航天器自主交会对接相对导航方法研究

Abstract

The autonomous rendezvous and docking technology plays a very important role in many space missions such as on-orbit maintenance, fuel adding and space debris cleaning. To establish a low-power, low-cost, low-complexity and high reliability scheme for relative navigation, this paper utilizes an optimal camera, which is the only available sensor for relative measurement, to achieve the relative navigation of close range rendezvous and docking. This paper proposes angles-only navigation method. The main work of this paper is listed as follow:

The dynamic model of angles-only navigation method is derived, which includes the orbital motion equations, attitude motion equations and the linearized differential equations, i.e., the C-W equations, and the models of sensors and actuators.

The filter algorithm for relative navigation is formulated and the observation equation of angles-only navigation is derived. Using the observation equation, the observability analysis of this method is conducted and the observability criteria and degree of observability model have been presented. The elaborated model for angles-only navigation filter is derived. To evaluate performance of the prototype angles-only navigation filter, a reference rendezvous and docking mission is planned and the simplified corresponding guidance law and control algorithm are designed.

Monte Carlo simulation method is introduced in this paper and the performance evaluated indicator of navigation results is proposed. The validity of the prototype navigation method is verified by Monte Carlo simulations.

Keywords:Autonomous Rendezvous and Docking, Relative Navigation, Angles-Only Navigation, Analysis of Observability, Extended Kalman Filter

目录

摘要.............................................................................................................. I Abstract .......................................................................................................... II 第1绪论 (1)

1.1

课题背景 (1)

交会对接研究现状 (2)

1.2

1.3

相对导航技术研究现状 (5)

1.4

本文研究内容 (7)

第2航天器动力学建模 (9)

2.1

引言 (9)

2.2

坐标系定义 (9)

2.3

轨道动力学方程 (11)

2.3.1绝对轨道动力学 (11)

2.3.2相对轨道动力学 (12)

2.3.3几种常见的相对运动轨道 (15)

2.4

姿态运动方程 (18)

2.4.1姿态四元数 (18)

2.4.2姿态动力学和运动学方程 (19)

2.5

敏感器模型 (21)

2.5.1陀螺仪 (21)

2.5.2星敏感器 (21)

2.5.3光学相机 (22)

2.5.4敏感器误差的模型 (25)

2.6

执行机构模型 (26)

2.7

本章小结 (26)

第3基于仅测角的航天器自主交会对接相对导航方法研究 (28)

3.1

引言 (28)

3.2

扩展卡尔曼滤波器算法 (28)

3.3

仅测角相对导航的可观测性 (31)

3.3.1可观测性分析导航模型 (32)

3.3.2可观测性判据 (36)

3.4

仅测角相对导航的可观测度指标 (46)

3.4.1可观测度定义 (46)

3.4.2仿真算例 (48)

3.5

应用伪距测量信息提高可观测度 (49)

3.6

精确导航滤波模型 (51)

3.6.1状态递推方程 (51)

3.6.2姿态模型的线性化 (52)

3.6.3参数估计模型 (54)

3.6.4状态及误差方差预测 (55)

3.6.5状态及误差方差更新 (59)

3.6.6状态及误差方差矩阵修正 (61)

3.7

本章小结 (62)

第4自主交会对接相对导航误差结果分析 (64)

4.1

引言 (64)

4.2

制导控制算法 (64)

4.2.1制导算法 (64)

4.2.2控制算法 (67)

4.3

Monte Carlo 仿真及偏差统计 (68)

4.4

仿真场景描述 (69)

4.5

仿真实例 (71)

4.5.1标称轨迹仿真 (71)

4.5.2单次导航仿真 (72)

4.5.3不含伪距测量信息Monte Carlo仿真 (74)

4.5.4考虑伪距测量信息Monte Carlo仿真 (79)

4.6

本章小结 (83)

结论 (84)

参考文献 (86)

附录 (92)

攻读硕士学位期间发表的论文及其它成果 (102)

哈尔滨工业大学学位论文原创性声明和使用权限 (103)

致谢 (104)

相关主题
相关文档
最新文档