学而思高中数学空间几何量的计算.板块七.空间几何量计算综合问题.学生版

学而思高中数学空间几何量的计算.板块七.空间几何量计算综合问题.学生版
学而思高中数学空间几何量的计算.板块七.空间几何量计算综合问题.学生版

【例1】 如果四棱锥的四条侧棱都相等,就称它为“等腰四棱锥”,四条侧棱称为它的

腰,以下四个命题中,假命题是( )

A .等腰四棱锥的腰与底面所成角都相等

B .等腰四棱锥的侧面与底面所成的二面角都相等或互补

C .等腰四棱锥的底面四边形必存在外接圆

D .等腰四棱锥的各顶点必在同一球面上

O

H P

D

C

B

A

【例2】 如图,正方体1111ABCD A B C D -中,点P 在侧面11BCC B 及其边界上运动,并且

总保持1AP BD ⊥,则动点P 的轨迹是( )

A .线段1

B

C B .线段1BC

C .1BB 中点与1CC 中点连成的线段

D .BC 中点与11B C 中点连成的线段

C 1

B 1

A 1

D C B

A

P

【例3】 (2010重庆高考)

到两互相垂直的异面直线的距离相等的点,在过其中一条直线且平行于另一条直线

典例分析

板块七.空间几何量计算综合

问题

的平面内的轨迹是( ) A .直线 B .椭圆

C .抛物线

D .双曲线

【例4】 (2010福建高考)

如图,若Ω是长方体1111ABCD A B C D -被平面EFGH 截去几何体11EFGHB C 后得到的几何体,其中E 为线段11A B 上异于1B 的点,F 为线段1BB 上异于1B 的点,且11EH A D ∥,则下列结论中不正确的是( )

A .EH FG ∥

B .四边形EFGH 是矩形

C .Ω是棱柱

D .Ω是棱台

A

B C

D E F G

H D 1C 1B 1

A 1

【例5】 (2010江西高考)

过正方形1111ABCD A B C D -的顶点A 作直线l ,使l 与棱AB ,AD ,1AA 所成的角都相等,这样的直线l 可以作 A .1条 B .2条 C .3条

D .4条

D 1C 1B 1

A 1

D

C

B

A

【例6】 (2010全国卷Ⅱ高考)

11.与正方体1111ABCD A B C D =的三条棱AB 、1CC 、11A D 所在直线的距离相等的点

A .有且只有1个

B .有且只有2个

C .有且只有3个

D .有无数个

【例7】 (2009海南)如图,正方体1111ABCD A B C D -的棱线长为1,线段11B D 上有两个

动点,E F ,且2

EF =

) A .AC BE ⊥

B .∥EF 平面ABCD

C .三棱锥A BEF -的体积为定值

D .异面直线,A

E B

F 所成的角为定值

F E

D 1

C 1

B 1

A 1

D

C

B

A

【例8】 (2008辽宁)

在正方体1111ABCD A B C D -中,E F ,分别为棱1AA ,1CC 的中点,则在空间中与三条直线11A D ,EF ,CD 都相交的直线( ) A .不存在 B .有且只有两条 C .有且只有三条 D .有无数条

P

N

M

D 1

C 1

B 1

A D

B

【例9】 (2009安徽文15)对于四面体ABCD ,下列命题正确的是 .(写出

所有正确命题的编号).

①相对棱AB 与CD 所在的直线是异面直线;

②由顶点A 作四面体的高,其垂足是BCD ?的三条高线的交点; ③若分别作ABC ?和ABD ?的边AB 上的高,则这两条高的垂足重合; ④任何三个面的面积之和都大于第四个面的面积;

⑤分别作三组相对棱中点的连线,所得的三条线段相交于一点.

【例10】 (2010年一模·西城·文·题17)

如图,在三棱锥P ABC -中,PA ⊥平面ABC ,AC BC ⊥,D 为侧棱PC 上一点, 它的正(主)视图和侧(左)视图如图所示. ⑴证明:AD ⊥平面PBC ; ⑵求三棱锥D ABC -的体积;

⑶在ACB ∠的平分线上确定一点Q ,使得PQ ∥平面ABD ,并求此时PQ 的长.

侧(左)视图

正(主)视图P

D

C

B

A

22

22

2

2

4

4

4

【例11】 (2010年二模·宣武·文·题16)

已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据, ⑴ 求这个组合体的体积;

⑵ 若组合体的底部几何体记为1111ABCD A B C D -,其中11A B BA 为正方形. ⅰ)求证:1A B ⊥平面11AB C D ;

ⅱ)求证:P 为棱11A B 上一点,求1AP PC +的最小值.

俯视图

左视图

主视图

10

812

4

8

D 1

C 1

B 1

A 1

D

C

B

A

【例12】 (2010年二模·宣武·理·题16)

已知某个几何体的三视图如图(主视图的弧线是半圆),根据图中标出的数据, ⑴求这个组合体的表面积;

⑵若组合体的底部几何体记为1111ABCD A B C D -,其中11A B BA 为正方形. ⅰ)求证:111A B AB C D ⊥平面;

ⅱ)设点P 为棱11A D 上一点,求直线AP 与平面11AB C D 所成角的正弦值的取值范围.

10

12

4

8

8

左视图

俯视图

主视图

P D 1

C 1

B 1

A 1

D

C

B

A

【例13】 (2009广雅期中)

已知四棱锥P ABCD -的三视图如下图所示,E 是侧棱PC 上的动点.

俯视图

左视图

主视图

2

2

1

111

E

D

C

B

A P

⑴求四棱锥P ABCD -的体积;

⑵是否不论点E 在何位置,都有BD AE ⊥?证明你的结论.

【例14】 (2009江门市一模)

如图,四棱锥P ABCD -,PAB CBA ??≌,在它的俯视图ABCD 中,BC CD =,1AD =,60BCD BAD ∠=∠=?. ⑴求证:PBC ?是直角三角形; ⑵求四棱锥P ABC -的体积.

俯视图

直观图

A (P )

B

C D

P

D

C

B

A

【例15】 (2009安徽文20)

如图,ABCD 是边长为2的正方形,直线l 与平面ABCD 平行,E 和F 是l 上的两个不同点,且EA ED =,FB FC =.E '和F '是平面ABCD 内的两点,EE '和FF '都与平面ABCD 垂直.

⑴证明:直线E F ''垂直且平分线段AD ;

⑵若60EAD EAB ∠=∠=?,2EF =,求多面体ABCDEF 的体积.

l F'E'

F

E

D

C

B

A

【例16】 如图,在矩形ABCD 中,33AB =,3BC =,沿对角线BD 将BCD ?折起,使

点C 移到C '点,C O '⊥面ABD ,且O 在AB 上.

⑴求证:BC '⊥平面AC D '; ⑵求点A 到平面BC D '的距离;

⑶求直线AB 与平面BC D '所成角的正弦值.

D

C

B

A

O

(C )

A B

C '

【例17】 如图,ACD ?和ABC ?都是直角三角形,AB BC =,30CAD ∠=o ,把三角形ABC

沿AC 边折起,使ABC ?所在的平面与ACD ?所在的平面垂直,若6AB

⑴求证:面ABD ⊥面BCD ;⑵求C 点到平面ABD 的距离.

H A

B

D

C

D

C

B

A

【例18】 (2006江苏-19)在正ABC ?中, E F P 、、分别是AB AC BC 、、边上的点,

满足:AE EB ::CF FA CP ==1:2PB =,将AEF ?沿EF 折起到1A EF ?的位置,使

二面角1A EF B --成直二面角,连结11A B A P 、 ⑴求证:1A E ⊥平面BEP

⑵求直线1A E 与平面1A BP 所成角的大小 ⑶求二面角1B A P F --的余弦值大小.

F

E

C

P

A 1B

P

F E

D C

B

A

【例19】 (07湖南理18)如图1,E ,F 分别是矩形ABCD 的边AB CD ,的中点,G 是

EF 上的一点,将GAB ?,GCD ?分别沿AB CD ,

翻折成1G AB ?,2G CD ?,并连结12G G ,使得平面1G AB ⊥平面ABCD ,12G G AD ∥,且12G G AD <.连结2BG ,

如图2.

A B

C

D

E F G

图1A

E B

C

F

D G 1G 2图2

⑴ 证明:平面1G AB ⊥平面12G ADG ;

⑵ 当12AB =,25BC =,8EG =时,求直线2BG 和平面12G ADG 所成的角;

【例20】 (2009江西)在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,

4PA AD ==,2AB =. 以AC 的中点O 为球心、AC 为直径的球面交PD 于点

M ,交PC 于点N .

⑴求证:平面ABM ⊥平面PCD ;

O

P

N M D

C

B

A

⑵求直线CD 与平面ACM 所成的角的大小; ⑶求点N 到平面ACM 的距离.

【例21】 (2003京皖春)

如图所示,正四棱柱1111ABCD A B C D -中,底面边长为22,侧棱长为4.E F ,分

别为棱AB BC ,的中点,EF BD G =I . ⑴求证:平面1B EF ⊥平面11BDD B ; ⑵求点1D 到平面1B EF 的距离d ; ⑶求三棱锥11B EFD -的体积V .

D 1

C 1

B 1

A 1

G

F

E

D

C

B A

【例22】 (2009扬州中学高三期末)

在四棱锥P ABCD -中,90ABC ACD ∠=∠=?,60BAC CAD ∠=∠=?,PA ⊥平面ABCD ,E 为PD 的中点,22PA AB ==. ⑴求四棱锥P ABCD -的体积V ;

⑵若F 为PC 的中点,求证PC ⊥平面AEF .

F

E

D

C

B

A

P

【例23】 如图,已知PA O ⊥⊙所在的平面,AB 是O ⊙的直径,2AB =,C 是O ⊙上一点,

且AC BC =,PC 与O ⊙所在的平面成45?角,E 是PC 中点.F 为PB 中点.

⑴求证:EF ABC 面∥;⑵求证:EF PAC ⊥面;⑶求三棱锥B PAC -的体积.

O F

E

C

A

P

【例24】 (05-天津-19)如图,在斜三棱柱111ABC A B C -中,11A AB A AC ∠=∠,AB AC =,

11A A A B a ==,侧面11B BCC 与底面ABC 所成的二面角为120o ,E 、F 分别是棱1CB 、1AA 的中点.

⑴求1AA 与底面ABC 所成的角; ⑵证明:1EA ∥平面1B FC ;

⑶求经过1A 、A 、B 、C 四点的球的体积.

E F C 1

B 1

C B A

A 1

如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. ⑴ 求证:1AB ⊥面1A BD ; ⑵ 求二面角1A A D B --的大小; ⑶ 求点C 到平面1A BD 的距离;

1

B 1

A 1

D

C

B

A

\

【例26】 如图所示,正三棱柱111ABC A B C -的底边长为2,高为4,过AB 作一截面交侧

棱1CC 于P ,截面与底面成60o 角,

⑴求截面PAB ?的面积;

⑵求点C 到平面ABP 的距离;

⑶求PB 与平面11A B BA 所成的角的正弦值.

P

B

C 1

B 1

A 1

C

A

【例27】 (05-江西-20)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点

E 在棱AD 上移动.

⑴证明:1D E ⊥1A D ;

⑵当E 为AB 的中点时,求点E 到面1ACD 的距离;

⑶AE 等于何值时,二面角1D EC D --的大小为π

4

E

A

C D

A 1

B 1

1

D 1

在四棱锥P ABCD -中,底面ABCD 是矩形,PA ⊥平面ABCD ,4PA AD ==,

2AB =.

以AC 的中点O 为球心、AC 为直径的球面交PD 于点M ,交PC 于点N . ⑴求证:平面ABM ⊥平面PCD ;

⑵求直线CD 与平面ACM 所成的角的大小; ⑶求点N 到平面ACM 的距离.

O

P

N M D

C

B

A

【例29】 (08北京卷16)如图,在三棱锥P ABC -中,2AC BC ==,90ACB ∠=?,

AP BP AB ==,PC AC ⊥.

⑴ 求证:PC AB ⊥;

⑵ 求二面角B AP C --的大小; ⑶ 求点C 到平面APB 的距离.

P

C

A

B

D

【例30】 如图,四棱锥P ABCD -的底面是2AB =,2BC =的矩形,侧面PAB 是等边

三角形,且侧面PAB ⊥底面ABCD .

⑴证明:BC ⊥侧面PAB ;

⑵证明:侧面PAD ⊥侧面PAB ;

⑶求侧棱PC 与底面ABCD 所成角的大小.

D

C

B

A

P

【例31】 如图,P ABCD -是正四棱锥,

1111ABCD A B C D -是正方体,其中2AB =,6PA ⑴求证:11PA B D ⊥;

⑵求平面PAD 与平面11BDD B 所成的锐二面角θ的大小; ⑶求1B 到平面PAD 的距离.

P B 1

D 1

C 1

A 1

D

C

B

A

【例32】 如图所示,正四棱柱1111ABCD A B C D -中,底面边长为2侧棱长为4.E F

,分别为棱AB BC ,的中点,EF BD G =I .

⑴求证:平面1B EF ⊥平面11BDD B ; ⑵求点1D 到平面1B EF 的距离d ;

⑶求三棱锥11B EFD -的体积V .

D 1

C 1

B 1

A 1

G

F

E

D

C

B A

【例33】 (07福建理18)

如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. ⑴ 求证:1AB ⊥面1A BD ; ⑵ 求二面角1A A D B --的大小; ⑶ 求点C 到平面1A BD 的距离;

1

B 1

A 1

D

C

B

A

【例34】 (05-江西-20)如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点

E 在棱AD 上移动.

⑴证明:1D E ⊥1A D ;

⑵当E 为AB 的中点时,求点E 到面1ACD 的距离;

⑶AE 等于何值时,二面角1D EC D --的大小为π

4

E

A

C D

A 1

B 1

1

D 1

【例35】 已知111ABC A B C -为正三棱柱,D 是AC 的中点.

⑴证明:1AB ∥平面1DBC ; ⑵若11AB BC ⊥,2BC =. ①求二面角1D BC C --的大小;

②若E 为1AB 的中点,求三棱锥1E BDC -的体积.

H

O E C

B

A

C 1

B 1

A 1

【例36】 四棱锥P ABCD -的底面是边长为a 的正方形,PB ⊥平面ABCD .

⑴若面PAD 与面ABCD 所成的二面角为60o ,求这个四棱锥的体积;

⑵证明无论四棱锥的高怎样变化,二面角C PD A --恒大于90o

A

C

B

D

P

【例37】 (1999全国-文22)如图,已知正四棱柱1111ABCD A B C D -,点E 在棱1DD 上,

截面EAC ∥1D B ,且面EAC 与底面ABCD 所成的角为45o ,AB a =.

⑴求截面EAC 的面积;

⑵求三棱锥1B EAC -的体积.

O

A

B

C D

A 1

B 1

C 1

D 1

E

【例38】 (08辽宁卷19)如图1,在棱长为1的正方体ABCD A B C D ''''-中,

()01AP BQ b b ==<<,截面PQEF A D '∥,截面PQGH AD '∥.

⑴ 证明:平面PQEF 和平面PQGH 互相垂直;

⑵ 证明:截面PQEF 和截面PQGH 面积之和是定值,并求出这个值;

⑶ 若D E '与平面PQEF 所成的角为45?,求D E '与平面PQGH 所成角的正弦值.

D'B'P

F D H G

C'

Q C

E B A

A'图1

【例39】 (2009西城区一模)

如图,在四棱锥P ABCD -中,底面ABCD 是直角梯形,90BCD ∠=?,AB CD ∥,

又1AB BC PC ===,2PB =2CD =,AB PC ⊥. ⑴求证:PC ⊥平面ABCD ; ⑵求二面角B PD C --的大小; ⑶求点B 到平面PAD 的距离.

D

C

B

A

P

【例40】 (2009石景山区一模)

如图,已知正三棱柱111ABC A B C -的底面边长是2,D 是侧棱1CC 的中点,直线AD 与侧面11BB C C 所成的角为45°.

⑴求此正三棱柱的侧棱长;

⑵求二面角A BD C --的大小; ⑶求点C 到平面ABD 的距离.

C 1

B 1

A 1

D

C

B

A

【例41】 (海淀二模)

如图,直三棱柱111A B C ABC -中,12C C CB CA ===,AC CB ⊥.D 、E 分别为棱1C C 、11B C 的中点.

⑴ 求点B 到平面11AC CA 的距离; ⑵ 求二面角1B A D A --的大小;

⑶ 在线段AC 上是否存在一点F ,使得EF ⊥平面1A BD ?若存在,确定其位置并证明结论;若不存在,说明理由.

F A B

C

D

E

C 1

B 1

A 1

高中数学空间几何体考试题

第一章空间几何体 1.1 空间几何体的结构 一、选择题 1、下列各组几何体中是多面体的一组是() A 三棱柱四棱台球圆锥 B 三棱柱四棱台正方体圆台 C 三棱柱四棱台正方体六棱锥 D 圆锥圆台球半球 2、下列说法正确的是() A 有一个面是多边形,其余各面是三角形的多面体是棱锥 B 有两个面互相平行,其余各面均为梯形的多面体是棱台 C 有两个面互相平行,其余各面均为平行四边形的多面体是棱柱 D 棱柱的两个底面互相平行,侧面均为平行四边形 3、下面多面体是五面体的是() A 三棱锥 B 三棱柱 C 四棱柱 D 五棱锥 4、下列说法错误的是() A 一个三棱锥可以由一个三棱锥和一个四棱锥拼合而成 B 一个圆台可以由两个圆台拼合而成 C 一个圆锥可以由两个圆锥拼合而成 D 一个四棱台可以由两个四棱台拼合而成 5、下面多面体中有12条棱的是() A 四棱柱 B 四棱锥 C 五棱锥 D 五棱柱 6、在三棱锥的四个面中,直角三角形最多可有几个() A 1 个 B 2 个 C 3个 D 4个 二、填空题 7、一个棱柱至少有————————个面,面数最少的棱柱有————————个顶点, 有—————————个棱。 8、一个棱柱有10个顶点,所有侧棱长的和为60,则每条侧棱长为———————————— 9、把等腰三角形绕底边上的高旋转1800,所得的几何体是—————— 10、水平放置的正方体分别用“前面、后面、上面、下面、左面、右面”表示。 图中是一个正方体的平面展开图,若图中的“似”表示正方体的前面, “锦”表示右面,“程”表示下面。 则“祝”“你”“前”分别表示正方体的————— 祝 你前程 似锦

高中数学空间几何专题练习(供参考)

一、选择题 1、下图(1)所示的圆锥的俯视图为 ( ) 2 3 + 为 ( ) C 、120; 。 3、边长为a 正四面体的表面积是 ( ) A 、34; B 、312a ; C 、24 a ; D 2。 4、对于直线:360l x y -+=的截距,下列说法正确的是 ( ) A 、在y 轴上的截距是6; B 、在x 轴上的截距是6; C 、在x 轴上的截距是3; D 、在y 轴上的截距是3-。 5、已知,a b αα?//,则直线a 与直线b 的位置关系是 ( ) A 、平行; B 、相交或异面; C 、异面; D 、平行或异面。 6、已知两条直线12:210,:40l x ay l x y +-=-=,且12l l //,则满足条件a 的值为A 、12-; B 、12 ; C 、2-; D 、2。 7、在空间四边形ABCD 中,,,,E F G H 分别是,,,AB BC CD DA 的中点。 若AC BD a ==,且AC 与BD 所成的角为60,则四边形EFGH 的面积为 ( ) A 2; B 2a ; C 2; D 2。 8、在右图的正方体中,M 、N 分别为棱BC 和棱CC 1的中点, 则异面直线AC 和MN 所成的角为( ) A .30° B .45° C .90° D . 60° 9、下列叙述中错误的是 ( ) A 、若P αβ∈且l αβ=,则P l ∈; B 、三点,,A B C 确定一个平面; C 、若直线a b A =,则直线a 与b 能够确定一个平面; 图(1) 1 A

D 、若,A l B l ∈∈且,A B αα∈∈,则l α?。 10、两条不平行的直线,其平行投影不可能是 ( ) A 、两条平行直线; B 、一点和一条直线; C 、两条相交直线; D 、两个点。 11、长方体的一个顶点上的三条棱长分别为3、4、5,且它的8个顶点都在同一个球面上,则这个球的表面积是 ( ) A 、25π; B 、50π; C 、125π; D 、都不对。 12、给出下列命题 ①过平面外一点有且仅有一个平面与已知平面垂直 ②过直线外一点有且仅有一个平面与已知直线平行 ③过直线外一点有且仅有一条直线与已知直线垂直 ④过平面外一点有且仅有一条直线与已知平面垂直 其中正确命题的个数为( ) A .0个 B .1个 C .2个 D .3个 二、填空题 13、圆柱的侧面展开图是边长分别为2,a a 的矩形,则圆柱的体积为 ; 14.一个圆柱和一个圆锥的底面直径.. 和它们的高都与某一个球的直径相等,这时圆柱、圆锥、球的体积之比为 . 15、过点(1 16、已知,a b (1) a b αβ////,,则a b //; (2) ,a b γγ⊥⊥,则a b //; (3) ,a b b α?//,则a α//; (4) ,a b a α⊥⊥,则b α//; M

高中数学空间几何体的内切球与外接球问题

空间几何体的内切球与外接球问题 1.[2016·全国卷Ⅱ] 体积为8的正方体的顶点都在同一球面上,则该球的表面积为( ) A .12π B.32 3 π C .8π D .4π [解析]A 因为正方体的体积为8,所以正方体的体对角线长为23,所以正方体的外接球的半径为3,所以球的表面积为4π·(3)2=12π. 2.[2016·全国卷Ⅲ] 在封闭的直三棱柱ABC - A 1B 1C 1内有一个体积为V 的球.若AB ⊥BC ,AB =6,BC =8,AA 1=3,则V 的最大值是( ) A .4π B.9π2 C .6π D.32π 3 [解析]B 当球与三侧面相切时,设球的半径为r 1,∵AB ⊥BC ,AB =6,BC =8,∴8-r 1+6-r 1=10,解得r 1=2,不合题意;当球与直三棱柱的上、下底面相切时,设球的半径为r 2, 则2r 2=3,即r 2=32.∴球的最大半径为32,故V 的最大值为43π×????323=92 π. 3.[2016·郑州模拟] 在平行四边形ABCD 中,∠CBA =120°,AD =4,对角线BD =23,将其沿对角线BD 折起,使平面ABD ⊥平面BCD ,若四面体ABCD 的顶点在同一球面上,则该球的体积为________. 答案:2053 π;解析:因为∠CBA =120°,所以∠DAB =60°,在三角形ABD 中,由余弦 定理得(23)2=42+AB 2-2×4·AB ·cos 60°,解得AB =2,所以AB ⊥BD .折起后平面ABD ⊥平面BCD ,即有AB ⊥平面BCD ,如图所示,可知A ,B ,C ,D 可看作一个长方体中的四个顶点,长方体的体对角线AC 就是四面体ABCD 外接球的直径,易知AC =22+42=25, 所以球的体积为205 3 π. 4.[2016·山西右玉一中模拟] 球O 的球面上有四点S ,A ,B ,C ,其中O ,A ,B ,C 四点共面,△ABC 是边长为2的正三角形,平面SAB ⊥平面ABC ,则棱锥S-ABC 的体积的最大 值为( ) A . 3 3 B . 3 C .2 3 D .4 选A ;[解析] (1)由于平面SAB ⊥平面ABC ,所以点S 在平面ABC 上的射影H 落在AB 上,根据球的对称性可知,当S 在“最高点”,即H 为AB 的中点时,SH 最大,此时棱锥S -ABC 的体积最大. 因为△ABC 是边长为2的正三角形,所以球的半径r =OC =23CH =23×32×2=23 3 . 在Rt △SHO 中,OH =12OC =3 3 ,

最新人教A版高中数学必修2空间立体几何知识点归纳

第一章 空间几何体知识点归纳 1、空间几何体的结构:空间几何体分为多面体和旋转体和简单组合体 ⑴常见的多面体有:棱柱、棱锥、棱台;常见的旋转体有:圆柱、圆锥、圆台、球。简单组合体的构成形式: 一种是由简单几何体拼接而成,一种是由简单几何体截去或挖去一部分而成。 ⑵棱柱:有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所 围成的多面体叫做棱柱。 ⑶棱台:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分,这样的多面体叫做棱台。 1、空间几何体的三视图和直观图 投影:中心投影 平行投影 (1)定义:几何体的正视图、侧视图和俯视图统称为几何体的三视图。 (2)三视图中反应的长、宽、高的特点:“长对正”,“高平齐”,“宽相等” 2、空间几何体的直观图(表示空间图形的平面图). 观察者站在某一点观察几何体,画出的图形. 3、斜二测画法的基本步骤: ①建立适当直角坐标系xOy (尽可能使更多的点在坐标轴上) ②建立斜坐标系'''x O y ∠,使''' x O y ∠=450(或1350 ),注意它们确定的平面表示水平平面; ③画对应图形,在已知图形平行于X 轴的线段,在直观图中画成平行于X ‘ 轴,且长度保持不变;在已知图形平行于Y 轴的线段,在直观图中画成平行于Y ‘ 轴,且长度变为原来的一半; ⑴圆柱侧面积;l r S ??=π2侧面⑵圆锥侧面积:l r S ??=π侧面 ⑶圆台侧面积:()S r R l π=+侧面 ⑷体积公式: h S V ?=柱体;h S V ?=31锥体; ()1 3 V h S S =下 台体上 ⑸球的表面积和体积:

高中数学空间立体几何讲义

第1讲 空间几何体 高考《考试大纲》的要求: ① 认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构. ② 能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会用斜二测法画出它们的直观图. ③ 会用平行投影与中心投影两种方法,画出简单空间图形的三视图与直观图,了解空间图形的不同表示形式. ④ 会画某些建筑物的视图与直观图(在不影响图形特征的基础上,尺寸、线条等不作严格要求). ⑤ 了解球、棱柱、棱锥、台的表面积和体积的计算公式(不要求记忆公式). (一)例题选讲: 例1.四面体ABCD 的外接球球心在CD 上,且CD =2,AB =3,在外接球面上两点A 、B 间的球面距离是( ) A . 6π B .3 π C .32π D .65π 例2.如果圆台的母线与底面成60°角,那么这个圆台的侧面积与轴截面面积的比为( ) A .π2 B .π2 3 C .π332 D .π2 1 例3.在正三棱柱ABC —A 1B 1C 1中,侧棱长为2,底面三角形的边长为1,则BC 1与侧面ACC 1A 1所成的角 是 . 例4.如图所示,等腰△ABC 的底边AB =66,高CD =3,点B 是线段BD 上异于点B 、D 的动点.点F 在BC 边上,且EF ⊥AB .现沿EF 将△BEF 折起到△PEF 的位置,使PE ⊥AE .记BE =x ,V (x )表示四棱锥P-ACFE 的体积. (1)求V (x )的表达式; (2)当x 为何值时,V (x )取得最大值? (3)当V (x )取得最大值时,求异面直线AC 与PF 所成角的余弦值。 (二)基础训练: 1.下列几何体各自的三视图中,有且仅有两个视图相同的是( ) A .①② B .①③ C .①④ D .②④ 2.设地球半径为R ,若甲地位于北纬045东经0120,乙地位于南纬度0 75东经0120,则甲、乙两地球面距离为( ) (A )3R (B) 6 R π (C) 56 R π (D) 23R π ①正方形 ②圆锥 ③三棱台 ④正四棱锥

2018年高考数学空间几何高考真题

2017年高考数学空间几何高考真题 ?选择题(共9小题) 1 ?如图,在下列四个正方体中,A, B为正方体的两个顶点,M , N, Q为所在 棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是() 2. 已知圆柱的高为1,它的两个底面的圆周在直径为2的同一个球的球面上, 则该圆柱的体积为() A. n B. C. D. 3. 在正方体ABCD- A i B i CD i中,E为棱CD的中点,贝U( ) A. A i E± DC i B. A i E丄BD C A i E丄BG D. A i E丄AC 4. 某三棱锥的三视图如图所示,则该三棱锥的体积为( A. 60 B. 30 C. 20 D . i0 侧〔左)视圄 C

5?某几何体的三视图如图所示(单位:cm ), 则该几何体的体积(单位:cm 2) 是( ) 6?如图,已知正四面体 D -ABC (所有棱长均相等的三棱锥),P 、Q 、R 分别为 AB 、BC CA 上的点,AP=PB ==2,分别记二面角 D- PR- Q , D- PQ- R, D - A .产 aV B B. aV 产 B C ? a< Y D. p< 产 a 7. 如图,网格纸上小正方形的边长为 1,粗实线画出的是某几何体的三视图, 该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为( ) A . 90 n B. 63 n C. 42 n D . 36 n 1 .某多面体的三视图如图所示,其中正视图和左视图都由正方形和等腰直角三 D . +3 +1

4 角形组成,正方形的边长为2,俯视图为等腰直角三角形,该多面体的各个面中 有若干个是梯形,这些梯形的面积之和为( ) A . 10 B. 12 C. 14 D . 16 2. 已知直三棱柱 ABC- A 1B 1C 1中,/ ABC=120, AB=2, BC=CC=1,则异面直线 AB 1与BG 所成角的余弦值为( ) A . B. C. D. 二.填空题(共5小题) 8. 已知三棱锥S-ABC 的所有顶点都在球0的球面上,SC 是球0的直径.若平 面SCAL 平面SCB SA=AC SB=BC 三棱锥S-ABC 的体积为9,则球0的表面 积为 _______ . 9. 长方体的长、宽、高分别为3, 2,1,其顶点都在球0的球面上,则球0的 表面积为 _______ . 10. 已知一个正方体的所有顶点在一个球面上,若这个正方体的表面积为 18, 则这个球的体积为 ________ . 11. 由一个长方体和两个亍圆柱体构成的几何体的三视图如图,则该几何体的

高中数学必修2空间立体几何大题

必修2空间立体几何大题 一.解答题(共18小题) 1.如图,在三棱锥V﹣ABC中,平面V AB⊥平面ABC,△V AB为等边三角形,AC⊥BC且AC=BC=,O,M分别为AB,V A的中点. (1)求证:VB∥平面MOC;(2)求证:平面MOC⊥平面V AB(3)求三棱锥V﹣ABC的体积. 2.如图,三棱锥P﹣ABC中,PA⊥平面ABC,PA=1,AB=1,AC=2,∠BAC=60°. (1)求三棱锥P﹣ABC的体积; (2)证明:在线段PC上存在点M,使得AC⊥BM,并求的值. 3.如图,长方体ABCD﹣A1B1C1D1中,AB=16,BC=10,AA1=8,点E,F分别在A1B1,D1C1上,A1E=D1F=4.过E,F的平面α与此长方体的面相交,交线围成一个正方形 (Ⅰ)在图中画出这个正方形(不必说出画法和理由) (Ⅱ)求平面α把该长方体分成的两部分体积的比值. 4.如图,直三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,E,F分别是BC,CC1的中点, (Ⅰ)证明:平面AEF⊥平面B1BCC1; (Ⅱ)若直线A1C与平面A1ABB1所成的角为45°,求三棱锥F﹣AEC的体积.

5.如图,在直三棱柱ABC﹣A1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E. 求证: (1)DE∥平面AA1C1C;(2)BC1⊥AB1. 6.如题图,三棱锥P﹣ABC中,平面PAC⊥平面ABC,∠ABC=,点D、E在线段AC上,且AD=DE=EC=2,PD=PC=4, 点F在线段AB上,且EF∥BC. (Ⅰ)证明:AB⊥平面PFE.(Ⅱ)若四棱锥P﹣DFBC的体积为7,求线段BC的长. 7.如图,AB是圆O的直径,点C是圆O上异于A,B的点,PO垂直于圆O所在的平面,且PO=OB=1, (Ⅰ)若D为线段AC的中点,求证;AC⊥平面PDO; (Ⅱ)求三棱锥P﹣ABC体积的最大值; 8.如图,四边形ABCD为菱形,G为AC与BD的交点,BE⊥平面ABCD. (Ⅰ)证明:平面AEC⊥平面BED; (Ⅱ)若∠ABC=120°,AE⊥EC,三棱锥E﹣ACD的体积为,求该三棱锥的侧面积.

高中数学空间向量与立体几何经典题型与答案

空间向量与立体几何经典题型与答案 1 已知四棱锥P ABCD -的底面为直角梯形,//AB DC ,⊥=∠PA DAB ,90ο 底面ABCD ,且 1 2 PA AD DC === ,1AB =,M 是PB 的中点 (Ⅰ)证明:面PAD ⊥面PCD ; (Ⅱ)求AC 与PB 所成的角; (Ⅲ)求面AMC 与面BMC 所成二面角的大小 证明:以A 为坐标原点AD 长为单位长度,如图建立空间直角坐标系,则各点坐标为 1 (0,0,0),(0,2,0),(1,1,0),(1,0,0),(0,0,1),(0,1,)2 A B C D P M (Ⅰ)证明:因.,0),0,1,0(),1,0,0(DC AP DC AP DC AP ⊥=?==所以故 由题设知AD DC ⊥,且AP 与AD 是平面PAD 内的两条相交直线,由此得DC ⊥面PAD 又DC 在面 PCD 上,故面PAD ⊥面PCD (Ⅱ)解:因),1,2,0(),0,1,1(-==PB AC . 510 | |||,cos ,2,5||,2||=??>=<=?==PB AC PB AC PB AC PB AC PB AC 所以故 (Ⅲ)解:在MC 上取一点(,,)N x y z ,则存在,R ∈λ使,MC NC λ= ..2 1 ,1,1),21,0,1(),,1,1(λλ==-=∴-=---=z y x MC z y x NC 要使14 ,00,.25 AN MC AN MC x z λ⊥=-==u u u r u u u u r g 只需即解得 ),5 2 ,1,51(),52,1,51(,. 0),5 2 ,1,51(,54=?-===?=MC BN BN AN MC AN N 有此时能使点坐标为时可知当λ ANB MC BN MC AN MC BN MC AN ∠⊥⊥=?=?所以得由.,0,0为 所求二面角的平面角 30304||,||,. 555 2 cos(,).3||||2 arccos(). 3 AN BN AN BN AN BN AN BN AN BN ===-∴==-?-u u u r u u u r u u u r u u u r Q g u u u r u u u r u u u r u u u r g u u u r u u u r 故所求的二面角为

高中数学必修二__空间几何体知识点汇总

空间几何体 一、空间几何体结构 1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那么由这些物体抽象出来的空间图形,就叫做空间几何体。 2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共边互相平行,由这些面围成的图形叫做棱柱。(图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱柱。 侧面:棱柱中除底面的各个面. 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。如:六棱柱表示为ABCDEF-A’B’C’D’E’F’ 3.棱锥的结构特征:有一个面是多边形,其余各面都是三角形,并且这些三角形有一个公共定点,由这些面所围成的多面体叫做棱锥. (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形----的棱锥分别叫三棱锥,四棱锥,五棱锥--- 4.圆柱的结构特征:以矩形的一边所在直线为旋转轴,其余边旋转形成的面所围成的旋转体叫做圆柱。

圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱O’O 注:棱柱与圆柱统称为柱体 5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO 注:棱锥与圆锥统称为锥体 6.棱台和圆台的结构特征 (1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台. 下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

高中数学立体几何专:空间距离的各种计算(含答案)

高中数学立体几何 空间距离 1.两条异面直线间的距离 和两条异面直线分别垂直相交的直线,叫做这两条异面直线的公垂线;两条异面直线的公垂线在这两条异 面直线间的线段的长度,叫做两条异面直线的距离. 2.点到平面的距离 从平面外一点引一个平面的垂线,这点和垂足之间的距离叫做这个点到这个平面的距离. 3.直线与平面的距离 如果一条直线和一个平面平行,那么直线上各点到这平面的距离相等,且这条直线上任意一点到平面的距离叫做这条直线和平面的距离. 4.两平行平面间的距离 和两个平行平面同时垂直的直线,叫做这两平行平面的公垂线,它夹在两个平行平面间的公垂线段的长叫做这两个平行平面的距离. 题型一:两条异面直线间的距离 【例1】 如图,在空间四边形ABCD 中,AB =BC =CD =DA =AC =BD =a ,E 、F 分别是AB 、CD 的中点. (1)求证:EF 是AB 和CD 的公垂线; (2)求AB 和CD 间的距离; 【规解答】 (1)证明:连结AF ,BF ,由已知可得AF =BF . 又因为AE =BE ,所以FE ⊥AB 交AB 于E . 同理EF ⊥DC 交DC 于点F . 所以EF 是AB 和CD 的公垂线. (2)在Rt △BEF 中,BF = a 23 ,BE =a 21, 所以EF 2=BF 2-BE 2=a 2 12,即EF =a 22 . 由(1)知EF 是AB 、CD 的公垂线段,所以AB 和CD 间的距离为 a 2 2 . 【例2】 如图,正四面体ABCD 的棱长为1,求异面直线AB 、CD 之间的距离. 设AB 中点为E ,连CE 、ED . ∵AC =BC ,AE =EB .∴CD ⊥AB .同理DE ⊥AB . ∴AB ⊥平面CED .设CD 的中点为F ,连EF ,则AB ⊥EF . 同理可证CD ⊥EF .∴EF 是异面直线AB 、CD 的距离. ∵CE =23,∴CF =FD =21,∠EFC =90°,EF =2221232 2 =??? ??-??? ? ??. ∴AB 、CD 的距离是 2 2 . 【解后归纳】 求两条异面直线之间的距离的基本方法: (1)利用图形性质找出两条异面直线的公垂线,求出公垂线段的长度. (2)如果两条异面直线中的一条直线与过另一条直线的平面平行,可以转化为求直线与平面的距离. (3)如果两条异面直线分别在两个互相平行的平面,可以转化为求两平行平面的距离. 题型二:两条异面直线间的距离 【例3】 如图(1),正四面体ABCD 的棱长为1,求:A 到平面BCD 的距离; 过A 作AO ⊥平面BCD 于O ,连BO 并延长与CD 相交于E ,连AE . ∵AB =AC =AD ,∴OB =OC =OD .∴O 是△BCD 的外心.又BD =BC =CD , ∴O 是△BCD 的中心,∴BO = 3 2BE =332332= ?. 例1题图 例2题图 例3题图

高中数学空间几何体知识点总结

高中数学必修2知识点总结01 空间几何体几何学是研究现实世界中物体的形状、大小与位置关系的数学学科,而空间几何体是几何学的重要组成部分,它在土木建筑、机械设计、航海测绘等大量实际问题中都有广泛的应用。教材要求:从空间几何体的整体观察入手,研究空间几何体的结构特征、三视图和直观图,了解简单几何体的表面积与体积的计算方法。 一、空间几何体的结构特征 课标要求: 1.利用实物模型、计算机软件观察大量空间图形,认识柱、锥、台、球及其简单组合体的结构特征,并能运用这些特征描述现实生活中简单物体的结构; 2.能画出简单空间图形(长方体、球、圆柱、圆锥、棱柱等的简易组合)的三视图,能识别上述的三视图所表示的立体模型,会使用材料(如:纸板)制作模型,会用斜二侧法画出它们的直观图; 3.通过观察用两种方法(平行投影与中心投影)画出的视图与直观图,了解空间图形的不同表示形式; 要点精讲: 1.柱、锥、台、球的结构特征 由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系:

(完整版)高中数学空间几何体知识点总结

空间几何体知识点总结 一、空间几何体的结构特征 1.柱、锥、台、球的结构特征 由若干个平面多边形围成的几何体称之为多面体。围成多面体的各个多边形叫叫做多面体的面,相邻两个面的公共边叫做多面体的棱,棱与棱的公共点叫做顶点。 把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体称之为旋转体,其中定直线称为旋转体的轴。 (1)柱 棱柱:一般的,有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱;棱柱中两个互相平行的面叫做棱柱的底面,简称为底;其余各面叫做棱柱的侧面;相邻侧面的公共边叫做棱柱的侧棱;侧面与底面的公共顶点叫做棱柱的顶点。 底面是三角形、四边形、五边形……的棱柱分别叫做三棱柱、四棱柱、五棱柱…… 注:相关棱柱几何体系列(棱柱、斜棱柱、直棱柱、正棱柱)的关系: 棱柱的性质: ①侧棱都相等,侧面是平行四边形; ②两个底面与平行于底面的截面是全等的多边形; ③过不相邻的两条侧棱的截面是平行四边形; ④直棱柱的侧棱长与高相等,侧面与对角面是矩形。 圆柱:以矩形的一边所在的直线为旋转轴,其余边旋转形成的曲面所围成的几何体叫做圆柱;旋转轴

叫做圆柱的轴;垂直于轴的边旋转而成的曲面叫做圆柱的侧面;无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱的性质:上、下底及平行于底面的截面都是等圆;过轴的截面(轴截面)是全等的矩形。 棱柱与圆柱统称为柱体; (2)锥 棱锥:一般的有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥;这个多边形面叫做棱锥的底面或底;有公共顶点的各个三角形面叫做棱锥的侧面;各侧面的公共顶点叫做棱锥的顶点;相邻侧面的公共边叫做棱锥的侧棱。 底面是三角锥、四边锥、五边锥……的棱柱分别叫做三棱锥、四棱锥、五棱锥…… 正棱锥:如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。 注:棱锥的性质: ①平行于底面的截面是与底面相似的正多边形,相似比等于顶点到截面的距离与顶点到底面的距离之比; ②正棱锥各侧棱相等,各侧面是全等的等腰三角形; ③正棱锥中六个元素,即侧棱、高、斜高、侧棱在底面内的射影、斜高在底面的射影、底面边长一半,构成四个直角三角形。 圆锥:以直角三角形的一条直角边所在的直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫做圆锥;旋转轴为圆锥的轴;垂直于轴的边旋转形成的面叫做圆锥的底面;斜边旋转形成的曲面叫做圆锥的侧面。

高中数学空间几何经典习题及解答

高中数学空间几何体 一、选择题(本大题共12小题,每小题5分,共60分) 1.表面积为的正八面体的各个顶点都在同一个球面上,则此球的体积为( ) A. B. C. D. 2.如图所示是一个无盖的正方体盒子展开后的平面图,A、B、C是展开图上的三点,则在正方体盒子中,∠ABC为( ) A.1800 B.1200 C.600 D.450 3.已知三棱锥S-ABC的各顶点都在一个半径为r的球面上,球心O在AB 上,SO⊥底面ABC,,则球的体积与三棱锥体积之比是( ) A. B. C. D. 4.如图所示,一个空间几何体的正视图、侧视图、俯视图为全等的等腰

直角三角形,如果直角三角形的直角边长为1,那么这个几何体的体积为( ) A.1 B. C. D. 5.一平面截球得到直径是6cm的圆面,球心到这个平面的距离是4cm,则该球的体积是( ) A. B. C. D. 6.半球内有一个内接正方体,则这个半球的体积与正方体的体积之比为( ) A. B. C. D. 7.一个四棱锥和一个三棱锥恰好可以拼成一个三棱柱,这个四棱锥的底面为正方形,且底面边长与各侧棱长相等,这个三棱锥的底面边长与各侧棱长也都相等,设四棱锥、三棱锥、三棱柱的高分别为h1、h2、h3,则h1:h2:h3等于( ) A. B. C. D.

8.如图所示的一个5×4×4的长方体,阴影所示为穿透的三个洞,那么剩下的部分的体积是( ) A.50 B.54 C.56 D.58 9.一个正三棱锥的四个顶是半径为1的球面上,其中底面的三个顶点在该球的一个大圆上,则该正三棱锥的体积是( ) A. B. C. D. 10.如图用□表示1个正方体,用□(浅黑)表示两个正方体叠加,用□(深黑)表示三个立方体叠加,那么右图是由7个立方体叠成的几何体,从正前方观察,可画出的平面图形是( )

高中数学的八个有趣模型——搞定空间几何体的外接球与内切球

八个有趣模型——搞定空间几何体的外接球与内切球 类型一、墙角模型(三条线两个垂直,不找球心的位置即可求出球半径) 图2 图3 图4 方法:找三条两两垂直的线段,直接用公式2 2 2 2 )2(c b a R ++=,即2222c b a R ++=,求出R 例1 (1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是( C ) A .π16 B .π20 C .π24 D .π32 (2)若三棱锥的三个侧面两垂直,且侧棱长均为3,则其外接球的表面积是 π9 解:(1)162 ==h a V ,2=a ,24164442 2 2 2 =++=++=h a a R ,π24=S ,选C ; (2 )933342 =++=R ,ππ942 ==R S (3)在正三棱锥S ABC -中,M N 、分别是棱SC BC 、的中点,且MN AM ⊥,若侧棱SA =,则正三棱锥ABC S -外接球的表面积是 。π36 解:引理:正三棱锥的对棱互垂直。证明如下: 如图(3)-1,取BC AB ,的中点E D ,,连接CD AE ,,CD AE ,交于H ,连接SH ,则H 是底面正三角形ABC 的中心,∴⊥SH 平面ABC ,∴AB SH ⊥, BC AC =,BD AD =,∴AB CD ⊥,∴⊥AB 平面SCD , ∴SC AB ⊥,同理:SA BC ⊥,SB AC ⊥,即正三棱锥的对棱互垂直, 本题图如图(3)-2, MN AM ⊥,MN SB //, ∴SB AM ⊥, SB AC ⊥,∴⊥SB 平面SAC , ∴SA SB ⊥,SC SB ⊥, SA SB ⊥,SA BC ⊥, ∴⊥SA 平面SBC ,∴SC SA ⊥, 故三棱锥ABC S -的三棱条侧棱两两互相垂直, ∴36)32()32()32()2(2222 =++=R ,即3642=R , ∴正三棱锥ABC S -外接球的表面积是π36 (3)题-1 A (3)题-2 A

高中数学空间向量与立体几何知识点归纳总结

空间向量与立体几何知识点归纳总结 一.知识要点。 1. 空间向量的概念:在空间,我们把具有大小和方向的量叫做向量。 注:(1)向量一般用有向线段表示同向等长的有向线段表示同一或相等的向量。 (2)向量具有平移不变性 2. 空间向量的运算。 定义:与平面向量运算一样,空间向量的加法、减法与数乘运算如下(如图)。 OB OA AB a b =+=+u u u r u u u r u u u r v r ;BA OA OB a b =-=-u u u r u u u r u u u r r r ;()OP a R λλ=∈u u u r r 运算律:⑴加法交换律:a b b a ? ??ρ+=+ ⑵加法结合律:)()(c b a c b a ????ρ?++=++ ⑶数乘分配律:b a b a ? ???λλλ+=+)( 运算法则:三角形法则、平行四边形法则、平行六面体法则 3. 共线向量。 (1)如果表示空间向量的有向线段所在的直线平行或重合,那么这些向量也叫做共 线向量或平行向量,a ρ 平行于b ρ,记作 b a ρ ?//。 (2)共线向量定理:空间任意两个向量a ρ、b ρ (b ρ≠0ρ),a ρ//b ρ存在实数λ,使a ρ =λb ρ。 (3)三点共线:A 、B 、C 三点共线<=>λ= <=>)1(=++=y x y x 其中 (4)与共线的单位向量为a ± 4. 共面向量 (1)定义:一般地,能平移到同一平面内的向量叫做共面向量。 说明:空间任意的两向量都是共面的。 (2)共面向量定理:如果两个向量,a b r r 不共线,p r 与向量,a b r r 共面的条件是存在实数 ,x y 使p xa yb =+r r r 。 (3)四点共面:若A 、B 、C 、P 四点共面<=>AC y AB x AP += <=>)1(=++++=z y x z y x OP 其中 5. 空间向量基本定理:如果三个向量,,a b c r r r 不共面,那么对空间任一向量p r ,存在一 个唯一的有序实数组,,x y z ,使p xa yb zc =++r r r r 。

高中数学简单的几何体的结构考点及例题讲解

简单几何体的结构、三视图和直观图 考纲解读 1.以常见的几何体及简单组合体为模型画三视图、辩认三视图;2.辩识三视图所表示的立体模型;3.通过模型转化几何体、三视图、直观图;4.会画某些建筑物的三视图与直观图. [基础梳理] 1.多面体的结构特征 (1)棱柱的侧棱都互相平行,上下底面是全等的多边形. (2)棱锥的底面是任意多边形,侧面是有一个公共顶点的三角形. (3)棱台可由平行于底面的平面截棱锥得到,其上下底面是相似多边形. 2.旋转体的形成 几何体旋转图形旋转轴 圆柱矩形任一边所在的直线 圆锥直角三角形任一直角边所在的直线 圆台直角梯形垂直于底边的腰所在的直线 球半圆直径所在的直线 3. (1)三视图的形成与名称: ①形成:空间几何体的三视图是用平行投影得到的,在这种投影之下,与投影面平行的平面图形留下的影子,与平面图形的形状和大小是完全相同的; ②名称:三视图包括正视图、侧视图、俯视图. (2)三视图的画法: ①在画三视图时,重叠的线只画一条,挡住的线要画成虚线. ②三视图的正视图、侧视图、俯视图分别是从几何体的正前方、正左方、正上方观察到的几何体的正投影图. 4.空间几何体的直观图 空间几何体的直观图常用斜二测画法来画,其规则是:(1)原图形中x轴、y轴、z轴两两垂直,直观图中,x′轴,y′轴的夹角为45°或135°,z′轴与x′轴和y′轴所在平面垂直. (2)原图形中平行于坐标轴的线段,直观图中仍平行于坐标轴;平行于x轴和z轴的线段在直观图中保持原长度不变;平行于y轴的线段在直观图中长度为原来的一半. [三基自测] 1.如图,长方体ABCD A′B′C′D′被截去一部分,其中EH∥A′D′.剩下的几何体是()

高中数学必修二__空间几何体知识点

空间几何体 (川诚.樊培整理 ) 一· 空间几何体结构 1.空间结合体:如果我们只考虑物体占用空间部分的形状和大小,而不考虑其它因素,那 么由这些物体抽象出来的空间图形,就叫做空间几何体。 2.棱柱的结构特征:有两个面互相平行,其余各面都是四边形,每相邻两个四边形的公共 边互相平行,由这些面围成的图形叫做棱柱。(图如下) 底面:棱柱中,两个相互平行的面,叫做棱柱的底面,简称底。底面是几边形就叫做几棱 柱。侧面:棱柱中除底面的各个面 . 侧棱:相邻侧面的公共边叫做棱柱的侧棱。 顶点:侧面与底面的公共顶点叫做棱柱的顶点。 棱柱的表示:用表示底面的各顶点的字母表示。如:棱柱 ABCDEF- A’ B’ C’ D’ E’ F’ 3.棱锥的结构特征:有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些 面所围成的多面体叫做棱锥 . (图如下) 底面:棱锥中的多边形面叫做棱锥的底面或底。 侧面:有公共顶点的各个三角形面叫做棱锥的侧面 顶点:各个侧面的公共顶点叫做棱锥的顶点。 侧棱:相邻侧面的公共边叫做棱锥的侧棱。 棱锥可以表示为:棱锥S-ABCD 底面是三角形,四边形,五边形---- 的棱锥分别叫三棱锥,四棱锥,五棱锥--- 4.圆柱的结构特征 :以矩形的一边所在直线为旋转轴 ,其余边旋转形成的面所围成的旋转体叫做圆 柱。

圆柱的轴:旋转轴叫做圆柱的轴。 圆柱的底面:垂直于轴的边旋转而成的圆面叫做圆柱的底面。 圆柱的侧面:平行于轴的边旋转而成的曲面叫做圆柱的侧面。 圆柱侧面的母线:无论旋转到什么位置,不垂直于轴的边都叫做圆柱侧面的母线。 圆柱用表示它的轴的字母表示.如:圆柱O’O 注:棱柱与圆柱统称为柱体 5.圆锥的结构特征:以直角三角形的一条直角边所在直线为旋转轴, 两余边旋转形成的面所围成的旋转体叫做圆锥。 轴:作为旋转轴的直角边叫做圆锥的轴。 底面:另外一条直角边旋转形成的圆面叫做圆锥的底面。 侧面:直角三角形斜边旋转形成的曲面叫做圆锥的侧面。 顶点:作为旋转轴的直角边与斜边的交点 母线:无论旋转到什么位置,直角三角形的斜边叫做圆锥的母线。 圆锥可以用它的轴来表示。如:圆锥SO 注:棱锥与圆锥统称为锥体 6.棱台和圆台的结构特征 ( 1)棱台的结构特征:用一个平行于棱锥底面的平面去截棱锥,底面与截面之间的部分是棱台 . 下底面和上底面:原棱锥的底面和截面分别叫做棱台的下底面和上底面。 侧面:原棱锥的侧面也叫做棱台的侧面(截后剩余部分)。 侧棱:原棱锥的侧棱也叫棱台的侧棱(截后剩余部分)。 顶点:上底面和侧面,下底面和侧面的公共点叫做棱台的顶点。

高中空间立体几何典型例题

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E =C 1F . 求证:EF ∥平面ABCD . 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN . ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN . 又∵B 1E =C 1F ,∴EM =FN , 故四边形MNFE 是平行四边形,∴EF ∥MN . 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD . 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E =C 1F ,B 1A =C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

高中数学简单的几何体练习题突破

A 组 基础对点练 1.一个几何体的三视图如图所示,其中俯视图为正三角形,则侧视图的面积为( ) A .8 B .43 C .4 2 D .4 解析:由三视图可知,该几何体是一个正三棱柱,高为4,底面是一个边长为2的正三角形.因此,侧视图是一个长为4,宽为3的矩形,其面积S =3×4=4 3. 答案:B 2.如图是一个空间几何体的三视图,其中正视图、侧视图都是由边长为4和6的矩形以及直径等于4的圆组成,俯视图是直径等于4的圆,该几何体的体积是( ) A.41π3 B.62π3 C.83π3 D.104π3 解析:由题意得,此几何体为球与圆柱的组合体,其体积V =43π×23+π×22×6=104π 3. 答案:D 3.某空间几何体的三视图如图所示,则该几何体的表面积为( )

A .12+4 2 B .18+82 C .28 D .20+82 解析:由三视图可知该几何体是底面为等腰直角三角形的直三棱柱, 如图. 则该几何体的表面积为 S =2×1 2 ×2×2+4×2×2+22×4=20+82,故选D. 答案:D 4.已知某锥体的正视图和侧视图如图所示,其体积为23 3 ,则该锥体的俯视图可能是( ) 解析:由正视图得该锥体的高是h =22-12=3,因为该锥体的体积为23 3,所以该 锥体的底面面积是S =23313h =233 33=2,A 项的正方形的面积是2×2=4,B 项的圆的面积是 π×12=π,C 项的大三角形的面积是1 2 ×2×2=2,D 项不可能是该锥体的俯视图,故选C. 答案:C 5.已知四棱锥P ABCD 的三视图如图所示,则四棱锥P ABCD 的四个侧面中面积最大的是( )

相关文档
最新文档