初一不等式难题_经典题训练(附答案)

初一不等式难题_经典题训练(附答案)
初一不等式难题_经典题训练(附答案)

初一不等式难题,经典题训练(附答案)

1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0

521

x a x ->??

-≥-?无解,则a 的取值范围是_________

3. 若关于x 的不等式(a-1)x-2

a +2>0的解集为x<2,则a 的值为( )

A 0

B 2

C 0或2

D -1 4. 若不等式组2

20

x a b x ->??

->?的解集为11x -<<,则2006()a b +=_________

5. 已知关于x 的不等式组的解集41320

x x

x a +?>+?

??+

6. 若方程组的解满足41

43

x y k x y +=+??

+=?条件01x y <+<,则k 的取值范围是( )

A. 41k -<<

B. 40k -<<

C. 09k <<

D. 4k >- 7. 不等式组951

1

x x x m +<+??

>+?的解集是2x >,则m 的取值范围是( )

A. 2m ≤

B. 2m ≥

C. 1m ≤

D. 1m f 8.不等式()()20x x

x +-<的解集是_________

9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______

10.已知a,b 为常数,若ax+b>0的解集是1

3

x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x <

11.如果关于x 的不等式组的整70

60x m x n -≥??

-?

p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对

共有( )对

A 49

B 42

C 36

D 13 12.已知非负数x,y,z 满足123

234

x y z ---==,设345x y z ω=++,求的ω最大值与最小值

12.不等式

A 卷

1.不等式2(x + 1) -

12

732-≤-x

x 的解集为_____________。 2.同时满足不等式7x + 4≥5x – 8和5

23x

x -<的整解为______________。

3.如果不等式3

3

131++

>+x mx 的解集为x >5,则m 值为___________。 4.不等式2

2

)(7)1(3)12(k x x x x ++<--+的解集为_____________。

5.关于x 的不等式(5 – 2m)x > -3的解是正数,那么m 所能取的最小整数是__________。 6.关于x 的不等式组??

?<->+2

53

32b x x 的解集为-1

7.能够使不等式(|x| - x )(1 + x ) <0成立的x 的取值范围是_________。 8.不等式2<|x - 4| <3的解集为_____________。

9.已知a,b 和c 满足a ≤2,b ≤2,c ≤2,且a + b + c = 6,则abc=______________。 10.已知a,b 是实数,若不等式(2a - b)x + 3a – 4b <0的解是9

4

>x ,则不等式(a – 4b)x + 2a – 3b >0的解是__________。 C 卷

一、填空题

1.不等式2|43|2

+>--x x x 的解集是_____________。 2.不等式|x| + |y| < 100有_________组整数解。

3.若x,y,z 为正整数,且满足不等式???

??≥+≥≥1997213z y y z x 则x 的最小值为_______________。

4.已知M=1

21

2,12122000199919991998++=++N ,那么M ,N 的大小关系是__________。(填“>”或“<”)

5.设a, a + 1, a + 2为钝角三角形的三边,那么a 的取值范围是______________。

二、选择题

1.满足不等式4314

||3<--x x 的x 的取值范围是( )

A .x>3

B .x<72-

C .x>3或x<7

2

- D .无法确定

2.不等式x – 1 < (x - 1) 2

< 3x + 7的整数解的个数( )

A .等于4

B .小于4

C .大于5

D .等于5

3.?????

????=++=++=++=++=++)

5()

4()3()2()1(52154

154354324321321a x x x a x x x a x x x a x x x a x x x

其中54321,,,,a a a a a 是常数,且54321a a a a a >>>>,则54321,,,,x x x x x 的大小顺序是( )

A .54321x x x x x >>>>

B .53124x x x x x >>>>

C .52413x x x x x >>>>

D .24135x x x x x >>>>

4.已知关于x 的不等式mx x >-2

3

的解是4

, n = 34

C .m = 101, n = 38

D .m = 8

1

, n = 36

三、解答题

1.求满足下列条件的最小的正确整数,n :对于n ,存在正整数k ,使13

7

158<

+

2.已知a,b,c 是三角形的三边,求证:

.2<+++++b

a c a c

b

c b a 3.若不等式组?????<+++>--0

5)25(20

222k x k x x x 的整数解只有x = -2,求实数k 的取值范围。

答案

A 卷 1.x ≥2

2.不等式组???

??-<-≥+523

8

547x

x x x 的解集是-6≤x <433,其中整数解为-6,-5,-4,-3,-2,-1,0,1,2, 3.由不等式

3

3

131++

>+x mx 可得(1 – m )·x < -5,因已知原不等式的解集为x >5,则有(1-m)·5 = -5, ∴m = 2.

4.由原不等式得:(7 – 2k)x <2

k +6,当k < 2

7

时,解集为 k k x 2762-+<;

当k >2

7

时,解集为k k x 2762-+>;

当k =

2

7

时,解集为一切实数。 5.要使关于x 的不等式的解是正数,必须5 – 2m<0,即m>

2

5

,故所取的最小整数是3。 6.2x + a >3的解集为 x >23a -; 5x – b < 2 的解集为 x <52b

+

所以原不等式组的解集为23a - < 52b +。且23a - < 5

2b

+。又题设原不等式的解集为

–1 < x <1,所以23a -=-1, 52b +=1,再结合23a - < 5

2b

+,解得:a = 5, b = 3,

所以ab = 15

7.当x ≥0时,|x| - x = x –x = 0,于是(|x| - x )(1 + x ) = 0,不满足原式,故舍去x ≥0

当x < 0时,|x| - x = - 2x >0,x 应当要使(|x| - x )(1 + x )<0,满足1 + x < 0,即x < -1,所以x 的取值范围是x < - 1。 8.原不等式化为??

?<->-)

3(3|4|)

1(2|4|x x 由(1)解得或x <2 或x > 6,由(2)解得 1 < x < 7,

原不等式的解集为1 < x < 2或6 < x < 7.

9.若a,b,c ,中某个值小于2,比如a < 2,但b ≤2, c ≤2,所以a + b + c <6 ,与题设条件a + b + c = 6矛盾,所以只能a = 2,同理b = 2, c = 2,所以abc=8。 10.因为解为x >9

4

的一元一次不等式为 – 9 x + 4 < 0与(2a – b )x + 3a – 4b <0比较系数,得

???=--=-44392b a b a ??

?-=-=7

8b a 所以第二个不等式为20x + 5 > 0,所以x > 41

-

C 卷

1.原不等式化为|(x + 1) (x - 4) | > x + 2,若(x + 1) (x - 4) ≥0,即x ≤-1或x ≥4时,有

064,24322>--+>--x x x x x

∴3131102102+

<<-+>-

2.∵|x| + |y| < 100,∴0≤|x|≤99, 0≤|y|≤99,于是x,y 分别可取-99到99之间的

所以满足不等式的整数解的组数为:

198 + 2 (1 + 3 + … + 99) + 2(100 + 102 + … + 196)

197022

49

)196100(2250)991(2198=?+?+?+?

+=

3.?????≥+≥≥)

2(1997)1(213z y y z x

由(1)得y ≤2z (3) 由(3)(2)得3z ≥ 1997 (4) 因为z 是正整数,所以z ≥6661]3

1997

[

=+ 由(1)知x ≥3z ,∴z ≥1998,取x = 1998, z = 666, y = 1332满足条件 所以x 的最小值是1998。

4.令n =19982,则1

41

2121,42,2222200019981999++÷

++=∴

==?=n n n n N M n n 11

441144154)12()14)(1(2

222>+++=++++=+++=n n n n n n n n n n

∴M>N

5.钝角三角形的三边a, a + 1, a + 2满足:

???>-->???+<+++>++03221

)2()1(2)1(2

22a a a a a a a a a 即 ∴31311<

??<<->a a a 故

二、选择题

1.当x ≥0且x ≠3时,

,43533143314||3<--=--=--x x x x x ∴)1(13

5

->-x

若x>3,则(1)式成立

若0≤x < 3,则5 < 3-x ,解得x < -2与0≤x < 3矛盾。

当x < 0时,

,43143314||3<--=--x x x x 解得x < 7

2

-(2)

由(1),(2)知x 的取值范围是x >3或x < 7

2

-,故选C

2.由,12)1(2

2

+-=-x x x 原不等式等价于,0)6()1(,0)1()2(<-?+>-?-x x x x 分别解得x < 1或x >2,-1< x < 6,原不等式的整数解为0,3,4,5,故应选A 3.方程组中的方程按顺序两两分别相减得

5

424431332522141,,a a x x a a x x a a x x a a x x -=--=--=--=-

因为54321a a a a a >>>>

所以24135241,,,x x x x x x x x >>>>,于是有52413x x x x x >>>>故应选C 4.令x =a (a ≥0)则原不等式等价于02

3

2<+

-a ma 由已知条件知

(1)的解为2< a < n 因为2和n 是方程0232

=+-a ma 的两个根,所以???

????

==+m n m n 23

212解得m = 36,81=n

故应选D

三、解答题

1.由已知得

8

776,7131815,713815<<∴>+>>+>n k n k n k n 即 n , k 为正整数 显然n>8,取n = 9则8

63

754<

= 14时,分别得

870760<

98

784<

105

790<

a c

c a b c b a +++,

,,是正分数,再利用分数不等式:c b a a a c b a a c b a ++=+++<+2,同理c b a c

b a

c c b a b c a b ++<

+++<+2,2 ∴2)(2222=++++=++++++++<+++++c

b a

c b a c b a c c b a b c b a a b a c c a b c b a

3.因为x = -2是不等式组的解,把x = - 2代入第2个不等式得

(2x + 5) (x + k) = [2·(-2) + 5]·(-2 + k ) < 0,解得k < 2,所以 – k > -2 > 2

5-,即第2个不等式的解为2

5

-

< x < k ,而第1个不等式的解为x < -1或x > 2,这两个不等式仅有整数解x = -2,应满足????

???-<<->???????-<<--<.

252)2(251)1(为整数或为整数x k x x x k x x

对于(1)因为x < 2,所以仅有整数解为 x = -2此时为满足题目要求不等式组(2)应无

整数解,这时应有-2 < -k ≤3, -3≤k < 2 综合(1)(2)有-3≤k < 2

基本不等式经典例题精讲

新课标人教A 版高中数学必修五典题精讲(3.4基本不等式) 典题精讲 例1(1)已知0<x <3 1,求函数y=x(1-3x)的最大值; (2)求函数y=x+ x 1的值域. 思路分析:(1)由极值定理,可知需构造某个和为定值,可考虑把括号内外x 的系数变成互为相反数;(2)中,未指出x >0,因而不能直接使用基本不等式,需分x >0与x <0讨论. (1)解法一:∵0<x <3 1,∴1-3x >0. ∴y=x(1-3x)= 3 1·3x(1-3x)≤3 1[ 2) 31(3x x -+]2= 12 1,当且仅当3x=1-3x ,即x= 6 1时,等号成 立.∴x= 6 1时,函数取得最大值 12 1 . 解法二:∵0<x <3 1,∴ 3 1-x >0. ∴y=x(1-3x)=3x(3 1-x)≤3[ 23 1x x -+ ]2= 12 1,当且仅当x= 3 1-x,即x= 6 1时,等号成立. ∴x= 6 1时,函数取得最大值12 1. (2)解:当x >0时,由基本不等式,得y=x+x 1≥2x x 1? =2,当且仅当x=1时,等号成立. 当x <0时,y=x+ x 1=-[(-x)+ ) (1x -]. ∵-x >0,∴(-x)+ ) (1x -≥2,当且仅当-x= x -1,即x=-1时,等号成立. ∴y=x+x 1≤-2. 综上,可知函数y=x+x 1的值域为(-∞,-2]∪[2,+∞). 绿色通道:利用基本不等式求积的最大值,关键是构造和为定值,为使基本不等式成立创造条件,同时要注意等号成立的条件是否具备. 变式训练1当x >-1时,求f(x)=x+ 1 1+x 的最小值. 思路分析:x >-1?x+1>0,变x=x+1-1时x+1与1 1+x 的积为常数.

(完整版)初一不等式难题-经典题训练(附答案)

初一不等式难题,经典题训练(附答案) 1. 已知不等式3x-a ≤0的正整数解恰好是1,2,3,则a 的取值范围是_______ 2. 已知关于x 的不等式组0 521 x a x ->?? -≥-?无解,则a 的取值范围是_________ 3. 若关于x 的不等式(a-1)x-2 a +2>0的解集为x<2,则a 的值为( ) A 0 B 2 C 0或2 D -1 4. 若不等式组2 20 x a b x ->?? ->?的解集为11x -<<,则2006()a b +=_________ 5. 已知关于x 的不等式组的解集41320 x x x a +?>+? ??+- 7. 不等式组951 1 x x x m +<+?? >+?的解集是2x >,则m 的取值范围是( ) A. 2m ≤ B. 2m ≥ C. 1m ≤ D. 1m f 8.不等式()()20x x x +-<的解集是_________ 9.当a>3时,不等式ax+2<3x+b 的解集是,则b=______ 10.已知a,b 为常数,若ax+b>0的解集是1 3 x <,则的0bx a -<解集是( ) A. 3x >- B 3x <- C. 3x > D. 3x < 11.如果关于x 的不等式组的整70 60x m x n -≥?? -? p 数解仅为1,2,3,那么适合不等式组的整数(m,n)对共 有( )对 A 49 B 42 C 36 D 13 12.已知非负数x,y,z 满足123 234 x y z ---==,设345x y z ω=++,求的ω最大值与最小值

基本不等式练习题及标准答案

基本不等式练习题及答案

————————————————————————————————作者:————————————————————————————————日期:

双基自测 1.(人教A 版教材习题改编)函数y =x +1 x (x >0)的值域为( ). A .(-∞,-2]∪[2,+∞) B .(0,+∞) C .[2,+∞) D .(2,+∞) 2.下列不等式:①a 2+1>2a ;②a +b ab ≤2;③x 2+1 x 2+1≥1,其中正确的个数是 ( ). A .0 B .1 C .2 D .3 3.若a >0,b >0,且a +2b -2=0,则ab 的最大值为( ). A.1 2 B .1 C .2 D .4 4.(2011·重庆)若函数f (x )=x + 1 x -2 (x >2)在x =a 处取最小值,则a =( ). A .1+ 2 B .1+ 3 C .3 D .4 5.已知t >0,则函数y =t 2-4t +1 t 的最小值为________. 考向一 利用基本不等式求最值 【例1】?(1)已知x >0,y >0,且2x +y =1,则1x +1 y 的最小值为________; (2)当x >0时,则f (x )= 2x x 2+1 的最大值为________. 【训练1】 (1)已知x >1,则f (x )=x + 1 x -1 的最小值为________. (2)已知0<x <2 5,则y =2x -5x 2的最大值为________. (3)若x ,y ∈(0,+∞)且2x +8y -xy =0,则x +y 的最小值为________. 考向二 利用基本不等式证明不等式 【例2】?已知a >0,b >0,c >0,求证:bc a +ca b +ab c ≥a +b +c . .

高考不等式经典例题

高考不等式经典例题 【例1】已知a >0,a ≠1,P =log a (a 3-a +1),Q =log a (a 2-a +1),试比较P 与Q 的大小. 【解析】因为a 3-a +1-(a 2-a +1)=a 2(a -1), 当a >1时,a 3-a +1>a 2-a +1,P >Q ; 当0<a <1时,a 3-a +1<a 2-a +1,P >Q ; 综上所述,a >0,a ≠1时,P >Q . 【变式训练1】已知m =a + 1a -2 (a >2),n =x - 2(x ≥12),则m ,n 之间的大小关系为( ) A.m <n B.m >n C.m ≥n D.m ≤n 【解析】选C.本题是不等式的综合问题,解决的关键是找中间媒介传递. m =a + 1a -2=a -2+1a -2 +2≥2+2=4,而n =x - 2≤(12)-2=4. 【变式训练2】已知函数f (x )=ax 2-c ,且-4≤f (1)≤-1,-1≤f (2)≤5,求f (3)的取值范围. 【解析】由已知-4≤f (1)=a -c ≤-1,-1≤f (2)=4a -c ≤5. 令f (3)=9a -c =γ(a -c )+μ(4a -c ), 所以???-=--=+1,94μγμγ???? ??? ? =-=38 ,35μγ 故f (3)=-53(a -c )+8 3(4a -c )∈[-1,20]. 题型三 开放性问题 【例3】已知三个不等式:①ab >0;② c a >d b ;③b c >a d .以其中两个作条件,余下的一个作结论,则能组 成多少个正确命题? 【解析】能组成3个正确命题.对不等式②作等价变形:c a >d b ?bc -ad ab >0. (1)由ab >0,bc >ad ?bc -ad ab >0,即①③?②; (2)由ab >0, bc -ad ab >0?bc -ad >0?bc >ad ,即①②?③; (3)由bc -ad >0, bc -ad ab >0?ab >0,即②③?①. 故可组成3个正确命题. 【例2】解关于x 的不等式mx 2+(m -2)x -2>0 (m ∈R ). 【解析】当m =0时,原不等式可化为-2x -2>0,即x <-1; 当m ≠0时,可分为两种情况: (1)m >0 时,方程mx 2+(m -2)x -2=0有两个根,x 1=-1,x 2=2 m . 所以不等式的解集为{x |x <-1或x >2 m }; (2)m <0时,原不等式可化为-mx 2+(2-m )x +2<0,

新人教版初一数学不等式练习题

不等式练习题 一、 选择题 1.下列式子①3x =5;②a >2;③3m -1≤4;④5x +6y ;⑤a +2≠a -2;⑥-1>2中,不等式有( )个 A 、2 B 、3 C 、4 D 、5 2.下列不等关系中,正确的是( ) A 、 a 不是负数表示为a >0; B 、x 不大于5可表示为x >5 C 、x 与1的和是非负数可表示为x +1>0; D 、m 与4的差是负数可表示为m -4<0 3.若m <n ,则下列各式中正确的是( ) A 、m -2>n -2 B 、2m >2n C 、-2m >-2n D 、2 2n m > 4.下列说法错误的是( ) A 、1不是x ≥2的解 B 、0是x <1的一个解 C 、不等式x +3>3的解是x >0 D 、x =6是x -7<0的解集 5.下列数值:-2,-1.5,-1,0,1.5,2能使不等式x +3>2成立的数有( )个. A 、2 B 、3 C 、4 D 、5 6.不等式x -2>3的解集是( )A 、x >2 B 、x >3 C 、x >5 D 、x <5 7.如果关于x 的不等式(a +1)x >a +1的解集为x <1,那么a 的取值范围是( ) A 、a >0 B 、a <0 C 、a >-1 D 、a <-1 8.已知关于x 的不等式x -a <1的解集为x <2,则a 的取值是( ) A 、0 B 、1 C 、2 D 、3 9.满足不等式x -1≤3的自然数是( ) A 、1,2,3,4 B 、0,1,2,3,4 C 、0,1,2,3 D 、无穷多个 10.下列说法中:①若a >b ,则a -b >0;②若a >b ,则ac 2>bc 2;③若ac >bc ,则a >b ;④若ac 2>bc 2,则a >b.正确的有( ) A 、1个 B 、2个 C 、3个 D 、4个 11.下列表达中正确的是( ) A 、若x 2>x ,则x <0 B 、若x 2>0,则x >0 C 、若x <1则x 2<x D 、若x <0,则x 2>x 12.如果不等式ax <b 的解集是x < a b ,那么a 的取值范围是( ) A 、a ≥0 B 、a ≤0 C 、a >0 D 、a <0 二、 填空题 1.不等式2x <5的解有________个. 2.“a 的3倍与b 的差小于0”用不等式可表示为_______________. 3.如果一个三角形的三条边长分别为5,7,x ,则x 的取值范围是______________. 4.在-2<x ≤3中,整数解有__________________. 5.下列各数0,-3,3,-0.5,-0.4,4,-20中,______是方程x +3=0的解; _______是不等式x +3>0的解;___________________是不等式x +3>0. 6.不等式6-x ≤0的解集是__________.

(完整版)基本不等式题型总结(经典,非常好,学生评价高)

基本不等式 一. 基本不等式 ①公式:(0,0)2 a b a b +≥≥≥,常用a b +≥ ②升级版:22222a b a b ab ++??≥≥ ??? ,a b R ∈ 选择顺序:考试中,优先选择原公式,其次是升级版 二.考试题型 【题型1】 基本不等式求最值 求最值使用原则:一正 二定 三相等 一正: 指的是注意,a b 范围为正数。 二定: 指的是ab 是定值为常数 三相等:指的是取到最值时a b = 典型例题: 例1 .求1(0)2y x x x =+<的值域 分析:x 范围为负,提负号(或使用对钩函数图像处理) 解:1()2y x x =--+- 00x x <∴->Q 1 2x x ∴-+≥=-1 2x x ∴+≤ 得到(,y ∈-∞

例2 .求12(3)3 y x x x =+>-的值域 解:123 y x x =+- (“添项”,可通过减3再加3,利用基本不等式后可出现定值) 12(3)63 x x =+-+- 330x x >∴->Q 12(3)3x x ∴ +-≥- 6y ∴≥, 即)6,y ?∈+∞? 例3.求2sin (0)sin y x x x π=+<<的值域 分析:sin x 的范围是(0,1),不能用基本不等式,当y 取到最小值时,sin x 不在范围内 解:令sin (0,1)t x t =∈, 2y t t =+ 是对钩函数,利用图像可知: 在(0,1)上是单减函数,所以23t t + >,(注:3是将1t =代入得到) (3,)y ∴∈+∞ 注意:使用基本不等式时,注意y 取到最值,x 有没有在范围内, 如果不在,就不能用基本不等式,要借助对钩函数图像来求值域。

初一数学-不等式易错题、难题集合--不等式性质应用

学生姓名陈 年级初一 授课时间2012.6 .2 教师姓名刘 课时 2 不等式易错题、难题集合 (注意:运用不等式的性质是解题的关键! ! ! ! ! !不等式的性质切记! !!!!!!!) -,选择题 1.下列不等式一定成立的是() A.5a >4a B.X +2 v X +3 C. — a >— 2a D.- a 2. 右一a >a ,贝U a 必为() A.正整数B .负整数C .正数D .负数 3. 若a > b ,则下列不等式一定成立的是( ) b a A . <1 B. >1 C.-a>-b D.a-b>0 a b 4. 若a — b v 0,则下列各式中一定正确的是( ) a <0 D . b A. a >b B . ab>0 C —a >— b 5.如果b A.- a 那么 1 1 b 6. 若果 x-y>x,x+y>y A.00,y<0 D.x<0,y>0 a b 2 2ab 的值是( B .负数 C .等于零 D.不能确定 ,则下列不等式成立的( 10.不等式ax v b 的解集是 11.若不等式组 A. n 8 B. 12.不等式组 A. m 4 13.已知关于 x v -,那么a 的取值范围是() a > 0 D 、 n 有解,那么 8 C. 2 x n 8 6 的解集是 n 的取值范围是( D. 4,那么m 的取值范围是 X 的不等式组 2X a 2b 的解集为3 x 5,则 1 -的值为。 a 1 -C 2 14. 已知函数y=mx+2x — 2,要使函数值y 随自变量x 的增大而增大, A. m>— 2 B . m>— 2 C . m<— 2 D . m<— 2 15. 要使函数y =(2 m- 3)x +(3n +1)的图象经过x 、y 轴的正半轴,则 A. -2 B .-4 则m 的取值范围是() m 与n 的取值应为 ()

不等式典型例题之基本不等式的证明

5.3、不等式典型例题之基本不等式的证明——(6例题) 雪慕冰 一、知识导学 1.比较法:比较法是证明不等式的最基本、最重要的方法之一,它是两个实数大小顺序和运算性质的直接应用,比较法可分为差值比较法(简称为求差法)和商值比较法(简称为求商法). (1)差值比较法的理论依据是不等式的基本性质:“a-b≥0a≥b;a-b≤0a≤b”.其一般步骤为:①作差:考察不等式左右两边构成的差式,将其看作一个整体;②变形:把不等式两边的差进行变形,或变形为一个常数,或变形为若干个因式的积,或变形为一个或几个平方的和等等,其中变形是求差法的关键,配方和因式分解是经常使用的变形手段;③判断:根据已知条件与上述变形结果,判断不等式两边差的正负号,最后肯定所求证不等式成立的结论.应用范围:当被证的不等式两端是多项式、分式或对数式时一般使用差值比较法. (2)商值比较法的理论依据是:“若a,b∈R + ,a/b≥1a≥b;a/b≤1a≤b”.其一般步骤为:①作商:将左右两端作商;②变形:化简商式到最简形式;③判断商与1的大小关系,就是判定商大于1或小于1.应用范围:当被证的不等式两端含有幂、指数式时,一般使用商值比较法. 2.综合法:利用已知事实(已知条件、重要不等式或已证明的不等式)作为基础,借助不等式的性质和有关定理,经过逐步的逻辑推理,最后推出所要证明的不等式,其特点和思路是“由因导果”,从“已知”看“需知”,逐步推出“结论”.即从已知A逐步推演不等式成立的必要条件从而得出结论B. 3.分析法:是指从需证的不等式出发,分析这个不等式成立的充分条件,进而转化为判定那个条件是否具备,其特点和思路是“执果索因”,即从“未知”看“需知”,逐步靠拢“已知”.用分析法证明书写的模式是:为了证明命题B成立,只需证明命题B1为真,从而有…,这只需证明B2为真,从而又有…,……这只需证明A为真,而已知A为真,故B必为真.这种证题模式告诉我们,分析法证题是步步寻求上一步成立的充分条件. 4.反证法:有些不等式的证明,从正面证不好说清楚,可以从正难则反的角度考虑,即要证明不等式A>B,先假设A≤B,由题设及其它性质,推出矛盾,从而肯定A>B.凡涉及到的证明不等式为否定命题、惟一性命题或含有“至多”、“至少”、“不存在”、“不可能”等词语时,可以考虑用反证法. 5.换元法:换元法是对一些结构比较复杂,变量较多,变量之间的关系不甚明了的不等式可引入一个或多个变量进行代换,以便简化原有的结构或实现某种转化与变通,给证明带来新????

高中不等式所有知识及典型例题(超全)

一.不等式的性质: 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式);3.分析法;4.平方法;5.分子(或分母)有理化; 6.利用函数的单调性;7.寻找中间量或放缩法 ;8.图象法。其中比较法(作差、作商)是最基本的方法。 三.重要不等式 1.(1)若R b a ∈,,则ab b a 22 2≥+ (2)若R b a ∈,,则2 22b a ab +≤(当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”); 若0x <,则1 2x x + ≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 若0>ab ,则2≥+a b b a (当且仅当 b a =时取“=”) 若0ab ≠,则 22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 4.若R b a ∈,,则2 )2 (2 22b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求 它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 5.a 3+b 3+c 3≥3abc (a,b,c ∈ R +), a +b +c 3 ≥3abc (当且仅当a =b =c 时取等号); 6. 1 n (a 1+a 2+……+a n )≥12n n a a a (a i ∈ R +,i=1,2,…,n),当且仅当a 1=a 2=…=a n 取等号; 变式:a 2+b 2+c 2≥ab+bc+ca; ab ≤( a +b 2 )2 (a,b ∈ R +) ; abc ≤( a +b +c 3 )3(a,b,c ∈ R +) a ≤ 2a b a +b ≤ab ≤ a +b 2 ≤ a 2+b 2 2 ≤b.(0b>n>0,m>0; 应用一:求最值 例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1 x

初一数学不等式培优习题(难点分析题)

1、解不等式 (2)252133x -+-≤ +≤- 2、 求下列不等式组的整数解2(2)8 3373(2)82x x x x x x +<+??-≥-??-+>? 3、解不等式:(1) 0)2)(1(<+-x x (2) 0121>+-x x 4、对于1x ≥的一切有理数,不等式 ()12x a a -≥都成立,求a 的取值范围。 5、已知1x =是不等式组()()352,2 3425x x a x a x -?≤-???-<+-?的解,求a 的取值范围. 6、如果35x a =-是不等式 ()11233x x -<-的解,求a 的取值范围。 7、若不等式组841,x x x m +<-??>?的解集为3x >,求m 的取值范围。

8、如果不等式组237,635x a b b x a -的解在2x <-的范围内,求a 的取值范围。 11、已知关于x 的不等式组010x a x ->?? ->?,的整数解共有3个,求a 的取值范围。 12、已知关于x 的不等式组0321x a x -≥??-≥-?的整数解共有5个,求a 的取值范围。 13、若关于x 的不等式组2145,x x x a ->+??>?无解,求a 的取值范围。 14、设关于x 的不等式组22321 x m x m ->??-<-?无解,求m 的取值范围 15、若不等式组???<->a x a x 无解,那么不等式? ??<+>-11a x a x 有没有解?若有解,请求出不等式组的解集;若没有请说明理由?

列不等式经典练习题

祖π数学新人教七年级下册之高分速成 1 【题型1】列不等式用不等式表示: (1)x的2 3 与5的差小于1: ;(2)y的9倍与b的 1 3 的和是负数: . (3)x的1 7 与9的倒数的和大于y的15%:____________________________. (4)a的30%与a的和大于a的2倍与10的差:_____________________________. 【变式训练】 1.数学表达式:①-5<7;②3y-6>0;③a=6;④x-2x;⑤a≠2;⑥7y-6>5y+2中,是不等式的有( ) A.2个 B.3个 C.4个 D.5个 2.下面给出5个式子:①3x>5;②x+1;③1-2y≤0;④x-2≠0;⑤3x-2=0.其中是不等式的个数有( ) A.2个 B.3个 C.4个 D.5个 3.“数x不小于2”是指( ) A.x≤2 B.x≥2 C.x<2 D.x>2 4.用不等式表示 (1)x的2倍与5的差不大于1 ; (2)x的1 3 与x的 1 2 的和是非负数; (3)a与3的和不小于5 ; (4)a的20%与a的和大于a的3倍 . 5.用不等式表示 (1)a比6小__________; (2)x与1的和大于2___________; (3)a的2倍小于b__________; (4)m的相反数是正数___________; (5)x的4倍与7的差大于3___________; (6)a、b两数的平方和大于4__________; (7) m不大于-5 ; (8) x的4倍大于3 . 6.设“●”、“▲”表示两种不同的物体,现用天平称(如图),若用x、?y分别表示“●”、“▲”的重量,写出符合题意的不等式是_________.

必修5--基本不等式几种解题技巧及典型例题

均值不等式应用(技巧)技巧一:凑项 1、求y = 2x+ 1 x - 3 (x > 3)的最小值 2、已知x > 3 2 ,求y = 2 2x - 3 的最小值 3、已知x < 5 4 ,求函数y = 4x – 2 + 1 4x - 5 的最大值。 技巧二:凑系数 4、当0 < x < 4时,求y = x(8 - 2x)的最大值。 5、设0 < x < 3 2 时,求y = 4x(3 - 2x)的最大值,并求此时x的值。 6、已知0 < x < 1时,求y = 2x(1 - x) 的最大值。 7、设0 < x < 2 3 时,求y = x(2 - 3x) 的最大值 技巧三:分离 8、求y = x2 + 7x + 10 x + 1 (x > -1)的值域; 9、求y = x2 + 3x + 1 x (x > 0)

的值域 10、已知x > 2,求y = x2 - 3x + 6 x - 2 的最小值 11、已知a > b > c,求y = a - c a - b + a - c b - c 的最小值 12、已知x > -1,求y = x + 1 x2 + 5x + 8 的最大值 技巧四:应用最值定理取不到等号时利用函数单调性 13、求函数y = x2 + 5 x2 + 4 的值域。 14、若实数满足a + b = 2,则3a + 3b的最小值是。 15、若 + = 2,求1 x + 1 y 的最小值,并求x、y的值。 技巧六:整体代换 16、已知x > 0,y > 0,且1 x + 9 y = 1,求x + y的最小值。

17、若x、y∈R+且2x + y = 1,求1 x + 1 y 的最小值 18、已知a,b,x,y∈R+ 且a x + b y = 1,求x + y的最小值。 19、已知正实数x,y满足2x + y = 1,求1 x + 2 y 的最小值 20、已知正实数x,y,z满足x + y + z = 1,求1 x + 4 y + 9 z 的最小值 技巧七:取平方 21、已知x,y为正实数,且x2 + y2 2 = 1,求x 1 + y2的最大值。 22、已知x,y为正实数,3x + 2y = 10,求函数y = 3x + 2y的最值。 23、求函数y = 2x - 1 + 5 - 2x(1 2 < x < 5 2 )的最大值。 技巧八:已知条件既有和又有积,放缩后解不等式 24、已知a,b为正实数,2b + ab + a = 30,求函数y = 1 ab 的最小值。

高中基本不等式经典例题教案

全方位教学辅导教案

例1:(2)1 2,33 y x x x =+>-。 变式:已知5 4x < ,求函数14245 y x x =-+-的最大值 。 技巧二:凑系数 例1.当 时,求(82)y x x =-的最大值。 解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此 题为两个式子积的形式,但其和不是定值。注意到2(82)8x x +-=为定值,故只需将 (82)y x x =-凑上一个系数即可。 评注:本题无法直接运用均值不等式求解,但凑系数后可得到和为定值,从而可利用均值不等式求最大值。 变式:1、设2 3 0< -+的值域。 技巧四:换元 解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。 当 ,即t= 时,4 259y t t ≥? +=(当t=2即x =1时取“=”号)。 评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。即化为()(0,0)() A y mg x B A B g x =++>>,g(x)恒正或恒负的形式,然后运用均值不等式来求最值。 变式 (1)231 ,(0)x x y x x ++= > 技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函 数()a f x x x =+的单调性。 例:求函数22 5 4 x y x +=+的值域。 解:令24(2)x t t +=≥,则2 254 x y x +=+221 1 4(2)4 x t t t x =++ =+≥+ 因10,1t t t >?=,但1 t t =解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调 性。 因为1 y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数, 故52 y ≥。

七年级下册数学不等式与不等式组难题及答案

某公司在甲、乙两座仓库分别设有农用车12辆和6辆。现需要调往A县10辆,调往B县8辆。已知从甲仓库调运1辆农用车到A县和B县的运费分别为40元和80元;从乙仓库调运1辆农用车到A县和B县的运费分别为30元和50元。 (1)设从乙仓库调运A县农用车x辆,求总运费y关于x的函数关系式; (2)若要求总运费不超过900元,问一共有几种调运方案?(3)求出总运费最低的调运方案,最低运费是多少?

解:(1)从乙仓库调运A县农用车x辆,则调往B县的农用车有(6)辆,从而得出从甲仓库分别调往A县、B县的为(10)辆和(2)辆。 根据题意得: 3050(6)+40(10)+80(2) 整理得:20860 (2)∵y≤900,即20860≤900,x≤2,有0≤x≤6,∴0≤x ≤2,即x可取值0,1,2,因此共有3种方案。(3)由20860可知y随着x的增大而增大,∴当0时,运费最低。此时从乙仓库调运A县农用车0辆,调往B县的农用车有6辆,从甲仓库分别调往A县、B县的为10辆、2辆,最低运费是860元。 某软件公司开发出一种图书管理软件,前期投入的开发、广告宣传费用共50 000元,且每售出一套软件,软件公司还需支付安装调试费用200元. (1)总费用y(元)与销售套数x(套)之间的函数关系式是

(); (2)如果每套定价700元,软件公司至少要售出()套软件才能确保不亏本 (1)50000+200x;(2)100 某个体小服装准备在夏季来临前,购进甲、乙两种T恤,在夏季到来时进行销售,两种T恤的相关信息如下表: 根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题: (1)该店有哪几种进货方案? (2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季销售的过程中很快销售一空,该店决定再

不等式常见题型归纳和经典例题讲解

《不等式》常见题型归纳和经典例题讲解 1.常见题型分类(加粗体例题需要作答) 1.下列不等式中,是一元一次不等式的是( ) A.x 1 +1>2 B.x 2>9 C.2x +y ≤5 D.21 (x -3)<0 2.若51)2(12>--+m x m 是关于x 的一元一次不等式,则该不等式的解集为 . a 与6的和小于5; x 与2的差小于-1; 1.a ,b 两个实数在数轴上的对应点如图所示:用“<”或“>”号填空: a __________ b ; |a |__________|b |; a +b __________0 a - b __________0; a +b __________a -b ; ab __________a . 2.已知实数a 、b 在数轴上对应的点如图所示,则下列式子正确的是( ) A 、ab >0 B 、a b > C 、a -b >0 D 、a +b > 0 1.与2x <6不同解的不等式是( ) A.2x +1<7 B.4x <12 C.-4x >-12 D.-2x <-6 ): (这类试题在中考中很多见) 1.(2010湖北随州)解不等式组110334(1)1 x x +?-???--???-≥?? : 此类试题易错知识辨析

(1)解字母系数的不等式时要讨论字母系数的正、负情况. 如不等式ax b >(或ax b <)(0a ≠)的形式的解集: 当0a >时,b x a >(或b x a <) 当0a <时,b x a <(或b x a >) 当0a <时,b x a <(或b x a >) 4 若不等式(a +1)x >a +1的解集是x <1,则a 必满足( ). (A)a <0 (B)a >-1 (C)a <-1 (D)a <1 5 若m >5,试用m 表示出不等式(5-m )x >1-m 的解集______. 6.如果不等式(m -2)x >2-m 的解集是x <-1,则有( ) A.m >2 B.m <2 C.m =2 D.m ≠2 7.如果不等式(a -3)x <b 的解集是x < 3-a b ,那么a 的取值范围是________. 1.不等式3(x -2)≤x +4的非负整数解有几个.( ) A.4 B.5 C.6 D.无数个 2.不等式4x - 41141+

最新基本不等式经典例题(含知识点和例题详细解析)-(1)

基本不等式专题 知识点: 1. (1)若R b a ∈,,则ab b a 22 2 ≥+ (2)若R b a ∈,,则2 2 2b a ab +≤ (当且仅当 b a =时取“=”) 2. (1)若* ,R b a ∈,则ab b a ≥+2 (2)若* ,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=” ) (3)若* ,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则1 2x x + ≥ (当且仅当1x =时取“=” ) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2a b a b a b b a b a b a +≥+≥+≤即或 (当且仅当b a =时取“=” ) 5.若R b a ∈,,则2 )2(222b a b a +≤ +(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+ 1 2x 2 (2)y =x +1 x 解:(1)y =3x 2+ 1 2x 2 ≥23x 2· 1 2x 2 = 6 ∴值域为[ 6 ,+∞) (2)当x >0时,y =x +1 x ≥2 x ·1 x =2;

第课基本不等式经典例题练习附答案

第9课基本不等式 ◇考纲解读 ①了解基本不等式的证明过程. ②会用基本不等式解决简单的最大(小)值问题. ◇知识梳理 1.常用的基本不等式和重要的不等式 ①0,0,2≥≥∈a a R a 当且仅当,②22,______,2a b a b ab ∈+≥则 ③,_____a b ∈,则ab b a 2≥+,④222)2 (2b a b a +≤+ 2.最值定理:设,0,x y x y >+≥由 ①如积(xy P x y =+定值),则积有______②如积2(2S x y S x y += 定值),则积有______() 运用最值定理求最值的三要素: ________________________________________________ ◇基础训练 1.若1a b +=,恒有 () A .41 ≤ab B .41≥ab C .1622≤b a D .以上均不正确

2.当1 2x >时,821 y x x =+-的最小值为. 3.已知01x <<,则(12)y x x =-的最大值为. 4.实数,a b 满足22a b +=,则39a b +的最小值为. ◇典型例题 例1.求函数(5)(2)(1)1x x y x x ++= >-+的最小值. 例2.已知+∈R b a ,,且191,a b +=求a b +最小值. ◇能力提升 1.若+∈R b a ,,1)(=+-b a ab ,则b a +的最小值是() A .222+ B.25+ C.222- D.22 2.下列命题中正确的是() A .x x y 1+=的最小值是2 B .2 322++=x x y 的最小值是2 C .45 22++=x x y 的最小值是25D .x x y 432--=的最大值是342- 3.若+∈R b a ,满足3ab a b =++,则ab 的取值范围是________________. 4.若1x >时,不等式11x a x + ≥-恒成立,则实数a 的取值范围是____________. 5.若(4,1)x ∈-,求2221 x x x -+-的最大值.

初一数学不等式难题

1、如图l -2-1,直线AB ,CD 相交于点O ,OE ⊥AB 于点O ,OF 平分∠AOE ,∠ 1=15○30’,则下列结论中不正确的是( ) A .∠2 =45○ B .∠1=∠3 C .∠AO D 与∠1互为补角 D .∠1的余角等于75°30′ 2、如图l -2-14,已知B D ⊥AC ,EF ⊥AC ,D 、F 为垂足,G 是AB 上一点,且∠l=∠2.求证:∠ AGD=∠ABC . 3、如图l -2-17,把一张长方形纸条ABCD 沿EF 折叠,若∠EFG=54○,试求∠DEG 和∠BGD ′的大小. 4、关于x 的不等式组?????≤+≥+b x a a b x 23 223的解集为25≤≤-x ,求a 、b 的值

5、若不等式? ??>+<1-2m x 1m x 无解,则m 的取值范围是 . 6、关于x 的不等式组? ??>--≥-0125a x x 无解,求a 的取值范围 。 7、不等式组?? ?+>+<+1 159m x x x 的解集是x >2,则m 的取值范围是 8、若不等式组 的解集是空集,则a 、b 的大小关系是_______________。 9、一元一次不等式组的解集是 ( ) A .-2<x <3 B .-3<x <2 C .x <-3 D .x <2 10、如图1,在数轴上所表示的是哪一个不等式的解集( )

A.B.C.x+1≥-1 D.-2x>4 11、如果两个不等式的解集相同,那么这两个不等式叫做同解不等式。下列两个不等式是同解不等式的是) A.与B.与 C.与D.与 12、解下列不等式,并在数轴上表示。 ①、6x<7x-2 ②、 13、已知关于x、y的方程组。 (1)求这个方程组的解; (2)当m取何值时,这个方程组的解中,x大于1,y不小于-1。

高中数学不等式经典题型(精)

概念、方法、题型、易误点及应试技巧总结 不等式 一.不等式的性质: 1.同向不等式可以相加;异向不等式可以相减:若,a b c d >>, 则a c b d +>+(若,a b c d ><,则a c b d ->-),但异向不等式不可以相加;同向不等式不可以相减; 2.左右同正不等式:同向的不等式可以相乘,但不能相除;异向不等式可以相除,但不能相乘:若0,0a b c d >>>>,则ac bd >(若0,0a b c d >><<,则a b c d >); 3.左右同正不等式:两边可以同时乘方或开方:若0a b >>,则n n a b >或 > 4.若0ab >,a b >,则11a b <;若0ab <,a b >,则11 a b >。如 (1)对于实数c b a ,,中,给出下列命题: ①22,bc ac b a >>则若; ②b a bc ac >>则若,22; ③22,0b ab a b a >><<则若; ④b a b a 1 1,0<<<则若; ⑤b a a b b a ><<则若,0; ⑥b a b a ><<则若,0; ⑦b c b a c a b a c ->->>>则若,0; ⑧11 ,a b a b >>若,则0,0a b ><。 其中正确的命题是______ (答:②③⑥⑦⑧); (2)已知11x y -≤+≤,13x y ≤-≤,则3x y -的取值范围是______ (答:137x y ≤-≤); (3)已知c b a >>,且,0=++c b a 则a c 的取值范围是______ (答:12,2? ?-- ?? ?) 二.不等式大小比较的常用方法: 1.作差:作差后通过分解因式、配方等手段判断差的符号得出结果; 2.作商(常用于分数指数幂的代数式); 3.分析法; 4.平方法; 5.分子(或分母)有理化; 6.利用函数的单调性; 7.寻找中间量或放缩法 ; 8.图象法。其中比较法(作差、作商)是最基本的方法。如 (1)设0,10>≠>t a a 且,比较2 1 log log 21+t t a a 和的大小

基本不等式经典例题学生用

基本不等式 知识点: 1. (1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤ (当且仅当b a =时取“=”) 2. (1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+ (当且仅当b a =时取“=”) (3)若*,R b a ∈,则2 2?? ? ??+≤b a ab (当且仅当b a =时取“=” ) 3.若0x >,则1 2x x +≥ (当且仅当1x =时取“=”) 若0x <,则1 2x x +≤- (当且仅当1x =-时取“=”) 若0x ≠,则11 1 22-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+a b b a (当且仅当b a =时取“=”)若0ab ≠,则22-2 a b a b a b b a b a b a +≥+≥+≤即或 ( 当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(2 2 2b a b a +≤+(当且仅当b a =时取“=”) 注意: (1)当两个正数的积为定植时,可以求它们的和的最小值, 当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等” (3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用 应用一:求最值 例:求下列函数的值域 (1)y =3x 2+1 2x 2 (2)y =x +1 x 技巧一:凑项 例 已知5 4x <,求函数1 4245y x x =-+-的最大值。 技巧二:凑系数 例: 当时,求(82)y x x =-的最大值。 变式:设23 0<-+的值域。 技巧五:在应用最值定理求最值时,若遇等号取不到的情况,结合函数()a f x x x =+的单调性。 例:求函数224y x =+的值域。

相关文档
最新文档