压力传感器及其应用电路

压力传感器及其应用电路
压力传感器及其应用电路

压力传感器及其应用电路

摘要:目前在工业生产中用得最广的压力传感器是硅压阻式压力传感器,它通过感触压力的 变化来改变其中的应变元件的电阻,从而输出相应的电压变化,实现将压力参数转变 成电信号参数。本文探讨了MPX2000系列压力传感器的应用电路以及MC33079型号运 算放大器在其中的应用的相关知识。 关键词:压力传感器;MPX2000;MC33079 引言

在工业测量中,压力的测量极为广泛,利用压力测量可以直接或间接测得很多物理参数,例如大型储液罐的液位、储气罐的压力、海洋的水深、山的高度,医疗方面可以测量血压、呼吸压等,航空方面测量飞机的飞行高度、飞行速度、升降速度以及气体管道流量等。但目前在实际中用得最多的是由膜片、波纹管、弹簧管和机械式传动、放大机构组成的指针式压力表。它的优点是结构简单、生产成本低,但测量精度低,如果要对压力参数进行遥测、记录或集中观察(监控)、自动调节或控制,则需要用到压力传感器,通过压力传感器将压力参数变成电信号输出。

一、硅压阻式压力传感器

压阻式压力传感器是利用单晶硅的压阻效应制成的器件,也就是在单晶硅的基片或硅杯上用扩散工艺、离子注入工艺或溅射工艺制成一定形状的应变元件,当压力传感器受到压力时,传感器中的应变元件的电阻

发生变化,从而输出相应的电压变化。很多压阻式压力传感器

是在硅膜片上制作四个等值电阻的应变元件,形成电桥。当受

到压力作用时,一对桥臂电阻变大△R ,而另一对桥臂电阻变小△R ,电桥失去平衡,这时便有一个与压力成正比的电压u o 输出,其工作原理如图(a)所示。

二、压力传感器的应用电路

典型的压力传感器应用电路如图(b)所示。它是一种适合于MPX2000系列的通用放大电路。MPX2000系列压力传感器是一种

带有温度补偿的压阻式压力传感器,其内部有温度补偿电阻网

络,并经激光校准,如图(c)所示。经过激光校准后,传感器的零输出、满量程输出及输出一致性、温度补偿特性等都达到较

好的性能指标。它的基本性能指标是:零位输出小于±1mV ,满

量程输出40mV ±1.5mV ,在0~+85℃范围内有较好的温度补偿效果;线性度可达±0.1%FS ~±0.25%FS ;工作温度范围为-40℃~+125℃,允许过载为400%(MPX2100)、200%(MPX2050)。(MPX2100与MPX2050的主要参数与极限参数详见附录一和附录二)

另外,在压力传感器的应用电路中,大多都采用仪用放大器电路结构。这是由于仪用放大器电路具有高输入阻抗的特点(传感信号两端均由同相端输入),两运放A1、A2的特性相同时,就可以很好地减小温漂,增强抗共模干扰的能力,且当改变增益时对放大器特性无影响。这种放大电路能测量小信号并具有较高的精度。

三、应用电路的分析

典型的压力传感器应用电路中,A 1、A 2构成同相比例运算电路,它们的同相端连接硅压阻式传感器的输出端,A 3组成一个差分比例运算电路,它将双端输入信号变为单端输出的输

R+△R R-△R

R-△R R+△R

u 0

I 0(a)

出电路,电路增益由RP 1来调整(满量程调整)。A 4组成的电压跟随器用作零压力调整,在输入压力为零时,调整RP 2可使输出为零。整个电路中,A 1~A 4选用MC33079型号运算放大器,相应电阻的阻值已经标在图(b)中,电容元件在这里通过自身的充放电使电路更稳定。因此,这个压力传感器应用电路可以通过感知压力的变化而输出一个相应的电压信号,实现了将压力参数转变成电信号输出的功能。

对于MC33079型号运算放大器,其管脚图如图(d)所示,它是由四个运放集合成的一个集成运放,有四个相对应的输入和输出端,其功能完全

u 0

A 4

A 1

A 2

A

3

+5V

2k Ω

2k Ω

100k Ω

RP 210k Ω

100k Ω

10k Ω

100k Ω

100k Ω

100k Ω

1M Ω

1M Ω

10k Ω

RP 1C 1

(b)

+U s

+U 0

-U 0

R s1

R 1

R 2

R s2

R off2R off1

R p

有箭头的

表示用激光修正过的电阻

(c)

(d)

一样。

结束语

通过查找大量资料,我深入了解了一些压力传感器的相关知识,通过学习研究压力传感器的原理以及其应用电路的内容,使我对集成运算放大器的原理和构造有了更深入的认识和了解。但与此同时,由于自己知识浅薄,仍有许多知识并未完全理解和掌握,故在此论文中可能会有错误或不足,还请指证。不过,通过此次写作论文,促进了我思考问题和主动学习的能力,也锻炼了我写作表达的相关能力等等。

参考文献:

[1]肖景和.集成运算放大器应用精粹.56-59

[2]何希才,邹炳强.通用电子电路应用

[3][日]马场清太郎.运算放大器应用电路设计(何希才译)

附录一:

MPX2100与MPX2050的主要参数

名称符号MPX2100 MPX2050 单位差动压力范围P OP0~100 0~50 kPa 工作电压V S10(max) 10(max) V 输出满量程电压V pas40±1.5 40±1.5 mV 零位输出V off±1 ±1 mV

灵敏度△V/△p 0.4 0.8 mV/kPa

线性度―±0.1~±0.25 ±0.1~±0.25 %FS 压力滞后(0~100kPa) ―-0.05~+0.1 -0.05~+0.1 %FS 温度滞后(0~85℃)―±0.5~±1 ±0.5~±1 %FS 全量的温度影响(0~85℃)TCV Fas0.5~±1 0.5~±1 %FS 零位温度影响(0~85℃)TCV off±0.5~±1 ±0.5~±1 mV 输入阻抗Z in1800 1800 Ω

输出阻抗Z out1400~3000 1400~3000 Ω

响应时间(10%~90%)t R 1 1 ms 温度误差带―0~85 0~85 ℃

注:测试电压=10V,直流,温度25℃

附录二:

MPX2100与MPX2050的极限参数

名称符号MPX2100 MPX2050 单位

超压P max400 200 kPa 工作电压V smax16 16 V

储存温度T stg-50~+150 -50~+150 ℃

工作温度T A-40~+125 -40~+125 ℃

传感器应用电路设计.

传感器应用电路设计 电子温度计 学校:贵州航天职业技术学院 班级:2011级应用电子技术 指导老师: 姓名: 组员:

摘要 传感器(英文名称:transducer/sensor)是一种检测装置,能感受到被测量的信息,并能将检测感受到的信息,按一定规律变换成为电信号或其他所需形式的信息输出,以满足信息的传输、处理、存储、显示、记录和控制等要求。它是实现自动检测和自动控制的首要环节。 本文将介绍一种基于单片机控制的数字温度计。在件方面介绍单片机温度控制系统的设计,对硬件原理图做简洁的描述。系统程序主要包括主程序、读出温度子程序、温度转换命令子程序、计算温度子程序、显示数据刷新子程序。软硬件分别调试完成以后,将程序下载入单片机中,电路板接上电源,电源指示灯亮,按下开关按钮,数码管显示当前温度。由于采用了智能温度传感器DS18B20,所以本文所介绍的数字温度计与传统的温度计相比它的转换速率极快,进行读、写操作非常简便。它具有数字化输出,可测量远距离的点温度。系统具有微型化、微功耗、测量精度高、功能强大等特点,加之DS18B20内部的差错检验,所以它的抗干扰能力强,性能可靠,结构简单。 随着科技的不断发展,现代社会对各种信息参数的准确度和精确度的要求都有了几何级的增长,而如何准确而又迅速的获得这些参数就需要受制于现代信息基础的发展水平。在三大信息信息采集(即传感器技术)、信息传输(通信技术)和信息处理(计算机技术)中,传感器属于信息技术的前沿尖端产品,尤其是温度传感器技术,在我国各领域已经引用的非常广泛,可以说是渗透到社会的每一个领域,人民的生活与环境的温度息息相关,在工业生产过程中需要实时测量温度,在农业生产中也离不开温度的测量,因此研究温度的测量方法和装置具有重要的意义。 测量温度的关键是温度传感器,温度传感器的发展经历了三个发展阶段:①传统的分立式温度传感器②模拟集成温度传感器③智能集成温度传感器。 目前的智能温度传感器(亦称数字温度传器)是在20世纪90年代中期问世的,它是微电子技术、计算机技术和自动测试技术(ATE)的结晶,特点是能输出温度数据及相关的温度控制量,适配各种微控制器(MCU)。社会的发展使人们对

传感器原理及应用

温度传感器的应用及原理 温度测量应用非常广泛,不仅生产工艺需要温度控制,有些电子产品还需对它们自身的温度进行测量,如计算机要监控CPU的温度,马达控制器要知道功率驱动IC的温度等等,下面介绍几种常用的温度传感器。 温度是实际应用中经常需要测试的参数,从钢铁制造到半导体生产,很多工艺都要依靠温度来实现,温度传感器是应用系统与现实世界之间的桥梁。本文对不同的温度传感器进行简要概述,并介绍与电路系统之间的接口。 热敏电阻器 用来测量温度的传感器种类很多,热敏电阻器就是其中之一。许多热敏电阻具有负温度系数(NTC),也就是说温度下降时它的电阻值会升高。在所有被动式温度传感器中,热敏电阻的灵敏度(即温度每变化一度时电阻的变化)最高,但热敏电阻的电阻/温度曲线是非线性的。表1是一个典型的NTC热敏电阻器性能参数。 这些数据是对Vishay-Dale热敏电阻进行量测得到的,但它也代表了NTC热敏电阻的总体情况。其中电阻值以一个比率形式给出(R/R25),该比率表示当前温度下的阻值与25℃时的阻值之比,通常同一系列的热敏电阻器具有类似的特性和相同电阻/温度曲线。以表1中的热敏电阻系列为例,25℃时阻值为10KΩ的电阻,在0℃时电阻为28.1KΩ,60℃时电阻为4.086KΩ;与此类似,25℃时电阻为5KΩ的热敏电阻在0℃时电阻则为 14.050KΩ。 图1是热敏电阻的温度曲线,可以看到电阻/温度曲线是非线性的。

虽然这里的热敏电阻数据以10℃为增量,但有些热敏电阻可以以5℃甚至1℃为增量。如果想要知道两点之间某一温度下的阻值,可以用这个曲线来估计,也可以直接计算出电阻值,计算公式如下: 这里T指开氏绝对温度,A、B、C、D是常数,根据热敏电阻的特性而各有不同,这些参数由热敏电阻的制造商提供。 热敏电阻一般有一个误差范围,用来规定样品之间的一致性。根据使用的材料不同,误差值通常在1%至10%之间。有些热敏电阻设计成应用时可以互换,用于不能进行现场调节的场合,例如一台仪器,用户或现场工程师只能更换热敏电阻而无法进行校准,这种热敏电阻比普通的精度要高很多,也要贵得多。 图2是利用热敏电阻测量温度的典型电路。电阻R1将热敏电阻的电压拉升到参考电压,一般它与ADC的参考电压一致,因此如果ADC的参考电压是5V,Vref 也将是5V。热敏电阻和电阻串联产生分压,其阻值变化使得节点处的电压也产生变化,该电路的精度取决于热敏电阻和电阻的误差以及参考电压的精度。

压力传感器原理及应用-称重技术

压力传感器是压力检测系统中的重要组成部分,由各种压力敏感元件将被测压力信号转换成容易测量的电 信号作输出,给显示仪表显示压力值,或供控制和报警使用。 压力传感器的种类繁多,如压阻式压力传感器、应变式压力传感器、压电式压力传感器、电容式压力传感 器、压磁式压力传感器、谐振式压力传感器及差动变压器式压力传感器,光纤压力传感器等。 一、压阻式压力传感器 固体受力后电阻率发生变化的现象称为压阻效应。压阻式压力传感器是基于半导体材料(单晶硅)的压阻效应原理制成的传感器,就是利用集成电路工艺直接在硅平膜片上按一定晶向制成扩散压敏电阻,当硅膜片 受压时,膜片的变形将使扩散电阻的阻值发生变化。 压阻式具有极低的价格和较高的精度以及较好的线性特性。 1、压阻式压力传感器基本介绍 压阻式传感器有两种类型:一种是利用半导体材料的体电阻做成粘贴式应变片,称为半导体应变片,因此 应变片制成的传感器称为半导体应变式传感器,另一种是在半导体材料的基片上用集成电路工艺制成的扩 散电阻,以此扩散电阻的传感器称为扩散型压阻传感器。 半导体应变式传感器半导体应变式传感器的结构形式基本上与电阻应变片传感器相同,也是由弹性敏感元件等三部分组成,所不同的是应变片的敏感栅是用半导体材料制成。半导体应变片与金属应变片相比,最 突出的优点是它的体积小而灵敏高。它的灵敏系数比后者要大几十倍甚至上百倍,输出信号有时不必放大 即可直接进行测量记录。此外,半导体应变片横向效应非常小,蠕变和滞后也小,频率响应范围亦很宽, 从静态应变至高频动态应变都能测量。由于半导体集成化制造工艺的发展,用此技术与半导体应变片相结 合,可以直接制成各种小型和超小型半导体应变式传感器,使测量系统大为简化。但是半导体应变片也存 在着很大的缺点,它的电阻温度系统要比金属电阻变化大一个数量级,灵敏系数随温度变化较大它的应变 —电阻特性曲线性较大,它的电阻值和灵敏系数分散性较大,不利于选配组合电桥等等。 扩散型压阻式传感器扩散型压阻传感器的基片是半导体单晶硅。单晶硅是各向异性材料,取向不同时特性不一样。因此必须根据传感器受力变形情况来加工制作扩散硅敏感电阻膜片。 利用半导体压阻效应,可设计成多种类型传感器,其中压力传感器和加速度传感器为压阻式传感器的基本 型式。 硅压阻式压力传感器由外壳、硅膜片(硅杯)和引线等组成。硅膜片是核心部分,其外形状象杯故名硅杯,在硅膜上,用半导体工艺中的扩散掺杂法做成四个相等的电阻,经蒸镀金属电极及连线,接成惠斯登电桥 再用压焊法与外引线相连。膜片的一侧是和被测系数相连接的高压腔,另一侧是低压腔,通常和大气相连,也有做成真空的。当膜片两边存在压力差时,膜片发生变形,产生应力应变,从而使扩散电阻的电阻值发 生变化,电桥失去平衡,输出相对应的电压,其大小就反映了膜片所受压力差值。

角度传感器应用电路设计

磁阻式传感器KMZ41的特点: 内部包含有两个有磁阻构成的、位置成正交的、独立的电桥(Wheatstone Bridge)。其内部结构如下图所示: 将KMZ41置于有X轴、Y轴构成的平面上,当旋转磁场强度变化时,KMZ41就会产生两路正弦输出的信号,两信号的相位差就代表芯片轴向与磁场方向的夹角a,输出信号波形如下图所示: 图1 图2 图1为KMZ41产生的两路正弦输出信号;图2为芯片轴向与磁场方向的夹角。UZZ9001的内部结构与工作原理: UZZ9001的芯片内部包括A/D转换器1和A/D转换器2、滤波器、算法逻辑、SPI接口、时钟振荡器、;逻辑控制及复位等。UZZ9001Y与KMZ41连接,能够将磁阻式传感器KMZ41输出的两个有相位差的正弦信号转换成数字信号输出,与微控制器配套构成一个角度测量系统。 *

角度传感器部分设计: 方案一 由UZZ9000和KMZ41构成的角度检测电路: UZZ9000为线性电压输出式角度传感器调理器电路,输出电压与被测角度信号成正比;测量角度的范围是0~180°,且在0~100°范围内;测量误差小于±0.45°分辨力达0.1°;测量范围和输出零点均可调节;电源电压范围为+4.5~+5.5V;电源电流为10mA;工作温度范围是-40~+150℃。 由UZZ9000和KMZ41构成的电压输出式角度检测电路如图所示。改变R2和R3的比值,可以调节传感器1的偏移量;改变R4和R5的阻值,可以调节传感器2的偏移量;改变R6和R7的比值,可以调节零点偏移;改变R8和R9的比值;可以调节测量角度范围。电阻R2~R9可以采用电位器代替。电路输出电压送至数字电压表或者微控制器系统,即可显示出被测角度值。该电路可广泛用于发动机凸轮/曲轴速度及位置检测、节流阀控制、转向操作控制、汽车中的ABS系统等领域。 注:1.设置角度范围。在UZZ9000的引脚端13加上不同的外部电压可以选择0~30到0~180共16个不同的角度范围。

光电传感器论文

光电传感器 物理与电子工程学院电子信息科学与技术(应用技术)2011级李俊 学号20110520164 指导老师伊斯刚 摘要:由于微电子技术,光电半导体技术,光导纤维技术以及光栅技术的发展,使得光电传感器的应用与日俱增。这种传感器具有结构简单、非接触、高可靠性、高精度、可测参数多、反应快以及结构简单,形式灵活多样等优点,在自动检测技术中得到了广泛应用,它一种是以光电效应为理论基础,由光电材料构成的器件。 关键字:光电效应;光电元件;光电特性;传感器应用 1 理论基础——光电效应 光电效应一般有外光电效应、光导效应、光生伏特效应。 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大是,电子会克服束缚脱离材料表面而进入外界空间,从而改变光电子材料的导电性,这种现象成为外光电效应 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v为光波频率,h为普朗克常数,h=6.63*10-34 J/HZ),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律:1/2mv2=hv-A 式中,m为电子质量,v为电子逸出的初速度,A微电子所做的功。 2 光电元件及特性 2.1 光电管 光电管的种类繁多,典型的产品有真空光电管和充气光电管,外形成半圆筒形金属片制成的阴极K和位于阴极轴心的金属丝制成的阳极A封装在抽成真空的

玻壳内,当入射光照射在阴极上时,单个光子就把它的全部能量传递给阴极材料中的一个自由电子,从而使自由电子的能量增加h。当电子获得的能量大于阴极材料的逸出功A时,它就可以克服金属表面束缚而逸出,形成电子发射。这种电子称为光电子,光电子逸出金属表面后的初始动能为1/2mv2 光电管正常工作时,阳极电位高于阴极。在人射光频率大于“红限”的前提下,从阴极表面逸出的光电子被具有正电位的阳极所吸引,在光电管内形成空间电子流,称为光电流。此时若光强增大,轰击阴极的光子数增多,单位时间内发射的光电子数也就增多,光电流变大。 光电管的光电特性如图1所示,从图中可知,在光通量不太大时,光电特性基本是一条直线。 图1光电管的光 2.2 光电倍增管 由于真空光电管的灵敏度低,因此人们研制了具有放大光电流能力的光电倍增管。光电倍增管也有一个阴极K和一个阳极A,与光电管不同的是在它的阴极和阳极间设置了若干个二次发射电极,D1、D2、D3…它们称为第一倍增电极、第二倍增电极、…,倍增电极通常为10~15级。光电倍增管工作时,相邻电极之间保持一定电位差,其中阴极电位最低,各倍增电极电位逐级升高,阳极电位最高。当入射光照射阴极K时,从阴极逸出的光电子被第一倍增电极D1加速,以高速轰击D1 ,引起二次电子发射,一个入射的光电子可以产生多个二次电子,D1发射出的二次电子又被D1、D2问的电场加速,射向D2并再次产生二次电子发射……,这样逐级产生的二次电子发射,使电子数量迅速增加,这些电子最后到达阳极,形成较大的阳极电流。若倍增电极有n级,各级的倍增率为σ,则光电倍增管的倍增率可以认为是σN ,因此,光电倍增管有极高的灵敏度。在输出电流小于1mA的情况下,它的光电特性在很宽的范围内具有良好的线性关系。光电倍增管的这个特点,使它多用于微光测量。

压力传感器的分类及应用原理

压力传感器的分类及应用原理 教程来源:网络作者:未知点击:28 更新时间:2009-2-16 10:11:30 压力传感器是工业实践中最为常用的一种传感器,其广泛应用于各种工业自控环境,涉及水利水电、铁路交通、智能建筑、生产自控、航空航天、军工、石化、油井、电力、船舶、机床、管道等众多行业,下面就简单介绍一些常用传感器原理及其应用 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。 金属电阻应变片的内部结构 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω·cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面增加,电阻值则会减小。只要测出加在电阻的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变情2、陶瓷压力传感器原理及应用 抗腐蚀的陶瓷压力传感器没有液体的传递,压力直接作用在陶瓷膜片的前表面,使膜片产生微小的形变,厚膜电阻印刷在陶瓷膜片的背面,连接成一个惠斯通电桥(闭桥),由于压敏电阻的压阻效应,使电桥产生一个与压力成正比的高度线性、与激励电压也成正比的电压信号,标准的信号根据压力量程的不同标定为2.0 / 3.0 / 3.3 mV/V等,可以和应变式传感器相兼容。通过激光标定,传感器具有很高的温度稳定性和时间稳定性,传感器自带温度补偿0~70℃,并可以和绝大多数介质直接接触。 陶瓷是一种公认的高弹性、抗腐蚀、抗磨损、抗冲击和振动的材料。陶瓷的热稳定特性及它的厚膜电阻可以使它的工作温度范围高达-40~135℃,而且具有测量的高精度、高稳定性。电气绝缘程度>2kV,输出信号强,长期稳定性好。高特性,低价格的陶瓷传感器将是压力传感器的发展方向,在欧美国家有全面替代其它类型传感器的趋势,在中国也越来越多的用户使用陶瓷传感器替代扩散硅压力传感器。 3、扩散硅压力传感器原理及应用 工作原理 被测介质的压力直接作用于传感器的膜片上(不锈钢或陶瓷),使膜片产生与介质压力成正比的微位移,使传感器的电阻值发生变化,和用电子线路检测这一变化,并转换输出一个对应于这一

粮仓智能传感器设计

用于粮仓领域的智能温度传感器的设计 摘要: 近年来随着计算机在社会领域的渗透, 单片机的应用正在不断地走向深入, 同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应 根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。 系统以AT89C51 单片机为控制核心,利用新型一线制温度传感器DS18B20 测量温度值,实现粮仓环境温度的检测和报警。本文给出了由AT89C51 单片机和 DS18B20 构成的单总线温度测量系统的硬件电路及软件流程图。该系统具有测点多、精度高、速度快、稳定性好、报警及时等特点,也可应用于其它相关的温度控制系统,通用性较强。 关键词:一线总线;DS18B20;AT89C51;数字温度传感器 Abstract:The system for the control of the core is AT89C51,the temperature sensors DS18B20 is used to measure temperature and this system can realize ambient temperature measurement and alarm. This article introduces the hardware circuit which the software flow chart constitutes by AT89C51 monolithic integrated circuit and DS18B20. This system has many measuring point, high-precision, wide range of temperature monitoring, good stability and alarms timely, it may also be applied in other related temperature control system and the versatility is strong. Keywords:1-Wire TM;DS18B20;AT89C51;Digit Temperature Densor

温度传感器在冰箱中的应用

实验一:温度传感器在智能冰箱中的应用 班级:学号:姓名:成绩: 一、研究现状: 在市场上,DS18B20 是美国DALLAS 半导体公司继DS1820 之后最新推出的一种改进型智能温度传感器。与传统的热敏电阻相比,他能够直接读出被测温度并且可根据实际要求通过简单的编程实现9-12 位的数字值读书方式。可以分别在93.75ms 和750ms 内完成9 位和12 位的数字量,并且从DS18B20 读出的信息或写入DS18B20 的信息仅需要一根口线(单线接口)读写,温度变换功率来源于数据总线,总线本身也可以向所挂接的DS18B20 供电,而无需额外电源。因而使用DS18B20 系统结构更趋简单,可靠性更高,而其超小的体积,超低的硬件开消,抗干扰能力强,精度高,附加功能强,使得DS18B20 更受欢迎。对于普通的电子爱好者来说,DS18B20 的优势更是学习单片机技术和开发温度相关的小产品的不二选择。DS18B20 的主要特征有:全数字温度转换及输出;先进的单总线数据通信;最高12 位分辨率,精度可达土0.5 摄氏度;12 位分辨率时的最大工作周期为750 毫秒;可选择寄生工作方式;检测温度范围为–55° C ~+125° C (–67° F ~+257°F);内置EEPROM,限温报警功能;64 位光刻ROM,内置产品序列号,方便多机挂接;多样封装形式,适应不同硬件系统。DS18B20 以其较高的综合性能获得了较高的市场率,但其精度仅能实现-10°C~+85° C 下误差土0.5°C,这与其使用的测温原理有关,DS18B20 采用了不同温度系数的振荡器测量振荡周期的方法进行测温,较高的非线性可能导致其精度无法提升。纵观国外温度传感器的研制情况,精度及其他指标最高的,还属于智能型的CMOS 集成温度传感器。该传感器使用的是双极型晶体管的基极-发射极电压VBE 作为测温信号,通过直流低频信号直接测量出温度的变化。从集电极电流IC 和基极-发射极电压VBE 之间著名的指数关系,可以得到以下VBE 与绝对温度T 的关系函数。VBE(T)几乎是温度的线性函数,其典型的斜率是-2mV/K。如果集电极电流比是常数,两个不同集电极电流IC1 和IC2 驱动的晶体管VBE 的差值ΔVBE 与绝对温度成正比关系(PTAT)。在一个带隙基准电压源中,放大的ΔVBE 加到VBE 上产生一个与温度无关的基准电压VREF,在后面的ADC 中可以

压力传感器的应用领域

压力传感器的应用领域 压力传感器主要应用于:增压缸、增压器、气液增压缸、气液增压器、压力机,压缩机,空调制冷设备等领域。 1、应用于液压系统 压力传感器在液压系统中主要是来完成力的闭环控制。当控制阀芯突然移动时,在极短的时间内会形成几倍于系统工作压力的尖峰压力。在典型的行走机械和工业液压中,如果设计时没有考虑到这样的极端工况,任何压力传感器很快就会被破坏。需要使用抗冲击的压力传感器,压力传感器实现抗冲击主要有2种方法,一种是换应变式芯片,另一种方法是外接盘管,一般在液压系统中采用第一种方法,主要是因为安装方便。此外还有一个原因是压力传感器还要承受来自液压泵不间断的压力脉动。 2.应用于安全控制系统 压力传感器在安全控制系统中经常应用,主要针对的领域是空压机自身的安全管理系统。在安全控制领域有很多传感器应用,压力传感器作为一种非常常见的传感器,在安全控制系统中应用也不足为奇。 在安全控制领域应用一般从性能方面来考虑,从价格上的考虑,还有从实际操作的安全性方便性来考虑,实际证明

选择压力传感器的效果非常好。压力传感器利用机械设备的加工技术将一些元件以及信号调节器等装置安装在一块很小的芯片上面。所以体积小也是它的优点之一,除此之外,价格便宜也是它的另一大优点。在一定程度上它能够提高系统测试的准确度。在安全控制系统中,通过在出气口的管道设备中安装压力传感器来在一定程度上控制压缩机带来的压力,这算是一定的保护措施,也是非常有效的控制系统。当压缩机正常启动后,如果压力值未达到上限,那么控制器就会打开进气口通过调整来使得设备达到最大功率。 3.应用于注塑模具 压力传感器在注塑模具中有着重要的作用。压力传感器可被安装在注塑机的喷嘴、热流道系统、冷流道系统和模具的模腔内,它能够测量出塑料在注模、充模、保压和冷却过程中从注塑机的喷嘴到模腔之间某处的塑料压力。 4.应用于监测矿山压力 作为矿山压力监控的关键性技术之一。一方面,我们应该正确应用已有的各种传感器来为采矿行业服务;另一方面,作为传感器厂家还要研制和开发新型压力传感器来适应更多的采矿行业应用。压力传感器有多种,而基于矿山压力监测的特殊环境,矿用压力传感器主要有:振弦式压力传感器、半导体压阻式压力传感器、金属应变片式压力传感器、差动变压器式压力传感器等。这些传感器在矿产行业都有广泛的

半导体传感器应用电路设计

东北石油大学 课程设计 2012年6 月25

任务书 课程传感器课程设计 题目半导体传感器应用电路设计 专业测控技术与仪器姓名学号 主要内容: 利用温度传感器和热电偶设计制作一个温度测量系统。参考利用半导体温度传感器AD590和单片机技术设计制作一个显示室温的数字温度计的设计提示与分析。进一步了解有关温度传感器的工作原理,制定设计方案,确定温度传感器的型号等参数,掌握温度的检测方法。 基本要求: 1、详细了解所选用的温度传感器的工作原理,工作特性等 2、设计合理的信号调理电路,并列出制作该装置的元器件。 主要参考资料: [1]刘爱华,满宝元.传感器原理与应用技术[M].北京:人民邮电出版社,2006.45-48. [2]王雪文,张志勇.传感器原理及应用[M].北京:航空大学出版社,2004.27-34. [3]张福学.现代实用传感器电路[M].北京:中国计量出版社,1997.16-24. [4]缪家鼎,徐文娟,牟同升.光电技术[M].杭州:浙江大学出版社,1987.22-27. 完成期限2012.6.25—2012.6.29 指导教师 专业负责人 2012年6 月25 日

摘要 传感器属于信息技术的前沿尖端产品,尤其是温度传感器被广泛用于工农业生产、科学研究和生活等领域,数量高居各种传感器之首。半导体传感器是利用某些半导体的电阻随温度变化而变化的特性制成的。半导体具有很宽的温度反应特性,各种半导体的温度反应区段不同。利用半导体温度传感器AD590 设计制作一个温度测量系统,AD590是一种集成温度传感器,其实质是一种半导体集成电路。集成温度传感器的线性度好、精度适中、灵敏度高、体积小、使用方便,得到广泛应用。集成温度传感器的输出形式分为电压输出和电流输出两种。 关键词:关键词传感器;半导体;温度传感器;AD590

DS18B20温度传感器工作原理及其应用电路图

DS18B20温度传感器工作原理及其应用电路图 时间:2012-02-16 14:16:04 来源:赛微电子网作者: 前言 温度与工农业生产密切相关,对温度的测量和控制是提高生产效率、保证产品质量以及保障生产安全和节约能源的保障。随着工业的不断发展,由于温度测量的普遍性,温度传感器的市场份额大大增加,居传感器首位。数字化温度传感器DS18B20是世界上第一片支持“一线总线”接口的温度传感器。现在,新一代的DS18B20温度传感器体积更小、更经济、更灵活。DS18B20温度传感器测量温度范围为-55℃~+125℃。在-10℃~+85℃范围内,精度为±0.5℃。现场温度直接以“一线总线”的数字方式传输,大大提高了系统的抗干扰性。基于DS18B20温度传感器的重要性,小编整理出DS18B20温度传感器工作原理及其应用电路图供大家参考。 一、DS18B20温度传感器工作原理(热电阻工作原理) DS18B20温度传感器工作原理框图如图所示: DS18B20温度传感器工作原理框图 图中低温度系数晶振的振荡频率受温度影响很小,用于产生固定频率的脉冲信号送给计数器1。高温度系数晶振随温度变化其振荡频率明显改变,所产生的信号作为计数器2的脉冲输入。计数器1和温度寄存器被预置在-55℃所对应的一个基数值。计数器1对低温度系数晶振产生的脉冲信号进行减法计数,当计数器1的预置值减到0时,温度寄存器的值将加1,计数器1的预置将重新被装入,计数器1重新开始对低温度系数晶振产生的脉冲信号进行计数,如此循环直到计数器2计数到0时,停止温度寄存器值的累加,此时温度寄存器中的数值即为所测温度。斜率累加器用于补偿和修正测温过程中的非线性,其输出用于修正计数器1的预置值。 二、DS18B20温度传感器的应用电路 1.DS18B20温度传感器寄生电源供电方式电路图 寄生电源方式特点: (1)进行远距离测温时,无须本地电源。 (2)可以在没有常规电源的条件下读取ROM。 (3)电路更加简洁,仅用一根I/O口实现测温。 (4)只适应于单一温度传感器测温情况下使用,不适于采用电池供电系统中。

传感器原理及其应用考试重点

传感器原理及其应用 第一章传感器的一般特性 1)信息技术包括计算机技术、通信技术和传感器技术,是现代信息产业的三大支柱。 2)传感器又称变换器、探测器或检测器,是获取信息的工具 广义:传感器是一种能把特定的信息(物理、化学、生物)按一定规律转换成某种可用信号输出的器件和装置。 狭义:能把外界非电信息转换成电信号输出的器件。 国家标准(GB7665-87):定义:能够感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置。 3)传感器的组成: 敏感元件是直接感受被测量,并输出与被测量成确定关系的某一物理量的元件。 转换元件:将敏感元件输出的非电物理量转换成电路参数或电量。 基本转换电路:上述电路参数接入基本转换电路(简称转换电路),便可转换成电量输出。 4)传感器的静态性能指标 (1)灵敏度 定义: 传感器输出量的变化值与相应的被测量(输入量)的变化值之比, 传感器输出曲线的斜率就是其灵敏度。 ①纯线性传感器灵敏度为常数,与输入量大小无关;②非线性传感器灵敏度与x有关。(2)线性度 定义:传感器的输入-输出校准曲线与理论拟合直线之间的最大偏离与传感器满量程输出之比,称为传感器的“非线性误差”或“线性度”。 线性度又可分为: ①绝对线性度:为传感器的实际平均输出特性曲线与理论直线的最大偏差。 ②端基线性度:传感器实际平均输出特性曲线对端基直线的最大偏差。 端基直线定义:实际平均输出特性首、末两端点的连线。 ③零基线性度:传感器实际平均输出特性曲线对零基直线的最大偏差。 ④独立线性度:以最佳直线作为参考直线的线性度。 ⑤最小二乘线性度:用最小二乘法求得校准数据的理论直线。 (3)迟滞 定义:对某一输入量,传感器在正行程时的输出量不同于其在反行程时的输出量,这一现象称为迟滞。 即:传感器在正(输入量增大)反(输入量减小)行程中输出输入曲线不重合称为迟滞。 (4)重复性 定义:在相同工作条件下,在一段短的时间间隔内,同一输入量值多次测量所得的输

光电传感器论文(1)报告

光电传感器实验研究 摘要:随着科技的发展,人类越来越注重信息和自动化,在日常的生产学习过 程中,人们常常要进行自动筛选、自动传送,而为了实现这些,光电传感发挥了不可磨灭的作用。光敏传感器的物理基础是光电效应,即光敏材料的电学特性因受到光的照射而发生变化。 关键词:光电效应、光电传感器、光敏材料 一、 理论基础——光电效应 光电效应通常分为外光电效应和内光电效应两大类。外光电效应是指在光照射下,电子逸出物体表面的外发射的现象,也称光电发射效应,基于这种效应的光电器件有光电管、光电倍增管等。内光电效应是指入射的光强改变物质导电率的物理现象,称为光电导效应,大多数光电控制应用的传感器,如光敏电阻、光敏二极管、光敏三极管、硅光电池等都属于内光电效应类传感器。 1.外光电效应 光照在照在光电材料上,材料表面的电子吸收的能量,若电子吸收的能量足够大,电子会克服束缚逸出表面,从而改变光电子材料的导电性,这种现象成为外光电效应。 根据爱因斯坦的光电子效应,光子是运动着的粒子流,每种光子的能量为hv(v 为光波频率,h 为普朗克常数),由此可见不同频率的光子具有不同的能量,光波频率越高,光子能量越大。假设光子的全部能量交给光子,电子能量将会增加,增加的能量一部分用于克服正离子的束缚,另一部分转换成电子能量。根据能量守恒定律: 式中,m 为电子质量,v 为电子逸出的初速度,w 为逸出功。 由上式可知,要使光电子逸出阴极表面的必要条件是hv>w 。由于不同材料具有不同的逸出功,因此对每一种阴极材料,入射光都有一个确定的频率限,当入射光的频率低于此频率限时,不论光强多大,都不会产生光电子发射,此频率 限称为“红限”。相应的波长为 式中,c 为光速,w 为逸出功。 2.内光电效应 当光照射到半导体表面时,由于半导体中的电子吸收了光子的能量,使电子从半导体表面逸出至周围空间的现象叫外光电效应。利用这种现象可以制成阴极射线管、光电倍增管和摄像管的光阴极等。半导体材料的价带与导带间有一个带隙,其能量间隔为Eg 。一般情况下,价带中的电子不会自发地跃迁到导带,所以半导体 w hv -=2mv 2 1 w hc K = λ

MEMS压力传感器原理与应用.

MEMS压力传感器原理与应用 摘要:简述MEMS压力传感器的结构与工作原理,以及应用技术,MEMS压力传感器Die的设计、生产成本分析,从系统应用到销售链。 关键词:MEMS压力传感器 惠斯顿电桥 硅薄膜应力杯 硅压阻式压力传感器硅电容式压力传感器 MEMS(微电子机械系统)是指集微型传感器、执行器以及信号处理和控制电路、接口电路、通信和电源于一体的微型机电系统。 MEMS压力传感器可以用类似集成电路(IC)设计技术和制造工艺,进行高精度、低成本的大批量生产,从而为消费电子和工业过程控制产品用低廉的成本大量使用MEMS传感器打开方便之门,使压力控制变得简单易用和智能化。传统的机械量压力传感器是基于金属弹性体受力变形,由机械量弹性变形到电量转换输出,因此它不可能如MEMS压力传感器那样做得像IC那么微小,成本也远远高于MEMS压力传感器。相对于传统的机械量传感器,MEMS压力传感器的尺寸更小,最大的不超过1cm,使性价比相对于传统“机械”制造技术大幅度提高。 MEMS压力传感器原理 目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者 都是在硅片上生成的微机械电子传感器。 硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗,极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。其电原理如图1所示。硅压阻式压力传感器其应变片电桥的光刻版本如图2。 MEMS硅压阻式压力传感器采用周边固定的圆形的应力杯硅薄膜内壁,采用MEMS技术直接将四个高精密半导体应变片刻制在其表面应力最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01%~0.03%FS。硅压阻式压力传感器结构如图3所示,上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空

压力传感器原理【详解】

压力传感器原理 内容来源网络,由“深圳机械展(11万㎡,1100多家展商,超10万观众)”收集整理!更多cnc加工中心、车铣磨钻床、线切割、数控刀具工具、工业机器人、非标自动化、数字化无人工厂、精密测量、3D打印、激光切割、钣金冲压折弯、精密零件加工等展示,就在深圳机械展. 一.压力传感器原理 一些常用传感器原理及其应用: 1、应变片压力传感器原理与应用 力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、压阻式压力传感器、电感式压力传感器、电容式压力传感器、谐振式压力传感器及电容式加速度传感器等。但应用最为广泛的是压阻式压力传感器,它具有极低的价格和较高的精度以及较好的线性特性。下面我们主要介绍这类传感器。 在了解压阻式力传感器时,我们首先认识一下电阻应变片这种元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。金属电阻应变片又有丝状应变片和金属箔状应变片两种。通常是将应变片通过特殊的粘和剂紧密的粘合在产生力学应变基体上,当基体受力发生应力变化时,电阻应变片也一起产生形变,使应变片的阻值发生改变,从而使加在电阻上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路(通常是A/D转换和CPU)显示或执行机构。

金属电阻应变片的内部结构 1、应变片压力传感器原理 如图1所示,是电阻应变片的结构示意图,它由基体材料、金属应变丝或应变箔、绝缘保护片和引出线等部分组成。根据不同的用途,电阻应变片的阻值可以由设计者设计,但电阻的取值范围应注意:阻值太小,所需的驱动电流太大,同时应变片的发热致使本身的温度过高,不同的环境中使用,使应变片的阻值变化太大,输出零点漂移明显,调零电路过于复杂。而电阻太大,阻抗太高,抗外界的电磁干扰能力较差。一般均为几十欧至几十千欧左右。 电阻应变片的工作原理 金属电阻应变片的工作原理是吸附在基体材料上应变电阻随机械形变而产生阻值变化的现象,俗称为电阻应变效应。金属导体的电阻值可用下式表示: 式中:ρ——金属导体的电阻率(Ω?cm2/m) S——导体的截面积(cm2) L——导体的长度(m) 我们以金属丝应变电阻为例,当金属丝受外力作用时,其长度和截面积都会发生变化,从上式中可很容易看出,其电阻值即会发生改变,假如金属丝受外力作用而伸长时,其长

光照强度传感器及其变送电路设计(范文)复习过程

光照强度传感器及其变送电路设计(范文)

重庆工业职业技术学院 毕业设计 课题名称:单片机流水灯设计 专业班级: 09电子301 学生姓名:魏玉玺 指导教师:王雪萍 二零一二年四月

光照强度传感器及其变送电路设计 【摘要】光照强度传感器是现代工业和日常生活中经常出现的一种基于光强变化的 检测器件,它可以检测出其接收到的光强的变化,主要使用各种光电元件来将光信 号转换成电信号,再经信号取样电路、放大电路和模数转换电路处理,获取表示光 照度的数字信号,再交由微处理器或DSP处理。光电检测方法具有精度高,反应快,非接触等优点,而且可测参数多,传感器的结构简单,形式灵活多样,因此,光电式传感器在检测和控制中应用非常广泛。本设计利用传感器设计的基本方法,设计 制作一个可以感知外界光照度变化的传感器,以实现对光照度信号的测量。 【关键词】:光照强度;传感器;变送电路 目录

第一章绪论 (4) 1.1引言 (4) 1.2传感器的概述 (4) 第二章系统设计 (5) 2.1光电传感器及敏感元件 (5) 2.1.1光敏电阻器……………………………………………………………………....... 5 2.1.2光敏二极管.............................................................. . (5) 2.1.3光敏晶体管 (6) 2.2光电传感器概述 (6) 2.3光电传感器工作原理 (6) 2.4光照传感器的设计 (8) 2.4.1设计方案一 (8) 2.4.2设计方案二 (9) 2.5方案比较 (10) 第三章变送电路硬件设计 (10) 3.1变送电路简介................................................................................ (10) 3.2热电阻二线制变送器的设计 (12) 3.2.1信号采集电路 (13) 3.2.2一级放大电路和线性化调整电路 (13) 3.2.3调零、电源平衡及二级放大电路……………………………………… 13 3.2.4调满电路和V/I转换电路…………………………………………………… 14 3.3 热电偶二线制变送器电路设计 (14) 3.3.1信号采集和一级放大电路 (14) 3.3.2 线性化调整电路和二级放大电路 (15)

各种温度传感器分类及其原理

各种温度传感器分类及其原理 温度传感器是检测温度的器件,其种类最多,应用最广,发展最快。众所周知,日常使用的材料及电子元件大部分特性都随温度而变化,在此我们暂时介绍最常用的热电阻和热电偶两类产品。 1.热电偶的工作原理 当有两种不同的导体和半导体A和B组成一个回路,其两端相互连接时,只要两结点处的温度不同,一端温度为T,称为工作端或热端,另一端温度为TO,称为自由端(也称参考端)或冷端,则回路中就有电流产生,如图2-1(a)所示,即回路中存在的电动势称为热电动势。这种由于温度不同而产生电动势的现象称为塞贝克效应。与塞贝克有关的效应有两个:其一,当有电流流过两个不同导体的连接处时,此处便吸收或放出热量(取决于电流的方向),称为珀尔帖效应;其二,当有电流流过存在温度梯度的导体时,导体吸收或放出热量(取决于电流相对于温度梯度的方向),称为汤姆逊效应。两种不同导体或半导体的组合称为热电偶。热电偶的热电势EAB(T,T0)是由接触电势和温差电势合成的。接触电势是指两种不同的导体或半导体在接触处产生的电势,此电势与两种导体或半导体的性质及在接触点的温度有关。温差电势是指同一导体或半导体在温度不同的两端产生的电势,此电势只与导体或半导体的性质和两端的温度有关,而与导体的长度、截面大小、沿其长度方向的温度分布无关。无论接触电势或温差电势都是由于集中于接触处端点的电子数不同而产生的电势,热电偶测量的热电势是二者的合成。当回路断开时,在断开处a,b之间便有一电动势差△V,其极性和大小与回路中的热电势一致,如图2-1(b)所示。并规定在冷端,当电流由A流向B时,称A为正极,B为负极。实验表明,当△V很小时,△V与△T成正比关系。定义△V对△T的微分热电势为热电势率,又称塞贝克系数。塞贝克系数的符号和大小取决于组成热电偶的两种导体的热电特性和结点的温度差。 2.热电偶的种类 目前,国际电工委员会(IEC)推荐了8种类型的热电偶作为标准化热电偶,即为T型、E型、J型、K型、N型、B型、R型和S型。

光电传感器应用

浙江工业职业技术学院

消除或削弱背景光及温度等因素的影响。 二、应用举例 1.光电比色温度计(光源本身是被测物) (1)问题的提出:高温测量,物体辐射出的光波与温度有关。(2)原理:根据热辐射定律,使用光电池进行非接触测温。根据有关的辐射定律,物体在两个特定波长λ1、λ2上的辐射程度 Iλ1、Iλ2之比与该物体的温度成指数关系。 Iλ1/Iλ2=K1e-K2/T 由光路图及电路原理框图介绍其原理,注意参比信号。2.光电式烟尘浓度计(透射式) (1)问题的提出:为了控制和减少烟尘的排放量和节能 的要求,对烟尘的监测是必须的。 (2)通过光路及电路原理框图介绍其原理,注意参比信 号,由于两个通道结构完全一样,所以在最后运算U1/U2值时,上述误差可自动抵消,减小了测量误差。 3.光电式转速表(反射式) (1)问题的提出:由于机械式转速表和接触式电子转速 表精度不高,且影响被测物的运转状态,已不能满足自动化的要求。光电式转速计可用于测量高转速而又不影响被测物; (2)通过光路及电路原理框图介绍其原理: a)选用光电二极管(响应时间短)用于高频调制信号测量;

b)数字量测量,不用参比信号。 4.光电式边缘位置检测器(遮挡式) (1)问题的提出:光电式边缘位置检测器是用来检测带 型材料在生产过程中偏离正确位置的大小及方向,从而为纠偏控制电路提供纠偏信号。 (2)通过光路及转换电路介绍其原理: a)光路一半遮挡一半透过; b)桥路及运算放大器组成,接入参比光敏电阻; c)光敏电阻一般不能作模拟量测量,这里限用于控制。 三、总结以上各例使学生建立光路系统与电路结合的概念,并能 举一反三、灵活应用。 小结: 1、光电式传感器的应用类型 2、应用举例

相关文档
最新文档