聚合物改性重点复习题

聚合物改性重点复习题
聚合物改性重点复习题

1、解释聚合物共混物中的分散相分散状况表征的“均一性”与“分

散度”这两个术语,并说明它们之间的关系。

答:主要针对“海-岛结构”两相体系的形态。为了表征分散相分散状况,需要引入两个术语:均一性与分散度。

“均一性”是指分散相浓度的起伏大小,“分散度”则是指分散相颗粒的破碎情况。对于均一性,可采用数理统计的方法进行定量计算;分散度则以分散相平均粒径来表征。P10关系???

2、PVC/ABS 共混体系的制品较纯PVC和ABS制品具有哪些优越性?答: ABS为丙烯腈-丁二烯-苯乙烯共聚物,具有冲击性能较高、易于成型加工、手感良好以及易于电镀等特性。PVC则具有阻燃、耐腐蚀、价格低廉等特点。将PVC与ABS共混,可综合二者的优点。P53

3、怎样区分硬制PVC制品和软制PVC制品?在硬质PVC制品中添加

氯化聚乙烯(CPE)后,对制品的力学性能有什么影响?

答:P48

4、EPDM、CR、IIR、NR和SBR分别代表什么橡胶?

答:EPDM--三元乙丙橡胶;CR--氯丁橡胶;IIR--丁基橡胶;NR--天然橡胶;SBR--丁苯橡胶。P69

5、热固性树脂基纤维增强复合材料的成型方法主要有哪几种?

答:手糊成型、缠绕成型、喷射成型、拉挤成型、层压成型。P86 6、在聚合物共混物中,控制分散相粒径的方法有哪些?

答:P36

7、聚合物共混物的形态与哪些因素有关?

答:P15

8、简述共混物形态研究的染色法、刻蚀法及低温折断法三种制样方

法。

答:P9

9、PVC、CPE、MBS、NBR、SBS、TPU、ABS、EPDM、PC、PET、PPO、

POM、PPS、PES、PSF、PP、PE、BR、PMMA、CR分别代表什么聚合物?

答:练习二。PES--聚苯醚砜;PSF--聚砜;BR--1,2-聚丁二烯橡胶;PMMA--聚甲基丙烯酸甲酯;CR--氯丁橡胶。

10、简述在PP/PE共混体系中,PE使PP冲击性能得到提高的机理。答:P57

11、聚合物填充改性的主要填充剂品种有哪些?

答:P78

12、怎样区别结晶性聚合物和非结晶性聚合物?

答:P47

13、解释聚合物非弹性体增韧机理,并画出脆性塑料对韧性基体的增

韧机理图。

答:P31

14、写出共混物熔体粘度与剪切速率的关系式,并画出共混物熔体的

粘度与剪切速率的关系曲线的三种基本类型。

答:P23

15、PVC/ABS 共混体系的制品较纯PVC和纯ABS制品具有哪些优越

性?

答:同2

16、工业上应用最广的硅橡胶为甲基硅橡胶,简述它的制备原理,并

写出它的化学反应式

答:甲基硅橡胶由聚二甲基硅氧烷硫化得到的橡胶。具体自己查,反正我是没查到。

17、鉴于PE对烃类溶剂的阻隔性差,为提高PE的阻隔性,可采用

PE/PA共混的方法,简述其阻隔原理,并附图说明。

答:P59

18、互穿聚合物网络(IPN)可分为哪几种类型?请简述之。

答:P108

19、聚合物填充改性的目的是什么?

答:P78

20、有哪些方法可以对塑料进行增韧改性?

答:P25

21、在两相共混物体系中,由于分散相颗粒的粒径很小,具有很大的

比表面积。分散相颗粒的表面,亦可看作是两相的相界面。如此量值巨大的相界面,可以产生哪几种效应?简述这几种效应。答:P13

高分子聚合物改性概述

高分子聚合物改性概述 1概述 高分子聚合物作为20世纪发展起来的新材料,因其综合性能优越、成形工艺相对简便以及应用领域极其广泛,因而获得了较为快速的发展。 然而.高分子材料又有诸多需要克服的缺点。以塑料为例,有许多塑科品种性脆而不耐冲击,有些耐热性差而不能在高温下使用。还有一些新开发的耐高温聚合物又因为加工流动性差而难以成形。再以橡胶为例,提高强度、改善耐老化性能、改善耐油性等都是人们关注的问题,诸如此类的同题都要求对聚合物进行改性。用以强化或展现聚合物某些或某一特定性能为目标的工艺方法.通称为聚合物改性(poly-mermodification)。可以说,聚合物科学与工程这门学科就是在不断对聚合钧进行改性中发展起来的。聚合物改性使聚合物材料的性能大幅度提高,或者被赋予新的功能,进一步拓克了高分子聚合物的应用领域.大大提高了聚合物的工业应用价值。 聚合物的改性方法多种多样,总体上可划分为共混改性、填充改性及纤维增强复合改性、化学改性、表面改性及其他方法改性。 聚合物改性的目标如下。

1)功能性使某一聚合物具有特定的功能性,而成为功能高分子材料,如磁性高分子、导电高分子、含能高分子、医用高分子、高分子分离膜等。 2)高性能使聚合物的力学性能.如拉伸强度、弹性模量、抗蠕变、硬度和韧性等,获得全面或大部分提高。 3)耐久性使聚合物的某些性能,如耐热性、耐寒性、耐油性、耐药溶剂性、耐应力开裂性、耐气候性等,得到持久的提高或改善。而成为特种高分子材料。 4)加工性许多高性能聚合物,因其熔融温度高,熔体流动性差,难以成形加工,采用改性技术,可成功地解决这一难题。 5)经济性在不影响使用性能的前题下,采用较低廉的有机材料或无机材料,与聚合物共混或填充改性,可降低材料成本,增强产品竞争能力;另外采用共混或填充改性手段,还可提高某些一般聚合物的工程特性.如采用聚烯烃与PA、ABS、PC等共混,或玻璃纤维填充PA、PP、PC等就是典型的范例。 2共混改性 聚合物的共混改性的产生与发展,与冶金工业的发展颇有相似之处。尽管已经合成的裹台物达到了数千种之多,但能够有工业应用价值的只有几百种,而能够大规模工业生产的以及广泛应用的只有

聚合物改性考试考试试题题

名称解释 20分 物共混改性: 是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 转: 聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形错、互锁的共连续形态结构,使共混物的力学性能提高。 性塑料: 热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 作用: 使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连情况的不同而表现为多种形式。 互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结层状结构和互锁结构。 贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST相图。15分 分为热力学相容性和工艺相容性两类。 学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 略 界面层的结构组成和独立相区的区别 10分 ①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; 面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; 面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳界面粘结强度不利。 以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 . 通过共聚改变某聚合物的极性; . 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; . 在某聚合物上引入特殊作用基团;加入第三组分进行增容; . 两相之间产生部分交联,形成物理或化学缠结; . 形成互穿网络结构(IPN); . 改变加工工艺,施加强烈的力剪切作用。 一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善了共混物的形态能。 :机理:PP-g-MAH中的酸酐基团可能一部分与TPU中羟基反应,另一部分是与N-H基团发生氢键作用,从而有效降低了表面张力,提高了表面粘结力。 聚合物共混物的制备方法有那些?各有什么特点?10分 . 物理共混法,简单机械共混技术简单的机械共混技术也称为单纯共混技术,它是在共混过程中,直接将两种聚合物进行混合制得聚合物混合材料。又

各种聚合物改性剂介绍

我国从上世纪80 年代开始探索道路改性沥青。目前,所使用的改性沥青多为 聚合物改性沥青,改性剂主要有热塑性橡胶类苯乙烯丁二烯嵌段共聚物(SBS)、橡 胶类丁苯橡胶(SBR)、热塑性树脂类聚乙烯(PE)与乙烯-醋酸乙烯共聚物(EV A) 及 废旧橡胶粉等。 SBS 改性沥青以优良的高、低温性能和回弹性能,应用最为普遍,但改性成 本也较高,一般只应用于高等级公路建设,限制了其应用范围。同时,由于SBS 改性沥青是通过搅拌、剪切等物理方法将SBS 分散于沥青中,SBS 与沥青之间并未发生明显的化学反应,仅仅是物理意义上的混溶,而SBS 与沥青之间的密度、 极性、分子量以及溶解度等参数的性质的差异又较大,使得绝大部分SBS 与沥青 热力学不相容,高温储存容易分层变质。需要对其进一步改性以提高相容性和储 存稳定性,这无疑又增加了工艺的复杂性。 SBR 能够改善沥青的高、低温性能,并以其较为突出的低温延展性在寒区公 路应用最为广泛。而利用废旧橡胶粉改性沥青还可以减少固体废弃物的污染,有 利于环境保护和资源节约型社会的建设。 改性沥青用PE 一般是指低密度聚乙烯和线型低密度聚乙烯,其改性沥青具有良好的高温稳定性,而且价格低廉,尤其是利用回收废旧塑料(农用地膜、食品袋等) 改性沥青不仅利于环保,减少“白色污染”,而且具有良好的社会效益和经济 效益。但PE 改性沥青的储存稳定性差,需要现配现用,并需要使用昂贵的大型细化分散设备将其送至施工现场,这就造成使用不便并增加额外投入,影响到聚乙 烯改性沥青的推广应用。 EV A 和沥青的溶解度参数非常接近,与沥青具有良好的相容性,能有效地改 善沥青的高温性能,在改善沥青低温性能方面优于PE。 在聚合物改性沥青中,改性剂如热塑性橡胶类SBS、橡胶类SBR、热塑性树 脂类PE、EV A 等都是石油化工产品,随着石油资源的逐渐耗尽,油价不断上涨,势必使得聚合物改性沥青的价格不断上涨,路面造价不断提高。因此,为降低工 程造价,寻找价格相对较低、改性效果较好的新型改性剂成为目前改性沥青的重 要研究方向。 相对于成本较高、改性工艺较为复杂的聚合物改性沥青,酸改性沥青具有价 格低廉、加工简单、沥青性能改善明显等优点,有着良好的应用前景。 酸改性方法在美国路易斯安娜州已经用了20 年左右来生产AC-30 和AC-40 沥青。在1992-1993 年,酸改性和酸加聚合物改性沥青在整个美国开始使用。美 国AMAP 在2004-2005 曾对改性沥青做过一项调查,其调查选项是多选,调查 结果显示:SBS 改性的为67%,SB 改性的为48%,SBR 胶乳改性的为39%,其他聚合物改性的为3%,化学改性的(含酸改性)为12%,18%是其他改性。而 其在2005-2006 的调查结果为:SBS 改性的为80%,SB 改性的为45%,SBR 胶乳改性的为45%,其他聚合物(EV A 等)改性的为19%,化学改性的为12%,酸2我国从上世纪80 年代开始探索道路改性沥青。目前,所使用的改性沥青多为 聚合物改性沥青,改性剂主要有热塑性橡胶类苯乙烯丁二烯嵌段共聚物(SBS)、橡 1改性的为16%,16%是其他改性。 在2004-2005的调查中,化学改性与酸改性是放在一起统计的,而在2005-2006 的调查中,化学改性与酸改性被分开统计,酸改性的比例增加为16%。由此可见,酸改性在美国沥青改性中的使用比例在逐渐提高。

聚合物共混改性-a(答案)知识讲解

聚合物共混改性2007-A(答案)

四川大学期考试试题(闭卷)A (2006 ——2007学年第 2 学期) 课程号:30004720 课序号:课程名称:聚合物共混改性原理任课教师:成绩: 适用专业年级: 2004级学生人数:印题份数:学号:姓名:

5、根据下图分析啮合型同向旋转双螺杆挤出机可分为哪几个工作区段?各段的作用是什么? 答:1、固体输送区。作用:(1)输送物料;(2)将松散的粉状物料压实或提高粒状物料在螺杆中的充满度,以促进物料在下一区的熔融塑化。(2分) 2、熔融和混合。物料经输送区受到一定的压缩后开始熔融,并发生混合。(2分) 3、混合区(第二混合段)。将组分尺寸进一步细化与均化;侧加料,加入添加剂等。(2分) 4、脱挥、排气。完全熔融状态的物料经压缩后突然减压,可挥发性物料在真空条 件下迅速挥发,脱离熔体。(2分) 5、熔体输送、增压挤出。物料必须建立起一定的压力,使模口处物料有一定的致 密度,一般来说,在此区,物料可进一步混合,主要功能是输送与增压。(2分) 6、简述影响聚合物共混物形变的因素。(10分) 答:1、基体性质。聚合物共混物屈服形变时,银纹和剪切形变两种成分的比例在很大程度上取决于连续相基体的性质。一般而言,连续相的韧性越大,则剪切成分所占的比例越大。(2分) 2、应力的影响。a. 应力大小(1分):形变中银纹成分的比例随应力和形变速率 的增加而增加;b. 形变速率(1分):增加形变速率会使银纹成分的比例提高;c. 应力性质的影响(1分):由于银纹化伴随着体积的增加,所以压应力抑制银纹,张应力则促进银纹的生成。 3、大分子取向的影响。大分子取向常常减小银纹成分的比例。例如橡胶增韧塑 料,拉伸时基体大分子取向,橡胶颗粒会变成椭球状,结果应力集中因子减小。取向的结果使剪切成分的比例增加而银纹化成分的比例下降。(2分)

聚合物共混知识点总结

1.聚合物共混:共混改性包括物理共混、化学共混和物理/化学共混三大类型。其中,物理共混就是通常意义上的“混合”。如果把聚合物共混的涵义限定在物理共混的畴之,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。 2.分布混合,又称分配混合。是混合体系在应变作用下置换流动单元位置而实现的。 3.分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。 4.总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 5.分散度则是指分散相颗粒的破碎程度。对于总体均匀性,则采用数理统计的方法进行定量表征。分散度则以分散相平均粒径来表征。 6.分散相的平衡粒径:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 7.高分子合金:(塑料合金)指含多种组分的聚合物均相或多相体系,常具有较高的力学性能,作工程塑料。 8.熔融共混:将聚合物组分加热到熔融状态后进行共混(应用广泛)。采用的设备-----密炼机、开炼机、挤出机等。本方法最具有工业价值。 9.溶液共混:将聚合物组分溶于溶剂后,进行共混。本方法主要用于基础研究领域 10.乳液共混:将不同聚合物乳液共混方法。本法可用于橡胶共混改性中;以乳液应用的产品可乳液共混改性等。 11.分散度:反映分散相物料的破碎程度;

(分散相的平均粒径和分布表征) 12.均一性:反映分散相分散的均匀程度 (分散相浓度起伏大小,用统计法) 13.相界面:连续相与分散相之间的交界面。 (界面结合好坏对共混物性能有重大影响) 14. 所谓聚合物之间的相容性(Miscibility),从热力学角度而言,是指在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系,即在平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。 15. 直接观测 16. 间接观测 17.界面自由能:两相体系中两组分之间具有界面自由能,直接影响共混过程. 18.界面力 19. 简答 1.简述影响热力学相容性的因素。 答:1.大分子间的相互作用 2.相对分子质量 3.共混组分的配比 4.温度

聚合物改性总结

零、绪论 聚合物改性的定义:通过物理和机械方法在高分子聚合物中加入无机或有机物质,或将不同类高分子聚合物共混,或用化学方法实现高聚物的共聚、接枝、嵌段、交联,或将上述方法联用,以达到使材料的成本下降,成型加工性能或最终使用性能得到改善,或使材料仅在表面以及电、磁、光、热、声、燃烧等方面赋予独特功能等效果,统称为聚合物改性。 聚合物改性的目的: 所谓的聚合物改性,突出在一个改字。改就是要扬长补短,要发扬和保留聚合物原有的优势,抑制和克服聚合物原有的缺点,并根据实际需要赋予聚合物新的性能。 聚合物改性的三个主要目的: ①克服聚合物原有的缺点,赋予聚合物某些高新的性能与功能 ②改善聚合物的加工工艺性能 ③降低材料的生产成本 总之,聚合物改性就是要在聚合物的使用性能、加工性能与生产成本三者之间寻求一个最佳的平衡点。 聚合物改性的意义: 1.新品种的开发越来越困难(已开发的品种数以万计,工业化的三百余种。资源限制、开发费用、环境污染) 2.使用性能的多样化、复杂化,要求材料有多种性能及功能,单一聚合物难以实现。 3.聚合物改性科学应运而生——获取新性能聚合物的简洁而有效的方法。 聚合物改性的主要方法: 共混改性;填充改性;纤维增强复合材料;化学改性;表面改性 聚合物改性发展概况 几个重要的里程碑事件: 1942年,采用机械熔融共混法将NBR掺和于PVC之中,制成了分散均匀的共混物。这是第一个实现了工业化生产的聚合物共混物。 1948年,HIPS 1948年,机械共混法ABS问世,聚合物共混工艺获得重大进展。 二者可称为高分子合金系统研究开发的起点。 1942年,制成了苯乙烯和丁二烯的互穿聚合物网络(IPN),商品名为“Styralloy”,首先使用了聚合物合金这一名称。1960年,建立了IPN的概念,开始了一类新型聚合物共混物的发展。IPN已成为共混与复合领域一个独立的重要分支。 1965年,Kato研究成功OsO4电镜染色技术,使得可用透射电镜直接观察到共混物的形态,这一实验技术大大促进了聚合物改性科学理论和实践的发展,堪称聚合物发展史上重要的里程碑。1965年,热塑弹性体SBS、SIS问世,并用相畴(domain)理论加以解释。制得了在室温下具有橡胶的高弹性,塑料加工温度下可进行加工的新型材料,聚合物改性理论也获得重要进展。 一、共混 1.共混改性:①化学共混、物理共混、物理化学共混 物理共混(blend)就是通常意义上的“混合”,简单的机械共混; 物理/化学共混(就是通常所称的反应共混)是在物理共混的过程中兼有化学反应,可附属于物理共混; 化学共混则包括了接枝、嵌段共聚及聚合物互穿网络(IPN)等,已超出通常意义上的“混合”的范畴,而应列入聚合物化学改性的领域了。 ②根据物料形态分类:熔融共混、溶液共混、乳液共混 熔融共混是将聚合物组分加热到熔融状态后进行共混。优点:①原料准备操作简单。②熔融时,扩散对流作用激化,强剪切分散作用,相畴较小。③强剪切及热的作用下,产生一定数量的接枝或嵌段共聚物,促进体系相容性。 溶液共混是将聚合物组分溶于溶剂后,进行共混。 乳液共混是将两种或两种以上的聚合物乳液进行共混的方法。

聚合物共混改性-作业题答案

1. 聚合物共混改性的主要目的有哪些? 物性(谋求新的功能提高性能):功能化、高性能化、耐久性 成型加工性:流动性、收缩性、离型性、尺寸稳定性、结晶性、结晶速度、热熔融强度等 经济性:增量、代用、省资源、循环利用等 2. 聚合物共混改性的主要方法有哪些? 物理共混:是指两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀的新材料的过程。 化学共混:聚合物的化学共混改性是通过聚合物的化学反应,改变大分子链上的原子或原子团的种类及其结合方式的一类共混改性方法。 物理/化学共混:是在物理共混的过程中发生某些化学反应 3. 简述混合的基本方式及其特点。 基本方式:分配混合(分布混合、层流混合)、分散混合 特点:在混合中仅增加粒子在混合物中分布均匀性而不减小粒子初始尺寸的过程,称为分配混合。 分布混合:只改变分散相的空间分布状况,增加分散相分布的随机性。分散相物料主要通过对流作用来实现;层流混合:是分布混合的一种特定形式,其理论基于一种假设,即在层流混合的过程中,层与层之间不发生扩散。分散混合:在混合过程中发生粒子尺寸减小到极限值,同时增加相界面和提高混合物组分均匀性的混合过程。 4. 试述聚合物共混物的形态及特点。 海-岛结构:是一种两相体系,一相为连续相,另一相为分散相,分散相分散在连续相中,亦即单相连续体系。 海-海结构:也是一种二相体系,但两相皆为连续相,相互贯穿,亦即两相连续体系。 两相互锁或交错结构:也是一种二相体系,这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。 梯度结构:为二相体系,特殊的共连续体系(两相连续体系)其组成在空间上互为增减。 阶跃结构:为二相体系,特殊的共连续体系(两相连续体系),在极小过渡区域内,其组成在空间上互为增减。 单相连续体系:海-岛结构、两相互锁或交错结构 共连续体系:海-海结构、梯度结构、阶跃结构 5. 影响熔融共混的主要因素有哪些? (1)聚合物两相体系的熔体黏度(比值)及熔体弹性。(2)聚合物两相体系的界面张力。(3)聚合物两相体系的组分含量以及物料的初始状态。(4)流动场形式和强度。(5)共混时间。 1. 试述聚合物共混的概念。 聚合物共混是指将两种或两种以上聚合物材料、无机材料以及助剂在一定温度下进行机械掺混,最终形成一种宏观上均匀,而且力学、热学、光学、电学及其他性能得到改善的新材料的过程,这种混合过程称为聚合物的共混改性,所得到的新的共混产物称为聚合物共混物,简称共混物。 2. 共混物的形态学要素有哪些? 分散相和连续相、分散相的分散状况、两相体系的形貌、相界面 3. 简述分散相颗粒分散过程的两种主要机理。 液滴分裂机理:分散相的大粒子,分裂成两个较小的粒子,然后,较小的粒子在进一步分裂,这一过程不断重复,直至平衡。细流线破裂机理:分散相的大粒子,在拉伸应力下变形为细流线,细流线再在瞬间破裂成细小的粒子。 4. 依据“液滴模型”,讨论影响分散相变形的因素。 Weber数:We很小时,σ占据主导作用,形成稳定的液滴。“液滴模型”认为,对于特定的体系和在一定条件下,We可以有特定的Wecrit,当We < Wecrit,液滴稳定;We>Wecrit,液滴会变得不稳定,进而破裂。 γ γ :↑→We ↑→D ↑。

聚合物共混改性考试试题及答案

聚合物共混改性考试试卷 一、名称解释 20分 聚合物共混改性: 答:是以聚合物(聚合物或者共聚物)为改性剂,加入到被改性的聚合物材料(合成树脂,又叫基体树脂)中,采用合适的加工成型工艺,使两者充分混合,从而制得具有新颖结构特征和新颖性能的改性聚合物材料的改性技术。 相逆转: 答:聚合物共混物可在一定的组成范围内发生相的逆转,原来是分散相的组分变成连续相,而原来是连续相的组分变成分散相。在相逆转的组成范围内,常可形成两相交错、互锁的共连续形态结构,使共混物的力学性能提高。 热塑性塑料: 答:热塑性塑料是指加热后软化、可塑,冷却后硬化,再次加热可熔融软化,固化成型,具有反复可加工成型的特点。 增容作用: 答:使聚合物之间易于相互分散,能够得到宏观均匀的共混体系。改善聚合物之间相界面的性能,增加两相间的粘合力,使P-P共混物具有长期稳定的性能。 二、聚合物共混物的形态结构及特点 10分 答:单相连续结构:构成聚合物共混物的两个相或者多个相中只有一个相连续,其他的相分散于连续相中。单相连续结构又因分散相相畴的形状、大小以及与连续相结合情况的不同而表现为多种形式。 两相互锁或交错结构:这种结构中没有一相形成贯穿整个试样的连续相,而且两相相互交错形成层状排列,难以区分连续相和分散相。有时也称为两相共连续结构,包括层状结构和互锁结构。 相互贯穿的两相连续结构:共混物中两种组分均构成连续相,互穿网络聚合物(IPNs)是两相连续结构的典型例子。 三、聚合物共混物相容性分哪两类?各自的定义是什么?画出聚合物共混物的UCST、LCST 相图。15分 答:分为热力学相容性和工艺相容性两类。 热力学相容性是指相互混合的组分以任意比混合,都能形成均相体系,这种相容性叫热力学相容性。 工艺相容性是指对于一些热力学相容性不太好的共混高聚物,经适当加工工艺,形成结构和性能稳定的共混高聚物,则称之为工艺相容性。 相图略 四、界面层的结构组成和独立相区的区别 10分 答:①界面层内两种分子链的分布是不均匀的,从相区内到界面形成一浓度梯度; ②界面层内分子链比各自相区内排列松散,因而密度稍低于两相聚合物的平均密度; ③界面层内往往易聚集更多的表面活性剂及其他添加剂等杂质,分子量较低的聚合物分子也易向界面层迁移。这种表面活性剂等低分子量物越多,界面层越稳定,但对界面粘结强度不利。 五、以PC/PP共混体系为例,举例说明哪些手段可以用来加强体系的相容性?10分 答:1. 通过共聚改变某聚合物的极性; 2. 通过化学改性的方法,在一组分或两组分上引入极性基团或反应基团; 3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容;

各类高分子聚合物的缩写

PA 聚酰胺(尼龙) PA-1010 聚癸二酸癸二胺(尼龙1010) PA-11 聚十一酰胺(尼龙11) PA-12 聚十二酰胺(尼龙12) PA-6 聚己内酰胺(尼龙6) PA-610 聚癸二酰乙二胺(尼龙610) PA-612 聚十二烷二酰乙二胺(尼龙612) PA-66 聚己二酸己二胺(尼龙66) PA-8 聚辛酰胺(尼龙8) PA-9 聚9-氨基壬酸(尼龙9) PAA 聚丙烯酸 PAAS 水质稳定剂 PABM 聚氨基双马来酰亚胺 PAC 聚氯化铝 PAEK 聚芳基醚酮 PAI 聚酰胺-酰亚胺 PAM 聚丙烯酰胺 PAMBA 抗血纤溶芳酸 PAMS 聚α-甲基苯乙烯 PAN 聚丙烯腈 PAP 对氨基苯酚 PAPA 聚壬二酐

PAPI 多亚甲基多苯基异氰酸酯 PAR 聚芳酰胺 PAR 聚芳酯(双酚A型) PAS 聚芳砜(聚芳基硫醚) PB 聚丁二烯-[1,3] PBAN 聚(丁二烯-丙烯腈) PBI 聚苯并咪唑 PBMA 聚甲基丙烯酸正丁酯 PBN 聚萘二酸丁醇酯 PBR 丙烯-丁二烯橡胶 PBS 聚(丁二烯-苯乙烯) PBS 聚(丁二烯-苯乙烯) PBT 聚对苯二甲酸丁二酯 PC 聚碳酸酯 PC/ABS 聚碳酸酯/ABS树脂共混合金 PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金PCD 聚羰二酰亚胺 PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯) PCE 四氯乙烯 PCMX 对氯间二甲酚 PCT 聚对苯二甲酸环己烷对二甲醇酯 PCT 聚己内酰胺

PCTEE 聚三氟氯乙烯 PD 二羟基聚醚 PDAIP 聚间苯二甲酸二烯丙酯PDAP 聚对苯二甲酸二烯丙酯PDMS 聚二甲基硅氧烷 PE 聚乙烯 PEA 聚丙烯酸酯 PEAM 苯乙烯型聚乙烯均相离子交换膜PEC 氯化聚乙烯 PECM 苯乙烯型聚乙烯均相阳离子交换膜PEE 聚醚酯纤维 PEEK 聚醚醚酮 PEG 聚乙二醇 PEHA 五乙撑六胺 PEN 聚萘二酸乙二醇酯 PEO 聚环氧乙烷 PEOK 聚氧化乙烯 PEP 对-乙基苯酚聚全氟乙丙烯薄膜PES 聚苯醚砜 PET 聚对苯二甲酸乙二酯 PETE 涤纶长丝 PETP 聚对苯二甲酸乙二醇酯

聚合物共混改性原理及应用

聚合物共混改性原理及应用 ``````` 4057 一.名词解释(每题5分,共20分) 1.聚合物共混 答:共混改性包括物理共混、化学共混和物理/化学共混三大类型。其中,物理共混就是通常意义上的“混合”。如果把聚合物共混的涵义限定在物理共混的范畴之内,则聚合物共混是指两种或两种以上聚合物经混合制成宏观均匀物质的过程。 2.分布混合和分散混合 答:分布混合,又称分配混合。是混合体系在应变作用下置换流动单元位置而实现的。分散混合是指既增加分散相空间分布的随机性,又减少分散相粒径,改变分散相粒径分布的工程。 分布混合和分散混合在实际的共混工程中是共生共存的,分布混合和分散混合的驱动力都是外界施加的作用力。 3.总体均匀性和分散度 答:总体均匀性是指分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。分散度则是指分散相颗粒的破碎程度。对

于总体均匀性,则采用数理统计的方法进行定量表征。分散度则以分散相平均粒径来表征。 4.分散相的平衡粒径 答:在分散混合中,由于分散相大粒子更容易破碎,所以共混过程是分散相粒径自动均化的过程,这一自动均化的过程的结果,是使分散相例子达到一个最终的粒径。即“平衡粒径”。 二.选择题(每题分,共15分) 1.热力学相容条件是混合过程的吉布斯自由能( A ) A.小于零 B 大于零 C 等于零 D 不确定 2.共混物形态的三种基本类型不包括( D ) 3. A.均相体系 4. B 海-岛结构 5.C 海--海结构 6. D 共混体系 3.影响熔融共混过程的因素不包括(B )

A 聚合物两相体系的熔体黏度 B 聚合物两相体系的表面张力 C 聚合物两相体系的界面张力 D 流动场的形式和强度 4.共混物形态研究的主要内容不包括( D ) A 连续相和分散相祖分的确定 B 两相体系的形貌 C 相界面 D 分散相的物理性能 5.熔体黏度调节的方法不包括(B) A 温度 B 时间 C 剪切应力 D 用助剂调节 6.聚合物共混物的使用性能影响要素不包括( A ) A 结晶时间 B 结晶温度 C 结晶速度

聚合物共混改性

1.高分子的来源是来自天然高分子、半天然高分子、以及合成高分子。而其中天然高分子是自然界存在的高分子 2.共混方法:物理方法:机械混合溶液混合胶乳混合粉末混合 化学方法:接枝共聚(组分间有化学反应)嵌段共聚(组分间有化学应) 互穿网络(组分间没有化学反应)渐变处理(组分间没有化学反应) 3.高分子材料共混技术进展 相容剂技术(见离聚体进展报告) 互穿聚合物网络技术(见第五章内容) 动态硫化技术(见第三章) 反应挤出成型技术 形态结构研究 增韧机理研究 4.反应挤出成型技术特点: 可连续且小批量的生产; 投资少; 不使用溶剂,节省能源和减少公害; 对制品和原料有较大选择余地; 可方便地进行混炼、聚合等操作,简化脱挥发物、造粒和成型加工等过程,并可使其一体化; 在控制化学结构的同时还可控制微相等物理结构,以制备具有良好性能的新物质。 5.弹性体增韧理论 a 多重银纹理论 Mertz等人首次提出了聚合物的增韧理论。该理论认为,作增韧体的部分橡胶粒子会横跨在材料变形所产生的很多微细的裂缝上,阻止其迅速发展,而橡胶在变形过程中消耗了能量,从而提高了材料的韧性。此理论的主要弱点是注意了橡胶而忽视了母体。后来Newman等人计算了拉伸断裂过程中橡胶断裂所耗散的能量仅占总能量的10%,这说明该理论并未真正揭示橡胶增韧的本质原因。 Bucknall等人发展了Mertz等人的微缝理论,提出了多重银纹理论。该理论认为,在橡胶增韧塑料体系中,橡胶相颗粒起了应力集中的作用。当材料受到冲击时,它能引发大量的银纹,但由于大量银纹之间的应力场的相互干扰并且如果生产着的银纹前峰处的应力集中低于临界值或银纹遇到另一橡胶颗粒时,则银纹就会终止,橡胶相粒子不仅能引发银纹而且能控制银纹。材料受到冲击时产生的大量银纹可吸收大量的冲击能量,从而保护了材料不受破坏 6.弹性体增韧和非弹性体增韧两种理论比较 a 增韧剂种类不同:前者是橡胶或热塑性弹性材料,模量低、易于挠曲、流动性差;后者是脆性塑料或刚性无机粒子,模量高,几乎不发生塑性形变,流动性好。 b 增韧对象不同:前者可增韧脆性或韧性材料;后者则要求基体本身有—定韧性。 c 增韧剂含量变化的效果不同:前者随加入量的增加韧性一直增加;后者有一合适的增韧范围,超过这一范围后无增韧效果。 d 复合体系性质不同:前者在提高材料韧性的同时,材料的模量、强度和热变形温度等大幅度降低;后者则在提高材料韧性的同时,提高材料的模量、强度和热变形温度,不过,前者对基体韧性提高幅度大;后者则通常不能大幅度提高韧性。

聚合物共混改性(小字)

1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定:如果一种共混物具有类似于均相材料所具有的性能,该共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准.如果两种聚合物共混后, 形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系. 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 P17— 18 , 一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5答:a. 调控共混温度,改变剪 ,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达,使We 值增大,进而使液滴(分散相)的形变增大; σ下降,使We 值增大,进而使液滴的形变增大; 的影响; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 答:①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 10、简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数 内聚能密度 2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043 .0m V K δφσ =;表面张力随溶解度参数的增大而增大。 11、简述共混体系界面张力、界面层厚度与相容性的关系 答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。 13、试述影响共混体系熔融流变性能的因素 答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 16、表面处理作用机理 答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。 答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等. 18、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高 温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。 1.试述聚合物共混改性的目的:获得预期性能的共混物。 2.试述共混改性的方法:1.熔融共混;2.溶液共混; 3.乳液共混; 4.釜内共混。 1、共混物形态的三种基本类型(1)均相体系 (2)两相体系①海—岛结构 ②海—海结构 答:其一是均相体系;其二被称为“海-岛结构”,这是一种两相体系,且一相为连续相,一相为分散相,分散相分散在连续相中,就好像海岛分散在大海中一样;其三被称为“海-海结构”,也是两相体系,但两相皆为连续相,相互贯穿。 2.均相体系的判定:如果一种共混物具有类似于均相材料所具有的性能,该共混物就可以认为是具有均相结构的共混物.在大多数情况下,可以用玻璃化转变温度(Tg)作为判定的标准 .如果两种聚合物共混后,形成的共混物具有单一的Tg,则就可以认为该共混物为均相体系。 3、简述分布混合与分散混合的概念 分布混合:又称分配混合,是混合体系在应变作用下置换流动单元位置而实现的. 分散混合:既增加分散相空间分布的随机性,又减小分散相粒径,改变分散相粒径分布过程. 4 P17—18 ,一个分散相大粒子(大液滴)分裂成两个较小较小的粒子再进一步分裂。展示的分散过程是逐步进行的重复破裂过程。 (大液滴)先变为细流线,细流线再在瞬间破裂成细小的粒。其展示的分散过程是在瞬间完成的。 5、影响共混过程的5 答:a. 调控共混温度,改变剪,使We 值增大,进而使形变增大; ,使We 值增大,易于变形.液滴的变形到达,使We 值增大,进而使液滴(分散相)的形变增大; σ下降,使We 值增大,进而使液滴的形变增大; 的影响; ⑥熔体弹性; ⑦液滴破碎的判据:τ(19λ+16)/16(λ+1) > σ/R ,式中τ为剪切应力. ⑧流动场形式的影响 (2)双小球模型: ①剪切应力、分散相内力:增大剪切应力或降低分散相内力有利于分散相颗粒的破碎分散; ②粒径大的分散相颗粒易破碎分散,发生分散相粒径的自动均化过程; ③在分散相的破碎分散过程中,分散相颗粒会发生伸长变形和转动.当伸长变形的分散相颗粒转动到剪切应力平行的方向时,就难以进一步破碎了。 7、采用哪些方法,可以对聚合物熔体黏度进行调控 P35—37 答:①调节共混温度; ②调节剪切应力; ③用助剂进行调节; ④改变相对分子质量. 8、简述总体均匀性与分散度概念 总体均匀性:分散相颗粒在连续相中分布的均匀性,即分散相浓度的起伏大小。 分散度:分散相颗粒的破碎程度;用分散相平均粒径表征。 9、简述影响分散相粒径的因素 P54 答:熔体黏度与组分配比是影响分散相粒径的重要因素;共混过程中共混体系所受到的外力作用(通常是剪切应力),对分散相粒径也有重要影响;两相之间界面张力对分散相物料的分散过程产生影响,进而影响分散相粒径。 10、简述聚合物表面张力的影响因素 (1)温度 表面张力的本质是分子间相互作用。由于分子间力随温度升高而下降,且与温度呈线性关系。聚合物的表面张力也随温度升高而下降,且与温度呈线性关系。 (2)聚合物物态 结晶性聚合物发生结晶或熔融时,密度发生变化。根据Macled 方程,密度变化会引起表面张力变化,密度增大,表面张力也增大;因而,结晶性聚合物发生相变时,表面张力会发生相应的变化。结晶体的密度高于熔体的密度,相应的,结晶体的表面张力高于熔体的表面张力。这种变化,会使表面张力与温度的线性关系受到影响。 (3)相对分子质量 ;分子量大,表面张力也大。 (4)内聚能密度及溶解度参数 内聚能密度 2i ii C δ=;表面张力和内聚能密度都与分子间相互作用有关,两者彼此有关联; 溶解度参数 14.043.0m V K δφσ=;表面张力随溶解度参数的增大而增大。 11、简述共混体系界面张力、界面层厚度与相容性的关系 答:溶解度参数接近的体系,或者B 参数较小的体系,相容性相应的较好,界面张力较低,界面层厚度也较厚。 12、共混体系的相容剂有哪些类型? 两类,非反应性共聚物,反应性共聚物。 13、试述影响共混体系熔融流变性能的因素 答:因素主要有:剪切速率、温度、粘弹性、共混物组分含量、第三组分(调节剂)。 答:(1)玻璃纤维的直径的影响:用于PA 增强的玻璃纤维直径在10—20μm 左右; (2)玻纤长度的影响;(3)玻璃纤维表面处理的影响;(4)玻纤含量的影响 16、表面处理作用机理 答:(1)提高碳纤维的表面能(实质是提高碳纤维表面的含氧量),减少纤维与基体、树脂表面能之差值,以达到改善基体与纤维间的浸润性,实现纤维与基体间的有关粘结; (2)通过一定处理后,可在碳纤维表面形成大量可与基体形成化学键及氢键或范德华力结合的活性基团,可明显提高CFRP 层间剪切强度; (3)改善碳纤维表面物理状态,及增加表面粗糙或在纤维表面生成凹凸结构,以通过机械契合或者说“锚固效应”达到好的界面性能 17、如何提高极性尼龙和非极性聚烯烃弹体的相容性?给出至少3种表征PA/POE 共混物相容性的方法。 答:(1)添加相容剂,作用机理是富集在两相界面处,改善两相之间的界面结合。 (2)固体物性表征:热分析法(DSC)、膨胀计法、动态力学分析法(DM)。热力学表征:熔点降低法,吸附探针法和反气相色谱法等. 18、试述聚合物表面改性的必要性及其意义。 答:表面改性技术是采用化学的、物理的方法改变材料或工件表面的化学成分或组织结构以提高机器零件或材料性能的一类热处理技术。它包括化学热处理(渗氮、渗碳、渗金属等);表面涂层(低压等离子喷涂、低压电弧喷涂、激光重熔复合等门薄膜镀层(物理气相沉积、化学气相沉积等)和非金属涂层技术等。这些用以强化零件或材料表面的技术,赋予零件耐高温、防腐蚀、耐磨损、抗疲劳、防辐射、导电、导磁等各种新的特性。使原来在高速、高温、高压、重载、腐蚀介质环境下工作的零件,提高了可靠性、延长了使用寿命,具有很大的经济意义和推广价值。

聚合物共混改性考试试题及答案教学内容

聚合物共混改性考试试题及答案

3. 在某聚合物上引入特殊作用基团;加入第三组分进行增容; 4. 两相之间产生部分交联,形成物理或化学缠结; 5. 形成互穿网络结构(IPN); 6. 改变加工工艺,施加强烈的力剪切作用。 六、一般采有PP熔融接枝MAH单体,并挤出制备TPU/PP共混物,请阐明PP接枝MAH对共混物的形态结构及性能有何影响。为什么?10分 答:采用PP-g-MAH作为增容剂,熔融法制备TPU/PP共混物。发现,马来酸酐接枝聚丙烯是聚氨酯与聚丙烯共混体系有效的增容剂,有效地改善了共混物的形态和力学性能。 原因:机理:PP-g-MAH中的酸酐基团可能一部分与TPU中羟基反应,另一部分是与N-H基团发生氢键作用,从而有效降低了表面张力,提高了表面粘结力。 七、聚合物共混物的制备方法有那些?各有什么特点?10分 答:1. 物理共混法,简单机械共混技术简单的机械共混技术也称为单纯共混技术,它是在共混过程中,直接将两种聚合物进行混合制得聚合物混合材料。又包括:粉料(干粉)共混,熔体共混,溶液共混,乳液共混 2. 共聚-共混法 特点:特点:共聚—共混法制取聚合物共混物是一种化学方法,这一点是与机械共混法显然不同的。 3. 互穿聚合物网络法 八、增容作用的本质是什么?通常采用哪些增容方法?15分 答:增容作用的物理本质:降低共混组分之间的界面张力,促进分散程度的提高;提高相结构的稳定性,使得共混塑料的性能得以提高;改善共混组分之间的界面粘结,有利于传递外力。 常用的增容方法: 1. 利用氢键作用导致相容 2. 利用离子间相互作用 3. 利用电荷转移作用 4. 加入增容剂 5. 混合过程中化学反应所引起的增容作用 6. 共聚物/均聚物共混体系 7. 共溶剂法和IPN法

高分子聚合物的主要表征方法

摘要 本文主要综述了高分子聚合物及其表征方法和检测手段。首先,从不同角度对高分子聚合物进行分类,并对高分子聚合物的结构,生产,性能做了一个简单的介绍。其次,阐述了表征和检测高分子聚合物的常用方法,例如:凝胶渗透色谱、核磁共振(NMR)、红外吸收光谱(IR)、激光拉曼光谱(LR)等。最后,介绍了检测高分子聚合物的常用设备,例如:偏光显微镜、金相显微镜、体视显微镜、X射线衍射、扫描电镜、透射电镜、原子力显微镜等。 关键词:聚合物;表征方法;检测手段;常用设备

ABSTRACT This paper mainly summarizes the polymer and its detection means.First of all, this paper made a simple introduction of the polymer structure, production performance. Secondly, it describes the detection methods of polymers, such as: gel permeation chromatography, nuclear magnetic resonance (NMR), infrared absorption spectroscopy (IR), laser Raman spectroscopy (LR).Finally, it describes the common equipment used to characterize and detection of polymers, such as: polarizing microscope, metallographic microscope, microscope, X ray diffraction, scanning electron microscopy, transmission electron microscopy, atomic force microscopy. Key words:Polymer; Characterization; Testing means; common equipment

相关文档
最新文档