断电延时带直流能耗制动的星三角降压启动控制线路改造

断电延时带直流能耗制动的星三角降压启动控制线路改造
断电延时带直流能耗制动的星三角降压启动控制线路改造

断电延时带直流能耗制动的星三角降压启动控制线路改造

宽城职教中心丁海宝

摘要:随着科学技术的飞速发展,在现代生活中,PLC对在断电延时型星-三角降压启动带直流能耗制动控制线路的改造。针对PLC日益得到广泛的应用现状,文章介绍了PLC 对在断电延时型星-三角降压启动带直流能耗制动控制线路的改造,并给出其PLC控制系统的接线图和梯形图程序设计。与传统继电器在电动机方面相比具有显著的优势,该设计具有可编程性,线路简单,可靠性高等特点,提高了系统的灵活性及扩展性,仿真结果验证了该设计的到控制要求,有参考价值和实用价值。

关键词:PLC 断电延时制动控制电动机程序编程

1引言

随着社会经济的迅速发展,人们对物质生活的要求也越来越高。经济的迅速发展也给科技的发展带来更大的动力,各种电动机的控制线路改造在各大城市不断出现更新换代。在工业上原来的电力拖动控制,然而现在用PLC程序来控制电动机是与其不可缺少的地位成为一道亮丽的风景线。其中用PLC控制的Y-△降压启动简单经济,省空间,数字化控制的应对,在这样的状况下,PLC对在断电延时型星-三角降压启动带直流能耗制动控制线路的改造成为工业上的发展飞越。

电动机本身及其负载机械设备带来不利影响,因此常常采用降压起动Y-△降压起动、自耦变压器起动和延边三角形起动,其中,使用比较普遍。传统的Y-△降压起动采用继电器-接触器控制,但由于其操作复杂、可靠性低等缺点,必将被PLC控制所取代.

2 PLC的概述

2.1 PLC的构成

Programmable Controller)简称PLC,从结构上分,PLC分为固定式和组合式(模块式)两种。固定式PLC包括CPU板、I/O板、显示面板、内存块、电源等,这些元素组合成一个不可拆卸的整体。模块式PLC包括CPU模块、I/O模块、内存、电源模块、底板或机架,这些模块可以按照一定规则组合配置。

2.2 PLC的工作原理

最初研制生产的PLC主要用于代替传统的由继电器接触器构成的控制装置,但这两者的运行方式是不相同的:

继电器控制装置采用硬逻辑并行运行的方式,即如果这个继电器的线圈通电或断电,该继电器所有的触点(包括其常开或常闭触点)在继电器控制线路的哪个位置上都会立即同时动作。

PLC的CPU则采用顺序逻辑扫描用户程序的运行方式,即如果一个输出线圈或逻辑线圈被接通或断开,该线圈的所有触点(包括其常开或常闭触点)不会立即动作,必须等扫描到该触点时才会动作。

2.3 PLC的主要特点

2.3.1高可靠性

(1)所有的I/O接口电路均采用光电隔离,使工业现场的外电路与PLC内部电路之间电气上隔离。

(2)各输入端均采用R-C滤波器,其滤波时间常数一般为10~20ms.

(3)各模块均采用屏蔽措施,以防止辐射干扰。

(4)采用性能优良的开关电源。

(5)对采用的器件进行严格的筛选。

(6)良好的自诊断功能,一旦电源或其他软,硬件发生异常情况, CPU立即采用有效措施,以防止故障扩大。

(7)大型PLC还可以采用由双CPU构成冗余系统或有三CPU构成表决系统,使可靠性更进一步提高。

2.3.2丰富的I/O接口模块

PLC针对不同的工业现场信号,如:交流或直流;开关量或模拟量;电压或电流;脉冲或电位;强电或弱电等。有相应的I/O模块与工业现场的器件或设备,如:按钮;行程开关;接近开关;传感器及变送器;电磁线圈;控制阀等直接连接。另外为了提高操作性能,它还有多种人-机对话的接口模块; 为了组成工业局部网络,它还有多种通讯联网的接口模块,等等。

2.3.3采用模块化结构

为了适应各种工业控制需要,除了单元式的小型PLC以外,绝大多数PLC均采用模块化结构。PLC的各个部件,包括CPU,电源,I/O等均采用模块化设计,由机架及电缆将各模块连接起来,系统的规模和功能可根据用户的需要自行组合。

2.3.4编程简单易学

PLC的编程大多采用类似于继电器控制线路的梯形图形式,对使用者来说,不需要具备计算机的专门知识,因此很容易被一般工程技术人员所理解和掌握。

2.3.5安装简单,维修方便

PLC不需要专门的机房,可以在各种工业环境下直接运行。使用时只需将现场的各种设备与PLC相应的I/O端相连接,即可投入运行。各种模块上均有运行和故障指示装置,便于用户了解运行情况和查找故障。

由于采用模块化结构,因此一旦某模块发生故障,用户可以通过更换模块的方法,使系统迅速复运行。

2.4 PLC的功能

2.4.1逻辑控制

2.4.2定时控制

2.4.3计数控制

2.4.4步进(顺序)控制

2.4.5 PID控制

2.4.6数据控制:PLC具有数据处理能力。

2.4.7通信和联网

2.4.8其它:

PLC还有许多特殊功能模块,适用于各种特殊控制的要求,如:定位控制模块,CRT 模块。

3 时带直流能耗制动的星三角降压启动控制线路

3.1断电延时带直流能耗制动的星三角降压启动控制线路

整定时间:5S±1S

图为断电延时型 Y-△降压启动带直流能耗制动控制电气原理图

见图1-1

3.2工作原理:合上电源开关QS。

按下SB2→KT线圈得电→KT动合触点闭合→KM3线圈得电→KM3动断触点断开,KM2的连锁回路,KM3主触点闭合→电动机接成Y形,KM3动合触点闭合→KM1线圈得电→KM1主触点闭合, KM1动合触点闭合自锁→电动机M接成Y形得电降压启动。

KM1动断触点断开→KT线圈失电(整定时间±5S后)断开→KM3主触点断开,切断电动机Y形接法,KM3动合触点断开,KM3动断触点恢复闭合→KM2线圈得电→KM2主触点闭合,KM2动断触点断开,KM3连锁回路→电动机接成△形全压运行。

KM3动断触点断开

当按下SB1时,KM1和KM2线圈失电解除△全压运行,同时KM3和KM4线圈得电电动机能耗制动;放开SB1,电动机停车和能耗制动结束。

3.3输入/输出I/0分配表和接线图

3.3.1 PLC对在断电延时型星-三角降压启动带直流能耗制动控制线路的改造I/O分配表

3.3.2PLC接线图

3.4梯形图设计

根据电路图的控制要求和I/O分配表,设计出PLC程序控制梯形图,如图1-4所示。

梯形图图1-4

根据I/O接线图和梯形图分析得出的操作步骤:

程序说明:当按下SB2(X0)时,Y1线圈得电并自锁,同时接通Y2、T0,此时,KM1、KM2得电,电动机星形启动,T0同时开始计时,定时正整定时间(5S)到后,T0常开触点接通Y3,Y3线圈得电并自锁,常闭触点断开对T0的联锁。此时KM3得电,电动机三角形全压运转。

当按下SB1(X1)时,Y4线圈得电,Y4常开触点接通,实行电动按钮,以提供直流通道。驱动外接接触器在电动机停止交流电此时电动机完成停车与制动的过程。外部接触器接线时,接触器间应相互联锁以防短路。

3.5根据梯形图可以写出下列的指令表,见表1-5所示。

表1-5

4总结

通过这次的毕业设计,大大提高了我对知识的了解程度,增强了我对设计系统分析能力,在老师的指导和同学的合作下,我掌握了更加多的东西,独立思考能力也大大的增强.只有亲手去做了。亲身去体会了,我们才能更好得把我们所学到的知识更好的利用,才能更加得心应手的去做好自己想做的事情,这次毕业设计,使我真切的感受到了自己的不组,使我更加地去热爱学校.我们马上就要他入社会了,尽然会遇到各种各样的人,必然还有好多的东西要去学。以我个人的体会,在社会和经济飞速发展的今天,如果没有一个灵活的头脑,和独立思考的自学能力,我们几乎就无法在这个社会的很好的生存,更何况我们还有远大的理想,又怎么会去实现呢?

PLC的应用领域是宽阔的,还有许多领域急待开拓,如用于还管过境车辆认证、自动售票在我国已有实例。另外,在离散时间冬天系统中,如公路网交通流、物流系统及一切非标准随服务系统中,均可以采用PLC。建模或采取对策并优化,PLC的前途一片美好,一切悲观的论文是站不住脚的,至于技术进步,PLC与其它技术融合至消失,那还需要一定的时间!

21世纪,PLC会有更大的发展。从技术上看,计算机技术的新成火会更多得应用于可

遍程序控制器设计和制造上。会有运算速度更快、存储容量更大、智能更强的品种出现;从产品规模上看,会进异步向超小型及超大型方向发展;从产品的配套性上看,产品的规格更齐全,完美的人机截面、完备的通信设备会更好地使用各种工业控制场合的需求;从时常上看。各国各自生产多品种产品的情况会随着国际竞争的加剧而打破,会出现少数几个品牌垄断国际时常的局面,回出现国际通用的编程语言;从网络的发展情况来看,可编程序控制器和其它工业控制计算机组网构成大型的控制系统是可编程序器技术的发展方向。目前的计算机集散控制系统DCS中已有大量的可编程序器应用。伴随着计算机网络的发展,可遍程序作为自动化控制网络和国际通用网络的重要组成部分,将在工业及工业以外的众多领域发挥越来越大的作用。

5致谢

本论文是在老师的悉心指导下完成的,论文从选题到写作,老师都给予了精心的指导和极大的帮助。通过这次学习的机会,好好地总结一下我在学校所学的各门课程,将它们分化理解,合理分类,融会贯通。这次论文设计,老师给予我们许多帮助,同时也为我指明了方向。

对当前PLC应用领域有了更深入的了解。期间我通过翻阅和搜集大量的资料中,并懂得了如何把自己所学的知识融合到实际中去。为我们成为技术性人才打下良好基础。最后感谢学校领导和老师们的辛勤栽培,为我们打下电气自动化生产设备专业知识的基础;人生处处是驿站,已是挥手作别之时,在此,向所有帮助过我的老师们,同学们,朋友们献上我最诚挚的谢意!

参考文献

(1)庞广信. 可编程控制器技术应用. 化工工业出版社

(2)范贻潘. 电路拖动控制线路与技能训练(第四版)中国劳动社会保障出版社

(3)三菱FX2N系列可编程控制使用手册

(4)王永华. 《现代电气控制及PLC应用技术》北京航空航天大学出版社(第2版)(5)张华龙《电气控制入门》

(6)郑丹丹《控制系统梯形图和语句表》

《星三角降压启动控制线路》教案

《Y-△降压启动控制线路》教案

-- ---- ?对KM 联锁 KM k 联锁触头分断 --- KT 线圈失电 -------- ? KT 常闭触头瞬时闭合 停止时,按下SB2即可 示范:利 结论:凡是在正常运行时定子绕组作△形连接的异步 电动机,均可采用这种降压启动方法。 【任务三】时间继电器自动控制 Y- △降压启动控制线路 时间继电器自动控制的 Y- △降压启动线路原理图 该线路由三个接触器、一个热继电器、一个时间继电 器和两个按钮组成。接触器 KM 做引入电源用,接触器 KM 和KM 分别作Y 形降压启动用和△运行用,时间继电器 KT 用作控制Y 形降压启动时间和完成 Y-△自动切换。SB1是 启动按钮,SB2是停止按钮,FU1作主电路的短路保护,FU2 作控制电路的短路保护,KH 作过载保护。 线路的工作原理如下: 降压启动:先合上电源幵关 QFo 占 八、、 示范:时 间继电器 的结构整 定与时间 调整 (重点) 示范:利 用示教板 讲解KM KM 与 KM 在主电路 X KM 自锁触的连合自锁 KM 主触头闭合 , 方法 —— KMY 主触头闭合 ?电动机M 接成Y 形降压启动 (重 点) KM Y 联锁触头分断对KM\联锁 当附专速上升到一定值时,—KT 延时结束一 KT 常闭触 自检部分 接线完成 f KM Y 常开触头分断 ? KM Y 线圈失电 一f KM Y 主触头分断,解除 Y 形连接 f KM Y 联锁触头闭合 KM △线圈得电 后,集中 ?-电动机M 接成△全压运行 KM\主触头闭合 (难 点) 讲解并作 示范

该线路中,接触器KM Y 得电以后,通过KM 的辅助常幵 触头使接触器KM 得电动作,这样KM 的主触头是在无负载 的条件下进行闭合的,故可延长接触器KM 主触头的使用寿 命。 二、安装工艺要求 1、时间继电器的结构调整和时间整定 (1)结构调整:时间继电器分为通电延时与断电延时 良种,只要将固定电磁系统的螺丝松下,将电磁系统转动 180度,结构形式就发生了改变。本电路使用通电延时结 构。 (2)时间整定:调整固定电磁系统的螺丝前后的距离 和调节时间调整选钮,注意箭头的方向。 2、元件布置安装 □ □ □ □□ FU1. . - FU2 . □□口 KM KM KM 要求按元件布置图固定安装元件。 3、接线要求 (1) KT 瞬时触头和延时触头的辨别(用万用表测量 SB1 SB 用示教板 演示自检 过程(按 钮启动、 自锁、联 锁) □ QF

自动自偶降压启动的控制线路图

自动自偶降压启动的控制线路图 (一次二次) 自偶降压一次线路的接法: 利用三相自耦变压器将降低的电压加到电机定子绕组上,使电机在低于额定电压下起动,以减小起动电流。等电机转

速成达到或接近额定转速时,通过操作机构甩开自耦变压器,使电机在额定电压下正常运行。为了满足不同的要求,自耦 变压器一般都设有0.65、0.80两组电压抽头。自偶降压一次线路的原理接线就一种接法,其控制手法有自动和手动两种方 法。 鼠笼式电动机自耦降压启动手动控制电路 自耦降压启动是利用自耦变压器降低电动机端电压的启动方法,自耦变压器一般由两组抽头可以得到不同的输出电压(一般为电源电压的80%和65%),启动时使自耦变压器中的一组抽头(例如:65%)接在电动机的回路中,当电动机的转速接近额定转速时,将自耦变压器切除,使电动机直接接在三相电源上进入运转状态。 1、合上空气开关QF接通电源. 2、按下启动按钮SB2,交流接触器KM3线圈回路通电,主触头闭合,自耦变压器接成星形。 KM1线圈通电其主触头闭合,由自耦变压器的65%抽头端将电源接入电动机,电动机在低电压下启动。 3、KM1常开辅助触点闭合接通中间继电器KA的线圈回路,KA通电并自锁KA的常开触点闭合为KM2线圈回路通电做准备。 4、当电动机转速接近额定转速时,松开按钮SB2,按下按钮SB3,KM1、KM3线圈断电将自耦变压器切除,KM2线圈得电并自锁,将电源直接接入电动机,电动机在全压下运行。 5、电动机运行中的过载保护由热继电器FR完成. 6、互锁环节; 接触器互锁: KM2常闭触点接入KM3、KM1线圈回路 KM1常闭触点接入KM2线圈回路 按纽互锁:按纽SB2常开触点接入KM3、KM1线圈回路 按纽SB2常闭触点接入KM2线圈回路 按纽SB3常开触点接入KM2线圈回路 按纽SB3常闭触点接入KM3、KM1线圈回路 鼠笼式电动机自耦降压启动手动控制电路接线示意图

星三角降压启动电路图原理-电机星三角降压启动电路

星三角降压启动电路图-Y—△降压起动控制线路在以前变频器、软启动器等电子设备价格比较贵,技术比较落后的时候是一个最常用的的电工电路,随着科技的发展,这种启动方式有逐步被淘汰的趋势,但是该启动电路中应用的基本电路中的互锁、自锁、延时继电器,电机的绕组接法等对于刚刚接触电路的朋友是一个很好的教材,下面就根据星三角降压启动电路图给大家介绍一下星三角降压启动电路的工作过程以及电流电压关系。 1、首先介绍一下图纸中各个元器件的符号 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 2、下面介绍一下工作过程 合上QS,按下St,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,KMY 和KM△互锁避免KM△误动作; KM-1闭合,自锁启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP停止按钮,才能使全部接触器线圈失电跳开,才能停止运转。 3、星三角降压启动中的电压电流关系 星启动时:电机每个线圈上的电压是220V 电流I星=U星/Z

Y—△降压起动控制线路

Y—△降压起动控制线路 (1)线路设计思想 Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。这一线路的设计思想仍是按时间原则控制起动过程。所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用 这种线路。 (2)典型线路介绍 定子绕组接成Y—△降压起动的自动控制线路如图4所示。 图4 Y—△降压起动控制线路 工作原理: 按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。同时,时间继电器KT及接触器KM2线圈得电。 接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。KM2的常闭辅助触点断开,保证了接触器KM3不得电。 时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。

接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。 停车 按SB1 辅助电路断电各接触器释放` 电动机断电停车 线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。 三相鼠笼式异步电动机采用Y—△降压起动的优点在于:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。其缺点是起动转矩也相应下降为三角形接法的1/3,转矩特性差。所以该线路适用于轻载或空载起动的场合。另外应注意,Y—△联接时要注意其旋转方向的一致性。 容量较大的电动机。通常采用降压启动方式。降压启动的方式很多,有星三角启动,自耦降压启动,串联电抗器降压启动,延边三角形启动等。 本文介绍电动机的星三角(Y一△)启动方式。所谓Y一△启动,是指启动时电动机绕组接成星形,启动结束进入运行状态后,电动机绕组接成三角形。 在启动时。电机定子绕组因是星形接法,所以每相绕组所受的电压降低到运行电压的 1/、(约57.7%),启动电流为直接启动时的1/3,启动转矩也同时减小到直接启动的1/3。所以这种启动方式只能工作在空载或轻载启动的场合。例如,轴流风机启动时应将出风阀门打开,离心水泵应将出水阀门关闭,使设备处于轻载状态。 图1是电动机Y-△启动的一次电路图,U1-U2、V2-V2、Wl-W2是电动机M的三相绕组。如果将U2、V2和W2在接线盒内短接,则电动机被接成星形;如果将U1和W2、V1和U2、W1和V2分别短接,则电动机被接成三角形。实现电动机的Y-△启动的二次控制电路见图2。 现在分析Y-△启动电路的工作过程。按下启动按钮SB2,接触器KM3和时间继电器的线圈得电,KM3的主触点闭合,将电动机的三相绕组接成星形;KM3的辅助触点(常开)KM3-3同时闭合使接触器KM2动作,电动机进入星形启动状态,KM2的辅助触点KM2-1闭合,使电路维持在启动状态。待电动机转速达到一定程度时,时间继电器KT延时时间到。其延时触点(常闭)断开,接触器KM3线圈失电.主触点断开,辅助触点(常例)KM3-1闭台。接触器KMl得电工作.电动机进入三角运行状态。这里时间继电器的延时时间应通过试验调整在5~15秒之间。 按下停止按钮,或电动机出现异常过电流使热继电器FH动作时,电动机均会停止运行。电

星三角降压启动原理

1.当负载对电动机启动力矩无严格要求又要限制电动机启动电流且电机满足380V/Δ接线条件才能采用星三角启动方法; 2.该方法是:在电机启动时将电机接成星型接线,当电机启动成功后再将电机改接成三角型接线(通过双投开关迅速切换); 3.因电机启动电流与电源电压成正比,此时电网提供的启动电流只 有全电压启动电流的1/3 ,但启动力矩也只有全电压启动力矩的 1/3。 星三角启动,属降压启动他是以牺牲功率为代价来换取降低启动电流来实现的。所以不能一概而以电机功率的大小来确定是否需采用星三角启动,还的看是什么样的负载,一般在需要启动时负载轻运行时负载重尚可采用星三角启动,一般情况下鼠笼型电机的启动电流是运行电流的5—7倍,而对电网的电压要求一般是正负10%(我记忆中)为了不形成对电网电压过大的冲击所以要采用星三角启动,一般要求在鼠笼型电机的功率超过变压器额定功率的10%时就要采用星三角启动。只有鼠笼型电机才采用星三角启动。一家之言,姑且听之. 本人在实际使用过程中,发现需星三角降压启动的电机从11KW开始就有需要的,如风机、在启动时11KW电流在7-9倍(100)A左右,按正常配置的热继电器根本启动不了,(关风门也没用)热继电器配大了又起不了保护电机的作用,所以建议用降压启动。而在一些启动负荷较小的电机上,由于电机到达恒速时间短,启动时电流冲击影响较小,所以在30KW左右的电机,选用1.5倍额定电流的断路器直接启动,长期工作一点问题都没有。 星三角降压启动的电动机三相绕组共有六个外接端子: A-X、B-Y、C-Z(以下以额定电压380V的电机为例) 星形启动:X-Y-Z相连,A、B、C三端接三相交流电压380V,此时每相绕组电压为220,较直接加380V启动电流大为降低,避免了过大的启动电流对电网形成的冲击。此时的转矩相对较小,但电动机可达到一定的转速。 角形运行:经星形启动电动机持续一段时间(约几十秒钟)达到一定的转速后,电器开关把六个接线端子转换成三角

星三角降压启动电路图原理-电机星三角降压启动电路

创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王* 星三角降压启动电路图-Y—△降压起动控制线路在以前变频器、软启动器等电子设备价格比较贵,技术比较落后的时候是一个最常用的的电工电路,随着科技的发展,这种启动方式有逐步被淘汰的趋势,但是该启动电路中应用的基本电路中的互锁、自锁、延时继电器,电机的绕组接法等对于刚刚接触电路的朋友是一个很好的教材,下面就根据星三角降压启动电路图给大家介绍一下星三角降压启动电路的工作过程以及电流电压关系。 1、首先介绍一下图纸中各个元器件的符号 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 2、下面介绍一下工作过程 合上QS,按下St,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,KMY和KM△互锁避免KM△误动作; KM-1闭合,自锁启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机

得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM 通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP停止按钮,才能使全部接触器线圈失电跳开,才能停止运转。 3、星三角降压启动中的电压电流关系 星启动时:电机每个线圈上的电压是220V 电流I星=U星/Z 三角启动:电机每个线圈上的电压是380V I角=U/角Z I星/I角=U星/U角=220/380;星型启动的电压约为三角形启动的1/3。 星三角启动电流=0.33Iq 电压=0.58Ue 启动转矩=0.33Mq 综上所述,星三角降压启动以一种以牺牲启动转矩为代价的降压启动方式,虽然降低了起动电流,但是牺牲了转矩,只能用在一般的轻、中负荷场所。 创作编号: GB8878185555334563BT9125XW 创作者:凤呜大王*

星三角降压启动控制线路教案

《Y-△降压启动控制线路》教案 范华维

的缺陷。 三、导入新课(5分钟)【复习提问】 1、异步电动机直接启动时,启动电流是额定电流的多少倍? 2、直接启动可能会造成哪些问题?怎样解决? 3、常见的降压启动方法有哪几种? 【新课引入】 降压启动的含义:是指利用启动设备将电压适当降低后,夹道电动机的定子绕组上进行启动,待电动机启动运转后,再使其电压恢复到额定电压正常运转。 Y-△降压启动的含义:是指电动机启动时,把定子绕组接成Y形,以降低启动电压,限制启动电流。经几秒,当电动机启动后,再把定子绕组接成△形,使电动机全压运行。 四、新课讲授(共70分钟) (10分钟)(10分钟)一、理论知识 【任务一】电动机定子绕组Y、△接法如何实现? 电动机定子绕组Y、△接法接线盒内部接线图 【任务二】电动机定子绕组Y、△接法时,其绕组上的电压和电流有什 么区别? 电动机启动时接成Y形,加在每相定子绕组上的启动电压只有△接 法的1 3 ,启动电流为△接法的1 3 ,启动转矩也只有△接法的1 3 。所以 这种降压启动方法,只适用于轻载或空载下启动。 结论:凡是在正常运行时定子绕组作△形连接的异步电动机,均可 采用这种降压启动方法。 (重点) 示范:电动 机在△、Y 接法时接线 盒内的接线 和出线

(30分钟) 【任务三】时间继电器自动控制Y-△降压启动控制线路 时间继电器自动控制的Y-△降压启动线路原理图该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。接触器KM做引入电源用,接触器KM Y和KM△分别作Y形降压启动用和△运行用,时间继电器KT用作控制Y形降压启动时间和完成Y-△自动切换。SB1是启动按钮,SB2是停止按钮,FU1作主电路的短路保护,FU2作控制电路的短路保护,KH作过载保护。 线路的工作原理如下: 降压启动:先合上电源开关QF。分析电路原理,总结线路优点 KM Y线圈得电KM Y常开触头闭合KM线圈得电 KM自锁触头闭合自锁 KM主触头闭合 KM Y主触头闭合电动机M接成Y形降压启动 KM Y联锁触头分断对KM△联锁 KT线圈得电当M转速上升到一定值时,KT延时结束 KT常闭触头分断 KM Y线圈失电KM Y常开触头分断 KM Y主触头分断,解除Y形连接 KM Y联锁触头闭合KM△线圈得电 按下SB1

电动机星三角降压启动控制电路图文详解

电动机星三角降压启动控制电路图文详解今天学习三相异步电动机Y-△降压起动控制电路。 共有四个任务: 了解降压起动的原因; 掌握电动机定子绕组的连接方式; 掌握Y-△降压起动控制电路的组成; 理解Y-△降压起动控制电路工作原理。 那为什么要降压起动? 三相异步电动机全压起动时电源电压全部施加在三相绕组上,起动电流为额定电流的4~7倍,电动机功率较大时将导致电源变压器输出电压下降,从而导致电动机起动困难,影响同一线路中其他电器的正常工作。 为了减小三相异步电动机直接起动电流,通常将电压适当降低后,加到电动机定子绕组上进行起动,待电动机起动运转后,再恢复到额定电压运行。降压起动达到了减小起动电流的目的。 Y-△降压起动时,定子绕组接成Y形,当电动机转速接近额定转速时再换接成△形联结。

Y-△降压起动有一定局限,适合△形联结、容量较大电动机,空载、轻载起动。 我们来看一下电动机定子绕组的联结方式,电动机定子绕组分为星形和三角形两种联结方式。 星形联结把U、V、W三相绕组首端U1、V1、W1分别与电源相连,尾端U2、V2、W2连成一点,接线盒端口按图U2、V2、W2短接,形成星形联结。 三角形联结把三相绕组按顺序首尾相连,U2与V1相连,V2与W1相连,W2与U1相连后接电源,接线盒端口按图连接,形成三角形联结。 Y-△降压起动控制电路的主电路是在自锁电路主电路基础上增加KM△和KMY两个交流接触器。

通过对电动机U1、V1、W1、U2、V2、W2的连接形成星形和三角形联结。KMY主触点短接后把电动机U2、V2、W2连成一点实现星形联结,KM△主触点把接线端口U1接W2、V1接U2、W1接V2成三角形联结。 KM、KMY主触点闭合时电动机星形联结。KM、KM△主触点闭合时电动机三角形联结。

三相异步电动机正反转及Y降压起动控制线路

实验六三相异步电动机正反转及Y—△降压起动控制线路 一、实验目的 1.进一步掌握三相异步电动机的正反转控制线路的接线方法。 2.进一步掌握三相异步电动机的Y—△降压起动控制线路的接线方法。 3.熟悉三相异步电动机的正反转及Y—△降压起动控制线路的工作原理。 4.熟悉三相异步电动机的正反转及Y—△降压起动控制线路的接线方法。 二、实验原理 1. 三相异步电动机的正反转及Y—△降压起动控制线路如图一所示。 2. 正转Y—△降压起动控制过程如下:

三相闸刀开关QS合闸通电后,指示灯D1亮启,表明控制线路处于“准备好”的状态,按起动按钮SB2后且在转换为△形接法(正常运行)之前,该指示灯保持亮启状态,以表明控制线路处于Y降压起动状态。当转入△形正常运行状态后,D1指示灯熄灭,同时指示灯D2亮启,表明已进入正常运行状态,之后,只要不按停止按钮SB1,指示灯D2将一直保持亮启状态。 3. 反转Y—△降压起动控制过程如下: 指示灯D1和D2的亮灭情况与正转降压起动控制过程类似。 三、实验仪器设备 四、实验内容与步骤 1.将交流接触器、热继电器、时间继电器、按钮开关在控制板上进行布置。 2.按照图一进行布线联接。 3.全部联接完成后应进行仔细检查核对,直至正确无误。经指导教师确认接线正确后,方可合闸刀 通电。 4.按起动按钮SB2,Y形降压起动,指示灯D1亮启,经延时若干秒后,电动机转换为△形正常运转, 指示灯D1熄灭、D2亮启,此时电动机正向运转,按动停止按钮SB1,电动机停止运转。 5.按起动按钮SB3,Y形降压起动,指示灯D1亮启,经延时若干秒后,电动机转换为△形正常运转, 指示灯D1熄灭、D2亮启,此时电动机反向运转,按动停止按钮SB1,电动机停止运转。 五、实验注意事项 1.通电前应熟悉线路的操作顺序。 2.运行时应注意观察电动机、各电器元件和线路各部分工作是否正常。若发现异常情况,必须立即 切断电源开关。 六、实验报告内容 1.简述三相异步电动机正反转及Y—△降压起动控制线路的工作原理。 2.总结接线、调试过程与体会。

星三角降压启动实验报告

星三角降压启动实验报告 ●实验目的: 能通过安装的线路实现星-三角型的控制,控制线路电压为220V ●实验要求: 1.能正常使用常用的电工工具,能使用基本的测量表计。 2.安装布线要整齐,连接要可靠。 3.配电箱内的接线要正确。交直流或没电压的插座应有明显的区别,箱内每一 处开关、每一组熔断器都应有表明所控制对象的标志图。 4.按线路图正确接线,要求配线长度适度,不能出现压皮、露铜等现象。 5.线路功能正常,通电测试无短路现象,能实现科目要求的功能。 6.测试完成后实验报告能对实作过程进行总结并对过程进行梳理,能够分析实 作步骤。 ●实验器材:

● 实验原理: ? 实现方法:手动和自动。 1、手动星三角降压启动: 其电气原理图如图1,按下SB1→KM1、KM2得电→电机星形运行; 按下SB3→KM2先失电,KM3后得电→电机三角形运行; 按下SB2→KM1、KM3失电→电机停止运行。 图1-1 2、自动星三角降压启动(本次实作电气原理图): 其电气原理图如图1-2,按下SB1→KM1、KM2、KT1得电→电机星形运行→一定时间后→时间继电器延时断开(具体延时时间的设定后面我们再讨论)→KT1常闭触点变为常开,KM2失电→KT1常开触点闭合,KM3得电→电机变为三角形运行→按下SB2→KM1、KM3失电→电机停止运行; ? 降压启动简述: 1、电机的启动电流近似和定子的电压成正比,因此常采用降低定子电压的办法来限制启动电流。 2、3 ?Y =φφU U ; ??Y Y =?= = = I R R I R U R U I AC 31 333φφφ;在启动时,因为T ∝U 2 ,

星三角降压启动电路图

星三角降压启动电路图-CAL-FENGHAI.-(YICAI)-Company One1

星三角降压启动电路图 星三角降压启动电路图-Y—△降压起动控制线路在以前变频器、软启动器等电子设备价格比较贵,技术比较落后的时候是一个最常用的的电工电路,随着科技的发展,这种启动方式有逐步被淘汰的趋势,但是该启动电路中应用的基本电路中的互锁、自锁、延时继电器,电机的绕组接法等对于刚刚接触电路的朋友是一个很好的教材,下面就根据星三角降压启动电路图给大家介绍一下星三角降压启动电路的工作过程以及电流电压关系。 1、首先介绍一下图纸中各个元器件的符号 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 2、下面介绍一下工作过程

合上QS,按下St,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,KMY和KM△互锁避免KM△误动作; KM-1闭合,自锁启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。电动机的三角形运转状态,必须要按下SP停止按钮,才能使全部接触器线圈失电跳开,才能停止运转。3、星三角降压启动中的电压电流关系星启动时:电机每个线圈上的电压是220V电流I星=U星/Z三角启动:电机每个线圈上的电压是380VI角=U/角ZI 星/I角=U星/U角=220/380;星型启动的电压约为三角形启动的1/3。星三角启动电流= 电压= 启动转矩=综上所述,星三角降压启动以一种以牺牲启动转矩为代价的降压启动方式,虽然降低了起动电流,但是牺牲了转矩,只能用在一般的轻、中负荷场所。

相电动机星三角降压启动控制电路图解

三相电动机星三角降压启动控制电路图解 文章目录 ? ? 星三角(星形-三角形)降压启动是指电动机启动时,把定子绕组接成星形,以降低启动电压,限制启动电流;等电动机启动后,再把定子绕组改接成三角形,使电动机全压运行。凡事在正常运行时定子绕组作三角形连接的异步电动机,均可采用这种方式。 接触器控制星三角降压启动 如右图所示是用按钮和控制的星三角降压启动的控制电路。该线路使用了三个接触器、一个热继电器和三个按钮。接触器KM作引入电源用,接触器KMy和KM△分别作星形启动用和三角形运行用,SB1是启动按钮,SB2是星~三角转换按钮,SB3是停止

按钮,熔断器FU1作为主电路的短路保护,熔断器FU2作为控制电路的短路保护,FR作过载保护。电路的工作原理如下:先合上电源开关SQ: 电动机星形(Y)连接降压启动:按下SB1→接触器KM和KMy线圈通电→KM自锁触头闭合自锁、KMy互锁触头分断对KM△的互锁、KM主触头闭合、KMy主触头闭合→电动机M接成星形(Y)降压启动。 电动机三角形(△)连接全压运行:当电动机转速上升到接近额定值时,按下SB2→SB2动合触头闭合、SB2动断触头先分断→接触器KMy线圈断电→KMy互锁触头恢复闭合、KMy主触头分断→KM△线圈通电→KM△互锁触头分断对KMy互锁、KM△自锁触头闭合自锁、KM△主触头闭合→电动机M接成三角形全压运行。 停止时按下SB3按钮即可。 时间继电器自动星三角降压启动 下图所示为自动控制星三角降压启动电路图。该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。时间继电器KT作控制星形降压启动时间和完成星三角自动切换用,其他电器的作用和上个线路中相同。 线路的工作原理如下:先合上电源开关QS: 按下SB1→时间继电器KT线圈通电、KMy线圈通电→KMy互锁触头分断、KMy主触头闭合、KMy动合触头闭合→KM线圈通电→KMy常开触头分断、KM自锁触头闭合自锁、KM主触头闭合→电动机M接成星形降压启动,当M转速上升到一定数值,KT常闭触头分断→KMy线圈断电→KMy主触头分断,接触y互锁、KMy互锁触头闭合→KM△线圈通电→KM△主触头闭合

星三角降压启动电路图原理详解

星三角降压启动电路图原理详解 摘要: Y-△降压起动控制线路在以前变频器、软启动器等电子设备价格比较贵,技术比较落后的时候是一个最常用的的电工电路,星三角降压启动以 一种以牺牲启动转矩为代价的降压启动方式,虽然降低了启动电流,但是牺 牲了转矩,... Y-△降压起动控制线路在以前变频器、软启动器等电子设备价格比较贵, 技术比较落后的时候是一个最常用的的电工电路,星三角降压启动以一种以 牺牲启动转矩为代价的降压启动方式,虽然降低了启动电流,但是牺牲了转矩,只能用在一般的轻、中负荷场。只适合于电动机正常运行时为三角型联接。 所需主要元器件:三个交流接触器,一个热继电器,一个时间继电器,启动、停止按钮各一,主断路器一个,视电机功率选定 三个接触器作用:一个为主电路接通电源,一个为 Y 型启动,一个为△启动。 时间继电器作用:通过设定确定星型到三角型转换的时间,需要延时触 点。 热继电器作用:提供过载保护。断路器作用:为电动机提供短路保护。

主电路 控制电路 按下启动按钮 SB2,主回路电源启动,KM 线圈得电,其常开触点闭合, 实现自锁,时间继电器线圈回路和 KM-Y 线圈回路接通,Y 型启动已经实现,此时时间继电器延时断开触点使 Y 形自锁,而△回路 KT 的 NO(常开)触点得电后要延时闭合,使得△型回路不得电,电路中星形回路与三角形回 路互锁,整定时间到后,常闭触点断开,切断 Y 型启动回路,时间继电器的常开触点瞬时闭合,接通△型回路,而其 KM-△线圈得电,其常开触点闭 合,自锁,同时另一个常闭触点使得 KT 时间继电器回路断开,KT 线圈失电,电机此时已经处于正常运行状态,完成了星三角降压启动。 需要注意的事项 1 星三角降压启动电路,只适用于三角形接法的 380V 鼠笼式异步电动机, 2 接线时应先将电动机接线盒连接片拆除,虽然是废话,但是很多时候总 是会出现马虎大意的情况。 3,接触器与电机连线时一定要区分好相序!!在电机转向调整的时候万万 不可大意 4 启动时间的调整星形启动时间过短转速还未提升,如果此时切换到三角形,启动电流还是会很大。星形启动时间过长,电机会因为低电压大电流而 烧毁。一般我自己按照每千瓦秒 虽然现在随着变频器plc 还有软启的普及星三角电路使用频率越来越低,但是!!!舍不得花钱的老板越来越多!!!!有时候不得不用星三

星-三角降压起动控制线路工作原理(精)

学习情境3:三相异步电机降压起动线路装调 学习情境3.1:星-三角降压起动控制线路安装与调试 知识目标 1.认知降压起动的常用方法; 2.了解不同降压起动的优缺点; 3.星-三角降压起动控制线路的连接、调试方法。 能力目标 1.能够了解电机降压起动的常用方法及各自优缺点; 2.能够将星-三角降压起动控制电气原理图转化为接线图,并将各个组成电气元件连接成星-三角降压起动控制线路且能正确调试其运行。 教学任务 通过对降压起动的常用方法、不同降压起动的优缺点和星-三角降压起动控制线路的连接方法的学习,达到掌握安装与调试星-三角降压起动控制线路方法的目的。 重点 1. 星-三角降压起动控制线路的控制电路特点; 2.星-三角降压起动控制线路的连接、调试方法。 难点 1.星-三角降压起动控制线路的连接、调试。 授课内容 1、星-三角降压起动控制线路基本知识 1.1电气原理图

1.2 工作原理 起动时,合上漏电断路器引入三相电源。 按起动按钮SB2,接触器KM1线圈、KM3线圈以及通电延时型时间继电器KT 线圈通电,电动机接成星形起动;同时通过KM1的动合辅助触点自锁,时间继电器开始定时。当电动机接近于额定转速,即时间继电器延时时间到,KT 的延时断开动断触点断开,切断KM3线圈电路,KM3断电,其主触点和辅助触点复位,使KM2线圈得电并持续通电,主触点闭合,电动机接成三角形运行。KT 线圈也因KM2动断辅助触点断开而失电,KT 的触点复位,为下一次起动做好准备。 1.3 线路连接及其注意事项 1.3.1电动机星形接法与三角形接法相比较 (1)电压比较:电动机星形连接时,每相绕组承受电源相电压;三角形连接时,每相绕组承受电源线电压。即: ?Y = U U 3 1。 (2)电流比较:电动机星形连接时,线电流z U I L Y 3= ;三角形连接时,线电流z U I L 3 = ?。则: ?Y = I I 3 1。 1.3.2 电气保护环节分析 (1)KM2、KM3动断触点是互锁控制,防止KM2、KM3线圈同时得电而造成电源短路。 (2)用熔断器和热继电器分别对电动机实现短路保护、过载保护。 1.3.3 操作注意事项 (1)认识各电器结构,图形符号,接线方法,并用万用表欧姆档检查各电器线圈、触点,熔断器是否完好。 (2)在不通电的情况下,用万用表欧姆档检查线路连接是否正确,经指导教师检查后,方可进行通电操作。 (3)训练完毕,将漏电断路器的开关扳下,切断训练线路电源。 2、 教学准备

三相电动机星三角降压启动控制电路图解

三相电动机星三角降压启动控制电路图解

————————————————————————————————作者:————————————————————————————————日期:

三相电动机星三角降压启动控制电路图解 文章目录 ?接触器控制星三角降压启动 ?时间继电器自动星三角降压启动 星三角(星形-三角形)降压启动是指电动机启动时,把定子绕组接成星形,以降低启动电压,限制启动电流;等电动机启动后,再把定子绕组改接成三角形,使电动机全压运行。凡事在正常运行时定子绕组作三角形连接的异步电动机,均可采用这种星三角降压启动方式。 接触器控制星三角降压启动 如右图所示是用按钮和接触器控制的星三角降压启动的控制电路。该线路使用了三个接触器、一个热继电器和三个按钮。接触器KM作引入电源用,接触器KMy和KM△分别作星形启动用和三角形运行用,SB1是启动按钮,

SB2是星~三角转换按钮,SB3是停止按钮,熔断器FU1作为主电路的短路保护,熔断器FU2作为控制电路的短路保护,FR作过载保护。电路的工作原理如下:先合上电源开关SQ: 电动机星形(Y)连接降压启动:按下SB1→接触器KM和KMy线圈通电→KM自锁触头闭合自锁、KMy互锁触头分断对KM△的互锁、KM主触头闭合、KMy主触头闭合→电动机M接成星形(Y)降压启动。 电动机三角形(△)连接全压运行:当电动机转速上升到接近额定值时,按下SB2→SB2动合触头闭合、SB2动断触头先分断→接触器KMy线圈断电→KMy互锁触头恢复闭合、KMy主触头分断→KM△线圈通电→KM△互锁触头分断对KMy互锁、KM△自锁触头闭合自锁、KM△主触头闭合→电动机M接成三角形全压运行。 停止时按下SB3按钮即可。 时间继电器自动星三角降压启动 下图所示为时间继电器自动控制星三角降压启动电路图。该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。时间继电器KT作控制星形降压启动时间和完成星三角自动切换用,其他电器的作用和上个线路中相同。

星三角降压启动控制线路排故训练

星三角降压启动控制线路——故障训练 降压启动全压运行原理: 正常动作情况:按下SB2KT线圈得电KT延时触电立即吸合 主回路KM3常开触头 线圈得电控制回路KM3辅助常开触头吸合 控制回路KM3辅助常闭触头断开 主回路KM3常开触头 KM1线圈吸合控制回路KM3辅助常开触头吸合 控制回路KM3辅助常闭触头断开 电动机实现星型联接转动。(转动时间为时间继电器设定的时间——假设时间继电器设定为延时5秒钟。)换句话说,电动机星型运行5秒钟。 KT线圈失电 5秒钟后断电延时继电器的延时触头断开 KM3线圈失电 主回路KM3主触头断开 KM1线圈得电 控制回路KM3常开辅助触头断开 KM2线圈得电 控制回路KM3常闭辅助触头闭合 主回路KM2常开主触头闭合电动机实现三角型联接转动 控制回路KM2常开辅助触头闭合 控制回路KM2常闭辅助触头断开

制动原理: KM3线圈得电 按下SB1 电动机实现能耗制动 KM4线圈得电 简述如下: 电路分为三部分动作: 星型降压启动为交流接触器KM1、KM3与断电延时继电器KT得电动作。 延时时间过后,三角型全压运行为交流接触器KM1、KM2得电动作。 制动时,KM3、KM4线圈得电动作。

故障现象1:按下SB2时,延时继电器KT线圈不闭合 故障点: FR热继电器上下口、按钮SB1常闭、SB2常开、KM1常开、 KM1常闭、KT延时继电器线圈以上器件的上、下口(就是1、 2、3、4、5、0号线的两端)出现断开情况。 故障现象2:按下SB2时,KM1与KM3线圈动作,抬起SB2时,又恢复原状。(术语:没自锁) 故障点:3号线与4号线之间的常开触头两端的导线出现断开情况。 故障现象3:按下SB2时,KM3线圈动作,而KM1线圈不动作。 故障点: KM1与KM3常开触头之间的4号线出现断开现象。 或KM3常开触头与KM1线圈之间的9号线出现断开现象。 故障现象4:电路由星形连接转换到三角形连接时,KM1与KM3线圈同时断开。 故障点:所有9号线都需要检查。 故障现象5:电路由星形连接转换到三角形连接时,只有KM1线圈吸合,而KM2线圈不吸合。 故障点:检查KM1常开下口与KM3常闭上口的9号线是否断开。 检查10号线是否断开。 故障现象6:电动机没反应,整个电路不动作。类似故障现象1。 故障点:检查熔断器的熔芯是否完好。 再去按照故障现象1的故障点来检查。 故障现象7:没有制动过程。(KM3与KM4线圈不动作) 故障点:检查所有的1、8、11、12、0号线是否出现断开情况。 以上的分析均对应的是负载为电动机的情况。

星三角降压启动控制线路

《带时间继电器Y-△降压启动控制线路》 降压启动的含义:是指利用启动设备将电压适当降低后,夹道电动机的定子绕组上进行启动,待电动机启动运转后,再使其电压恢复到额定电压正常运转。 Y-△降压启动的含义:是指电动机启动时,把定子绕组接成Y形,以降低启动电压,限制启动电流。经几秒,当电动机启动后,再把定子绕组接成△形,使电动机全压运行。 一、理论知识 【任务一】电动机定子绕组Y、△接法如何实现? 电动机定子绕组Y、△接法接线盒部接线图 【任务二】电动机定子绕组Y、△接法时,其绕组上的电压和电流有什么区别? 电动机启动时接成Y形,加在每相定子绕组上的启动电压只有△接法的1 3 ,启动电流为△接 法的1 3 ,启动转矩也只有△接法的 1 3 。所以这种降压启动方法,只适用于轻载或空载下启动。 结论:凡是在正常运行时定子绕组作△形连接的异步电动机,均可采用这种降压启动方法。【任务三】时间继电器自动控制Y-△降压启动控制线路

时间继电器自动控制的Y-△降压启动线路原理图 该线路由三个接触器、一个热继电器、一个时间继电器和两个按钮组成。接触器KM 做引入电源用,接触器KM Y 和KM △分别作Y 形降压启动用和△运行用,时间继电器KT 用作控制Y 形降压启动时间和完成Y-△自动切换。SB1是启动按钮,SB2是停止按钮,FU1作主电路的短路保护,FU2作控制电路的短路保护,KH 作过载保护。 线路的工作原理如下: 降压启动:先合上电源开关QF 。 停止时,按下SB2即可。 KM Y 线圈得电 KM Y 常开触头闭合 KM 线圈得电 KM 自锁触头闭合自锁 KM 主触头闭合 KM Y 主触头闭合 电动机M 接成Y 形降压启动 KM Y 联锁触头分断对KM △ 联锁 KT 线圈得电 当M 转速上升到一定值时,KT 延时结束 KT 常闭触头分断 KM Y 线圈失电 KM Y 常开触头分断 KM Y 主触头分断,解除Y 形连接 KM Y 联锁触头闭合 KM △线圈得电 KM △联锁触头分断 KM △主触头闭合 对KM Y 联锁 KT 线圈失电 KT 常闭触头瞬时闭合 电动机M 接成△全压运行

Y—△降压起动电气原理图及讲解

Y—△降压起动也称为星形—三角形降压起动,简称星三角降压起动。这一线路的设计思想仍是按时间原则控制起动过程。所不同的是,在起动时将电动机定子绕组接成星形,每相绕组承受的电压为电源的相电压(220V),减小了起动电流对电网的影响。而在其起动后期则按预先整定的时间换接成三角形接法,每相绕组承受的电压为电源的线电压(380V),电动机进入正常运行。凡是正常运行时定子绕组接成三角形的鼠笼式异步电动机,均可采用这种线路。 2.典型线路介绍 定子绕组接成Y—△降压起动的自动控制线路如图所示。 图Y—△降压起动控制线路 工作原理: 按下起动按钮SB2,接触器KM1线圈得电,电动机M接入电源。同时,时间继电器KT及接触器KM2线圈得电。 接触器KM2线圈得电,其常开主触点闭合,电动机M定子绕组在星形连接下运行。KM2的常闭辅助触点断开,保证了接触器KM3不得电。 时间继电器KT的常开触点延时闭合;常闭触点延时继开,切断KM2线圈电源,其主触点断开而常闭辅助触点闭合。 接触器KM3线圈得电,其主触点闭合,使电动机M由星形起动切换为三角形运行。 停车 按SB1 辅助电路断电各接触器释放` 电动机断电停车

线路在KM2与KM3之间设有辅助触点联锁,防止它们同时动作造成短路;此外,线路转入三角接运行后,KM3的常闭触点分断,切除时间继电器KT、接触器KM2,避免KT、KM2线圈长时间运行而空耗电能,并延长其寿命。 三相鼠笼式异步电动机采用Y—△降压起动的优点在于:定子绕组星形接法时,起动电压为直接采用三角形接法时的1/3,起动电流为三角形接法时的1/3,因而起动电流特性好,线路较简单,投资少。其缺点是起动转矩也相应下降为三角形接法的1/3,转矩特性差。所以该线路适用于轻载或空载起动的场合。另外应注意,Y—△联接时要注意其旋转方向的一致性。

电机星三角降压启动原理电路图分析

电机星三角降压启动原理电路图分析 上图所示为异步电动机星三角起动控制电路图,此种接法只适合于电动机正常运行时为三角型联接。 所需主要元器件:三个交流接触器、热继电器、时间继电器,启动、停止按钮各一,熔断器五个 三个接触器作用:一个为主电路接通电源,一个为Y型启动,一个为△启动. 时间继电器作用:通过设定确定星型到三角型转换的时间,需要延时触点。 热继电器作用:提供过载保护。 熔断器作用:为电动机提供短路保护。 星形——三角形降压启动控制电动机起动时,把定子绕组接成星形,

以降低起动电压,减小起动电流;待电动机起动后,再把定子绕组改接成三角形,使电动机全压运行。Y—△起动只能用于正常运行时为△形接法的电动机。 这是一种降压启动方式,适用的电机有局限性,能降多少压,怎么个算法,看下面图示。

可以看到通过Y--△,能够实现降压启动,降压起动时的电流为直接启动时的1/3。 下面重点巩固一下接线方式,这个看过很多次,也画过很多次,过了一段时间,今天再画时,又有些健忘了,无奈,继续加强。 先来看一下主接线图。

Y-△启动的话,先要星型启动的话,肯定KM和 KM -Y 先要启动,之后KM -Y要停下来,KM要一直得电,不然没电源肯定不行,KM和KM-△要一直运行,到正常运行。 接下来看一下控制回路吧: 根据上面一次回路的分析,再看这个控制回路,很简单的,按下启动按钮SB2,主回路电源启动,KM线圈得电,其常开触点闭合,实现自保持,SB2复归;下面的时间继电器线圈回路和KM-Y线圈回路也接通,这时Y型启动已经实现,通过时间继电器时间的整定,Y型回路的时间继电器NC(常闭)触点得电后要延时打开,使Y启动保持住,而△回路KT的NO(常开)触点得电后要延时闭合,使得△型回路不得电,同时Y型启动的接触器常闭接点对△回路有闭锁(Y-△两回路都要有闭锁)。整定时间到后,时间继电器的常开触点瞬时闭合,接通△型回路,KM-△线圈得电,其常开触点闭合,起保持作用,而其常闭触点断开,切断Y型启动回路,同时另一个常闭触点使得KT时间继电器回路断开,KT线圈失电,常闭瞬时复归,常开也复归,电

相关文档
最新文档