不同封端剂对尼龙6切片粘度及端氨基的影响

不同封端剂对尼龙6切片粘度及端氨基的影响
不同封端剂对尼龙6切片粘度及端氨基的影响

16盐科学与化工第47卷第8期2018年8月

不同封端剂对尼龙6切片粘度及端氨基的影响

马英哲#,姚利#,郭鹏杰#,裴迅#,王婷婷2

(1.天津长芦海晶集团有限公司,天津300450 ;2.天津市渤海海洋监测监视管理中心,天津300457)

摘要:实际生产应用中,对尼龙6的粘度及端氨基含量要求较高,更多的下游厂家

对此两项指标更为看重,其中,粘度直接影响到下游纺丝效果,端氨基含量对尼龙6纤维染色

效果影响较大。实验利用小型聚合装置,通过改变封端剂类型及添加量模拟生产线聚合工艺

进行平衡对比实验,要求聚合反应各阶段聚合时间、压力、温度控制完全一致,封端剂调配过

程及温度保持一致。对比分析使用不同类型封端剂情况下,尼龙切片粘度及端氨基变化

趋势。

关键词!封端剂;粘度;端氨基;尼龙6

中图分类号:T Q31文献标识码:A文章编号:2096 -3408(2018)08 -0016 -04

The effect of different capping agent on Nylon

6 0s intrinsic viscosity and amino end group

MA Ying- zhe1,Y A O L i^,GUO Peng- jie1,PEI Xun1,W ANG Ting- ting2

(1. Tianjin Changlu Haijing Group Co.,Ltd.,Tianjin 300450,China;

2. Tianjin Bohai Marine Monitoring and Sureillanced Management Center,Tianjin 300457,China)

Abstract:During actual production and application,the viscosity and the content of amino

end group of nylon 6has high requirement. More downstream firms are more conc two indicators. T he viscosity directly afects the downstream spinning effect,and the content of ami-

no end group has a great influence on the dyeing effect of nylon 6 f i l D e r.In this experiment,a small

polymerization device was used to c any out a balanced comparison experiment by changing the type

of capping agent a nd the additive amount which was used in polymerization process of the analog

production line. I t was required that the polymerization time,pressure and temperature control at all

stages of the polymerization were identical,and the process of capping agent and the temp were consistent. T h e changes of viscosity and amino end groups of nylon chips under different types

of capping agents were comparatively analyzed.

Key words:capping agent;viscosity;amino end group;Nylon 6

尼龙生产使用过程中,切片粘度、端氨基含量等问题直接影响到切片的下游使用情况,粘度直接影响到下游纺丝效果,端氨基含量对尼龙6纤 维染色效果影响较大。从尼龙6的分子链结构特点分析,羧基和氨基两个官能团存在于分子链的末端,而在分子链的中间存在大量碳链和酰胺基,无侧链,氨基含量低,因此,选择不同类型的封端剂(含有不同羧基或者氨基的封端剂)对反应进行封端,对聚合产物的粘度及端氨基含量均有一定的影响。为了解不同封端剂对尼龙切片粘度及端氨基的影响情况,缩短在后续聚合生产过程中工艺摸索的时间周期,满足下游客户硬性指标要求,利用实验室小型聚合装置,通过改变封端剂类型及添加量模拟生产线聚合工艺进行平行对比实验,查看使用不同类型封端剂情况下,尼龙切片的粘度及端氨基变化趋势。

收稿日期:2018 -04-08

作者简介:马英哲(1975—),女,河北武强人,本科,高工,从事尼龙新品研发工作联系方式$138********

尼龙66的性质

尼龙66的基本性质 热性质 (1)熔点(Tm) 熔点即结晶熔解时的温度,对结晶性高分子尼龙-66,显示清晰的熔点,根据采用的测试方法,熔点在259~267℃的范围内波动。通常采用差热分析(DTA)法测出的尼龙-66的熔点为264℃。实际上,尼龙-66的熔点可以根据结晶的熔融热(ΔH)和熔融熵(ΔS)计算出来: 尼龙-66的ΔH为4390.3J/mol,ΔS为8.37J/kmol,Tm的理论值为259.3℃[ ]。 如果将体积膨胀系数显示极大值的温度当作熔点,则尼龙-66的熔点温度范围为246~263℃。接近理论熔解温度259℃。 (2)玻璃化温度(Tg) 高分子的比容和比热容等温度特性值在某一温度可出现不规则的变化,这一温度就是玻璃化转变温度,是分子链的链段克服分子间力开始运动的温度。在这一温度附近,模量、振动频率、介电常数等也开始发生变化。 尼龙-66的玻璃化温度,与测试方法、试样中的水分含量、单体浓度、结晶度等因素有关。Wilhoit和Dole等从比热容的温度变化分析,认为尼龙-66的玻璃化温度为47℃[ ],而Rybnikar则在低温下测定了尼龙-66的比容,发现在尼龙-66在-65℃也有一个转变温度[ ]。 结晶和结晶度 (1)结晶构造 Bill认为,尼龙-66的晶形有α型和β型二种形态,在常温下为三斜晶形,在165℃以上为六方晶形[ ]。 Bunn等确定了尼龙-66α型的结晶构造[ ],如图01-72所示,其晶胞的晶格常数列于表01-73。从图01-72可见,尼龙-66分子中的亚甲基呈锯齿状平面排列,酰胺基取反式平面结构,分子链被笔直地拉长。相邻的分子以氢键连成平面的片状,其模型如图01-68所示。 表01-68尼龙-66稳定晶形的晶格常数 晶体 a b c(纤维轴) αβγ α型结晶(三斜晶系) 4.9×10-4μm 5.4×10-4μm 17.2×10-4μm48?° 77°63?° 计算密度=1.24g/cm3 图01-44尼龙-66的α晶型结构[ ] 图01-45尼龙-66分子中晶片排列模型[ ] 线条:链状分子;○:氧原子 从图01-45可以看出,尼龙-66的α晶型是一系列晶片沿链轴方向一个接一个的垒积,而β晶型则每隔一片相互上下偏移垒积。对未进行热处理的普通成型品,构成结晶的氢键平面片的重叠方式,是这种α晶型和β晶型的任意混合。 (2)球晶 熔融状态的尼龙-66缓慢冷却时,在235~245℃急剧生成球晶。球晶不仅包含于结晶部分,也包含于非结晶部分,结晶度为20%~40%。 球晶有在径向上优先取向的正球晶及在切线方向上优先取向的负球晶[ ]。尼龙-66球晶通常为正球晶,但在250~265℃下加热熔融结晶时可以生成负球晶[ , ]。球晶生成速度和球晶大小,除显著地受冷却温度的影响之外,还受到熔融温度、分子量等因素的影响。(3)结晶度 一般认为,普通结晶形高分子,具有结晶区域和非结晶区域,结晶区域的比例便称为结晶度。在很大程度上,结晶度可以左右尼龙-66的物理、化学和机械性质。结晶度可以用X-射线、红外吸收光谱、熔融热、密度和体积膨胀率等求得,其中以密度法最为简单方便。 分子量和分子量分布 综合考虑尼龙-66的可应用性和可加工性,通常将其分子量调整为15000~30000(聚合度约150~300),若分子量太大,成型加工性能变差。已经开发了一系列方法测定聚酰胺的分子量,如粘度法(溶液粘度法和熔融粘度法)、末端基定量法(中和滴定法、比色法、电位滴定法、电导滴定法)、光散射法、渗透压法、熔融电导法等,其中溶液粘度法在实验室条件较为容易进行。 热分解和水解反应 与其它聚酰胺相比,尼龙-66最容易热降解和三维结构化。当尼龙-66发生热分解时,首先表现为主链开裂引起分子量、熔体粘度降低;进一步降解时,由三维结构化引起熔体粘度上升而最终变成凝胶,成为不溶不熔物。其机理尚未完全阐明,但相信主要原因是尼龙-66本质造成的,与己二酸残基容易形成环戊酮衍生物密切相关。 在惰性气体氛围中,尼龙-66可以在300℃保持短时间的稳定性,但时间长后(如290℃5小时)就可看出明显的分解,产生氨和二氧化碳等。在无氧的条件下,其分解产物为氰基(-CN)和乙烯基(-CH=CH2)。

改性增强尼龙6主要技术指标

改性增强尼龙6主要技术指标 弯曲强度(MPa)≥100 缺口冲击强度(kJ/m2)≥6.0 拉伸强度(MPa)≥70 压缩强度(MPa)≥78 相对密度≤1.22 熔融值的测定方法 一、目的: 区别热塑性塑料在熔融状态下的粘流特性。 二、定义: 熔体流动速率测定仪亦称熔融指数仪;是测定热塑性塑料在一定温度和负荷下,熔体每10分钟通过标准口模毛细管的质量或熔融体积。 三、操作环境、要求: 温度:10~30℃湿度:≤80%RH 四、仪器规格、测试范围: 1、温度控制范围:100-400℃ 2、波动:±0.1℃ 3、测定范围:0.031-1500g/10min 4、口模内径:Ф2.095±0.005mm、Ф1.180±0.010mm 5、料筒内径:Ф9.550±0.020mm 6、电源:AC220V 50Hz 5A

五、仪器介绍: 六、操作方法: 1、将口模与料杆装入料筒: 2、开启左侧电源开关,上显示器显示当前料筒实际温度,下显示器显示(上次)设置温度,并根据所设置的温度开始升温、控温,行程指示灯(25.4)亮(如图2);按行程键选择行程,仪器按上次设置的参数运行,参数设置方法如下: 按一下设置键,上显示器显示T,下显示器显示当前己设置温度值;如需修改按键,下显示器第一位灯闪,按▼键或▲键修改当前数值,使该位数值“+1”或“-1”,再按下显示器第二位灯闪,仍按▼键或▲键修改数值,直至修改完成依次按一下设置键与返回键,既可保存修改,并回到工作状态;依次按设置键可修改温度、日期、批号、负荷、密度、温度修正值(参数修改方法同上); 3、行程设置:在自动工作状态下的初始杠杆上翘时,自动行程自动设置在25.4,相应指示灯亮,按行程键,转换至6.35(相应灯亮),再按行程键,转至25.4。6.35或25.4(“1/4”或“1”)的选择依据参见表一。 MFR(g/min) 料杆移动距离(mm) 0.031~10 6.35( 1/4″) 10~1500 25.4( 1″) (表一)

粘度测试注意事项及乌氏粘度计原理

粘度测试注意事项及乌氏粘度计原理 根据其测量原理,为了获得准确可靠的测量数据必须注意以下几点: 一、仪器的性能指标必须满足国家计量检定规程度要求。使用中的仪器要进行周期检定,必要时(仪器使用频繁或处于合格临界状态)要进行中间自查以确定其计量性能合格,系数误差在允许范围内,否则无法获得准确数据。 二、特别注意被测液体的温度。许多用户忽视这一点,认为温度差一点无所谓,我们的实验证明:当温度偏差0.5℃ 时,有些液体粘度值偏差超过5% ,温度偏差对粘 粘度计 度影响很大,温度升高, 粘度下降。所以要特别注意将被测液体的温度恒定在规定的温度点附近,对精确测量最好不要超过0.1℃。 三、测量容器(外筒)的选择。对于双筒旋转粘度计要仔细阅读仪器说明书,不同的转子(内筒)匹配相应的外筒, 否则测量结果会偏差巨大。对于单一圆筒旋转粘度计,原理上要求外筒半径无限大,实际测量时要求外筒即测量容器的内径不低于某一尺寸。例如上海天平仪器厂生产的NDJ-1型旋转粘度计,要求测量用烧杯或直筒形容器直径不小于70mm。实验证明特别在使用一号转子时,若容器内径过小引起较大的测量误差。 四、正确选择转子或调整转速,使示值在20~90格之间。该类仪器采用刻度盘加指针方式读数,其稳定性及读数偏差综合在一起有0.5格,如果读数偏小如5格附近,引起的相对误差在10%以上,如果选择合适的转子或转速使读数在50格,那么其相对误差可降低到1%。如果示值在90格以上,使游丝产生的扭矩过大,容易产生蠕变,损伤游丝,所以一定要正确选择转子和转速。 五、频率修正。对于国产仪器名义频率在50Hz,而我国目前的供电频率也是50 Hz,我们用频率计测试变动性小于0.5%,所以一般测量不需要频率修正。但对于日本和欧美的有些仪器, 名义频率在60Hz, 必须进行频率修正,否则会产生20%的误差,修正公式为: 实际粘度=指示粘度×名义频率÷实际频率 六、转子浸入液体的深度及气泡的影响。旋转粘度计对转子浸入液体的深度有严格要求,必须按照说明书要求*作(有些双筒仪器对测试的液体用量有严格要求,必须用量筒量取)。在转子浸入液体的过程中往往带有气泡,在转子旋转后一段时间大部分会上浮消失,附在转子下部的气泡有时无法消除,气泡的存在会给测量数据带来较大的偏差,所以倾斜缓慢地浸入转子是一个有效的办法。 七、转子的清洗。测量用的转子(包括外筒)要清洁无污物,一般要在测量后及时

尼龙66的主要牌号与性能讲诉

尼龙66的主要牌号与性能 01.3.6.1国产尼龙66的主要性能指标 国内生产尼龙66的厂家有:黑龙江省尼龙厂、上海塑料制品十八厂、辽阳化纤工业总公司、太原合成纤维厂、神马集团、浙江衢州化工厂、宜兴太湖尼龙厂、江苏海安化工厂。其产品主要用制造各种机械、汽车、化工、电子电气装置的零部件,特别适合用于高强度或耐磨部件,如各种齿轮、滑轮、辊轴、轴承、泵体中叶轮、风箱叶片、高压密封圈、阀座、垫片、衬套、各种壳体、工具手柄、支撑架、电缆包层、汽车灯罩等。在电子仪器设备、继电器等电气设备中制造零件、电梯导轨、建筑装饰扶手等。在医疗器械、体育用品和日用品上也有广泛应用,如棒球棒、滑雪板等。也可制成薄膜后与铝箔等形成复合膜用于食品包装,如软包装饮料、罐头等。表01-73列出了几家企业的尼龙66产品指标。 表01-73 国产尼龙66的性能指标 01.3.6.2阻燃增强尼龙66的主要性能指标

目前,国内尚有许多厂家从事改性尼龙66树脂的生产。生产阻燃尼龙66和阻燃增强尼龙66的主要厂家有:黑龙江省尼龙厂、黑龙江省化工研究所、上海赛璐珞厂、广州莲花山工程塑料厂、江阴市永建化工有限公司等。阻燃尼龙66主要用于低压电器、机床电器、广播电视工业中,制造各种阻燃零件如调压器开关、仪器仪表外壳和电子电气连接器等;生产玻纤增强尼龙66的主要厂家有:黑龙江省尼龙厂、上海德胜塑料厂、广州莲花山工程塑料厂、苏州塑料一厂等。产品主要应用于低压电器工业,如交流接触器底座、线圈骨架、行程开关等各种要求耐火性能的介电零件中。黑龙江省化学研究所还生产防老化尼龙。其主要指标列于表01-74中。 表01-74 国产改性尼龙66树脂的主要性能指标 01.3.6.3杜邦公司系列尼龙66产品的基本性能指标 杜邦公司是主要的尼龙66生产厂家之一,其产品型号齐全,覆盖面广,满足各行各业对尼龙66树脂的不同性能要求,见表01-75。 表01-75 杜邦公司Zytel?66树脂型号与用途

尼龙特性

尼龙材料特性2010-07-03 14:37 统称为尼龙 pa6 和 pa66 为主要的其他比较少 具体 尼龙(Nylon,Polyamide,简称PA)是指由聚酰胺类树脂构成的塑料。此类树脂可由二元胺与二元酸通过缩聚制得,也可由氨基酸脱水后形成的内酰胺通过开环聚合制得,与PS、PE、PP等不同,PA不随受热温度的升高而逐渐软化,而是在一个靠近熔点的窄的温度范围内软化,熔点很明显,熔点:215-225℃。温度一旦达到就出现流动。 PA的品种很多,主要有PA6、PA66、PA610、PA11、PA12、PA1010、PA612、PA46、PA6T、PA9T、MXD-6芳香醯胺等。以PA6、PA66、PA610、PA11、PA12最为常用。 尼龙类工程塑料外观上都呈现为角质、韧性、表层光亮、白色(或乳白色)或微黄色、透明或半透明的结晶性树脂,它容易被著成任一种颜色。作为工程塑料的尼龙分子量一般为1.5-3万。它们的密度均稍大于1,密度:1.14-1.15g/cm3。拉伸强度:>60.0Mpa。伸长率:>30%。弯曲强度:90.0Mpa。缺口冲击强度:(KJ/m2)>5。尼龙的收缩率为1%~2%。需注意成型后吸湿的尺寸变化。吸水率 100% 相对吸湿饱和时能吸8%.使用温度可-40~105℃之间。熔点: 215-225℃。合适壁厚2-3.5mm。PA的机械性能中如抗拉抗压强度随温度和吸湿量而改变,所以水相对是PA的增塑剂,加入玻纤后,其抗拉抗压强度可提高2倍左右,耐温能力也相应提高,PA本身的耐磨能力非常高,所以可在无润滑下不停操作,如想得到特别的润滑效果,可在PA中加入硫化物。 PA性能的主要优点有: 1.机械强度高,韧性好,有较高的抗拉、抗压强度。比拉伸强度高于金属,比压缩强度与金属不相上下,但它的刚性不及金属。抗拉强度接近于屈服强度,比ABS高一倍多。对冲击、应力振动的吸收能力强,冲击强度比一般塑料高了许多,并优于缩醛树脂。 2.耐疲劳性能突出,制件经多次反复屈折仍能保持原有机械强度。常见的自动扶梯扶手、新型的自行车塑料轮圈等周期性疲劳作用极明显的场合经常应用PA。 3.软化点高,耐热(如尼龙46等,高结晶性尼龙的热变形温度高,可在150度下长期使用.PA66经过玻璃纤维增强以后,其热变形温度达到250度以上)。 4.表面光滑,摩擦系数小,耐磨。作活动机械构件时有自润滑性,噪声低,在摩擦作用不太高时可不加润滑剂使用;如果确实需要用润滑剂以减轻摩擦或帮助散热,则水油、油脂等都可选择。从而,做为传动部件其使用寿命长. 5.耐腐蚀,十分耐碱和大多数盐液,还耐弱酸、机油、汽油,耐芳烃类化合物和一般溶剂,对芳香族化合物呈惰性,但不耐强酸和氧化剂。能抵御汽油、油、脂肪、酒精、弱碱等的侵蚀和有很好的抗老化能力。可作润滑油、燃料等的包装材料。 6.有自熄性,无毒,无臭,耐候性好,对生物侵蚀呈惰性,有良好的抗菌、抗霉能力。

尼龙66国内外生产现状及发展建议精

专论综述 弹性体 , 2010 12 25, 20(6 :78~82 CH IN A EL A ST O M ERICS 收稿日期 :2010 10 22 作者简介 :华阳 (1976 , 女 , 吉林省吉林市人 , 经济师 , 主要从事化工营销工作。 尼龙 66国内外生产现状及发展建议 华阳 1, 刘振明 2, 刘权毅 3, 张立 4, 张炜 5 (1. 中国石油吉林石化公司销售管理部 , 吉林吉林 132021; 2. 中国石油 吉林石化公司研究院 , 吉林吉林 132021; 3. 中国石油吉林石化公司电子商务 部 , 吉林吉林 132021; 4. 吉林省电力有限公司四平供电公司 , 吉林四平 136000; 5. 吉林梦溪工程管理有限公司 , 吉林吉林 132021 摘要 :介绍了国内外尼龙 66的生产和市场现状 , 阐述了尼龙 66生产技术及其工艺 , 并结合我国实际情况 , 提出了尼龙 66的发展建议。 关键词 :尼龙 66; 生产 ; 市场 ; 生产技术 ; 发展建议 中图分类号 :T Q 342+. 1 文献标识码 :A 文章编号 :1005 3174(2010 06 0078 05 尼龙 (Nylon 又称聚酰胺 , 英文名称 Poly am ide(简称 PA , 是分子主链上含有重复酰胺基团 NH CO 的热塑性树脂总称 , 其包括脂肪族 PA 、脂肪芳香族 PA 和芳香族 PA 。其中 , 脂肪族 PA 品种多 , 产量大 , 应用广泛 , 其命名由合成单体 具体的碳原子数而定。 尼龙纤维和树脂是合成材料中的一大系列产品。尼龙纤维主要是由己内酰胺(CPL 开环聚合制得的尼龙 6和尼龙 66盐缩聚合而成的尼龙 66生产的 , 在我国又

尼龙参数

主要尼龙品种的性能 尼龙增强与未增强品种性能比较强

几种尼龙在大气中的平衡吸水率 说明: 聚酰胺(尼龙)的结构特点使它具有良好的机械性能、耐油和耐溶剂性能。 尼龙类工程塑料外观上都呈现为角质、韧性、表层光亮、白色(或乳白色)或微黄色、透明或半透明的固体。它们的密度均稍大于1,使用温度可-40~105℃之间。 尼龙具有优良的机械性能,比拉伸强度高于金属,比压缩强度与金属不相上下,但它的刚性不及金属。在耐磨性、自润滑性以及冲击韧性方面,尼龙的性能也很好。 在化学性能上,尼龙能耐大多数盐类、耐油、耐芳烃类化合物方面也较好,但不耐强酸和氧化剂。 尼龙的缺点,如热变形温度低,连续使用温度在80~120℃(视不同品种而变化),吸水性较大等。由于吸水性的影响,尼龙材料的机械(强度、蠕变)及电性能皆会变劣,尼龙制品的尺寸会发生变化。从“几种尼龙在大气中的平衡吸水率”中的数据说明,随着酰胺基的密度降低,即比值次甲基数/酰胺基数升高,吸水率变小,尺寸的稳定性也相应地提高。因此在制作精密度要求高,尺寸稳定性好的零件,宜选用尼龙-610、尼龙-1010、尼龙-11等材料。 单体浇铸尼龙(MC尼龙) 单体浇铸尼龙(MC尼龙),又称MC尼龙,是单体已内酰胺在浇模内直接聚合成型所获得的尼龙-6工程塑料。 MC尼龙的特点如下: 1.所得尼龙-6分子量可高达3.5~7万,而一般聚合的尼龙-6仅为2~3万,故MC尼龙的物理、机械性能较为优良。 2.工艺、设备和模具都比较简单,易于掌握,可浇铸各种型材,省去单体先聚合,再成型加工等复杂的生产过程。 3.只要模具比较简单,可铸造重量达上百斤的大型机械部件,如大型齿轮、蜗轮和导轨等。 4.吸水率为一般尼龙的一半,长期使用温度为100℃。 摘自《高聚物合成工艺学》 华东理工大学赵德仁张慰盛主编

粘度测试

实验三十 黏度的测定和应用 (一) 溶液黏度的测定 【实验目的】 1. 掌握用奥氏黏度计测量溶液黏度的方法。 2. 了解黏度的物理意义、测定原理和方法。 【实验原理】 当流体受外力作用产生流动时,在流动着的液体层之间存在着切向的内部摩擦力。如果要使液体通过管子,必须消耗一部分功来克服这种流动的阻力。在流速低时管子中的液体沿着与管壁平行的直线方向前进,最靠近管壁的液体实际上是静止的,与管壁距离愈远,流动的速度也愈大。 流层之间的切向力f 与两层间的接触面积A 和速度差Δv 成正比,而与两层间的距离Δx 成反比: x A f ??=ν η (1) 式中,η是比例系数,称为液体的黏度系数,简称黏度。黏度系数的单位在C.G.S.制中用“泊”表示,在国际单位制(SI)中用Pa ·S 表示,1泊=10-1Pa ·S 。 液体的黏度可用毛细管法测定。泊肃叶(Poiseuille)得出液体流出毛细管的速度与黏度系数之间存在如下关系式: VL t pr 84πη= (2) 式中,V 为在时间t 内流过毛细管的液体体积;p 为管两端的压力差;r 为管半径;L 为管长。按(2)式由实验直接来测定液体的绝对黏度是困难的,但测定液体对标准液体(如水)的相对黏度是简单实用的。在已知标准液体的绝对黏度时,即可算出被测液体的绝对黏度。设两种液体在本身重力作用下分别流经同一毛细管,且流出的体积相等,则 221 12 12242114188t p t p VL t p r VL t p r =?= = ηηπηπη (3) 式中,p = hgρ,其中h 为推动液体流动的液位差;ρ为液体密度;g 为重力加速度。如果每次取用试样的体积一定,则可保持h 在实验中的情况相同,因此可得:

尼龙6聚合工艺

尼龙6聚合工艺

PA6聚合生产技术 本文叙述了国外PA6聚合生产工艺与设备,介绍了几种常用的聚合方法及特点,并进行了对比。德国Zimmer公司,Kart Fischer公司,瑞士 Inventa 公司,意大利Noy公司,德国Aqufil公司等的工艺技术设计合理,所生产的产品质量较好,分子量分布均匀。其设备特点是在聚合管内广泛采用静态混合器或整流器。萃取塔采用狭缝式结构,干燥塔采用热氮气干燥,聚合过程采用DCS集散系统控制,生产过程全部连续化。 关健词:PA6聚合先进工艺比较 1938年,德国的P Schlack发明了已内酰胺聚合制取聚已内酰胺(PA6)和生产纤维的技术,并于1941年投入工业化生产。迄今,已内酰胺聚合工艺在长达半个多世纪的生产过程中,经历了从小容量到大容量,从间歇聚合到连续聚合,设备结构不断改进、完善,工艺技术日趋合理、成熟。本文就国外几个有代表性的公司所设计的PA6聚合工艺及设备的特点作一综合性的介绍。

1、PA6聚合方法 随着新技术的发展,PA6生产装置(包括切片萃取、干燥和废料回收)已进入大型化、连续化,自动化的高科技之列。PA6聚合技术有代表性的公司有德国Zimmer公司,Kart Fischer公司,Didier公司,Aqufil公司,瑞士 Inventa公司,意大利Noy公司,以及日本东丽、龙尼吉卡公司等。其聚合工艺根据产品用途不同而有几种不同的方法,表1列出了德国吉玛公司有关VK管能力、单耗、质量指标及切片用途等参数。 表1Zimmer公司PA6聚合工艺参数

*不包括回收的已内酰胺 -

1.1常压连续聚合法 该方法用于生产PA6民用丝。NOY公司特点:采用大型VK管(○1440mm×1690mm)连续聚合,聚合温度260℃,时间20h。热水逆流萃取切片中残余单体及低聚物、氮气气流干燥、DCS集散系统控制,单体回收采用萃取水连续三效蒸发浓缩,间断蒸馏浓缩液工艺。具有生产连续化、产量高、质量好、占地面积少的特点。是当前世界普遍采用的生产民用丝PA6切片的典型工艺。 1.2二段聚合法 该法由前聚合与后聚合二个聚合管组成,主要用于生产高粘度的工业帘子布用丝。二段聚合法又分为前聚合高压、后聚合常压;前聚合加压、后聚合减压;前、后聚合均为常压三种方法。在三种方法中从聚合时间及产物中含单体和低聚体量等比较则以加压、减压聚合法最好(但设备投资大,操作费用最高),高压、常压次之,前、后聚合均为常压最差(但设备投资最省,操作费用最低)、巴陵石化

制冷剂粘度测量

制冷剂粘度测量 1、服务范围 测量范围:动力粘度:0.1~100 mPa·s 运动粘度:0.1~2500 mm2/s 温度范围:-30 ℃~350 ℃ 压力范围:0.1~30 MPa 2、测量方法 测量粘度的方法很多,如毛细管法、落体法、旋转法、振动法等。在众多的测量方法中,振动弦方法因为结构简单、适用于宽广的粘度、温度、压力范围而备受研究人员的广泛关注。 相比于其他方法,振动弦法具有一些特别的优势,因而受到国际流体粘度研究领域的普遍关注。比如振动弦法拥有一系列严谨的工作方程以及有明确含义的物理参数;由于测量量基本为电测量,理论上振动弦法可以实现全自动化测量;由于传感器的几何结构简单,可以避免了进行任何关于温度和压力的标定;振动弦系统可以避免逐级标定,且理论上可以实现绝对测量,不需要任何标定(已经有实验室实现);振动弦法特别适合高压和低温下其他方法不能测量的场合,因此近二三十年来受到越来越多的关注和研究。随着研究的深入和电子技术的发展,到目前为止,无论是理论模型、影响因素分析还是实验装置系统,振动弦方法都得到飞速的进步,其测量准确度得到很大的提升,应用领域得到快速扩展,同时成为IATP (International Association for Transport Properties)建立高粘度标准物质的首选测量方法。 3、样品种类 可测量的液体种类包括各种极性和非极性流体的纯质及混合物: ●油品:导热油、润滑油、压缩机油、冷冻机油、硅油等; ●液体燃料:汽油、煤油、柴油等; ●制冷剂:R134a、R12、R22、R123、二甲醚等; ●纳米流体:氧化铝纳米流体、石墨纳米流体、Fe3O4纳米流体等; ●化学试剂:水、甲苯、醇类、离子液体等。

油墨粘度暂行标准

油墨验收暂行标准 、粘度:(3号量杯)使用粘度检测须上机后跟踪测量 东方机高档墨: 线条、文字版的验收粘度不高于 20秒,使用粘度不高于 15秒; 满版用墨验收粘度不高于 30秒,使用粘度不高于 25秒; 圣龙机高档墨: 线条、文字版的验收粘度不高于 20秒,使用粘度不高于 18秒; 满版用墨验收粘度不高于 30秒,使用粘度不高于 25秒; 链条机普通墨: 三、初干速度:水墨的初干速度,如无检测工具,可暂由供应合作商每一个月提供一次相关检测报告;测 试方法:将油墨调稀到印刷粘度 25± 2S ,用展色仪印刷于牛卡纸张上,在 3S 内即用一张白纸迅速盖 于印品上,白纸不粘油墨即为合格。 四、 耐水性:将印好的产品放置自然环境 2个小时,将纸板倾斜 45度后,将200ml 水在5cm 的距离泼向 图文,检查水流不能带有墨色,为合格; 五、 耐磨性:将印好的产品放置自然环境 2个小时,将白纸用约 2公斤的力反复擦拭 5次,白纸上不能有 明显的墨迹; 六、 色相饱和度:在规定粘度以内印刷,图文布墨均匀不露底、不起毛、不糊版,色彩鲜艳、图文饱满; 七、 外观:包装完好,具有氨水淡淡的气味,无其它刺激性异味。 丿八、抽样数量 九、合格判定:初干速度、PH 值、粘度、耐水性、耐磨性、色相饱和度、外观 其中只要有一项不 合格,则该件油墨为不合格,抽样2—3件不合格或抽样4件有2件不合格则该批油墨为 不合格。 十、不合格处置:粘度不合格按 1元/秒?公斤扣款,其它不合格按退货处置。 品保部 2008年12月28日 线条、文字版的验收粘度 满版用墨验收粘度不高于 酸碱 度:PH 值:在一之间; 18-25 秒; 40秒,使用粘度不高于 35秒;

尼龙 pa6 和 pa66

统称为尼龙pa6和pa66为主要的其他比较少具体 尼龙(Nylon,Polyamide,简称PA)是指由聚酰胺类树脂构成的塑料。此类树脂可由二元胺与二元酸通过缩聚制得,也可由氨基酸脱水后形成的内酰胺通过开环聚合制得,与PS、P E、PP等不同,PA不随受热温度的升高而逐渐软化,而是在一个靠近熔点的窄的温度范围内软化,熔点很明显,熔点:215-225℃。温度一旦达到就出现流动。 PA的品种很多,主要有P A6、P A66、P A610、P A11、P A12、P A10、P A612、P A46、PA6T、PA9T、MXD-6芳香醯胺等。以P A6、P A66、P A610、P A11、PA12最为常用。

尼龙类工程塑料外观上都呈现为角质、韧性、表层光亮、白色(或乳白色)或微黄色、透明或半透明的结晶性树脂,它容易被著成任一种颜色。作为工程塑料的尼龙分子量一般为 1.5-3万。它们的密度均稍大于1,密度: 1.14- 1.15g/cm3。拉伸强度:>60.0Mpa。伸长率: >30%。弯曲强度: 90.0Mpa。缺口冲击强度: (KJ/m2)>5。尼龙的收缩率为1%~2%。需注意成型后吸湿的尺寸变化。吸水率100%相对吸湿饱和时能吸8%.使用温度可-40~105℃之间。熔点:215-225℃。合适壁厚2- 3.5mm。PA的机械性能中如抗拉抗压强度随温度和吸湿量而改变,所以水相对是PA的增塑剂,加入玻纤后,其抗拉抗压强度可提高2倍左右,耐温能力也相应提高,PA本身的耐磨能力非常高,所以可在无润滑下不停操作,如想得到特别的润滑效果,可在PA中加入硫化物。 PA性能的主要优点有: 1.机械强度高,韧性好,有较高的抗拉、抗压强度。比拉伸强度高于金属,比压缩强度与金属不相上下,但它的刚性不及金属。抗拉强度接近于屈服强度,比ABS高一倍多。对冲击、应力振动的吸收能力强,冲击强度比一般塑料高了许多,并优于缩醛树脂。 2.耐疲劳性能突出,制件经多次反复屈折仍能保持原有机械强度。常见的自动扶梯扶手、新型的自行车塑料轮圈等周期性疲劳作用极明显的场合经常应用PA。 3.软化点高,耐热(如尼龙46等,高结晶性尼龙的热变形温度高,可在150度下长期使用.PA66经过玻璃纤维增强以后,其热变形温度达到250度以上)。

尼龙6性能表

尼龙6性能表 打印该页返回前页 品种尼龙6 尼龙66 项目 相对密度 1.12-1.14 1.14-1.15 吸水率20°,相对湿度65%,(%) 1.3-0.9 3.8 抗张强度70-84 77-84 伸长率(%)200-300 60-300 抗张弹性模数(MPa)10545-2530 1234-2921 压缩强度(MPa)84-90 100-110 弯曲强度(MPa)120-125 56-97 弯曲弹性模数(MPa)1870-2400 冲击强度(缺口),(KJ/㎡)2014-6.43 2.14-5.36 洛氏硬度R 119 120 熔点(℃)252 热变形温度1.85MPa 68 104 (℃)0.46MPa 185 244 介电常数(106Hz23°,相对湿度50%) 3.4 3.6 击穿电压(kv/mm)15.75 15.75 电阻率(Ω·cm)10 1210 14 表面电阻(Ω)自熄 聚酰胺通称尼龙。 尼龙6 特性:本产品具有高强度、耐油、抗震、灭音等特点。 用途:广泛应用于机床、汽车、机械、化工、纺织、交通运输等工业部门。适合制作各种类型的零部件,如轴套、齿轮、泵叶轮、叶片、密封圈。 尼龙除水母料 2008-7-11 来源:网络文摘 【全球塑胶网2008年7月11日网讯】 产品概述 一部分塑料原料或再生塑料常常会含有微量水分,如不消除,会在所加工的制品表面形成气泡或水纹,对制品的性能和外观造成影响。而利用电热干燥机械消除水分的传统工艺,需要提前干燥原料造成生产不便,存在着延长制品加工时间而导致生产效率低下,电量消耗、加工环境恶化、生产成本增加等不足之处。 尼龙NY316塑料除水母料是专为解决以PA为原材料的塑料制品在加工过程中的水泡问题而开发的一种新

透明和不透明液体运动粘度标准测试方法(及动力学粘度的计

透明和不透明液体运动粘度标准测试方法(及动力学粘度的计算)1 (ASTM D445-04标准翻译) 苏秀丽 (新疆出入境检验检疫局技术中心乌鲁木齐 830063) 标准自发布日起,命名为D 445; D445后的“-04”是标准最初采用时间,如标准有变更,则为最后修改时间。括号内数字是本标准最后采用时间。上标第五个希腊字母ε表示从最后修改时间或标准采用时间起,标准在编辑上的变化。本标准已经被国防部批准使用 。 1.范围 1.1 本测试方法指定了通过测量一定体积的液体,在重力作用下流经校准过的玻璃毛细管粘度计所需的时间,来确定包括透明及不透明液体石油产品的运动粘度ν的方法。动力学粘度η,等于运动粘度ν乘以液体密度ρ。 注释1:沥青的动力学粘度及运动粘度的测量参看测试方法D 2170及D2171。 1.2 本测试方法获得的结果取决于样品自身行为,并仅限于测定切应力和剪切速率成比例的液体,即遵守牛顿流体力学行为的液体。否则,如果粘度随剪切速率变化而产生明显的变化时,采用不同直径毛细管粘度计测量同一液体时,将会得到不同的结果。尽管残余燃料油的测量程序和精密度值,某些情况下会产生非牛顿行为,但是也被包括在本标准测量范围内。 1.3 本测试方法适用于所有温度条件(详见本标准6.3和6.4部分),运动粘度在0.2~300000 mm2/s之间的液体的动力学运动粘度的测定(参见附表A1.1)。本标准中精密度的测定仅限于运动粘度范围和测试温度范围在相关部分的脚注中标示出的液体。 1.4 在本测试方法中,数字单位均使用SI 单位制。 1.5 本测试方法申明,方法建立过程中未考虑到所有可能的安全因素。因此凡使用本方法者,有 责任进行必要的安全及健康测试实践,以确定使用本方法前适当调整标准的适用性。 2. 参考文献 2.1 ASTM 标准 D446 玻璃毛细管粘度计的说明及操作指导 D1193 试剂水的说明 D1217宾汉比重瓶法测定液体密度及相对密度 D1480宾汉比重瓶法测定粘性液体密度及相对密度 D1481 Lipkin双毛细管比重瓶法测定粘性液体密度及相对密度 D2162标准粘度计(或毛细管型主粘度计)及粘质油标准样品的校准方法。 D2170沥青动力学粘度测定方法。 D2171真空毛细管粘度计法测定沥青粘度。 D6074烃类润滑油基础油性质指南 D6617标准物质单个测定结果检验实验偏离的实践操作。 E1ASTM内装液体玻璃温度计使用说明 E77温度计的确认及检查测定方法 2.2 ISO标准 ISO3104 石油产品-透明及不透明液体-运动粘度的测定和动力学粘度的计算 ISO3105玻璃毛细管动力学粘度计-操作说明 ISO3696分析实验室用水-说明及测试方法 ISO5725测量方法及结果准确性(包括真实性与精密度) ISO9000质量管理与质量保证标准-选择与使用的方针

尼龙6与尼龙66之区别

尼龍6與尼龍66之區別 尼龍66的結晶度和機械強度較好 尼龍66性質 尼龍66有優越結晶性,能產生明顯熔點,機械特性受溫度的影響較小,在溫度及濕度廣闊的范圍內最堅強的一種尼龍料,雖然制成薄的塑件,仍具有極高的強度,堅韌而耐磨損,能抵抗熔劑和化學葉物的侵蝕,高溫下仍保持良好性能,吸水份後沖擊強度更佳,但尺寸會使成品膨脹,吸入1%水份,尺寸會脹大0.3%,於幹燥時,絕緣性好,吸水後,絕緣性差,缺點對光線和氧化作用非常敏感。而尼龍66中含有不同附加劑,分別有潤滑劑,顏色穩定性,抗熱性,抗紫外光,因分子量的不同有不同的黏滯性 尼龍6性質 尼龍6吸水性能高,遇上較高溫度和較大濕度時,其機械強度不及尼龍66,因結晶性較低,工模縮水度較小,尼龍6較為柔軟,延性較大,啤塑時容易黏模, 應用范圍 1.由於尼龍6及66耐磨性好,有自潤滑作用,故一般用於齒輪,啤呤及軸承等 塑件 2.由於尼龍料低蠕變及良好熱穩定性故此用於汽車工業制造門鎖,汽車速度 表,杯士等 3.由於尼龍料堅韌,強硬,耐海水侵蝕,故此用於造船工業

注塑尼龍操作 1. 注塑機炮筒溫度控制精確,因尼龍料熔融溫度范圍細,容易引致過火 2 .注塑機射膠速度及射膠壓力要高,因尼龍料容易凍結凝固而避免枕膠,模腔於填滿後射膠螺桿馬上後退 3. 注塑機射嘴要用生咀防止漏膠 4.工模排氣必須足夠,於分模線表面造好排氣坑,因啤塑尼龍料時會因排氣不 足而形成產品有燒黑現象 5.因尼龍塑件會於成形後仍會有後收縮現象,而且成品收縮並非線性,故此會 造成尺寸不對及變形,因此做模時要將工模前模腔造細少許,後模哥造大少許,待啤塑好成品24小時後檢查尺寸 產品設計 1.避免產品塑件壁厚度不平均 2.塑件用圓角代替直角位以防止應力集中 3.不要增加膠位厚度來加強塑件,應從增加肋骨來改良塑件強度 4.入水口位置可能的話應在膠件最厚的地方 5.脫模角度用1度

氨基聚醚应用

喷涂型端氨基聚醚弹性体技术应用展望 刘水平 (青岛核工实业公司,青岛266601) 1 抗冲磨材料及现状 水工泄水消能建筑物如大坝的溢洪道、泄洪洞、泄水孔、溢流坝、消力池等表面遭受高速水流和含沙水流冲磨和气蚀破坏的问题,多年来一直未能得到较好的解决,国家每年都要投入大量的人力和财力对这些关键部位进行修补处理。随着我国水利水电建设的大力开发,西南地区一批高水头、大流量高坝的建设,对于泄水消能建筑物表面抗高速含沙水流冲磨和气蚀破坏的问题越来越受到人们的重视,这其中除了水工设计方面的技术研究以外,采用性能优异的抗冲耐磨材料至关重要[1,2]。 传统的水工泄水消能建筑物表面的抗冲耐磨材料主要有:高强混凝土、钢板衬砌和贴附、纤维增强混凝土、环氧树脂砂浆和涂层、丙烯酸酯及其它类型乳液改性砂浆或混凝土、硅粉混凝土等,但是这些材料存在着各自的应用局限性[3]。随着高强、高性能混凝土技术的发展,高强、高性能混凝土技术在水利工程中得到较多的应用,如二滩水电站水垫塘底板表面采用40cm厚的硅粉混凝土R28600、小浪底导流洞、排沙洞段及溢洪道采用了C70硅粉混凝土。由于高强混凝土施工中容易产生裂缝及其它技术问题,影响到工程的使用效果,其抗冲磨防护能力依然未能达到理想的效果[4]。 为解决或减缓泄水消能建筑物的抗冲磨和气蚀破坏问题,目前主要从两个方面考虑:一方面继续研究高强度、高性能混凝土的应用技术;另一方面是采用新型有机高分子复合材料抗冲磨技术,利用特种高分子材料的高强度、高韧性特点来解决高速含沙水流的冲击磨损。以往这方面的研究多是针对环氧树脂的改性,以改变其脆性、提高断裂韧性和抗冲耐磨性能。西安交通大学材料科学与工程系研究了环氧树脂与聚氨酯互穿聚合物网络技术,使改性环氧树脂的抗冲磨和气蚀能力提高了10倍以上[5],南京水利科学研究院采用呋喃树脂改性环氧亦提高了其抗冲磨性能[5]。但是,由于环氧树脂分子量小,其固化物结构中存在大量的容易受紫外线氧化的C—O键,使得其抗老化能力很差;环氧树脂线胀系数较大,在环境气候和不断变化的荷载作用下容易发生龟裂、起翘和脱层,而且施工不方便,又有一定的污染性挥发物存在,所以工程的适用性差,未能在工程中得到大量的使用。 20世纪90年代,美国率先开发出喷涂聚脲弹性体技术,这种新型材料所具有的优异的抗磨蚀性能、耐老化性能、抗腐蚀及独特的施工性能为人们所关注,该技术已经在工民建、机械工业和民航机场跑道等方面得到了广泛应用。国外称喷涂聚脲弹性体技术是喷涂工业技术的一次革新,其优异的物理力学性

尼龙66的基本性质

聚合过程与工艺 己二酸和己二胺发生缩聚反应即可得到尼龙-66。工业上为了己二酸和己二胺以等摩尔比进行反应,一般 先制成尼龙-66盐后再进行缩聚反应,反应式如下: 在水的脱出的同时伴随着酰胺键的生成,形成线型高分子。所以体系内水的扩散速度决定了反应速度, 因此在短时间内高效率地将水排出反应体系是尼龙-66制备工艺的关键所在。上述缩聚过程既可以连续进 行也可以间歇进行。 在缩聚过程中,同时存在着大分子水解、胺解(胺过量时)、酸解(酸过量时)和高温裂解等使尼龙66 的分子量降低的副反应。 尼龙-66盐的制备 尼龙-66盐是己二酰己二胺盐的俗称,分子式:C12H26O4N2,分子量262.35, 结构式:[+H3N(CH2)6NH3+ -OOC(CH2)4COO-]。 尼龙-66盐是无臭、无腐蚀、略带氨味的白色或微黄色宝石状单斜晶系结晶。室温下,干燥或溶液中的尼 龙-66盐比较稳定,但温度高于200℃时,会发生聚合反应。其主要物理性质列于表01-63中。 表01-63 尼龙-66盐的主要物理性质 (1)水溶液法 以水为溶剂,以等当量的己二胺和己二酸在水溶液中进行中和反应,得到50%的尼龙-66盐溶液。其工艺流程图如图01-40所示。 图01-40 水溶液法生产尼龙-66盐工艺流程 1—己二酸配制槽 2—己二胺配制槽 3—中和反应器 4—脱色罐 5—过滤器 6、9、11、12—贮槽 7—泵 8—成品反应器 10—鼓风机 13—蒸发反应器 将纯己二胺用软水配成约30%的水溶液,加入反应釜中,在40~50℃、常压和搅拌下慢慢加入等当量的纯己二酸,控制pH值在7.7~7.9。在反应结束后,用0.5%~1%的活性炭净化、过滤,即可得到50%的尼龙-66盐水溶液。成盐反应为放热反应,为此必须将反应热以外循环水冷却除去,同时为防止尼龙-66盐与空气接触而被氧化,在生产系统中充以氮气保护。在真空状态下,将50%的尼龙-66盐水溶液经蒸发、脱水、浓缩、结晶、干燥,即可得到固体尼龙-66盐。一般每吨尼龙-66盐(100%)消耗己二胺(99.8%)522.64 kg,己二酸(99.7%)561.9kg。 本法的特点是不采用甲醇或乙醇等溶剂,方便易行,安全可靠,工艺流程短,成本低。但对原料中间体质量要求高,远途运输费用也较高。美国孟山都公司、杜邦公司和法国罗纳-普朗克公司采用本法生产。(2)溶剂结晶法 以甲醇或乙醇为溶剂,经中和、结晶、离心分离、洗涤,制得固体尼龙-66盐。氨基和羧基经中和后形成

粘度测定SOP

黏度测定SOP

1 主题内容 建立粘度测定操作程序,规范粘度测定的操作方法,为物料的检测和判定提供依据。 2 适用范围 本标准适用于流体的运动黏度、动力黏度测定。 3引用标准 《中国药典》2010年版二部。 4 职责 QC主管:保证该标准的执行; QC检验员:负责按该标准进行操作。 5 内容 5.1 原理 5.1.1 黏度系指流体对流动的阻抗能力,一般采用动力黏度、运动黏度或特性黏度数表示。5.1.2 流体分牛顿流体和非牛顿流体两类。毛细管式黏度计适用于牛顿流体的黏度测定。 5.1.3 液体以1cm/s的速度流动时,在每1cm2平面上所需切应力的大小,称之为动力黏度,以 Pa·s为单位。在相同温度下,液体的动力黏度与其密度的比值,再乘以106,即得该液体的运动黏度,以mm2/s为单位。药典采用在规定条件下测定供试品在平氏黏度计中流出时间(s),与该黏度计用已知黏度的标准液测得的黏度计常数(mm2/s2)相乘,即得供试品的运动黏度。 5.2 仪器用具 5.2.1 恒温水浴能恒温±0.1℃(运动黏度的测定) 5.2.2 温度计分度为0.1℃ 5.2.3 秒表分度为0.2秒 5.2.4 平氏黏度计 5.3 操作 5.3.1 用平氏黏度计测定运动黏度或动力黏度。 5.3.1.1 照各药品项下的规定,取毛细管内径符合要求的平氏黏度计1支,在支管F上连接一 橡皮管,用手指堵住管口2,倒置黏度计,将管口1插入供试品(或供试溶液,下同)中, 处,提出黏度计并迅速倒自橡皮管的另一端抽气,使供试品充满球C与A并达到测定线m 2 转,抹去黏附管外的供试品,取下橡皮管使连接于管口1上,将黏度计垂直固定于被测物体所规定温度的恒温水浴中,并使水浴的液面高于球C的中部,放置15分钟后,自橡皮管的

关于粘度测试单位与单位换算

关于粘度测试单位与单位换算: 粘度单位直接读数:帕·秒(Pa·s)或毫帕·秒(mPa. ·s) 或(dPa ·S) 。 粘度单位换算关系:Pa.s=1000cP=1000mPa.s=10P=10dPa.s dpa.s 是decipascal-seconds 的缩写,是粘度单位 P(poise),cP(centi poise) Pa.s(pascal-seconds),dPa.s(decipascal-seconds) mPa.s(millipascal-seconds) 流体在流动时,相邻流体层间存在着相对运动,则该两流体层间会产生摩擦阻力,称为粘滞力。粘度是用来衡量粘滞力大小的一个物性数据。其大小由物质种类、温度、浓度等因素决定。 粘度一般是动力粘度的简称,其单位是帕·秒(Pa·s)或毫帕·秒(mPa·s)。 粘度分为动力粘度、运动粘度、相对粘度,三者有区别,不能混淆。 粘度还可用涂—4或涂—1杯测定,其单位为秒(s)。 (动力)粘度符号是μ,单位是帕斯卡秒(Pa·s) 由下式定义:L=μ·μ0/h μ0——平板在其自身的平面内作平行于某一固定平壁运动时的速度 h——平板至固定平壁的距离。但此距离应足够小,使平板与固定平壁间的流体的流动是层流 L——平板运动过程中作用在平板单位面积上的流体摩擦力 运动粘度符号是v ,运动粘度是在工程计算中,物质的动力粘度与其密度之比,单位是二次方米每秒(m2/s) v=μ/p 在石油工业中还使用"恩氏粘度",它不是上面介绍的粘度概念。而是流体在恩格拉粘度计中直接测定的读数。 粘度的度量方法分为绝对粘度和相对粘度两大类。绝对粘度分为动力粘度和运动粘度两种;相对粘度有恩氏粘度、赛氏粘度和雷氏粘度等几种表示方法。 1、动力粘度η在流体中取两面积各为1m2,相距1m,相对移动速度为1m/s时所产生的阻力称为动力粘度。单位Pa.s(帕.秒)。过去使用的动力粘度单位为泊或厘泊,泊(Poise)或厘泊为非法定计量单位。 单位关系:1Pa.s=1N.s/m2=10P泊=10的3次方cp=1Kcps ASTM D445标准中规定用运动粘度来计算动力粘度,即η=ρ.υ式中η-动力粘度,Pa.s期目标制ρ-密度,kg/m3 υ-运动粘度,m2/s 我国国家标准GB/T506-82为润滑油低温动力粘度测定法。该法使用于测定润滑油和深色石油产品的低温(0~-60℃)动力粘度。在严格控制温度和不同压力条件下,测定一定体积的试样在已标定常数的毛细管粘度计内流过所需的时间,秒。由试样在毛细管流过的时间与毛细管标定常数和平均压力的乘积,计算动力粘度,单位为Pa.s。该方法重复测定两个结果的差数不应超过其算术平均值的±5%。 2、运动粘度υ流体的动力粘度η与同温度下该流体的密度ρ的比值称为运动粘度。它是这种流体在重力作用下流动阻力的度量。在国际单位制(SI)中,运动粘度的单位是m2/s。过去通常使用厘斯(cSt)作运动粘度的单位,它

相关文档
最新文档