高三物理总复习知识讲解 动量守恒定律的应用(提高)

高三物理总复习知识讲解 动量守恒定律的应用(提高)
高三物理总复习知识讲解 动量守恒定律的应用(提高)

物理总复习:动量守恒定律的应用

编稿:李传安 审稿:

【考纲要求】

1、知道弹性碰撞和非弹性碰撞;

2、能用动量守恒定律定量分析一维碰撞问题;

3、知道动量守恒定律的普遍意义

4、会从动量和能量的角度分析碰撞问题 【考点梳理】 考点一、碰撞

1、弹性碰撞的规律

要点诠释:两球发生弹性碰撞时应满足动量守恒和动能守恒(机械能守恒)。

以质量为1m 速度为1v 的小球与质量为2m 的静止小球发生正面弹性碰撞为例,则有

111122m v m v m v ''=+ (1) 2221111

22111

222m v m v m v ''=+

(2) 解(1)(2)得 121112()m m v v m m -'=

+ 12112

2m v v m m '=+

结论:(1)当两球质量相等时,两球碰撞后交换了速度。

(2)当质量大的球碰质量小的球时,碰撞后两球都向前运动。

(3)当质量小的球碰质量大的球时,碰撞后质量小的球被反弹回来。 2、解决碰撞问题的三个依据

(1)动量守恒,即1212P P P P

''+=+ (2)动能不增加,即 1212k k k k E E E E ''+≥+ 或 22

22121

21212

2222P P P P m m m m ''+≥+

(3)速度要符合情景:如果碰前两物体同向运动,则后面的物体速度必大于前面物体的速度,即v v >后前,否则无法实现碰撞。碰撞后,原来在前的物体的速度一定增大,且原来

在前的物体速度大于或等于原来在后的物体的速度,即v v ''≥后前

,否则碰撞没有结束。如果碰前两物体是相向运动,则碰后,两物体的运动方向不可能都不改变,除非两物体碰撞后速

度均为零。 考点二、爆炸 爆炸的特点

1、内力远大于外力,过程持续时间很短,即使系统所受合外力不为零,但合外力的冲量几乎为零,可认为动量守恒。

2、由其它形式的能转化为机械能。 要点诠释:爆炸与碰撞的比较:

1、爆炸、碰撞类问题的共同特点是物体间的相互作用力突然发生,相互作用的力是变力,作用时间很短,作用力很大,且远大于系统所受外力,故可用动量守恒定律来处理。

2、在爆炸过程中,有其他形式的能转化为动能,系统的动能在爆炸后会增加,在碰撞过程中,系统的总动能不可能增加,一般有所减少而转化为内能。

3、由于爆炸、碰撞类问题作用时间很短,作用过程中物体的位移很小,一般可忽略不计,可以把作用过程作为一个理想化过程(简化)处理,即作用后还从作用前瞬间的位置以新的动量开始运动。 考点三、反冲

指在系统内力的作用下,系统内一部分物体向某一方向发生动量变化时,系统内其余部

分向相反的方向发生动量变化的现象。反冲运动不靠系统外力,而是内力作用的结果。反冲运动遵循动量守恒定律。前面所说的“平均动量守恒”实际上是反冲运动。 【典型例题】

类型一、爆炸规律及其应用

例1、有一炮竖直向上发射炮弹,炮弹的质量为M=6.0kg (内含炸药的质量可以忽略不 计)射出的初速度060/v m s =,当炮弹到达最高点时爆炸成沿水平方向运动的两片,其中一片质量为m=4.0kg ,现要求这一片不能落到以发射点为圆心,以R=600m 为半径的圆周范围内,则刚爆炸完时两弹片的总动能至少多大?(g=10m/s 2,忽略空气阻力)

【思路点拨】规律分析:炮弹爆炸动量守恒,炮弹到达最高点时爆炸成沿水平方向运动的两片,分别做平抛运动,总动能等于两弹片的动能之和(在最高点)。 【答案】 4

6.010E J =?

【解析】设炮弹上升到达最点时的高度为H ,根据匀变速运动规律:2

02v gH = (1)

又质量为m 的炮弹刚爆炸后速度为1v ,另一质量的速度为v , 根据动量守恒定律 1()mv M m v =- (2)

设质量为m 的弹片运动时间为

t ,根据平抛运动规律有

炮弹刚爆炸后,两弹片总动能 22111

()22

k E mv M m v =+- (5)

【总结升华】爆炸过程近似看成动量守恒,在应用动量守恒定律时,要注意方向。爆炸过程化学能转化为内能,总动能是增加的。 举一反三 【变式】一颗手榴弹以20/m s 的速度沿水平方向飞行时,炸开成两块,其质量之比为3:7。若较大的一块以80/m s 的速度沿原方向飞去,则较小一块的速度为( )

A. 沿原方向,速度大小为120/m s

B. 沿反方向,速度大小为120/m s

C. 沿原方向,速度大小为253/m s

D. 沿反方向,速度大小为253/m s 【答案】B

【解析】爆炸过程内力远远大于外力,动量守恒,设原方向为正方向,初速度为0v ,较大的一块速度为1v ,较小的一块速度为2v , 根据动量守恒定律 01273

1010

mv mv mv =

+ 代入数据解得 2120/v m s =- 负号表示与原方向相反。

类型二、反冲问题

例2、为完成某种空间探测任务,需要在太空站上空发射空间探测器,探测器通过向后喷气而获得反冲力使其加速,已知探测器的质量为M ,每秒钟喷出气体的质量为m ,喷射

时探测器对气体做功的功率恒为P ,不计喷气后探测器的质量变化,求: (1)喷出气体的速度;

(2)喷气t ?秒后探测器获得的动能。

【思路点拨】喷射时探测器对气体做功的功转化为探测器的动能,动能定理的方程怎么写。 发射火箭、探测器是反冲运动,动量守恒,初态的动量为零,也可喷出气体的动量等于探测器的动量。 【答案】(1)2P v m =

(2)2

k mP E t M

=? 【解析】(1)因为探测器对喷射气体做功的功率恒为P ,而单位时间内喷气质量为m ,故在 t 秒时间内,根据动能定理可求得喷出气体的速度为 21

2Pt mtv =

(1)

,2P v m

= (2)探测器喷气过程中系统动量守恒,设探测器获得的速度为V , 则 0m tv MV ?-= (2) mv t

V M

?=

联立得探测器获得的动能 2212()2k m t P mP E M t M m M ?=

?=?

【总结升华】解本题的关键一是要正确描写质量,而是正确列出动量守恒方程,这里实际上

是一个反冲运动,即总动量为零的问题。 举一反三

【变式】一炮艇总质量为M ,以速度0v 匀速行驶,从船上以相对海岸的水平速度v 沿前进 方向射出一质量为m 的炮弹,发射炮弹后艇的速度为v ',若不计水的阻力,则下列各关系式中正确的是 。(填选项前的编号)

A. 0()Mv M m v mv '=-+

B. 00()()Mv M m v m v v '=-++

C. 0()()Mv M m v m v v ''=-++

D. 0Mv Mv mv '=+

【答案】A

【解析】动量守恒定律必须相对于同一参考系。本题中的各个速度都是相对于地面的,不需要转换。发射炮弹前系统的总动量为0Mv ;发射炮弹后,炮弹的动量为mv ,船的动量为

()M m v '-,所以动量守恒定律的表达式为0()Mv M m v mv '=-+正确选项为A 。

类型三、碰撞问题

例3、如图所示,光滑水平面上有大小相同的A 、B 两球在同一直线上运动。两球质量关系为=2B A m m ,规定向右为正方向,A 、B 两球的动量均为6/kg m s ?,运动中两球发生碰撞,碰撞后A 球的动量增量为-4/kg m s ?,则( )

A .左方是A 球,碰撞后A 、

B 两球速度大小之比为2:5 B .左方是A 球,碰撞后A 、B 两球速度大小之比为1:10

C .右方是A 球,碰撞后A 、B 两球速度大小之比为2:5

D .右方是A 球,碰撞后A 、B 两球速度大小之比为1:10 【思路点拨】碰撞过程中动量守恒原则、碰撞后系统总动能不增加原则和碰撞前后状态的合理性原则,一般按顺序判断。 【答案】 A

【解析】根据碰撞的三项基本原则(即碰撞过程中动量守恒原则、碰撞后系统总动能不增加原则和碰撞前后状态的合理性原则)分析求解。

由两球的动量都是6/kg m s ?,知运动方向都向右,且能够相碰,说明左方是质量小速度大的小球,故左方是A 球,碰后A 球的动量减少了4/kg m s ?,即A 球的动量为2/kg m s ?,由动量守恒定律得B 球的动量为10/kg m s ?,故可得其速度比为2:5,故选项A 是正确的。 【总结升华】本题主要考查分析能力和判断能力。解决此问题的关键在于首先根据动量的大小,判断出速度谁大谁小,然后利用动量守恒定律解决问题即可。 举一反三

【高清课堂:碰撞 例3】

【变式】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是=5/P kg m s ?甲,

=7/P kg m s ?乙,甲追上乙并发生碰撞,碰撞后乙球的动量变为=10/P kg m s '?乙,则两球质

量m 甲与m 乙的关系可能是( )

A .=m m 乙甲

B .=2m m 乙甲

C .=4m m 乙甲 D.=6m m 乙甲 【答案】 C

【解析】(1)碰前因甲能追上乙,故=

>=P P v v m m 甲

乙乙甲乙

甲 所以 75m m ≥乙甲,A 错。

(2)碰后:应有 v v ''≤乙

甲 所以 P P m m ''≤甲

乙乙

甲 由动量守恒定律 P P P P ''+=+乙乙甲甲,所以=2/P kg m s '?甲 所以5m m ≤乙甲,所以D 错。

(3)能量:碰撞前总动能≥碰撞后总动能

所以 222

22222P P P P m m m m ''+≥+甲甲乙乙

乙乙

甲甲 可得 51

21

m m ≥

乙甲,所以B 错。正确选项为C 。 例4、如图所示,圆管构成的半圆形轨道竖直固定在水平地面上,轨道半径为R ,MN 为直径且与水平面垂直,直径略小于圆管内径的小球A 以某一速度冲进轨道,到达半圆轨

道最高点M 时与静止于该处的质量与A 相同的小球B 发生碰撞,碰后两球粘在一起飞出轨道,落地点距N 为2R 。重力加速度为g ,忽略圆管内径,空气阻力及各处摩擦均不计,求 (1)粘合后的两球从飞出轨道到落地的时间t ; (2)小球A 冲进轨道时速度v 的大小。

【思路点拨】物理过程分析:A 沿轨道运动到与小球B 发生碰撞前,机械能守恒;与小球B 发生碰撞粘在一起,动量守恒;一起飞出轨道到落地,平抛运动。按照各自的物理规律列方程求解。

【答案】(1)g

R

t 2

= (2)22v gR = 【解析】(1)粘合后的两球飞出轨道后做平抛运动,竖直方向分运动为自由落体运动, 有 2122R gt =

① 解得 g

R

t 2

= ② (2)设球A 的质量为m ,碰撞前速度大小为1v 把球A 冲进轨道最低点时的重力势能为 0,由机械能守恒定律

mgR mv mv 22

1212

12+= ③ 设碰撞后粘合在一起的两球速度大小为2v ,由动量守恒定律 212mv mv = ④ 飞出轨道后做平抛运动,水平方向分运动为匀速直线运动,有

t v R 22= ⑤ 综合②③④⑤式得 22v gR = ⑥

【总结升华】解题时要养成一个良好的习惯:分清物理过程。由于“空气阻力及各处摩擦均

不计”,本题从最低点到最高点的过程机械能守恒;“A 小球与B 发生碰撞,碰后两球粘在一起”的过程动量守恒,且是完全非弹性碰撞;“一起飞出轨道”的过程是平抛运动。再根据各自的物理规律列方程求解。切忌丢掉某一个物理过程。 举一反三

【变式】如图所示,两物块A 、B 并排静置于高h=0.80m 的光滑水平桌面上,物块的质量均为M=0.60kg 。一颗质量m=0.10kg 的子弹C 以v 0=100m/s 的水平速度从左面射入A ,子弹射穿A 后接入B 并留在B 中,此时A 、B 都没有离开桌面。已知物块A 的长度为0.27m ,离开桌面后,落地点到桌边的水平距离s=2.0m 。设子弹在物块A 、B 中穿行时受到的阻力保持不变,g 取10m/s 2。

(1)物块A 和物块B 离开桌面时速度的大小分别是多少; (2)求子弹在物块B 中穿行的距离;

(3)为了使子弹在物块B 中穿行时物块B 未离开桌面,求物块B 到桌边的最小距离。

【答案】(1) 5.0/A v m s = 10/B v m s =

【解析】(1)子弹射穿物块A 后,A 以速度A v 沿桌面水平向右匀速运动,离开桌面后做平抛运动。根据平抛运动公式 212h gt =

A s v t = 解得: 0.4t s =, 5.0/A s

v m s t

==。 设子弹射入物块B 后与B 的共同速度为B v ,子弹与两物块作用过程系统动量守恒, 根据动量守恒定律 0()A B mv Mv M m v =++ 代入数据解得 10/B v m s =

(2)设子弹离开A 时的速度为1v ,子弹与物块A 作用过程系统动量守恒

012A mv mv Mv =+ 代入数据解得 140/v m s =

子弹在物块B 中穿行的过程中,由能量守恒

2

212)(2

12121B

A B v m M mv Mv fL +-+=

① 子弹在物块A 中穿行的过程中,由能量守恒

2

2120)(2

12121A A v M M mv mv fL +--=

② 由①②解得2

105.3-?=B L m

(3)子弹在物块A 中穿行的过程中,物块A 在水平桌面上的位移为s 1,根据动能定理

0)(2

121-+=

A v M M fs ③ 子弹在物块

B 中穿行的过程中,物块B 在水平桌面上的位移为s 2,根据动能定理

2

222

121A

B Mv Mv fs -=

④ 由②③④解得物块B 到桌边的最小距离21min s s s +=

2min 2.510s m -=?

( ①②是根据能量守恒列出的方程;③④ 两式子弹对物块的作用力对物块做正功,所以是“根据动能定理”。)

类型四、微观粒子的动量守恒问题

例5、加拿大萨德伯里中微子观测站的研究揭示了中微子失踪之谜,即观察到的中微子数目比理论值少是因为部分中微子在运动过程中(速度很大)转化为一个μ子和一个τ子。在上述转化过程有以下说法,其中正确的是( )

A. 牛顿运动定律依然适用

B. 动量守恒定律依然适用

C. 若发现μ子和中微子的运动方向一致,则τ子的运动方向与中微子的运动方向也可能一致;

D. 若发现μ子和中微子的运动方向相反,则τ子的运动方向与中微子的运动方向也可能相反

【思路点拨】物理过程分析:中微子发生裂变过程中动量是守恒的,根据动量守恒方程分析τ子的运动方向与中微子的运动方向相同还是相反。 【答案】BC

【解析】中微子发生裂变过程中动量是守恒的, =+m v m v m v μμτ中中 知:当v 中方向与v μ方 向相同时,v τ方向与v 中方向可能相同,也可能相反;当v 中方向与v μ方向相反时,v τ方向 与v 中方向一定相同,且该过程是微观粒子间的作用,故牛顿运动定律不适用。故选BC 。 【总结升华】动量守恒定律是普遍适用的,牛顿运动定律仅适用于宏观低速运动。在处理微观粒子的动量守恒问题时,仍然要正确写出动量守恒方程进行分析。 举一反三

【变式】质量为m 的氦核,其速度为0v ,与质量为3m 的静止碳核碰撞后沿着原来的路径被弹回,其速率为

01

2

v ,则碳核获得的速度为( ) A. 02v B. 012v C. 013

v D. 01

6v

【答案】B

【解析】设氦核的初始速度方向为正方向,动量为0mv ,碰后氦核的动量为01

2

m v -,碳核的动量为3mv ,根据动量守恒定律 001=32mv mv mv -

,解得 01

=2

v v ,B 正确。 类型五、碰撞中的临界问题

例6、将两条完全相同的磁铁(磁性极强)分别固定在质量相等的小车上,水平面光滑。开始时甲车速度大小为3m/s ,乙车速度大小为2m/s ,方向相反并在同一直线上,如图所示。 (1)当乙车速度为零时(即乙车开始反向运动时),甲车的速度多大?方向如何?

(2)由于磁性极强,故两车不会相碰,那么两车的距离最小时,乙车的速度是多大?方向如何?

【思路点拨】两车距离最小时的临界隐含条件:两车速度相等。根据动量守恒定律求解。 【答案】(1)1/m s ,方向向右。(2)0.5/m s ,方向向右。

【解析】此题中地面光滑,系统不受外力,动量守恒,但问题中涉及两车不相碰又属临界问题。两个小车及磁铁组成的系统在水平方向不受外力作用,系统水平动量守恒,设向右为正方向。(1)据动量守恒知 mv mv mv '-=乙甲甲

代入数据解得 =(32)/=1/v v v m s m s '-=-乙甲甲,方向向右。 (2)两车距离最小时,两车速度相同,设为v ',由动量守恒知 +mv mv mv mv ''-=乙甲 解得:32

=

==/=0.5/222

mv mv v v v m s m s m ---'乙乙甲甲,方向向右。

【总结升华】本题是一个临界极值问题,解此问题的关键是要挖掘出两车距离最小时的临界

隐含条件:两车速度相等。 举一反三

【变式】如图所示,甲、乙两小孩各乘一辆小车在光滑水平面上匀速相向行使,速率均为

0=6/v m s ,甲车上有质量m=1kg 的小球若干个,甲和他的车及所带小球总质量150M kg =,

乙和他的车总质量230M kg =,甲不断地将小球一个一个地以=v 16.5m/s 的水平速度(相对于地面)抛向乙,并被乙接住,问:甲至少要抛出多少个小球,才能保证两车不会相碰?

【答案】n=15(个)

【解析】两车不相碰的临界条件是它们的最后速度(对地)相同,由该系统动量守恒,以甲运动方向为正方向,得:102012=()M v M v M M v '-+ ① 再以甲及小球为系统,同样得:101=()+M v M nm v nmv '- ②

由①②解得 n=15(个)

类型六、连续发生相互作用问题

例7、火车车厢之间由车钩连接,火车起动前车钩间都有间隙。不妨将火车的起动简化 成如图所示的情景:在光滑水平面上有19个静止的质量均为m 的木箱,自右向左编号依次为0、1、2、3、……18,相邻木箱之间由完全非弹性的钩子连接,当钩子前后两部分相碰时,与钩子相连的两木箱速度立即变为相等。所有木箱均静止时,每一个车钩前后两部分间的距离都为L 。(1)若只给第0号木箱一个水平向右的初速度0v ,求第18号木箱刚运动时速度的大小;(2)若从某时刻开始,持续对第0号木箱施加向右的水平恒力F ,使木箱从静

止开始运动, 求:(i )第1号木箱刚运动时速度的大小;

(ii )从施加恒力F 到第18号木箱开始运动经历的时间。

【思路点拨】连续碰撞问题难度较大。(1)求第18号木箱刚运动时速度的大小,因为整个过程动量守恒,与中间过程无关,初态的动量等于末态(19个)的动量。(2)要求第0号木箱与第1号木箱作用前的速度,相互作用瞬间动量守恒,求出第1号木箱刚运动时速度,同理以后依次计算,方程必然很多,显然用数学方法必须找出规律求解。 【答案】(1)1801

=

19

v v (2)(i )12FL v m =ii )38=3Lm t F 【解析】(1)19个木箱相互作用过程满足动量守恒定律,即018=19mv mv , 得第18号木箱刚运动时速度的大小1801=

19

v v (2)(i )若给第0号木箱施加恒定的水平拉力F ,第0、1号木箱相互作用前,第0号木 箱做匀加速直线运动,加速度大小为0=

F

a m

, 第0、1号木箱相互作用前瞬间第0号木箱的 速度0v ',因为2

02=2FL

v a L m

'= 得 0

2FL v m '=第0、1号木箱相互作用过程满足动量守恒定律,即 01=2mv mv ' 解得第1号木箱刚运动时速度的大小 12FL v m

=

(ii )第1号木箱刚运动时速度的大小 2

12(2)FL

v m

=

①(由上式变形) 第1号木箱与第2号木箱作用前的速度1v ',有 221

11=2v v a L '-

又第1号木箱的加速度大小 1=

2F

a m

第1、2号木箱相互作用过程满足动量守恒定律,1

22=3mv mv ' 得第2号木箱刚运动时速 度的大小2v 满足 2

2

2122

(3)=(2)+

FL v v m

? ② 同理得第3号木箱刚运动时速度的大小3v 满足 2

2

3223

(4)=(3)+FL v v m

? ③…… (从①②③……找出规律)

第18号木箱刚运动时速度的大小18v 满足 22

1817218(19

)=(18)+FL v v m ?

累加可得第18号木箱刚运动时速度的大小 1818=

19FL

v m

对所有木箱,根据动量定理得 18=19Ft mv 得所求时间 38=3

Lm

t F 。

【总结升华】这类问题对数学要求较高,一般要总结规律写出通项,有时要用到等差数列、

等比数列求和公式,甚至取极限求和。 举一反三

【变式1】如图所示,n 个相同的木块(可视为质点),每块的质量都是m ,从右向左沿同一 直线排列在水平桌面上,相邻木块间的距离均为l ,第n 个木块到桌面的距离也是l ,木块 与桌面间的动摩擦因数为μ。开始时,第1个木块以初速度v 0向左滑行,其余所有木块都 静止,在每次碰撞后,发生碰撞的木块都粘在一起运动,最后第n 个木块刚好滑到桌边而没 有掉下。

(1)求在整个过程中因碰撞而损失的总动能;

(2)求第i 次)1(-≤n i 碰撞中损失的动能与碰撞前动能之比;

(3)若n=4, l =0.10 m, v 0=3.0 m/s ,重力加速度g=10m/ s 2,求μ的数值。

【答案】(1)201(1)22

k n n mgl

E mv μ+?=-(2)1,(1)1ki ki E i n E i ?=≤-+ (3)μ=0. 15。

【解析】(1)整个过程木块克服摩擦力做功为

2

)1()()2(mgl

n n nl mg l mg mgl W μμμμ+=

+++=

根据功能关系,整个过程中由于碰撞而损失的总动能为

2001(1)22

k k n n mgl E E W mv μ+?=-=

- (2)设第i 次)1(-≤n i 碰撞前木块的速度为i v ,碰撞后速度为i v ', 则(1)i i i mv imv '+=,

碰撞中损失的动能ki E ?与碰撞前动能ki E 之比为

22211(1)122,(1)112i i ki ki i imv i mv E i

n E i imv '-+?==≤-+

(3)初动能为2

0012

k E mv =,

第1次碰撞前10k k E E mgl μ=-

第1次碰撞后 10111111=2222k k k k k k k E E mgl E E E E E μ'=-?=-=-

(其中111

=2k k E E ?) 第2次碰撞前0215(2)22

k k k E mgl

E E mg l μμ'=-=-

第2次碰撞后222k k k E E E '=-?=0225==333k k E mgl E μ- (其中 221

=3k k E E ? )

第3次碰撞前03214(3)33

k k k E mgl

E E mg l μμ'=-=-

第3次碰撞后333k k k E E E '=-?=0337==442K k E mgl E μ- (其中 331

=4

k k E E ? )

据题意有

l mg mgl

E K )4(2

740μμ=- 带入数据,联立求解得μ=0. 15。

【高清课堂:碰撞 例5】

【变式2】如图所示,在光滑的水平面上,依次放着质量均为m 的五个小球,小球排列在一条直线上,彼此间隔一定的距离。开始时后面四个小球处于静止状态,第一个小球以速度v 向第二个小球碰去。

(1)若每个小球碰撞都是弹性的,则碰后各小球的运动情况;

(2)若它们先后都粘合在一起向前运动,由于连续碰撞,求系统损失的机械能。

【解析】(1)根据弹性碰撞,两个质量相等的小球,一个运动,一个静止,碰后彼此交换速度,1号球静止在2号球的位置,2号球以速度v 运动;再与3号球碰撞,交换速度,2号球又静止在3号球的位置,3号球以速度v 运动;……,最后1、2、3、4号球都静止,5号球以速度v 运动。

(2)若它们先后都粘合在一起向前运动,是完全非弹性碰撞 对全程进行研究,设最后共同速度为v 共,应用动量守恒定律 5mv mv =共,1=5

v v 共 系统损失的机械能 2221125=225

E mv mv mv ?=-共。

动量守恒定律模块知识点总结

动量守恒定律模块知识点总结 1.定律内容:相互作用的几个物体组成的系统,如果不受外力作用,或者它们受到的外力之和为零,则系统的总动量保持不变。 2.一般数学表达式:''11221122m v m v m v m v +=+ 3.动量守恒定律的适用条件 : ①系统不受外力或受到的外力之和为零(∑F 合=0); ②系统所受的外力远小于内力(F 外 F 内),则系统动量近似守恒; ③系统某一方向不受外力作用或所受外力之和为零,则系统在该方向上动量守恒(分方向动量守恒) 4.动量恒定律的五个特性 ①系统性:应用动量守恒定律时,应明确研究对象是一个至少由两个相互作用的物体组成的系统,同时应确保整个系统的初、末状态的质量相等 ②矢量性:系统在相互作用前后,各物体动量的矢量和保持不变.当各速度在同一直线上时,应选定正方向,将矢量运算简化为代数运算 ③同时性:12,v v 应是作用前同一时刻的速度,''12,v v 应是作用后同—时刻的速度 ④相对性:列动量守恒的方程时,所有动量都必须相对同一惯性参考系,通常选取地球作参考系 ⑤普适性:它不但适用于宏观低速运动的物体,而且还适用于微观高速运动的粒子.它与牛顿运动定律相比,适用范围要广泛得多,又因动量守恒定律不考虑物体间的作用细节,在解决问题上比牛顿运动定律更简捷 例题. 1.质量为m 的人随平板车以速度V 在平直跑道上匀速前进,不考虑摩擦阻力,当此人相对于车竖直跳起至落回原起跳位置的过程中,平板车的速度 ( A ) A .保持不变 B .变大 C .变小 D .先变大后变小 E .先变小后变大 2.两名质量相等的滑冰人甲和乙都静止在光滑的水平冰面上.现在其中一人向另一人抛出一个篮球,另一人接球后再抛回.如此反复进行几次后,甲和乙最后的速率关系是 ( B ). A .若甲先抛球,则一定是V 甲>V 乙 B .若乙最后接球,则一定是V 甲>V 乙 C .只有甲先抛球,乙最后接球,才有V 甲>V 乙 D .无论怎样抛球和接球,都是V 甲>V 乙 3.一小型宇宙飞船在高空绕地球做匀速圆周运动如果飞船沿其速度相反的方向弹射出一个质量较大的物体,则下列说法中正确的是( CD ). A .物体与飞船都可按原轨道运行 B .物体与飞船都不可能按原轨道运行 C .物体运行的轨道半径无论怎样变化,飞船运行的轨道半径一定增加 D .物体可能沿地球半径方向竖直下落 4.在质量为M 的小车中挂有一单摆,摆球的质量为m 。,小车(和单摆)以恒定的速度V 沿光滑水平地面运动,与位于正对面的质量为m 的静止木块发生碰撞,碰撞时间极短,在此碰撞过程中,下列哪些说法是可能发生的( BC ). A.小车、木块、摆球的速度都发生变化,分别变为V 1、V 2、V 3,满足(m 。十M )V =MV l 十mV 2十m 。V 3 B .摆球的速度不变,小车和木块的速度变为V 1、V 2,满足MV =MV l 十mV 2 C .摆球的速度不变,小车和木块的速度都变为V ’,满足MV=(M 十m )V ’ D.小车和摆球的速度都变为V 1,木块的速度变为V 2,满足(M +m o )V =(M +m o )V l +mV 2

动量、冲量及动量守恒定律

动量、冲量及动量守恒定律

动量和动量定理 一、动量 1.定义:运动物体的质量和速度的乘积叫动量;公式p=m v; 2.矢量性:方向与速度的方向相同.运算遵循平行四边形定则. 3.动量的变化量 (1)定义:物体在某段时间内末动量与初动量的矢量差(也是矢量),Δp=p′-p(矢量式). (2)动量始终保持在一条直线上时的运算:选定一个正方向,动量、动量的变化量用带有正负号的数值表示,从而将矢量运算简化为代数运算(此时的正负号仅代表方向,不代表大小). 4.与动能的区别与联系: (1)区别:动量是矢量,动能是标量. (2)联系:动量和动能都是描述物体运动状态的物 理量,大小关系为E k=p2 2m或p=2mE k. 二、动量定理 1.冲量 (1)定义:力与力的作用时间的乘积.公式:I=

Ft.单位:牛顿·秒,符号:N·s. (2)矢量性:方向与力的方向相同. 2.动量定理 (1)内容:物体在一个运动过程中始末的动量变化量等于它在这个过程中所受力的冲量. (2)公式:m v′-m v=F(t′-t)或p′-p=I.3.动量定理的应用 碰撞时可产生冲击力,要增大这种冲击力就要设法减少冲击力的作用时间.要防止冲击力带来的危害,就要减小冲击力,设法延长其作用时间.(缓冲) 题组一对动量和冲量的理解 1.关于物体的动量,下列说法中正确的是() A.运动物体在任一时刻的动量方向,一定是该时刻的速度方向 B.物体的动能不变,其动量一定不变 C.动量越大的物体,其速度一定越大 D.物体的动量越大,其惯性也越大 2.如图所示,在倾角α=37°的斜面上, 有一质量为5 kg的物体沿斜面滑下,物 体与斜面间的动摩擦因数μ=0.2,求物体下滑2

动量守恒定律典型例题解析

动量守恒定律·典型例题解析 【例1】 如图52-1所示,在光滑的水平面上,质量为m 1的小球以速度v 1追逐质量为m 2,速度为v 2的小球,追及并发生相碰后速度分别为v 1′和v 2′,将两个小球作为系统,试根据牛顿运动定律推导出动量守恒定律. 解析:在两球相互作用过程中,根据牛顿第二定律,对小球1有:F ==,对有′==.由牛顿第三定律得=m a m m F m a m F 1112222????v t v t 12 -F ′,所以F ·Δt =-F ′·Δt ,m 1Δv 1=-m 2Δv 2,即m 1( v 1′-v 1)=-m 2(v 2′-v 2),整理后得:m 1v 1+m 2v 2=m 1v 1′+ m 2v 2′,这表明以两小球为系统,系统所受的合外力为零时,系统的总动量守恒. 点拨:动量守恒定律和牛顿运动定律是一致的,当系统内受力情况不明,或相互作用力为变力时,用牛顿运动定律求解很繁杂,而动量定理只管发生相互作用前、后的状态,不必过问相互作用的细节,因而避免了直接运用牛顿运动定律解题的困难,使问题简化. 【例2】 把一支枪水平地固定在光滑水平面上的小车上,当枪发射出一颗子弹时,下列说法正确的是 [ ] A .枪和子弹组成的系统动量守恒 B .枪和车组成的系统动量守恒 C .子弹、枪、小车这三者组成的系统动量守恒 D .子弹的动量变化与枪和车的动量变化相同 解析:正确答案为C 点拨:在发射子弹时,子弹与枪之间,枪与车之间都存在相互作用力,所以将枪和子弹作为系统,或枪和车作为系统,系统所受的合外力均不为零,系统的动量不守恒,当将三者作为系统时,系统所受的合外力为零,系统的动量守恒,这时子弹的动量变化与枪和车的动量变化大小相等,方向相反.可见,系统的动量是否守恒,与系统的选取直接相关. 【例3】 如图52-2所示,设车厢的长度为l ,质量为M ,静止于光滑的水平面上,车厢内有一质量为m 的物体以初速度v 0向右运动,与车厢壁来

动量、动量守恒定律知识点总结教学内容

龙文教育动量知识点总结 一、对冲量的理解 1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。 2、I 合 的求法: A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.t B 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP 的方向由v ?决定,与1p 、2p 无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解:1、研究对象:相互作用的物体所组成的系统 2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 结论:等质量 弹性正碰 时,两者速度交换。 依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 动能和动量的关系:m p E K 22 = K mE p 2= 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型: 条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。

七、临界条件: “最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v。 八、动力学规律的选择依据: 1、题目涉及时间t,优先选择动量定理; 2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒; 3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律; 4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律; 九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。 典型练习 一、基本概念的理解:动量、冲量、动量的改变量 1、若一个物体的动量发生了改变,则物体的() A、速度大小一定变了 B、速度方向一定变了 C、速度一定发生了改变 D、加速度一定不为0 2、质量为m的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t, 斜面倾角为θ。则() A、物体所受支持力的冲量为0 B、物体所受支持力冲量为 θ cos mgt C、重力的冲量为mgt D、物体动量的变化量为 θ sin mgt 3、在光滑水平面上水平固定放置一端固定的轻质弹簧,质量为m的小球沿弹簧所位于的直线方向以速度v运动,并和弹簧发生碰撞,小球和弹簧作用后又以相同的速度反弹回去。在球和弹簧相互作用过程中,弹簧对小球的冲量I的大小和弹簧对小球所做的功W分别为: A、I=0、W=mv2 B、I=2mv、W = 0 C、I=mv、W = mv2/2 D、I=2mv、W = mv2/2 二、动量定理的应用: 4、下列运动过程中,在任意相等时间内,物体动量变化相等的是:() A、匀速圆周运动 B、自由落体运动 C、平抛运动 D、匀减速直线运动

动量及动量守恒定律全章典型习题精讲

动量及动量守恒定律全章典型习题精讲

————————————————————————————————作者: ————————————————————————————————日期:

动量及动量守恒定律全章典型习题精讲 一.学法指导: 动量这部分内容,本身并不复杂,主要有冲量和动量这两个概念,还有动量定理和动量守恒定律这两个重要规律.动量定理是对一个物体说的,它受到合外力的冲量等于该物体动量的增量.动量守恒定律是对相互作用的系统而言的,在系统不受外力作用的情况下,系统的总动量守 本章的难点主要在于冲量和动量都是矢量,矢量的运算比起标量的运算来要困难得多.我们中学阶段目前只要求计算同一直线上的动量问题,对于同一直线上的动量,可以用正负号表示方向,从而把矢量运算转化为代数运算. 这部分内容的另一个难点是涉及到相互作用的系统内物体的动量和机械能的综合问题,为此,我们在学习时要把动量这部分内容与机械能部分联系起来.下面三个方面的问题是我们学习中要重点理解和掌握的. 1、4个重要的物理概念,即冲量、动量、功和动能,下面把它们归纳、整理、比较如下: (1)冲量和功,都是“力”的,要注意是哪个力的冲量,哪个力做的功. 动量和动能,都是“物体”的,要注意是哪个物体的动量、哪个物体的动能. (2)冲量和功,都是“过程量”,与某一段过程相对应.要注意是哪个过程的冲量,是哪个过程中做的功. 动量和动能,都是“状态量”,与某一时刻相对应.要注意是哪个时刻的动量或动能,过程量是不能与状态量划等号的,即决不能说某力的冲量等于某时刻的动量,或说某个功等于某时刻的动能.动量定理和动能定理都是“过程关系”,它们说的是在某段过程中,物体受到的合外力的冲量或做的功,等于物体动量或动能的增量,这里“增量”又叫“变化量”,是相应过程的“始”、“末”两个状态量的差值,表示的还是某一段过程的状态的变化 此外,还有一点要注意,那就是这些物理量与参考系的关系.由于位移和速度都是与参考系有关的物理量,因此动量、功、动能都是与参考系有关的物理量,只有冲量与参考系无关.凡没有提到参考系的问题,都是以地面为参考系的. 2、两个守恒定律是物理学中的重要物理规律,下面把有关两个守恒定律的问题整理列表如下:

最新物理动量守恒定律练习题20篇

最新物理动量守恒定律练习题20篇 一、高考物理精讲专题动量守恒定律 1.在相互平行且足够长的两根水平光滑的硬杆上,穿着三个半径相同的刚性球A、B、C,三球的质量分别为m A=1kg、m B=2kg、m C=6kg,初状态BC球之间连着一根轻质弹簧并处于静止,B、C连线与杆垂直并且弹簧刚好处于原长状态,A球以v0=9m/s的速度向左运动,与同一杆上的B球发生完全非弹性碰撞(碰撞时间极短),求: (1)A球与B球碰撞中损耗的机械能; (2)在以后的运动过程中弹簧的最大弹性势能; (3)在以后的运动过程中B球的最小速度. 【答案】(1);(2);(3)零. 【解析】 试题分析:(1)A、B发生完全非弹性碰撞,根据动量守恒定律有: 碰后A、B的共同速度 损失的机械能 (2)A、B、C系统所受合外力为零,动量守恒,机械能守恒,三者速度相同时,弹簧的弹性势能最大 根据动量守恒定律有: 三者共同速度 最大弹性势能 (3)三者第一次有共同速度时,弹簧处于伸长状态,A、B在前,C在后.此后C向左加速,A、B的加速度沿杆向右,直到弹簧恢复原长,故A、B继续向左减速,若能减速到零则再向右加速. 弹簧第一次恢复原长时,取向左为正方向,根据动量守恒定律有: 根据机械能守恒定律: 此时A、B的速度,C的速度

可知碰后A 、B 已由向左的共同速度减小到零后反向加速到向右的 ,故B 的最小速度为零 . 考点:动量守恒定律的应用,弹性碰撞和完全非弹性碰撞. 【名师点睛】A 、B 发生弹性碰撞,碰撞的过程中动量守恒、机械能守恒,结合动量守恒定律和机械能守恒定律求出A 球与B 球碰撞中损耗的机械能.当B 、C 速度相等时,弹簧伸长量最大,弹性势能最大,结合B 、C 在水平方向上动量守恒、能量守恒求出最大的弹性势能.弹簧第一次恢复原长时,由系统的动量守恒和能量守恒结合解答 2.如图:竖直面内固定的绝缘轨道abc ,由半径R =3 m 的光滑圆弧段bc 与长l =1.5 m 的粗糙水平段ab 在b 点相切而构成,O 点是圆弧段的圆心,Oc 与Ob 的夹角θ=37°;过f 点的竖直虚线左侧有方向竖直向上、场强大小E =10 N/C 的匀强电场,Ocb 的外侧有一长度足够长、宽度d =1.6 m 的矩形区域efgh ,ef 与Oc 交于c 点,ecf 与水平向右的方向所成的夹角为β(53°≤β≤147°),矩形区域内有方向水平向里的匀强磁场.质量m 2=3×10-3 kg 、电荷量q =3×l0-3 C 的带正电小物体Q 静止在圆弧轨道上b 点,质量m 1=1.5×10-3 kg 的不带电小物体P 从轨道右端a 以v 0=8 m/s 的水平速度向左运动,P 、Q 碰撞时间极短,碰后P 以1 m/s 的速度水平向右弹回.已知P 与ab 间的动摩擦因数μ=0.5,A 、B 均可视为质点,Q 的电荷量始终不变,忽略空气阻力,sin37°=0.6,cos37°=0.8,重力加速度大小g =10 m/s 2.求: (1)碰后瞬间,圆弧轨道对物体Q 的弹力大小F N ; (2)当β=53°时,物体Q 刚好不从gh 边穿出磁场,求区域efgh 内所加磁场的磁感应强度大小B 1; (3)当区域efgh 内所加磁场的磁感应强度为B 2=2T 时,要让物体Q 从gh 边穿出磁场且在磁场中运动的时间最长,求此最长时间t 及对应的β值. 【答案】(1)2 4.610N F N -=? (2)1 1.25B T = (3)127s 360 t π = ,001290143ββ==和 【解析】 【详解】 解:(1)设P 碰撞前后的速度分别为1v 和1v ',Q 碰后的速度为2v

高中物理动量守恒定律练习题

一、系统、内力和外力┄┄┄┄┄┄┄┄① 1.系统:相互作用的两个(或多个)物体组成的一个整体。 2.内力:系统内部物体间的相互作用力。 3.外力:系统以外的物体对系统内部的物体的作用力。 [说明] 1.系统是由相互作用、相互关联的多个物体组成的整体。 2.组成系统的各物体之间的力是内力,将系统看作一个整体,系统之外的物体对这个整体的作用力是外力。 ①[填一填]如图,公路上有三辆车发生了追尾事故,如果把前面两辆车看作一个系统,则前面两辆车之间的撞击力是________,最后一辆车对前面两辆车的撞击力是________(均填“内力”或“外力”)。 答案:内力外力 二、动量守恒定律┄┄┄┄┄┄┄┄② 1.内容:如果一个系统不受外力,或者所受外力的矢量和为0,这个系统的总动量保持不变。 2.表达式:对两个物体组成的系统,常写成: p1+p2=或m1v1+m2v2=。 3.适用条件:系统不受外力或者所受外力的矢量和为0。 4.动量守恒定律的普适性 动量守恒定律是一个独立的实验规律,它适用于目前为止物理学研究的一切领域。 [注意] 1.系统动量是否守恒要看研究的系统是否受外力的作用。

2.动量守恒是系统内各物体动量的矢量和保持不变,而不是系统内各物体的动量不变。 ②[判一判] 1.一个系统初、末状态动量大小相等,即动量守恒(×) 2.两个做匀速直线运动的物体发生碰撞,两个物体组成的系统动量守恒(√) 3.系统动量守恒也就是系统的动量变化量为零(√) 1.对动量守恒定律条件的理解 (1)系统不受外力作用,这是一种理想化的情形,如宇宙中两星球的碰撞,微观粒子间的碰撞都可视为这种情形。 (2)系统受外力作用,但所受合外力为零。像光滑水平面上两物体的碰撞就是这种情形。 (3)系统受外力作用,但当系统所受的外力远远小于系统内各物体间的内力时,系统的总动量近似守恒。例如,抛出去的手榴弹在空中爆炸的瞬间,弹片所受火药爆炸时的内力远大于其重力,重力可以忽略不计,系统的动量近似守恒。 (4)系统受外力作用,所受的合外力不为零,但在某一方向上合外力为零,则系统在该方向上动量守恒。 2.关于内力和外力的两点提醒 (1)系统内物体间的相互作用力称为内力,内力会改变系统内单个物体的动量,但不会改变系统的总动量。 (2)系统的动量是否守恒,与系统的选取有关。分析问题时,要注意分清研究的系统,系统的内力和外力,这是正确判断系统动量是否守恒的关键。 [典型例题] 例 1.[多选]如图所示,光滑水平面上两小车中间夹一压缩了的轻弹簧,两手分别按住小车,使它们静止,对两车及弹簧组成的系统,下列说法中正确的是() A.两手同时放开后,系统总动量始终为零

第十六章 动量守恒定律知识点总结

第十六章 动量守恒定律知识点总结 一、动量和动量定理 1、动量P (1)动量定义式:P=mv (2)单位:kg ·m/s (3)动量是矢量,方向与速度方向相同 2、动量的变化量ΔP 12P -P P =? (动量变化量=末动量-初动量) 注意:在求动量变化量时,应先规定正方向,涉及到的矢量的正负根据规定的正方向确定。 3/冲量 (1)定义式:I=Ft 物体所受到的力F 在t 时间内对物体产生的冲量为F 与t 的乘积 (2)单位:N ·s (2)冲量I 是矢量,方向跟力F 的方向相同 4、动量定理 (1)表达式:12P -P I =(合外力对物体的冲量=物体动量的变化量) 注意:应用动量定理时,应先规定正方向,涉及到的矢量的正负根据规定的正方向确定。 二、动量守恒定律 1、系统内力和外力 相互作用的两个(或多个)物体,组成一个系统,系统内物体之间的相互作用力,称为内力;系统外其他物体对系统内物体的作用力,称为外力。 2、动量守恒定律: (1)内容:如果一个系统不受外力,或者受外力的矢量和为零,这个系统的总动量保持不变。 (2)表达式:22112211v m v m v m v m '+'=+ (两物体相互作用前的总动量=相互作用后的总动量) (3)对条件的理解: ①系统不受外力或者受外力合力为零 ②系统所受外力远小于系统内力,外力可以忽略不计 ③系统合外力不为零,但是某个方向上合外力为零,则系统在该方向上总动量守恒 三、碰撞 1、碰撞三原则: (1)碰前后面的物体速度大,碰后前面的物体速度大,即:碰前21v v ?,碰后21 v v '?'; (2)碰撞前后系统总动量守恒 (3)碰撞前后动能不增加,即222211222211v m 2 1v m 21v m 21v m 21'+'≥+ 2、碰撞的分类Ⅰ (1)对心碰撞:两物体碰前碰后的速度都沿同一条直线。 (2)非对心碰撞:两物体碰前碰后的速度不沿同一条直线。

动量定理与动量守恒定律·典型例题解析

动量定理与动量守恒定律·典型例题解析 【例1】 在光滑的水平面上有一质量为2m 的盒子,盒子中间有一质量为m 的物体,如图55-1所示.物体与盒底间的动摩擦因数为μ现给物体以水平速度v 0向右运动,当它刚好与盒子右壁相碰时,速度减为 v 02 ,物体与盒子右壁相碰后即粘在右壁上,求: (1)物体在盒内滑行的时间; (2)物体与盒子右壁相碰过程中对盒子的冲量. 解析:(1)对物体在盒内滑行的时间内应用动量定理得:-μmgt = m mv t 0·-,=v v g 0022 (2)物体与盒子右壁相碰前及相碰过程中系统的总动量都守恒,设碰 撞前瞬时盒子的速度为,则:=+=+.解得=,=.所以碰撞过程中物体给盒子的冲量由动量定理得=-=,方向向右. v mv m v 22mv (m 2m)v v v I 2mv 2mv mv /61001212210v v 0043 点拨:分清不同的物理过程所遵循的相应物理规律是解题的关键. 【例2】 如图55-2所示,质量均为M 的小车A 、B ,B 车上 挂有质量为的金属球,球相对车静止,若两车以相等的速率M 4 C C B 1.8m/s 在光滑的水平面上相向运动,相碰后连在一起,则碰撞刚结束时小车的速度多大?C 球摆到最高点时C 球的速度多大? 解析:两车相碰过程由于作用时间很短,C 球没有参与两车在水平方向的相互作用.对两车组成的系统,由动量守恒定律得(以向左为正):Mv -Mv =

2Mv 1两车相碰后速度v 1=0,这时C 球的速度仍为v ,向左,接着C 球向左上方摆动与两车发生相互作用,到达最高点时和两车 具有共同的速度,对和两车组成的系统,水平方向动量守恒,=++,解得==,方向向左.v C v (M M )v v v 0.2m /s 222M M 4419 点拨:两车相碰的过程,由于作用时间很短,可认为各物都没有发生位移,因而C 球的悬线不偏离竖直方向,不可能跟B 车发生水平方向的相互作用.在C 球上摆的过程中,作用时间较长,悬线偏离竖直方向,与两车发生相互作用使两车在水平方向的动量改变,这时只有将C 球和两车作为系统,水平方向的总动量才守恒. 【例3】 如图55-3所示,质量为m 的人站在质量为M 的小车的右端,处于静止状态.已知车的长度为L ,则当人走到小车的左端时,小车将沿光滑的水平面向右移动多少距离? 点拨:将人和车作为系统,动量守恒,设车向右移动的距离为s ,则人向左移动的距离为L -s ,取向右为正方向,根据动量守恒定律可得M ·s -m(L -s)=0,从而可解得s .注意在用位移表示动量守恒时,各位移都是相对地面的,并在选定正方向后位移有正、负之分. 参考答案 例例跟踪反馈...;;.×·3 m M +m L 4 M +m M H [] 1 C 2h 300v 49.110N s 04M m M 【例4】 如图55-4所示,气球的质量为M 离地的高度为H ,在气球下方有一质量为m 的人拉住系在气球上不计质量的软绳,人和气球恰悬浮在空中处于静止状态,现人沿软绳下滑到达地面时软绳的下端恰离开地面,求软绳的长度.

四动量守恒定律练习题及答案

四 动量守恒定律 姓名 一、选择题(每小题中至少有一个选项是正确的) 1.在下列几种现象中,动量守恒的有( ) A .原来静止在光滑水平面上的车,从水平方向跳上一个人,人车为一系统 B .运动员将铅球从肩窝开始加速推出,以运动员和球为一系统 C .从高空自由落下的重物落在静止于地面上的车厢中,以重物和车厢为一系统 D .光滑水平面上放一斜面,斜面光滑,一个物体沿斜面滑下,以重物和斜面为一系统 2.两物体组成的系统总动量守恒,这个系统中( ) A .一个物体增加的速度等于另一个物体减少的速度 B .一物体受的冲量与另一物体所受冲量相同 C .两个物体的动量变化总是大小相等,方向相反 D .系统总动量的变化为零 3.砂子总质量为M 的小车,在光滑水平地面上匀速运动,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为 ( ) A .v 0 B .m M Mv -0 A .m M mv -0 A .M v m M 0)(- 、B 两个相互作用的物体,在相互作用的过程中合外力为0,则下述说法中正确的是( ) A .A 的动量变大, B 的动量一定变大 B .A 的动量变大,B 的动量一定变小 C .A 与B 的动量变化相等 D .A 与B 受到的冲量大小相等 5.把一支枪水平固定在小车上,小车放在光滑的水平地面上,枪发射子弹时,关于枪、子弹、车的下列说法正确的有( ) A. 枪和子弹组成的系统动量守恒 B.枪和车组成的系统动量守恒 C .枪、弹、车组成的系统动量守恒 D .若忽略不计弹和枪筒之间的摩擦,枪、车组成的系统动量守恒 6.两球相向运动,发生正碰,碰撞后两球均静止,于是可以判定,在碰撞以前( ) A .两球的质量相等 B .两球的速度大小相同 C .两球的动量大小相等 D .以上都不能断定 7.一只小船静止在水面上,一个人从小船的一端走到另一端,不计水的阻力,以下说法正确的是( ) A .人在小船上行走,人对船的冲量比船对人的冲量小,所以 人向前运动得快,小船后退得慢 B .人在小船上行走时,人的质量比船的质量小,它们受到的 冲量大小是一样的,所以人向前运动得快,船后退得慢 C .当人停止走动时,因为小船惯性大,所以小船要继续后退 D .当人停止走动时,因为总动量守恒,所以小船也停止后退 8.如图所示,在光滑水平面上有一静止的小车,用线系一小球, 将球拉开后放开,球放开时小车保持静止状态,当小球落下以后 与固定在小车上的油泥沾在一起,则从此以后,关于小车的运动状态是 ( ) A .静止不动 B .向右运动 C .向左运动 D .无法判断 *9.木块a 和b 用一根轻弹簧连接起来,放在光滑水平面上,a 紧靠在墙壁上,在b 上施加向左的水平力使弹簧压缩,如图所示,当撤去外力后,下列说法中正确的是( ) A .a 尚未离开墙壁前,a 和b 系统的动量守恒 B .a 尚未离开墙壁前,a 与b 系统的动量不守恒 C .a 离开墙后,a 、b 系统动量守恒 D .a 离开墙后,a 、b 系统动量不守恒 *10.向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向 时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 ( ) A .b 的速度方向一定与原速度方向相反 B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大

动量、动量守恒定律知识点总结

1 / 3 选修3-5动量知识点总结 一、对冲量的理解 1、I =Ft :适用于计算恒力或平均力F 的冲量,变力的冲量常用动量定理求。 2、I合 的求法: A 、若物体受到的各个力作用的时间相同,且都为恒力,则I 合=F 合.t B 、若不同阶段受力不同,则I 合为各个阶段冲量的矢量和。 1、意义:冲量反映力对物体在一段时间上的积累作用,动量反映了物体的运动状态。 2、矢量性:ΔP的方向由v ?决定,与1p 、2p 无必然的联系,计算时先规定正方向。 三、对动量守恒定律的理解: 1、研究对象:相互作用的物体所组成的系统 2、条件: A 、理想条件:系统不受外力或所受外力有合力为零。 B 、近似条件:系统内力远大于外力,则系统动量近似守恒。 C 、单方向守恒:系统单方向满足上述条件,则该方向系统动量守恒。 结论:等质量 弹性正碰 时,两者速度交换。 依据:动量守恒、动能守恒 五、判断碰撞结果是否可能的方法: 碰撞前后系统动量守恒;系统的动能不增加;速度符合物理情景。 动能和动量的关系:m p E K 22 = K mE p 2= 六、反冲运动: 1、定义:静止或运动的物体通过分离出一部分物体,使另一部分向反方向运动的现象叫反冲运动。 2、规律:系统动量守恒 3、人船模型: 条件:当组成系统的2个物体相互作用前静止,相互作用过程中满足动量守恒。 七、临界条件: “最”字类临界条件如压缩到最短、相距最近、上升到最高点等的处理关键是——系统各组成部分具有共同的速度v 。 八、动力学规律的选择依据: 1、题目涉及时间t,优先选择动量定理; 2、题目涉及物体间相互作用,则将发生相互作用的物体看成系统,优先考虑动量守恒; 3、题目涉及位移s,优先考虑动能定理、机械能守恒定律、能量转化和守恒定律; 4、题目涉及运动的细节、加速度a,则选择牛顿运动定律+运动学规律; 九、表达规范:说明清楚研究对象、研究过程、规律、规定正方向。 典型练习 一、基本概念的理解:动量、冲量、动量的改变量 1、若一个物体的动量发生了改变,则物体的( ) A、速度大小一定变了 B 、速度方向一定变了 C 、速度一定发生了改变 D 、加速度一定不为0 2、质量为m 的物体从光滑固定斜面顶端静止下滑到底端,所用的时间为t , 斜面倾角为θ。则( ) A 、物体所受支持力的冲量为0 B 、物体所受支持力冲量为θcos mgt C 、重力的冲量为mgt D 、物体动量的变化量为 θsin mgt 3、在光滑水平面上水平固定放置一端固定的轻质弹簧,质量为 m 的小球沿弹簧所位于的直线方向以速度v 运动,并和弹簧发生碰撞,小球和弹簧作用后又以相同的速度反弹回去。在球和弹簧相互作用过程中,弹簧对小球的冲量I 的大小和弹簧对小球所做的功W 分别为: A 、I =0、 W =mv 2 B 、I=2mv 、W = 0 C 、I =m v、 W = mv 2/2 D 、I=2mv 、 W = mv 2 /2 二、动量定理的应用: 4、下列运动过程中,在任意相等时间内,物体动量变化相等的是:( ) A 、匀速圆周运动 B 、自由落体运动 C 、平抛运动 D、匀减速直线运动

动量与动量守恒定律练习题(含参考答案)

高二物理3-5:动量与动量守恒定律 1.如图所示,跳水运动员从某一峭壁上水平跳出,跳入湖水中,已知 运动员的质量m =70kg ,初速度v 0=5m/s 。若经过1s 时,速度为v = 5m/s ,则在此过程中,运动员动量的变化量为(g =10m/s 2 ,不计空气阻力): ( ) A. 700 kg·m/s B. 350 kg·m/s B. C. 350(-1) kg·m/s D. 350(+1) kg·m/s 2.质量相等的A 、B 两球在光滑水平面上,沿同一直线,同一方向运动,A 球的动量p A =9kg?m/s ,B 球的动量p B =3kg?m/s .当A 追上B 时发生碰撞,则碰后A 、B 两球的动量可能值是( ) A .p A ′=6 kg?m/s ,p B ′=6 kg?m/s B .p A ′=8 kg?m/s ,p B ′=4 kg?m/s C .p A ′=﹣2 kg?m/s ,p B ′=14 kg?m/s D .p A ′=﹣4 kg?m/s ,p B ′=17 kg?m/s 3.A 、B 两物体发生正碰,碰撞前后物体A 、B 都在同一直线上运动,其位移—时间图象如图所示。由图可知,物体A 、B 的质量之比为: ( ) A. 1∶1 B. 1∶2 C. 1∶3 D. 3∶1 4.在光滑水平地面上匀速运动的装有砂子的小车,小车和砂子总质量为M ,速度为v 0,在行驶途中有质量为m 的砂子从车上漏掉,砂子漏掉后小车的速度应为: ( ) A. v 0 B. 0Mv M m - C. 0mv M m - D. ()0M m v M - 5.在光滑水平面上,质量为m 的小球A 正以速度v 0匀速运动.某时刻小球A 与质量为3m 的静止 小球B 发生正碰,两球相碰后,A 球的动能恰好变为原来的14.则碰后B 球的速度大小是( ) A.v 02 B.v 06 C.v 02或v 06 D .无法确定

高中物理动量守恒定律练习题及答案及解析

高中物理动量守恒定律练习题及答案及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,在倾角为30°的光滑斜面上放置一质量为m 的物块B ,B 的下端连接一轻质弹簧,弹簧下端与挡板相连接,B 平衡时,弹簧的压缩量为x 0,O 点为弹簧的原长位置.在斜面顶端另有一质量也为m 的物块A ,距物块B 为3x 0,现让A 从静止开始沿斜面下滑,A 与B 相碰后立即一起沿斜面向下运动,但不粘连,它们到达最低点后又一起向上运动,并恰好回到O 点(A 、B 均视为质点),重力加速度为g .求: (1)A 、B 相碰后瞬间的共同速度的大小; (2)A 、B 相碰前弹簧具有的弹性势能; (3)若在斜面顶端再连接一光滑的半径R =x 0的半圆轨道PQ ,圆弧轨道与斜面相切 于最高点P ,现让物块A 以初速度v 从P 点沿斜面下滑,与B 碰后返回到P 点还具有向上的速度,则v 至少为多大时物块A 能沿圆弧轨道运动到Q 点.(计算结果可用根式表示) 【答案】20132v gx =01 4 P E mgx =0(2043)v gx =+【解析】 试题分析:(1)A 与B 球碰撞前后,A 球的速度分别是v 1和v 2,因A 球滑下过程中,机械能守恒,有: mg (3x 0)sin30°= 1 2 mv 12 解得:103v gx = 又因A 与B 球碰撞过程中,动量守恒,有:mv 1=2mv 2…② 联立①②得:21011 322 v v gx == (2)碰后,A 、B 和弹簧组成的系统在运动过程中,机械能守恒. 则有:E P + 1 2 ?2mv 22=0+2mg?x 0sin30° 解得:E P =2mg?x 0sin30°? 1 2?2mv 22=mgx 0?34 mgx 0=14mgx 0…③ (3)设物块在最高点C 的速度是v C ,

高中物理动量守恒定律基础练习题及解析

高中物理动量守恒定律基础练习题及解析 一、高考物理精讲专题动量守恒定律 1.如图所示,小明站在静止在光滑水平面上的小车上用力向右推静止的木箱,木箱最终以速度v 向右匀速运动.已知木箱的质量为m ,人与车的总质量为2m ,木箱运动一段时间后与竖直墙壁发生无机械能损失的碰撞,反弹回来后被小明接住.求: (1)推出木箱后小明和小车一起运动的速度v 1的大小; (2)小明接住木箱后三者一起运动的速度v 2的大小. 【答案】①2v ;②23 v 【解析】 试题分析:①取向左为正方向,由动量守恒定律有:0=2mv 1-mv 得12v v = ②小明接木箱的过程中动量守恒,有mv+2mv 1=(m+2m )v 2 解得223 v v = 考点:动量守恒定律 2.如图所示,质量为M =2kg 的小车静止在光滑的水平地面上,其AB 部分为半径R =0.3m 的光滑 1 4 圆孤,BC 部分水平粗糙,BC 长为L =0.6m 。一可看做质点的小物块从A 点由静止释放,滑到C 点刚好相对小车停止。已知小物块质量m =1kg ,取g =10m/s 2。求: (1)小物块与小车BC 部分间的动摩擦因数; (2)小物块从A 滑到C 的过程中,小车获得的最大速度。 【答案】(1)0.5(2)1m/s 【解析】 【详解】 解:(1) 小物块滑到C 点的过程中,系统水平方向动量守恒则有:()0M m v += 所以滑到C 点时小物块与小车速度都为0 由能量守恒得: mgR mgL μ= 解得:0.5R L μ= =

(2)小物块滑到B 位置时速度最大,设为1v ,此时小车获得的速度也最大,设为2v 由动量守恒得 :12mv Mv = 由能量守恒得 :221211 22 mgR mv Mv =+ 联立解得: 21/ v m s = 3.两个质量分别为0.3A m kg =、0.1B m kg =的小滑块A 、B 和一根轻质短弹簧,弹簧的一端与小滑块A 粘连,另一端与小滑块B 接触而不粘连.现使小滑块A 和B 之间夹着被压缩的轻质弹簧,处于锁定状态,一起以速度03/v m s =在水平面上做匀速直线运动,如题8图所示.一段时间后,突然解除锁定(解除锁定没有机械能损失),两滑块仍沿水平面做直线运动,两滑块在水平面分离后,小滑块B 冲上斜面的高度为 1.5h m =.斜面倾角 o 37θ=,小滑块与斜面间的动摩擦因数为0.15μ=,水平面与斜面圆滑连接.重力加速度g 取210/m s .求:(提示:o sin 370.6=,o cos370.8=) (1)A 、B 滑块分离时,B 滑块的速度大小. (2)解除锁定前弹簧的弹性势能. 【答案】(1)6/B v m s = (2)0.6P E J = 【解析】 试题分析:(1)设分离时A 、B 的速度分别为A v 、B v , 小滑块B 冲上斜面轨道过程中,由动能定理有:2 cos 1sin 2 B B B B m gh m gh m v θμθ+?= ① (3分) 代入已知数据解得:6/B v m s = ② (2分) (2)由动量守恒定律得:0()A B A A B B m m v m v m v +=+ ③ (3分) 解得:2/A v m s = (2分) 由能量守恒得: 222 0111()222 A B P A A B B m m v E m v m v ++=+ ④ (4分) 解得:0.6P E J = ⑤ (2分) 考点:本题考查了动能定理、动量守恒定律、能量守恒定律. 4.如图所示,光滑水平面上有两辆车,甲车上面有发射装置,甲车连同发射装置质量M 1=1 kg ,车上另有一个质量为m =0.2 kg 的小球,甲车静止在水平面上,乙车以v 0=8 m/s

高中物理专题复习--动量及动量守恒定律

高中物理专题复习 动量及动量守恒定律 一、动量守恒定律的应用 1.碰撞 两个物体在极短时间内发生相互作用,这种情况称为碰撞。由于作用时间极短,一般都满足内力远大于外力,所以可以认为系统的动量守恒。碰撞又分弹性碰撞、非弹性碰撞、完全非弹性碰撞三种。 仔细分析一下碰撞的全过程:设光滑水平面上,质量为m 1的物体A 以速度v 1向质量为m 2的静止物体B 运动,B 的左端连有轻弹簧。在Ⅰ位置A 、B 刚好接触,弹簧开始被压缩,A 开始减速,B 开始加速;到Ⅱ位置A 、B 速度刚好相等(设为v ),弹簧被压缩到最短;再往后A 、B 开始远离, 弹簧开始恢复原长,到Ⅲ位置弹簧刚好为原长,A 、B 分开,这时A 、B 的速度分别为21v v ''和。全过程系统动量一定是守恒的;而机械能是否守恒就要看弹簧的弹性如何了。 ⑴弹簧是完全弹性的。Ⅰ→Ⅱ系统动能减少全部转化为弹性势能,Ⅱ状态系统动能最小而弹性势能最大;Ⅱ→Ⅲ弹性势能减少全部转化为动能;因此Ⅰ、Ⅲ状态系统动能相等。这种碰撞叫做弹 性碰撞。由动量守恒和能量守恒可以证明A 、B 的最终速度分别为:12 11 2 12 12 112,v m m m v v m m m m v +='+-='。 ⑵弹簧不是完全弹性的。Ⅰ→Ⅱ系统动能减少,一部分转化为弹性势能,一部分转化为内能,Ⅱ状态系统动能仍和⑴相同,弹性势能仍最大,但比⑴小;Ⅱ→Ⅲ弹性势能减少,部分转化为动能, 部分转化为内能;因为全过程系统动能有损失(一部分动能转化为内能)。这种碰撞叫非弹性碰撞。 , ⑶弹簧完全没有弹性。Ⅰ→Ⅱ系统动能减少全部转化为内能,Ⅱ状态系统动能仍和⑴相同,但没有弹性势能;由于没有弹性,A 、B 不再分开,而是共同运动,不再有Ⅱ→Ⅲ过程。这种碰撞叫完全非弹性碰撞。可以证明,A 、B 最终的共同速度为12 11 21v m m m v v += '='。在完全非弹性碰撞过程中,系统的动能损失最大,为:()() 2121212 2121122121m m v m m v m m v m E k +='+-=?。 例1. 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。质量为m 的小球以速度v 1向物块运动。 / ~

动量守恒定律及其应用·典型例题精析

动量守恒定律及其应用·典型例题精析 [例题1]平静的湖面上浮着一只长l=6m,质量为550 kg的船,船头上站着一质量为m=50 kg的人,开始时,人和船均处于静止.若船行进时阻力很小,问当人从船头走到船尾时,船将行进多远? [思路点拨]以人和船组成的系统为研究对象.因船行进时阻力很小,船及人所受重力与水对船的浮力平衡,可以认为人在船上行走时系统动量守恒,开始时人和船都停止,系统总动量为零,当人在船上走动时,无论人的速度如何,系统的总动量都保持为零不变. [解题过程]取人运动方向为正方向,设人对岸的速度为v,船对岸的速度为V,其方向与v相反,由动量守恒定律有 0=mv+(-MV). 解得两速度大小之比为

此结果对于人在船上行走过程的任一瞬时都成立. 取人在船上行走时任一极短时间Δt i,在此时间内人和船都可视为匀速运动,此时间内人和船相对地面移动的距离分别为ΔS mi=v iΔt i和ΔSM i=V iΔt i,由此有 这样人从船头走到船尾时,人和船相对地面移动的总距离分别为 S m=∑ΔS mi,S M=∑ΔS Mi. 由图中几何关系可知S m+S M=L.这样,人从船头走到船尾时,船行进的距离为 代入数据有 S M=0.5 m.

[小结]本题表明,在动量守恒条件得到满足的过程中,系统任一瞬时的总动量保持不变. [例题2]如图7-9示,物块A、B质量分别为m A、m B,用细绳连接,在水平恒力F的作用下A、B一起沿水平面做匀速直线运动,速度为v,如运动过程中,烧断细绳,仍保持力F大小方向不变,则当物块B停下来时,物块A的速度为多大? [思路点拨]以A和B组成的系统作为研究对象.绳子烧断前,A、B 一起做匀速直线运动,故系统所受外力和为零,水平方向系统所受外力计有拉力F,物块A受到地面的摩擦力f A,物体B受到地面的摩擦力f B,且F=f A +f B.绳烧断后,直到B停止运动前F与f A、f B均保持不变,故在此过程中系统所受外力和仍为零,系统总动量保持不变.所以此题可用动量守恒定律求解. [解题过程]取初速v的方向为正方向,设绳断后A、B的速度大小分别为v′A、v′B,由动量守恒定律有 (m A+m B)v=m A v′A+m B v′B.

动量守恒定律典型例题报告.doc

班级: 学号: 姓名: 动量守恒定律习题课 一、动量守恒定律知识点 1.动量守恒定律的条件⑴系统不受外力或者所受外力之和为零; ⑵系统受外力,但外力远小于内力,可以忽略不计; ⑶系统在某一个方向上所受的合外力为零,则该方向上动量守恒。 ⑷全过程的某一阶段系统受的合外力为零,则该阶段系统动量守恒。 2.动量守恒定律的表达形式 (1) ,即p 1 +p 2=p 1+p 2, (2)Δp 1 +Δp 2=0,Δp 1= -Δp 2 。 3.应用动量守恒定律解决问题的基本思路和一般方法 (1)分析题意,明确研究对象。 (2)对各阶段所选系统内的物体进行受力分析,判定能否应用动量守恒。 (3)确定过程的始、末状态,写出初动量和末动量表达式。 注重:在研究地面上物体间相互作用的过程时,各物体运动的速度均应取地球为参考系。 (4)建立动量守恒方程求解。 二、碰撞 1.弹性碰撞 特点:系统动量守恒,机械能守恒。 设质量m 1的物体以速度v 0与质量为m 2的在水平面上静止的物体发生弹性正碰,则 由动量守恒定律可得:221101v m v m v m +=① 碰撞前后能量守恒、动能不变:2 22 212111210 121 v m v m v m +=② 联立①②得:01 2 12 1v v m m m m +-= 0222 11v v m m m += (注:在同一水平面上发生弹性正碰,机械能守恒即为动能守恒) [讨论] ①当m l =m 2时,v 1=0,v 2=v 0(速度互换) ②当m l <m 2时,v 1>0,v 2>0(同向运动) ④当m l 0(反向运动) ⑤当m l >>m 2时,v 1≈v,v 2≈2v 0 (同向运动) 2.非弹性碰撞:部分机械能转化成物体的内能,系统损失了机械能,两物体仍能分离。 特点:动量守恒,能量不守恒。 用公式表示为:m 1v 1+m 2v 2= m 1v 1′+m 2v 2′ 机械能/动能的损失:2 2 22 1111 12112211222222()()k k k E E E m v m v m v m v ''?=-=+-+ 3.完全非弹性碰撞:碰撞后两物体粘在一起运动,此时动能损失最大。 特点:动量守恒,能量不守恒。 用公式表示为: m 1v 1+m 2v 2=(m 1+m 2)v 动能损失:22 2 2 111 1112212222()()k k k E E E m v m v m m v ?=-=+-+ 解决碰撞问题须同时遵守的三个原则: ①系统动量守恒原则 ②能量不增加的原则 ③物理情景可行性原则:(例如:追赶碰撞: 碰撞前: 碰撞后:在前面运动的物体的速度一定不小于在后面运动的物体的速度) 【例题】甲、乙两球在光滑水平轨道上同向运动,已知它们的动量分别是p 甲=5 kg ·m/s,p 乙= 7 kg ·m/s ,甲追乙并发生碰撞,碰后乙球的动量变为p 乙′=10 kg ·m/s ,则两球质量m 甲与m 乙的关系可能是( ) A .m 甲=m 乙 B.m 乙=2m 甲 C.m 乙=4m 甲 D.m 乙=6m 甲 解析:由碰撞中动量守恒可求得pA ′=2 kg ·m/s 要使A 追上 B , 则必有:vA >vB , 即 mB >1.4mA ① 碰后pA ′、pB ′均大于零,表示同向运动,则应有:vB ′≥vA ′ 被追追赶V ?V

相关文档
最新文档