z z x x y z z x y x y x y ???=-=-=???, 所以

由此可见,只要确定一次符号且不需要向其它坐标平面进行投影,从而比我们常用

的方法更简便.

下面举例说明:

例 1 计算

3S

x dydz ??,

其中S 为椭圆面222

2221x y z a b c

++=的上半部分并选取外侧.

解 把曲面表示为参量方程:

(0,02)2

π

?θπ≤≤

≤≤.

由(1)式有

其中

cos sin sin cos (,)sin 0

(,)

b b y z J

c ?θ

??θ?=

=

-?=2sin cos bc ?θ,

积分是在S 的正侧进行.由上述的注,(4)式右端正号,即

例 2 计算积分

3

2222

()

S

xdydz ydzdx zdxdy

x y z ++++??

S 为曲面22

(2)(1)15169

z x y ---=+

的上侧. 解 取

,u v z ?==,则

x ?=,y ?=,z z =

取S *

为曲面22

(2)(1)15169

z x y ---=+

的下侧.则 20

1

R

R d dz R

π

?-=??

. 4π=.

从而

32222

()

S

xdydz ydzdx zdxdy

x y z ++++??

2π=.

例3 计算

其中S 是球面2221x y z ++=的上半部分并取外侧为正向.

解1 S 可表示为z =(,)x y D ∈ 其中

由于积分按S 上侧进行,且(,)(,)x y J x y ?=?=10

01

=1,故(4)式应取正号, 而

所以

2 由于S 可表示为sin cos ,sin sin ,cos x y z ?θ?θθ===,

0,022

π

?θπ≤≤

≤≤

所以

本例计算虽然简单,但不难看出用公式(4)计算时不必对S 分划并讨论符号代之以在zox 平面上二重积分.

例4 计算

其中,S 是球面2222()()()x a y b z c R -+-+-=,且设积分是沿球面外侧.

解 S 可表示为

0,02?πθπ≤≤≤≤.

由于在第一象限积分按上侧积分,而J = 2sin cos R ??0>,故(4)应取正号.

因为

22

2

2

2

(sin cos )sin cos S

x dydz d a R R d π

π

??θ?θθ=+???

?

=383

R a

π

类似可求得 2

3S

I y dzdx =??=383R b

π,所以31238()3R I I I I a b c π=++=++.

3.3 单一坐标平面投影法

设光滑曲面S :(,)z z x y =,(,)xy x y D ∈(xy D 是S 在xoy 平面上的投影区域),函数(,,),(,,),(,,)P x y z Q x y z R x y z 在S 上连续,(,)z z x y =在xy D 上具有一阶连续偏导数,则

(,,)(,,)(,,)S

P x y z dydz Q x y z dzdx R x y z dxdy ++??

[(,,)()(,,)()(,,)]xy

x y D P x y z z Q x y z z R x y z dxdy =±-+-+??,

当S 取上侧时,上式右边取正号;当S 取下侧时,上式右边取负号. 若S 的方程为()()x x y y y x ==,z ,z ,,也有类似的公式:

(,,)(,,)(,,)S

P x y z dydz Q x y z dzdx R x y z dxdy

++??[(,,)(,,)()(,,)()]yz

y z D P x y z Q x y z x R x y z x dydz =±+-+-??;

当S 取前侧时,上式右边取号;当S 取后侧时,上式右边取负号.

(,,)(,,)(,,)S

P x y z dydz Q x y z dzdx R x y z dxdy

++??[(,,)()(,,)(,,)()]x z Dzx

P x y z y Q x y z R x y z y dzdx =±-++-??.

当S 取右侧时,上式右边取正号;当S 取左侧时,上式右边取负号.

例1 计算积分

()()()S

y z dydz z x dzdx x y dxdy -+-+-??,

其中S 为圆锥面222x z y +=介于0,0y h z ≤≤≥部分的上侧.

解 S 的方程为y =

原式()()()()()x z S

y z y z x x y y dzdx =--+-+--??

34

3

h =-.

例 2 求

()()()S

y z dydz z x dzdx x y dxdy -+-+-??,

其中S 为锥面z =(0)z h ≤≤部分的正侧.

解 S :z =(0)z h ≤≤,则

x z =

y z =

.

又S 在平面上的投影D :222x y h +≤.因为S 取下侧,所以

最后一个等号用到二重积分的对称性质.

3.4 分项投影法

分项投影法是利用第二型曲面积分的线性性:

分别将右式三项投影到,,yoz zox xoy 平面上,由于

分别投影直接计算二重积分,避免投影到一面上偏导的计算,此法非常实用,看似复杂,实则简单,非常实用.

计算中要注意原曲面与投影曲面一一对应,若不一一对应要分项投影,如一个完整的球投影到xoy 平面上,上下半球曲面要分别投影计算,计算中注意利用方向性等性质以简化计算.

例1 计算积分

S

yzdydz zxdzdx xydxdy ++??,

其中S 是四面体()0x y z a a ++=>,0,0,0x y z ===的表面,外法线是正向. 解 这是三个第二型曲面积分之和.首先计算第二型曲面积分S

xydxdy ??,

而曲面S 是由四个有向的三角形区域:

()()()()BOC C ABC AOB OA 上,下,后,左组成.其中BOC (后)与()C OA 左在XY 坐标面的面积微元0dxdy =,()()ABC AOB 上,下在XY 坐标面的

投影都是三角形区域()00D x y x y a ==+=,,围成,从而 00D

D

xydxdy xydxdy =-++????.

同理可得

0S

S

yzdydz zxdzdx ==????,

于是

0S

yzdydz zxdzdx xydxdy ++=??.

例2 计算第二型曲面积分

()()()S

I f x dydz g y dzdx h z dxdy =++??,

其中S 是平面六面体(0,0,0)x a y b z c ≤≤≤≤≤≤的表面并取外侧为正向,

(),(),()f x g y h z 为S 上的连续函数.

解 记 1:S x a = (前侧为正向),2:0S x = (后侧为正向) 积分()S

f x dydz ??在另外四个曲面上的积分为零,故

由于变量的对称性,类似可得

所以

3.5 利用高斯公式(Gauss)化为三重积分的方法

格林公式建立了沿封闭曲线的曲线积分与二重积分的关系,沿空间闭曲面的曲面积分和三重积分之间也有类似的关系,这就是高斯公式.

定理:设空间区域V 由分片光滑的双侧封闭曲面S 围成.若函数,,P Q R 在V 上连续,且有一阶连续偏导数,则

(

)V

S

P Q R dxdydz Pdydz Qdzdx Rdxdy x y z

???++=++????????,

其中S 取外侧,上式称为高斯公式.

例1 计算曲面积分

()[2sin()](3)x y S

I x y z dydz y z x dzdx z e dxdy +=+-+++++??,

其中S 为曲面1x y z y z x z x y --+-++-+=的外侧面,外法线为正向.

解 由题意得知, ,2sin(),3x y P x y z Q y z x R z e +=+-=++=+,

利用高斯公式,

1,2,3P Q R x y z

???===???,则 (

)(123)6V

V V

P Q R I dxdydz dxdydz dxdydz x y z ???=++=++=????????????. 其中,V 为S 包围的区域 1.x y z y z x z x y -++-++-+≤作旋转变换

,,.u x y z v y z x w z x y =-+=-+=-+则V *为S *包围的区域1u v w ++≤,而V *

是一个对称的八面体,它在uvw 平面的第一卦限部分为1u v w ++=及坐标平面

0,0,0u v w ===所围成的区域,且有

1

11

(,,)1

114(,,)

1

1

1

u v w x y z -?=-=?-,(,,)11

(,,)(,,)4

(,,)

x y z J u v w u v w x y z ?===???.

所以

例2 设()f u 有连续导数,计算

33311[()][()]S

y y

x dydz f y dzdx f z dxdy z z y z

++++??

其中S 为0z >的锥面2220x y z +-=与球面2221x y z ++=,2224x y z ++=所围立

体的表面外侧(如图所示).

解 因为被积函数中含有抽象函数,直接计算显然不可能,又因为曲面S 为闭曲面,考虑用高斯公式.

∵3P x =,31 ()y Q f y z z =+,31 ()y

R f z y z

=+ 在所围区域V 上满足高斯公式的条

件(0z =的点不在V 内),故有

3.6 利用两类曲面积分之间的联系

只要能够求出曲面的法向量(而这对于一个已知曲面来说是很容易做到的),就可以

求出法向量的方向余弦,从而将第二型曲面积分化为第一型曲面积分来处理,请看

下例:

例1 计算积分

()()()S

I y z dydz z x dzdx x y dxdy =-+-+-??,

其中S 为半球:2222x y z Rx ++=,(0)z >被柱面222x y rx +=,(0)R >截下的部分. (如图所示)

第一型曲面积分.

例5? 设有空间闭区域仏={(x 』,z )|L 十b + z* 炉,z"}, 。2 ={(*』,Z )|x2 + y' + z* 炉,xno 』no,zno},则有(「) (A) Jff = 4fJf xdv a \ 口 2 (C) JjJ 皿=4jJJz 加 2 n 2 解:由对称性, JJj xdv = 0, JJJ xdv JJf ydv = 0, JJf ydv 工? n. ?2 Jjj xyzdv = 0, JJJ xyzdv □ 门2 3.含绝对值函数的二重积分的计算 例1计算血-兀2|db ?其中6-1 W0"" 解 先去掉绝对值符号,如图 川y_p|db D =jj (x 2-j)da + JJ(y-x 2 )da Di 4-D J D 、 訂:时:(宀刃与+匸时:0-兀湎=*? (B) |JJ ydv = 4jjj ydv

4、交换积分次序的方法 1.计算fdxfxb - dy 解由于卜一心堤无法积出类型,则需交 换积分次序, y \ /歹=x V D: O^x

第一型曲线积分与曲面积分的一些问题

第一型曲线积分与曲面积分的一些问题 第1型曲线积分与曲面积分的1些问 题摘要本文归纳研究了第1型曲线积分与曲面积分的物理背景,定义,性质及计算方法,并在此基础上给出了它们在特殊坐标变换下的计算公式及证明。并且利用这个公式,推导出了当第1型曲线积分或曲面积分的被积函数为奇函数或偶函数,积分曲线或曲面是对称的时的几个重要的推论及证明。关键字:第1型曲线积分与曲面积分;坐标变换;奇偶性;对称性。 Some questions about curve integral and surface integral of the first kind A bstract In this article we induce and study the physical background ,definition, quality ,and calculating method of the curve and surface integral of the first kind ,and at the base of these , calculate formula and providence was proposed in the special coordinate transformation. Using this formula ,we get several important inference and prove that when the curve and surface integral of the first kin d’s integrand is odd function or even function and the integral curve or surface is symmetry.Key word: Curve integral and surface integral of the first kind; coordinate transformation; odevity; symmetry

探讨第二型曲面积分的计算方法

目录 摘要 (1) 关键词 (1) Abstract (1) Keywords (1) 0 前言 (1) 1直接利用公式进行计算 (1) 2利用积分曲面的对称性进行计算 (3) 3利用两类曲面积分之间的联系进行计算 (6) 4利用高斯公式进行计算 (6) 参考文献 (9)

探讨第二型曲面积分的计算方法 姓名:李亚平 学号:20105031272 数学与信息科学学院 数学与应用数学专业 指导老师:张萍 职称:讲师 摘 要:本文总结了有关第二类曲面积分的几种算法,对每种计算方法均配以典型例题加以诠释. 关键词:曲面积分;二重积分;投影区域;高斯公式. The application of symmetry to the calculation of curvilinear integral and camber integral Abstract:Some theorems and methods for simplifying curvilinear integral and camber integral calculations by means of symmetry have been introduced in this essay .And the proves of theorems is also included . Key Words :symmetry ;curvilinear integral ;camber integral ;gauss formula . 0 前言 众所周知,第二型曲面积分的计算比较繁琐,但是若能分类,利用曲面的对称性、两类曲面积分之间的联系、高斯公式、图形结合等方法系统的来解答第二型曲面积分,有时候就能使第二型曲面积分的计算相对简单、易懂,故此篇文章就第二型曲面积分的几种常见计算方法为中心进行展开讨论. 1 利用公式直接进行计算 大家知道,若()z y x R ,,在光滑有向曲面()()xy D y x y x z z ∈=∑,,,:上连续,则()??∑ dxdy z y x R ,,存在,且有计算公式: ()()()d x d y y x z y x R d x d y z y x R xy D ????±= ∑,,,,, (1) 其中xy D 表示∑在xOy 面上的投影区域,当曲面取上侧时(1)的右端取“+”号,取下侧时取“—”号.

第二类曲线积分的计算

第二类曲线积分的计算 Jenny was compiled in January 2021

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为 }{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量 形式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿 空间有向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的

第二型曲线积分与曲面积分的计算方法

第二型曲线积分与曲面积分的计算方法 摘 要: 本文主要利用化为参数的定积分法,格林公式,积分与路径无关的方法解答第二型曲线积分的题目;以及利用曲面积分的联系,分面投影法,合一投影法,高斯公式解答第二型曲面积分的题目. 关键词: 曲面积分;曲线积分 1 引 言 第二型曲线积分与曲面积分是数学分析中的重要知识章节,是整本教材的 重点和难点.掌握其基本的计算方法具有很大的难度,给不少学习者带来了困难.本文通过针对近年来考研试题中常见的第二型曲线积分与曲面积分的计算题目进行了认真分析,并结合具体实例以及教材总结出其特点,得出具体的计算方法.对广大学生学习第二型曲线积分与第二型曲面积分具有重要的指导意义. 2 第二型曲线积分 例1 求()()()sin cos x x I e y b x y dx e y ax dy =-++-?,其中a ,b 为正的常数,L 为从点A (2a ,0)沿曲线 o (0,0) 的弧. 方法一:利用格林公式法 L D Q P Pdx Qdy dxdy x y ?? ??+=- ????????,P(x ,y),Q (x ,y )以及它们的一阶偏导数在D 上连续,L 是域D 的边界曲线,L 是按正向取定的. 解:添加从点o (0,0)沿y=0到点A (2a,0)的有向直线段1L , ()()()()()()1 1 sin cos sin cos x x L L x x L I e y b x y dx e y ax dy e y b x y dx e y ax dy =-++---++-?? 记为12I I I =- , 则由格林公式得:()1cos cos x x D D Q P I dxdy e y a e y b dxdy x y ??????=-=---- ??????????? ()()22 D b a dxdy a b a π =-= -?? 其中D 为1L L 所围成的半圆域,直接计算2I ,因为在1L 时,0y =,所以dy =0

曲线积分的计算法

曲线积分 第一类 ( 对弧长 ) 第二类 ( 对坐标 ) ? ??转化 定积分 (1) 选择积分变量 用参数方程 用直角坐标方程 用极坐标方程 (2) 确定积分上下限 第一类: 下小上大 第二类: 下始上终 对弧长曲线积分的计算 定理 ) ()()()](),([),(,],[)(),()(),(), (, ),(22βαψ?ψ?βαψ?βαψ?β α <'+'=≤≤? ? ?==?? dt t t t t f ds y x f t t t t y t x L L y x f L 且 上具有一阶连续导数在其中的参数方程为上有定义且连续在曲线弧设注意: ;.1βα一定要小于上限定积分的下限. ,,),(.2而是相互有关的不彼此独立中y x y x f 特殊情形 . ) (:)1(b x a x y L ≤≤=ψ. )(1)](,[),(2dx x x x f ds y x f b a L ?? '+=ψψ. )(:)2(d y c y x L ≤≤=?. )(1]),([),(2dy y y y f ds y x f d c L ?? '+=??

).(, sin ,cos :,象限第椭圆求I ? ? ?===?t b y t a x L xyds I L 解 dt t b t a t b t a I 2220 )cos ()sin (sin cos +-?=?π dt t b t a t t ab 222220 cos sin cos sin +=?π ?-= a b du u b a ab 22 2) cos sin (2222t b t a u +=令. ) (3) (22b a b ab a ab +++=例2 . )2,1()2,1(,4:, 2 一段到从其中求-==?x y L yds I L x y 42=解 dy y y I 222)2 (1+=?-. 0=例3 ) 20(., sin ,cos :, πθθθθ≤≤===Γ=?Γ 的一段其中求k z a y a x xyzds I 解 θ θθθd k a k a 222sin cos +?? =π 20 I . 2 1 222k a ka +-=π例4 ?? ?=++=++Γ=?Γ . 0, , 22 2 2 2z y x a z y x ds x I 为圆周其中求解 由对称性, 知 . 22 2 ???Γ ΓΓ==ds z ds y ds x ?Γ ++=ds z y x I )(312 22故例1

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林 张纬纬 摘要 利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词 第二类曲面积分 定义法 参数法 投影法 高斯公式 Stokes 公式 向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++ , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 cos .S v S v n θΦ==?? 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积.

曲线积分与曲面积分备课教案

第十章曲线积分与曲面积分 一、教学目标及基本要求: 1、理解二类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。 2、会计算两类曲线积分 3、掌握(Green)公式,会使用平面曲线积分与路径无关的条件。 4、了解两类曲面积分的概念及高斯(Grass)公式和斯托克斯(Stokes)公式并会计算两类曲面积分。 5、了解通量,散度,旋度的概念及其计算方法。 6、会用曲线积分及曲面积分求一些几何量与物理量(如曲面面积、弧长、质量、重心、转动惯量、功、流量等)。 二、教学内容及学时分配: 第一节对弧长的曲线积分2学时 第二节对坐标的曲线积分2学时 第三节格林公式及其应用4学时 第四节对面积的曲面积分2学时 第五节对坐标的曲面积分2学时 第六节高斯公式通量与散度2学时 第七节斯托克斯公式环流量与旋度2学时 三、教学内容的重点及难点: 1、二类曲线积分的概念及其计算方法 2、二类曲面积分的概念及其计算方法 3、格林公式、高斯公式及斯托克斯公式 4、曲线积分及曲面积分的物理应用和几何应用也是本章重点。 5、两类曲线积分的关系和区别 6、两类曲面积分的关系和区别 7、曲线积分和曲面积分的物理应用及几何应用 五、思考题与习题 第一节习题10—1 131页:3(单数)、4、5 第二节习题10-2 141页:3(单数)、4、5、7(单数) 第三节习题10-3 153页:1、2、3、4(单数)、5(单数)6(单数)、7 第四节习题10-4 158页:4、5、6(单数)、7、8 第五节习题10-5 167页:3(单数)、4 第六节习题10-6 174页:1(单数)、2(单数)、3(单数) 第七节习题10-7 183页:1(单数)、2、3、4 第一节对弧长的曲线积分 一、内容要点 由例子引入对弧长的曲线积分的定义给出性质,然后介绍将对弧长的曲线积分化为定积分的计算方法。 1、引例:求曲线形构件的质量

数学专业毕业论文-第二型曲线积分与曲面积分的计算方法

师范大学 本科毕业论文 题目:第二型曲线积分与曲面积分的计算方法专业:数学与应用数学 系班:数学与信息科学系2006级数本2班毕业年份: 姓名: 学号: 指导教师: 职称:教授

目录 本科毕业论文任务书 (1) 本科毕业论文开题报告 (3) 本科毕业论文登记表 (5) 毕业论文论文正文文稿 (7) 本科毕业论文答辩记录 (15)

西北师范大学本科毕业论文(设计)任务书论文(设计)题目第二型曲线积分与曲面积分的计算方法 学生姓名系、专业、班级 数学与信息科学系 数学与应用数学2006级数本2班 毕业年份2010年学号 指导教师职称教授 一、文献查阅指引 1. 查阅的专著 [1] 华东师大数学系. 数学分析(下)[M],第三版. 高等教育出版社,2001,224-231. [2] 刘玉琏,傅沛仁等.数学分析讲义(下)[M],第四版.高等教育出版社,2003,75-388. [3] 林源渠,方企勤. 数学分析解题指南[M]. 北京大学出版社,2001,38-362. [4] 陈文灯. 数学复习指南[M]. 世界图书出版社,2000,276-287. [5] 田勇.硕士研究生入学考试历年真题解析[M]. 机械工业出版社,2002,175-188. [6] 华中科技大学数学系.考研特别快车—数学[M].华中科技大学出版社,2001,04-212 2. 查阅的学术论文及期刊 [1] 孙一生.第二型曲线与曲面积分计算的基本方法与技巧[J].《哈尔滨师范大学自然 科学学报》,1989,5(2):106-112 . [2] 陈少元.第二型曲线积分计算方法与技巧[J]. 科技信息(学术版),2007(1). 3. 查阅的相关网站 [1]http //https://www.360docs.net/doc/7e13147778.html,/Periodical_lygzyjsxyxb200604029.aspx . 二、内容要求 1. 提出第二型曲线积分与曲面积分的基本计算方法. 2. 查阅相关的资料、书籍对所用到的基本计算方法进行分析,并加以概括与总结. 3. 论文中所用到的实例必须具有典型代表性,而且逻辑推理性强、分析恰当. 4. 论文可以借鉴相关的研究成果,但不能抄袭.

第二类曲线积分的计算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时, 求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是弯弯曲曲.怎么办呢? 为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点 ,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P

第二类曲面积分的计算方法

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes 公式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程中, 必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二 型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面广,掌 握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题 型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说 明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第 一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系, 让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的 应用. 2 预备知识 2.1第二型曲面积分的概念

2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++v v v v , ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++v v v v 则 若∑为曲面,流速v v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =v v 和单位法向量i n v 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 2.1.2 定义

第二类曲面积分的计算方法

第二类曲面积分的计算 方法 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公 式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过 程中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧. 由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知 识面广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在 求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种 方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分, 并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重 积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第 二型曲面积分计算方法的应用. 2 预备知识 2.1第二型曲面积分的概念 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为

(,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++, ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限 定义 .S S i i 的面积,他们的符号由的方向来确定若的法线正向与轴正向成锐角时, z .S xy i i i S xoy S z ?在平面的投影区域的面积为正反之,若法线正向与轴正向成钝角时, .S xy i i xoy S ?他在平面的投影区域的面积为负在各个小曲面上任取一点,(,) i i i ξηζ. 若 lim 1 T n i P →=∑,(,)i i i ξηζyz i S ?0 lim 1 T n i Q →=+ ∑,(,)i i i ξηζzx i S ?0 lim 1 T n i R →=+ ∑,(,)i i i ξηζxy i S ?存在, 或者

第二型曲面积分的计算方法

龙源期刊网 https://www.360docs.net/doc/7e13147778.html, 第二型曲面积分的计算方法 作者:周三章赵大方 来源:《科教导刊》2014年第24期 摘要本文从化归的角度,介绍利用高斯公式和合一投影法简化第二型曲面积分的计算,并结合实例予以说明。 关键词第二型曲面积分高斯公式合一投影法 中图分类号:O172.2 文献标识码:A Methods of Computing the Second Surface Integral ZHOU Sanzhang[1], ZHAO Dafang[2] ([1]College of Mechatronics and Control Engineering, Hubei Normal University,Huangshi, Hubei 435002; [2] College of Mathematics and Statistics, Hubei Normal University, Huangshi, Hubei 435002) Abstract This paper introduces how to simplify the caculation of the Second Surface Integral by utilizing the Gauss formula and Projection method, there application are illustrated by some typical example. Key words the second surface integral; Gauss formula; projection 高等数学的学习中,第二型曲面积分的计算是一个难点。计算第二型曲面积分方法比较多,计算的难易程度也不同。如果运用化归的思想,通常可以达到事半功倍的效果。化归的思想具体表现在运用合一投影法,高斯公式简化求解过程。本文以几例具体来说明以上两种 计算方法。 1 利用高斯公式转化为三重积分计算 引理[1]:设空间闭区域是由分片光滑的闭曲面所围成,函数(),(),()在具有一定阶连续偏导数,则有 ( + + ) = + + , 或

第二类曲线积分的计算

第二类曲线积分的计算 Revised as of 23 November 2020

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

曲线积分与曲面积分复习

第8章 曲线积分与曲面积分 向量值函数在有向曲线上的积分 第二型曲线积分 概念与形式 恒力沿直线方向做功 → →→ → ?=?=l F l F w θcos |||| 变力沿曲线运动?取微元 Qdy Pdx ds F dw +=?=→ ||,则?+ += L Qdy Pdx W 。 平面曲线?+ +L Qdy Pdx ,空间曲线?+ ++L Rdz Qdy Pdx ,性质??- +=L L 一、计算方法 1.设参数,化定积分 ?L dx y x P ),(+dy y x Q ),(=dt t y t y t x Q t x t y t x P t t })()](),([)()](),([{10 ? '+' 2.平面闭曲线上积分-用格林公式 ???+=???? ? ???-??L D Qdy Pdx dxdy y P x Q ,其中L 是D 的取正向的边界曲线,D 为单连通区域,P ,Q 与L D ?上有连续一阶偏导数。 ~ 3.对于积分与路径无关的可自选路径 4.积分与路径无关 ),(),,(y x Q y x P 及偏导数于L D ?上连续。下列四个命题等价 (1)? +C Qdy Pdx =0,对D 内任意闭曲线C . (2) ?+L Qdy Pdx 积分与路径无关 (3)存在),(y x u 使du =dy y x Q dx y x P ),(),(+B A L L u du Qdy Pdx |==+??? (4)x Q y P ??=?? 在D 内恒成立. 常以(4)为条件,(2)作为结论,自选路径积分 二、例题 1.基础题目,设参数,化定积分 , (1) 计算? -=L ydx xdy I ,: L 如图ABCDEA 解 (1)设参数法 ?∑? ==L i L i 5 1 于1L 上 设t x cos =,t y sin = ?? -= +=-0 2 222 )sin (cos 1 ππ dt t t ydx xdy L 于2L 上 设t x cos =,t y sin 2= ?? =?+?=-20 )sin sin 2cos 2(cos 2 π πdt t t t t ydx xdy L 于3L 上 以x 为参数,xdx dy 2-=

第二类曲面积分的计算方法定稿版

第二类曲面积分的计算 方法 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

第二类曲面积分的计算方法 赵海林张纬纬 摘要利用定义法,参数法,单一坐标平面投影法,分项投影法,高斯公式,Stokes公 式,积 分区间对称性,向量计算形式以及利用两类曲面积分之间的联系等方法进行求解. 关键词第二类曲面积分定义法参数法投影法高斯公式 Stokes公式向量计算形 式 1 引言 曲面积分是多元函数积分学的重要组成部分,在曲面积分的计算中,综合运用着一元积分与重积分计算思路、方法与技巧,在第二型曲面积分的学习过程 中,必须在理解概念和性质的同时,掌握求第二型曲面积分的方法和技巧.由于第二型曲面积分的概念抽象费解,计算方法灵活多变,而且涉及的数学知识面 广,掌握起来有一定的难度,而且是数学分析学习中的难点,许多学生在求解这一类题型时感到相当困难,因此本文给出了第二型曲面积分计算的几种方法,并举例说明了这几种方法的应用,力图使学生能计算第二型曲面积分,并能进一步了解第一型曲面积分与第二型曲面积分,曲面积分、曲线积分与重积分之间的密切联系,让各种计算方法更加直观的呈现在读者面前,体现了第二型曲面积分计算方法的应用. 2 预备知识

2.1第二型曲面积分的概念 2.1.1 流量问题(物理背景) 设稳定流动的不可压缩流体(假定密度为1)的速度为 (,,)(,,)(,,)(,,)v x y z P x y z i Q x y z j R x y z k =++, ∑是一光滑的有向曲面,求单位时间内从曲面∑一侧流向另一侧的流量Φ. 若∑为平面上面积为S 的区域,而流速v 是常向量,∑指定侧的单位法向量 cos cos cos n i j k αβ=++ 则 若∑为曲面,流速v 不是常向量,则用下面的方法计算流量Φ. (1) 分割 将∑任意分成小块(1,2i i S i n S ?=?…,),同时代表其面积. (2) 近似 (,,)i i i i i M S ξηζ?∈?,以点i M 处的流速()i i v v M =和单位法向量i n 分别代替 i S ?上其他各点处的流速和单位法向量,得到流过i S ?指定侧的流量的近似值: (3) 求和 (4) 取极限

第二类曲线积分的计算教案资料

第二类曲线积分的计 算

第二类曲线积分的计算 作者:钟家伟 指导老师:张伟伟 摘要:本文结合第二类曲线积分的背景用定义的方法进行第二类曲线积分的计算,重点是利用对称 性,参数方程,格林公式斯托克斯公式以及两类曲线积分之间的联系对第二类曲线积分进行计算。 关键词:第二类曲线积分 二重积分 参数积分 对称性原理 斯托克斯公式 第二类曲面积分 1 引言 本文介绍第二类曲线积分的定义以及与两类曲线积分之间的联系,重点介绍若干种主要的计算方法。 1.1 第二类曲线积分的概念 介绍了第二类曲线积分的物理学背景,平面和空间第二类曲线积分的定义以及对坐标的第二类曲线积分的定义。 1.2第二类曲线积分的计算方法 介绍了关于第二类曲线积分的参数计算法,利用格林公式和斯托克斯公式计算的方法以及利用对称性简化或计算的方法。 2.1第二类曲线积分的物理学背景 力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功 一质点受变力()y x F , 的作用沿平面曲线L 运动,当质点从L 之一端点A 移动到另一端B 时,求力()y x F , 所做功W . 大家知道,如果质点受常力F 的作用从A 沿直线运动到B ,那末这个常力F 所做功为 W =AB F ? . 现在的问题是质点所受的力随处改变,而所走路线又是 弯弯曲曲.怎么办呢?

为此,我们对有向曲线L 作分割},,.....,,{110n n A A A A T -=,即在AB 内插入1-n 个分点,,.....,,121-n M M M 与A =n M B M =,0一起把曲线分 成n 个有向小曲线段 i i M M 1-),,2,1(n i = ,记 小曲线段i i M M 1-的弧长为i S ?.则分割 },,.....,,{110n n A A A A T -=的细度为}{max 1i n i S T ?=≤≤. 设力()y x F , 在x 轴和y 轴方向上的投影分别为),(y x P 与),(y x Q ,那么()y x F , =()),(),,(y x Q y x P j y x Q i y x P ),(),(+=由于 ),,(),,(111i i i i i i y x M y x M ---则有向小曲线段i i M M 1-),,2,1(n i =在x 轴和y 轴方 向上的投影分别为11---=?-=?i i i i i i y y y x x x 与.记i i M M L 1- =),(i i y x ??从而力()y x F , 在小曲线段i i M M 1-上所作的功i W ?≈),(i F ηξ i i M M L 1- = ()i i P ηξ,i x ?+()i i Q ηξ,i y ? 其中(j i ηξ,)为小曲线段i i M M 1-上任一点,于是力()y x F , 沿L 所作的功可近似等 于 i W =∑=n i i W 1 i n i i i i n i i i y s Q x S P ?+?≈∑∑==1 1 ),(),(ηη当0→T 时,右端积分和式的 极限就是所求的功.这种类型的和式极限就是下面所要讨论的第二型曲线积分. 2.2 第二型曲线积分的定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤,又设T 的分点的坐标为),(i i i y x M ,并记 11,---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限

曲面积分精解

第一节 第一类曲面积分 内容要点 一、 第一类曲面积分的概念与性质 定义1 设曲面∑是光滑的, 函数),,(z y x f 在∑上有界, 把∑任意分成n 小块i S ?(i S ?同时也表示第i 小块曲面的面积),在i S ?上任取一点),,,(i i i ζηξ作乘积 ),,2,1(),,(n i S f i i i i =??ζηξ 并作和 ,),,(1 ∑=??n i i i i i S f ζηξ 如果当各小块曲面的直径的最大值0→λ时, 这和式的极限存在, 则称此极限值为),,(z y x f 在∑上第一类曲面积分或对面积的曲面积分,记为 ∑??=→∑ ?=n i i i i i S f dS z y x f 10 ),,(lim ),,(ζηξλ (4.2) 其中),,(z y x f 称为被积函数,∑称为积分曲面. 二、对面积的曲面积分的计算法 .),(),(1)],(,,[),,(22 ????++=∑xy D y x dxdy y x z y x z y x z y x f dS z y x f (4.3) 例题选讲 例 1 计算曲面积分,??∑z dS 其中∑是球面2222a z y x =++被平面)0(a h h z <<=截出的顶部. 解 ∑的方程为.222y x a z --= ∑在xOy 面上的投影区域:xy D {} .),(2222h a y x y x -≤+ 又,12 2 2 22 y x a a z z y x --= ++利用极坐标 故有 ?? ?? -=∑ xy D r a adxdy z dS 22 220 202 22 2r a rdr d a r a ardrd h a D xy -=-=? ? ?? -θ θ π 2 20 22)(212h a r a In a -??????--=π .2h a aIn π= 例2(E01)计算,)(??∑ ++dS z y x 其中∑为平面5=+z y 被柱面252 2=+y x 所截得的部分. 解 积分曲面 ∑-=,5:y z 其投影域},25),({22≤+=y x y x D xy

第二类曲线积分的计算修订版

第二类曲线积分的计算 Document number:PBGCG-0857-BTDO-0089-PTT1998

第二类曲线积分的计算 定义 设),(y x P ,),(y x Q 为定义在光滑或分段光滑平面有向曲线AB L 上的函数,对 AB L 任一分割T ,它把AB L 分成n 个小弧段i i M M 1-),,2,1(n i =;其中 A =n M B M =,0.记各个小弧段i i M M 1-弧长为i s ?,分割T 的细度为}{max 1i n i S T ?=≤≤, 又设T 的分点的坐标为),(i i i y x M ,并记 11, ---=?-=?i i i i i i y y y x x x ,),,2,1(n i = . 在每个小弧段i i M M 1-上任取一点()i i ηξ,,若极限 ∑=→?n i i i i T x P 1 ),(lim ηξ∑=→?+n i i i i T y Q 1 ),(lim ηξ 存在且与分割T 与点()i i ηξ,的取法无关,则称此极限为函数),(y x P ,),(y x Q 在有向线段AB L 上的第二类曲线积分,记为 ?+L dy y x Q dx y x P ),(),(或 ?+AB dy y x Q dx y x P ),(),( 也可记作 ??+L L dy y x Q dx y x P ),(),( 或 ??+AB AB dy y x Q dx y x P ),(),( 注:(1) 若记()y x F , =()),(),,(y x Q y x P ,()dy dx s d ,= 则上述记号可写成向量形 式:??L s d F . (2) 倘若L 为光滑或分段光滑的空间有向连续曲线, ),,(z y x P ,),,(z y x Q ,),,(z y x R 为定义在L 上的函数,则可按上述办法定义沿空间有 向曲线L 的第二类曲线积分,并记为 dz z y x R dy z y x Q dx z y x P L ),,(),,(),,(++? 按照这一定义 , 有力场()),( , ),(),(y x Q y x P y x F =沿平面曲线L 从点A 到点B 所作的功为?+=AB Qdy Pdx W .第二类曲线积分的鲜明特征是曲线的方向性 . 对

相关文档
最新文档