LIN总线协议

DS18B20 以单总线协议工作

DS18B20 以单总线协议工作,测温分机首先发送复位脉冲命令,使信号线上所有的 DS18B20 芯片都被复位,接着发送ROM 操作命令,使序列号编码匹配的DS18B20 被激活进入接收内存访问命令状态;内存访问命令完成温度转换、温度读取等工作(单总线在ROM 命令发送之前存储命令和控制命令不起作用)。DS18B20 工作流程见图3 所示。 图3 DS18B20 工作流程图 系统以ROM 命令和存储器命令的形式对DS18B20 操作。ROM 操作命令均为8 位,命令代码分别为:读ROM(0x33H)、匹配ROM(0x55H)、跳过ROM(0xCCH) 、搜索ROM(0xF0H) 和告警搜索(0xECH) 命令;存储器操作命令为:写暂存存储器(0x4EH) 、读暂存存储器(0xBEH)、复制暂存存储器(0x48H)、温度变换(0x44H)、重新调出EERAM(0xB8H)以及读电源供电方式(0xB4H)命令。其对时序及电特性参数要求较高,必须严格按照它的时序要求去操作。DS18B20 的数据读写由测温分机来完成,包括初始化、读数据和写数据。 系统软件采用模块化程序设计,主从式结构通信方式。规定总线上有一个测温主机和64台分机,分机地址唯一。初始化完成后各分机均处于监听状态,采用中断方式工作,测温分机接受上位机命令,向DS18B20发出地址匹配命令帧,进入等待状态,每一帧数据位都对应着不同意义,若地址匹配成功则进行响应分机,否则继续等待,直到等待超时而重发命令。温度采集模块负责数据的采集工作。 当缓冲区有数据时产生中断,程序转向中断服务子程序入口,中断子程序如下: void SerialInterrupt() interrupt 4 //中断服务子程序 {loop0:if(RI);SlaveNo=SBUF; RI=0; while (! RI); //等待下一个命令 loop1:RI=0; SensorNo=SBUF; if(SlaveNo==0x81&SensorNo<0x80) //判别数据是否合法 {while(1)

单总线协议详解

单总线协议详解 单总线即one-wire总线,是美国DALLAS公司推出的外围串行扩展总线技术。与SPI、IC串行数据通信方式不同.它采用单根信号线,既传输时钟又传输数据,而且数据传输是双向的,具有节省I/O口线、资源结构简单、成本低廉、便于总线扩展和维护等诸多优点。 单总线是DALLAS公司研制开发的种协议由一个总线主节点、或多个从节点组成系统,通过根信号线对从芯片进行数据的读取。每一个符合OneWire协议的从芯片都有一个唯一的地址,包括48位的序列号、8位的家族代码和8位的CRC代码。主芯片对各个从芯片的寻址依据这64位的不同来进行。单总线利用一根线实现双向通信。因此其协议对时序的要求较严格,如应答等时序都有明确的时间要求。,基本的时序包括复位及应答时序、写一位时序、读一位时序。在复位及应答时序中,主器件发出复位信号后,要求从器件在规定的时间内送回应答信号;在位读和位写时序中,主器件要在规定的时间内读固或写出数据。 单总线适用于单主机系统,能够控制一个或多个从机设备。主机可以是微控制器,从机可以是单总线器件,它们之间的数据交换只通过一条信号线。当只有一个从机设备时,系统可按单节点系统操作;当有多个从设备时,系统则按多节点系统操作。 单总线工作原理单总线器件内部设置有寄生供电电路(Parasite Power Circuit)。当单总线处于高电平时,一方面通过二极管VD向芯片供电,另方面对内部电容C(约800pF)充电;当单总线处于低电平时,二极管截止,内部电容c向芯片供电。由于电容c的容量有限,因此要求单总线能间隔地提供高电平以能不断地向内部电容C充电、维持器件的正常工作。这就是通过网络线路窃取电能的寄生电源的工作原理。要注意的是,为了确保总线上的某些器件在工作时(如温度传感器进行温度转换、E2PROM写人数据时)有足够的电流供给,除了上拉电阻之外,还需要在总线上使用MOSFET(场效应晶体管)提供强上拉供电。 单总线的数据传输速率一般为16.3Kbit/s,最大可达142 Kbit/s,通常情况下采用100Kbit/s

单总线传输协议b2s (附全部verilog源码)

1. 讲废话 小弟最近做了一个项目(用Lattice的CPLD),话说前面还算顺利,就在即将完工的时候,发现(TMD)I/O不够用,有一功能需要CPLD传输8bit数据到另一个控制器做进一步处理,but现在仅剩下一个I/O,好吧,我被卡死在这里了。终于,在一个月黑风高的夜晚(本人喜欢把气氛营造的悲壮一点,嘎嘎。。),突然想到DS18B20的单总线传输协议,以前也了解过其他的协议,心想,为嘛自己不整一个类似的东东出来yy 一下呢,所以有了此贴。 解释一下,本次原创单总线传输协议命名为b2s(不才,取了个类似I2C的名,由于本人有一个贱贱的英文名Bob,所以用了b,各位轻喷啊;s代表single,意为单线传输),本协议含传送端(transmitter)和接收端(receiver)两部分,基于verilog语言,仅使用单个I/O口进行多位数据的传输,传输方向为单向,用于I/O不够用的情况,亲测绝对可用,如果大家以后有用得到的时候,可以直接拿来使用。 本人拥抱开源,所有源码能贴出来尽量贴出来,为大家节省积分,攒RP。 废话完毕,下面为各位客官准备干货。 2. 晒干货 ps. 带★号处可根据需要进行修改. 发送端源码: /*********************************************************************** ******************* Author: Bob Liu E-mail:shuangfeiyanworld@https://www.360docs.net/doc/7e7508874.html, File Name: b2s_transmitter.v Function: b2s发送端, 默认发送32bit数据,数据宽度可更改 Version: 2013-5-13 v1.0 ************************************************************************ ********************/ module b2s_transmitter ( clk, //时钟基准,不限频率大小,但必须与接收端一致 din, //待发送数据 b2s_dout //b2s数据输出端口 ); parameter WIDTH=32; //★设定b2s发送数据的位宽,可根据需要进行更改input clk; input [WIDTH-1:0] din;

单总线协议

单总线协议 与其他所有的数据通信传输方式一样,单总线芯片在数据传输过程要求采用严格的通信协议,以保证数据的完整性。单总线芯片在数据传输过程中,每个单总线芯片都拥有唯一的地址,系统主机一旦选中某个芯片,就会保证通信连接直到复位,其他器件则全部脱离总线,在下次复位之前不参与任何通信。 为了说明单总线数据传输的过程,以下将分4个部分对单总线数据通信传输过程进行介绍,它们分别是单总线通信信号类型,单总线通信初始化,单总线通信的ROM命令以及单总线通信的功能命令。 1.1单总线通信信号类型 单总线通信协议定义了如下几种类型,即复位脉冲、应答脉冲、写0、写1、读0和读1,除了应答脉冲外,所有的信号都由主机发出同步信号,并且发送的所有的命令和数据都是字节的低位在前。 单总线通信协议中不同类型的信号都采用一种类似脉宽调制的波形表示,逻辑0用较长的低电平持续周期表示,逻辑1用较长的高电平持续周期表示。在单总线通信协议中,读写时隙的概念十分重要,当系统主机向从设备输出数据时产生写时隙,当主机从从机设备读取数据时产生读时隙,每一个时隙总线只能传输一位数据。无论是在读时隙还是写时隙,它们都以主机驱动数据线位低电平开始,数据线的下降沿是从设备触发其内部的延时电路,使之与主机同步。在写时隙内,该延迟电路决定从设备采样数据线的时间窗口。 单总线通信协议中存在两种写时隙:写1和写0。主机采用写1时隙向从机写入1,而采用写0时隙向从机写入0,。所有写时隙至少要60us,且在两次独立的写时隙之间至少需要1us的恢复时间。两种写时隙均起始于主机拉低数据总线。产生1时隙的方式:主机拉低总线后,接着必须在15us之内释放总线,由上拉电阻将总线拉至高电平;产生写0时隙的方式为在主机拉低后,只需要在整个时隙间保持低电平即可(至少60us)。在写时隙开始后15us~60us期间,单总线器件采样总电平状态。如果在此期间采样值为高电平,则逻辑1被写入器件;如果为0,写入逻辑0。 图1-1给出了写时隙(包括1和0)时序的图形解释。

1,wire,协议

竭诚为您提供优质文档/双击可除 1,wire,协议 篇一:单总线(1-wiRebus)技术及其应用 单总线(1-wirebus)技术及其应用摘要:介绍了美dallas公司推出的单总线技术的原理和信号传输方式,说明了单总线通信协议,最后以单总线器件ibutton在安防系统中的应用为例,给出了单总线的数据传输方法。关键词:单总线单总线协议ibutton1引言目前常用的微机与外设之间进行数据传输的串行总线主要有i2c总线、spi总线和sci 总线。其中i2c总线以同步串行2线方式进行通信(一条时钟线,一条数据线),spi总线则以同步串行3线方式进行通信(一条时钟线,一条数据输入线,一条数据输出线),而sci总线是以异步方式进行通信(一条数据输入线,一条数据输出线)的。这些总线至少需要两条或两条以上的信号线。近年来,美国的达拉斯半导体公司(dallassemiconductoR)推出了一项特有的单总线(1-wirebus)技术。该技术与上述总线不同,它采用单根信号线,既可传输时钟,又能传输数据,而且数据传输是双向的,因而这种单总线技术具有线路简单,硬件开销少,成本低廉,便于总线扩展和维护等优

点。单总线适用于单主机系统,能够控制一个或多个从机设备。主机可以是微控制器,从机可以是单总线器件,它们之间的数据交换只通过一条信号线。当只有一个从机设备时,系统可按单节点系统操作;当有多个从设备时,系统则按多节点系统操作。图1所示是单总线多节点系统的示意图。2单总线的工作原理顾名思义,单总线即只有一根数据线,系统中的数据交换、控制都由这根线完成。设备(主机或从机)通过一个漏极开路或三态端口连至该数据线,以允许设备在不发送数据时能够释放总线,而让其它设备使用总线,其内部等效电路如图2所示。单总线通常要求外接一个约为4.7k Ω的上拉电阻,这样,当总线闲置时,其状态为高电平。主机和从机之间的通信可通过3个步骤完成,分别为初始化 1-wire器件、识别1-wire器件和交换数据。由于它们是主从结构,只有主机呼叫从机时,从机才能应答,因此主机访问1-wire器件都必须严格遵循单总线命令序列,即初始化、Rom、命令功能命令。如果出现序列混乱,1-wire器件将不响应主机(搜索Rom命令,报警搜索命令除外)。表1是列为ΔΙΩ命令的说明,而功能命令则根据具体1-wire器件所支持的功能来确定。表1Rom命令说明Rom命令说明搜索Rom(F0h)识别单总线上所有的1-wire器件的Rom编码读Rom(33h)(仅适合单节点)直接读1-wire器件的序列号匹配Rom(55h)寻找与指定序列号相匹配的1-wire器件跳跃

单总线协议

单总线通信协议中存在两种写时隙:写0写1。主机采用写1时隙向从机写入1,而写0时隙向从机写入0。所有写时隙至少要60us,且在两次独立的写时隙之间至少要1us的恢复时间。两种写时隙均起始于主机拉低数据总线。产生1时隙的方式:主机拉低总线后,接着必须在15us之内释放总线,由上拉电阻将总线拉至高电平;产生写0时隙的方式为在主机拉低后,只需要在整个时隙间保持低电平即可(至少60us)。在写时隙开始后15~60us期间,单总线器件采样总电平状态。如果在此期间采样值为高电平,则逻辑1被写入器件;如果为0,写入逻辑0。 下图为写时隙(包括1和0)时序 上图中黑色实线代表系统主机拉低总线,黑色虚线代表上拉电阻将总线拉高。 对于读时隙,单总线器件仅在主机发出读时隙时,才向主机传输数据。所有主机发出读数据命令后,必须马上产生读时隙,以便从机能够传输数据。所有读时隙至少需要60us,且在两次独立的读时隙之间至少需要1us恢复时间。每个读时隙都由主机发起,至少拉低总线1us。在主机发出读时隙后,单总线器件才开始在总线上发送1或0。若从机发送1,则保持总线为高电平;若发出0,则拉低总线。 当发送0时,从机在读时隙结束后释放总线,由上拉电阻将总线拉回至空闲高电平状态。从机发出的数据在起始时隙之后,保持有效时间15us,因此主机在读时隙期间必须释放总线,并且在时隙起始后的15us之内采样总线状态。 下图给出读时隙(包括0或1)时序 图中黑色实线代表系统主机拉低总线,灰色实线代表总局拉低总线,而黑色的虚线则代表上

拉电阻总线拉高。 单总线通信的初始化 单总线上所有的通信都是以初始化序列开始的,初始化序列包括主机发出的复位脉冲及从机的应答脉冲,这一过程如图所示,黑色实线代表系统主机拉低总线,灰色实线代表从机拉低总线,而黑色的虚线则代表上拉电阻将总线拉高。 系统主设备发送端发出的复位脉冲是一个480~960us的低电平,然后释放总线进入接收状态。此时系统总线通过4.7K的上拉电阻接至vcc高电平,时间约为15~60us,接在接受端的设备就开始检测io引脚上的下降沿以及监视在脉冲的到来。主设备处于这种状态下的时间至少480us。 作为从设备在接收到系统主设备发出的复位脉冲之后,向总线发出一个应答脉冲,表示从设备已准备好,可根据各种命令发送或接收数据。通常情况下,器件等待15~60us即可发送应答脉冲

单总线协议-以DS18B20举例

单总线协议-以DS18B20举例 一、概述 1-wire 单总线是Maxim 全资子公司Dallas 的一项专有技术。与目前多数标准串行数据通信方式,如SPI/I2C/MICROWIRE 不同,它采用单根信号线,既传输时钟,又传输数据,而且数据传输是双向的。它具有节省I/O 口线资源、结构简单、成本低廉、便于总线扩展和维护等诸多优点。 1-wire 单总线适用于单个主机系统,能够控制一个或多个从机设备。当只有一个从机位于总线上时,系统可按照单节点系统操作;而当多个从机位于总线上时,则系统按照多节点系统操作。 为了较为全面地介绍单总线系统,将系统分为三个部分讨论:硬件结构、命令序列和信号方式信号类型和时序。 二、硬件结构 顾名思义,单总线只有一根数据线。设备(主机或从机)通过一个漏极开路或三态端口,连接至该数据线,这样允许设备在不发送数据时释放数据总线,以便总线被其它设备所使用。单总线端口为漏极开路其内部等效电路如图1 所示。

单总线要求外接一个约5k 的上拉电阻;这样,单总线的闲置状态为高电平。不管什么原因,如果传输过程需要暂时挂起,且要求传输过程还能够继续的话,则总线必须处于空闲状态。位传输之间的恢复时间没有限制,只要总线在恢复期间处于空闲状态(高电平)。如果总线保持低电平超过480us,总线上的所有器件将复位。另外在寄生方式供电时,为了保证单总线器件在某些工作状态下(如温度转换期间EEPROM写入等)具有足够的电源电流,必须在总线上提供强上拉(如图1所示的MOSFET )。 三、命令序列 典型的单总线命令序列如下: 第一步:初始化 第二步:ROM命令(跟随需要交换的数据) 第三步:功能命令(跟随需要交换的数据) 每次访问单总线器件,必须严格遵守这个命令序列,如果出现序列混乱,则单总线器件不会响应主机。但是,这个准则对于搜索ROM命令和报警搜索命令例外,在执行两者中任何一条命令之后,主机不能执行其后的功能命令,必须返回至第一步。 3 .1 初始化 基于单总线上的所有传输过程都是以初始化开始的,初始化过程由主机发出的复位脉冲和从机响应的应答脉冲组成。应答脉冲使主机知道,总线上有从机设备,且准备就绪。复位和应答脉冲的时间详见单总线信号部分。 3.2 ROM命令 在主机检测到应答脉冲后,就可以发出ROM 命令。这些命令与各个从机设备的唯一64位ROM代码相关,允许主机在单总线上连接多个从机设备时,指定操作某个从机设备。这些命令还允许主机能够检测到总线上有多少个从机设备以及其设备类型,或者有没有设备处于报警状态。从机设备可能支持5 种ROM命令(实际情况与具体型号有关),每种命令长度为8 位。主机在发出功能命令之前,必须送出合适的ROM命令。ROM命令的操作流程如图2 所示。下面将简要地介绍各个ROM命令的功能,以及使用在何种情况下。

相关主题
相关文档
最新文档