脊椎动物心脏的进化历程

脊椎动物心脏的进化历程

脊椎动物心脏的进化历程

发表时间:2014-09-05T10:41:57.497Z 来源:《教育学文摘》2014年8月总第128期供稿作者:徐照宇[导读] 脊椎动物是动物界中最高等的、与人类关系最密切的动物类群,也是动物界中结构最复杂、数量最多的一个类群。

◆徐照宇中国农业大学动物医学院动物医学系2010级2班100193

摘要:在动物进化的漫长历程中,因为适应各种不同的环境,动物的身体结构也发生了巨大的变化。本文以进化论的观点、比较解剖学的手法, 以心脏的进化为例,论述了脊椎动物从鱼类、两栖类、爬行类到哺乳类,由水生到陆生、由简单到复杂、由低等到高等, 按一定的顺序发展和演变的规律。

关键词:循环系统鱼类两栖类爬行类哺乳动物心脏脊椎动物是动物界中最高等的、与人类关系最密切的动物类群,也是动物界中结构最复杂、数量最多的一个类群。生物的结构都是与其生活环境相适应的,由于运动和适应复杂环境的需要, 脊椎动物进化出了能够支撑身体的脊柱。随着脊椎动物从水生环境到陆地环境的过渡, 生活环境变得越来越复杂,其身体结构也发生了巨大的演变。本文用进化的观点,用比较解剖学的方法, 论述了脊椎动物心脏结构发生的演变过程。

循环系统是生物体的体液及其管道组成的系统。从动物有了心脏以后,心血管循环系统分心脏和血管两大部分,形成了一个相对封闭的管道系统,血液在其中按照一定的方向循环流动。心脏是血液循环动力的源泉,具有较厚的肌肉壁,内有空腔,肌肉的收缩和舒张使心脏产生有节律的搏动,使血液在血管中循环流动。

一、用鳃呼吸的动物的心脏模式

典型的用鳃呼吸的脊椎动物的心脏,由后向前依次为静脉窦、心房、心室、动脉圆锥。静脉窦接受来自全身的静脉血,静脉血依次通过心房、心室和动脉圆锥,心房和心室没有任何的间隔,只是在静脉窦和心房之间、心房和心室之间有瓣膜,这些瓣膜能防止血液的倒流。

有些动物,如软骨鱼和硬骨鱼,它们的心脏模式与原始的以鳃呼吸的心脏结构相似,但是由于心脏的扭曲,心脏的整体形态逐渐向“S”型过渡,因此这些动物心脏的静脉窦和心房都位于心室的背面。有些动物动脉球代替了动脉圆锥。

二、用肺呼吸的动物的心脏模式

动物在从水生向陆生过渡的过程中,因为生活环境的变化,出现了新的呼吸器官——肺,两栖类的循环系统也因此发生了比较大的变化,循环路线由于增加了肺循环而由单一循环转向双循环,心房此时出现房间隔,由一心房变为两心房;到了爬行类,心室出现了不完全间隔(类似于现在临床上的一些室间隔缺损病症,是一种先天性的心脏病,因为主动脉输血到全身各处,室间隔缺损会导致主动脉射出的血液不足而导致组织器官供血不足,出现一些缺血症状),鳄类则出现了完全的室间隔;到鸟类和哺乳类,心房和心室都分为两部分并且发育完备。从上述过程就可以看出:心脏在演化的过程中,最主要的目的是将来自身体其他部位的动脉血和静脉血分开,适应不同的循环路径,从而提高血液中物质的利用效率。

1.三个腔的心脏模式

两栖类是动物从水生到陆生的过渡类型,因此循环系统也是从单循环向双循环的过渡类型。心房由一腔转变为两腔,左心房接受来自肺静脉的动脉血,右心房接受来自体静脉的静脉血。但是在不同的种类中心房分割的程度也不一样,有些两栖类的心房是完全分隔,而另一些两栖类中,由于没有出现肺这种呼吸器官,因此没有肺循环,心房也是不完全的分隔。

在两栖动物的心室中,没有出现完全的室间隔,但是在内壁却出现了一些肌肉质的网柱和小梁,对两种血液有一定程度的分流作用,但是两种血液不能完全分开,因此血液的运输效率不是很高(如前面提到的室间隔缺损)。但是由于两栖类的皮肤可以辅助呼吸,可以在一定程度上弥补由于血液不分流造成的对氧的利用效率的降低。

2.室间隔不完全的心脏模式

爬行类的心室是不完全的分隔,因此血液的循环也是不完全的双循环。不过有一些种类,如龟鳖类和蛇类,心室则出现了完全的分隔。从这一点也可以看出,动物的心脏在演化过程中是一个渐变的过程,因此也可以认为两栖类中心室出现肌肉质网柱和小梁的结构,为心室出现完全的分隔提供了结构基础。在龟鳖类和蛇类中,心室一方面被一水平隔分为上下两腔,背腔同时被一垂直隔分隔为左右两个腔,这样造成进入心脏的血液的分隔程度比在两栖类中要高得多。在爬行类中,心室的分隔同样在不同的种类中分隔程度不同,在鳄类则出现了完全的室间隔。同时在爬行类中,动脉圆锥消失,静脉窦也趋于退化,成为心房的一部分,对提高血压和提高血液运输效率起到了一定的作用。

3.完美的四个腔的心脏模式

到了鸟类和哺乳类,心脏完全分隔为左右心房和左右心室,在心房和心室之间具有防止血液倒流的房室瓣,从而不完全的双循环转向完全的双循环,在结构上提供了保障。进入心脏的静脉血和动脉血被完全分开而进入体循环和肺循环,大大提高了血液中营养物质的利用效率。

通过对各种脊椎动物心脏结构的比较,可以看出心脏结构演化方向是形成多个腔,以协助脊椎动物由单循环向双循环的演化。由此实例也可以看出:脊椎动物的身体结构是在漫长的时间里,由水生到陆生、由简单到复杂、由低等到高等, 按一定的顺序不断地发展和进化的。

脊椎动物的进化过程探析论文

脊椎动物的进化过程探析论文 摘要:脊椎动物的进化是一个漫长的过程。从最早的甲胄鱼逐渐进化到两栖类,从此生物开始由水生向陆生进化;从两栖类进化发展到爬行类,又从爬行类中分化出鸟类和哺乳类,最后直到人类从哺乳类中演化出来。显然正是这样一个由简单到复杂、从低级到高级进化过程造就了动物界中最高等生物群体。 关键词:脊椎动物进化 动物的进化从最初的单细胞生物(原生动物)逐渐进化到多细胞生物进而不断的进化出具有体腔、神经系统、完整的循环系统的越来越高等动物。其中在动物界分门中脊索动物为最高等的一门,而在脊索动物中脊椎动物又是最高等的一门,那么这类高等的动物究竟是怎样进化的呢 1脊椎动物简介 脊椎动物是动物界最高等的类群,它们组成了动物界脊索动物中的一个亚门-脊椎动物亚门。脊椎动物体内有一条由一串脊椎骨连结而成的脊柱,起到支撑身体的作用;脊柱前方有发达的头骨,它与脊椎一起来,连同从脊椎骨两侧伸出的肋骨构成了脊椎动物的中轴骨骼。大多数的脊椎动物还有一套附肢骨骼,起到导航、平衡或推动身体前进的作用。脊椎动物的中枢神经系统脊髓,位于脊柱的上方、身体背侧;心脏和消化系统位于脊柱的下方和腹侧。脊椎动物中鱼类用腮呼吸(包括两栖类幼体),四足类用肺呼吸。除最原始的类型(圆口纲)外,脊椎动物都有上下颌。感觉器官包括眼、鼻、耳。 2、水生脊椎动物简介 ①脊椎动物伊始甲胄鱼

最早的脊椎动物属于无颌纲,统称为甲胄鱼类。它们没有上下颌骨,作为取食器官的口不能有效的张合,因此它们获取广泛食物资源的能力就很受限制;它们没有真正的偶鳍,也没有骨质的中轴骨骼。甲胄鱼类到泥盆纪时发展成为适应于各种生态环境和具有各种生活习性的一大类群,取得了暂时的成功。然而随着有颌脊椎动物的逐渐兴起,甲胄鱼类最终在竞争中失败,退出历史舞台。 ②脊椎动物进化的革命颌 脊椎动物登上历史舞台之后的第一次革命就是颌的出现。甲胄鱼类有大量的腮,而后前边两对腮弓逐渐消失,在第三对腮弓上长出了牙齿,并在“弓”行尖端处以关节结构铰和在一起。这样,能够张合自如,有效地咬住事物的上下颌形成,从而扩大了脊椎动物的取食范围,使脊椎动物更适应生态环境。 ③高等鱼类 高等鱼类是以上下颌摄取食物的变温水生动物。典型的高等鱼类有一个大而有力的尾鳍,尾鳍来回摆动在水中引起反作用力从而推动身体前进。其背鳍臀鳍均为平衡器。偶鳍包括位于前方的一对胸鳍和位置或前或后的腹鳍。偶鳍非常灵活,起到水平翼或升降舵的作用,有助于鱼在水中的游动。高等鱼类分为软骨鱼系和硬骨鱼系。软骨鱼类骨骼为软骨,无鳔,体内受精,代表性动物为鲨鱼。硬骨鱼类具有高度进步的骨化了的骨骼。头骨在外层由大量骨片衔接拼成一复杂图式,覆盖着头的顶部和侧面,并向后覆盖在腮部。大多数硬骨鱼由舌颌骨将颌骨与颅骨以舌接型的连接方式相关连。体外覆盖鳞片完全骨化。原始硬骨鱼类的鳞厚重,随着其不断进化鳞片厚度逐渐变薄,最后进步的硬骨鱼仅有一薄层骨质鳞片。大多数硬骨鱼的肺转化为有助于控制浮力的鳔。高等鱼类已经与今天我们所讲的鱼类大致相同。

生物进化的历程导学案

第二节生物进化的历程 思维导航: 生命诞生之初,地球上只有最简单的单细胞藻类和单细胞动物。而今的地球上,到处是丰富多彩的各类生物。那么现今的生物是从哪里来的呢人们一直在寻找这个问题的答案。 由于科学发展水平和认识能力的限制,一直以来,神创论的观点占据主导地位,认为人类和各种生物都是上帝或者神创造的。到底是不是这样呢直到人类不断发现越来越多的古生物化石以后,生物进化的观念才逐渐得到人们的认可。化石是什么呢生物是怎么样由简单进化到现在复杂的各类生物的呢通过这一节的学习,你会了解到生物进化的证据以及生物进化的主要历程。知识点梳理: 生物进化的历程 1.生物进化的证据 (1)化石是生物进化的最直接证据。 (2)马的进化过程:趋势是体型由小趋大,四肢越来越长,多趾逐渐变成中趾发达并唯一着地。 (3)鸟的进化过程:古代的某种爬行动物→始祖鸟→现代鸟 (4)越简单、越低等的生物的化石总是出现在越古老的地层里; 越复杂、越高等的生物的化石总是出现在越新近形成的地层里。 2.生物进化的主要历程 (1)地球上最早出现的植物是海洋中的原始的单细胞藻类;种子植物的生殖过 程已经完全 ..摆脱了对水.的依赖。 (2)地球上最早出现的动物是海洋中的原始的单细胞动物。 鸟类 古代鱼类(最早的脊椎动物)→原始两栖类→爬行类 哺乳类 (3)生物进化趋势:从单细胞到多细胞、从低等到高等、从简单到复杂、从水生到陆生。 (4)生物多样性是生物进化的结果。 随堂反馈:

1. 为生物进化提供了最直接的证据。 2.化石是地层里古代生物的___ 、____ 、____ 等的总称。 3.爬行类进化成鸟类的典型证据是在德国发现的“”化石。 4.科学家们发现,越、越的生物的化石总是出现在越古老的地层里,越、越_____的生物化石则出现在越新近形成的地层里。 5.科学家们根据亲缘关系的远近,用生物“”形象而简单地表示生物进化的主要历程。 6.地球上最早出现的植物是海洋中原始的,最早出现的动物是原始。 7.生物进化的规律是从_________到_________、从_________到_________、从________到_________、从_________到_________。 8.生物多样性是的结果。 巩固升华: 一、选择题 1.在越古老的地层里,成为化石的生物() A.数量越多 B.种类越丰富 C.越简单、越低等 D.越复杂、越高等 2.始祖鸟在进化上可能是处于哪两种动物之间的过渡类型() A.鸟类和哺乳类 B.无脊椎动物和脊椎动物 C.鱼类和两栖类 D.古代爬行类和鸟类 3.下列观点错误的是() A.所有的生物都有共同的原始祖先 B.越接近生物进化树的顶端,生物越高等 C.越复杂的化石出现在越古老的地层里 D.生物进化的方向是由简单到复杂 4.下列生物中,哪个可能最接近于原始的自养生物() A.藻类 B.蕨类 C.细菌 D.草履虫 5.下列有关生物进化历程的概括中,错误的是() A.由简单到复杂 B.由低等到高等 C.由体小到体大 D.由水生到陆生

无脊椎动物的进化

一、体制:无对称→球形对称→辐射对称→两侧对称 (1)无脊椎动物 原生动物: 变形虫——无对称 放射虫、太阳虫、团藻——球形对称(通过一个中心点,有无数对称轴,可将球体切成相等的对称面)→适应于悬浮在水中 草履虫——两侧对称 多孔动物、腔肠动物: 基本上为辐射对称(通过身体中央轴有许多切面可以把身体分成相等的部分)→适应于固着在水中 海葵——两辐对称(海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面) 扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物: 生活方式从固着、漂浮演化成爬行方式或游泳,身体呈两侧对称→适应于爬行生活,就是动物由水生进化到陆生的重要条件之一。 二、胎层:单细胞→单细胞层→二胚层→三胚层(分化盲支:多孔动物门胚胎发育存在逆转) 原生动物: 单细胞动物没有胚层的概念;即使就是团藻也只有一层细胞,; (真正地多细胞动物有胚层的分化) 肠腔动物: 二胚层 扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物: 出现三胚层(在动物进化上有着极为重要的意义) 三、体腔:无体腔→假体腔→真体腔(就是高等无脊椎动物的重要标志之一) 原生动物、多孔动物、腔肠动物、扁形动物: 无体腔 线形动物(假体腔动物): 假体腔(初生体腔,即直接跟体壁的肌肉层与消化管道的壁相接触没有中胚层形成的体腔膜包围,也不与外界相通)←胚胎时期的囊胚腔所形成的 环节动物、节肢动物、棘皮动物(软体动物真体腔退化): 真体腔(体腔的位置处于中胚层之间,外围由中胚层形成的体腔膜所包围)→造成了各种器官的进一步特化 四、体节与身体分布:同律分节→异律分节(身体分节就是高等无脊椎动物的重要标志之一) 原生动物、多孔动物、腔肠动物: 不分节 扁形动物、线形动物: 原始分节(机体各部分结构与机能分化,但身体不分节) 环节动物: 同律分节 节肢动物、软体动物、棘皮动物: 异律分节(导致了动物的身体分部) 五、体表与骨骼:细胞膜→细胞外有壳→外有纤毛→有角质层→体外有壳→体外含几丁质原生动物: 仅细胞膜(部分植物性鞭毛虫有细胞壁,部分有壳肉足虫具外壳、含角质、石灰质等);

无脊椎动物的进化

一、体制:无对称→球形对称→辐射对称→两侧对称 (1)无脊椎动物 原生动物: 变形虫——无对称 放射虫、太阳虫、团藻——球形对称(通过一个中心点,有无数对称轴,可将球体切成 相等的对称面)→适应于悬浮在水中 草履虫——两侧对称 多孔动物、腔肠动物: 基本上为辐射对称(通过身体中央轴有许多切面可以把身体分成相等的部分)→适应于固着在水中 海葵——两辐对称(海葵由于有口、口道沟的存在,身体只能通过体轴作平行与垂直口道沟的两个对称面) 扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物: 生活方式从固着、漂浮演化成爬行方式或游泳,身体呈两侧对称→适应于爬行生活,是动物由水生进化到陆生的重要条件之一。 二、胎层:单细胞→单细胞层→二胚层→三胚层(分化盲支:多孔动物门胚胎发育存在逆转)原生动物 : 单细胞动物没有胚层的概念;即使是团藻也只有一层细胞, ; (真正地多细胞动物有胚层的分化) 肠腔动物 : 二胚层 扁形动物、线形动物、环节动物、软体动物、节肢动物、棘皮动物: 出现三胚层(在动物进化上有着极为重要的意义) 三、体腔:无体腔→假体腔→真体腔(是高等无脊椎动物的重要标志之一) 原生动物、多孔动物、腔肠动物、扁形动物: 无体腔 线形动物(假体腔动物): 假体腔(初生体腔,即直接跟体壁的肌肉层和消化管道的壁相接触没有中胚层形成的 体腔膜包围,也不和外界相通)←胚胎时期的囊胚腔所形成的 环节动物、节肢动物、棘皮动物(软体动物真体腔退化): 真体腔(体腔的位置处于中胚层之间,外围由中胚层形成的体腔膜所包围)→造成了 各种器官的进一步特化 四、体节和身体分布:同律分节→异律分节(身体分节是高等无脊椎动物的重要标志之一) 原生动物、多孔动物、腔肠动物: 不分节 扁形动物、线形动物: 原始分节(机体各部分结构和机能分化,但身体不分节) 环节动物: 同律分节 节肢动物、软体动物、棘皮动物: 异律分节(导致了动物的身体分部)

脊椎动物演化史上有几大进步事件

脊椎动物演化史上有几大进步事件,随机举出两个进步事件的意义?五大事件进步:具上下颌、五指型附肢、羊膜卵、恒温、胎生哺乳。(5分) A五指型附肢的进步意义 (1)适应陆生的五趾型附肢,这是动物演化历史上的一个重要事件。 (2)两栖动物的五趾型附肢与鱼鳍不同,肩带游离,前肢在摆脱头骨的制约后,不但获得了较大的活动范围,而且也增强了动作的复杂性和灵活性;腰带一方面直接与脊柱牢固地联结,另一方面又与后肢骨相关节,构成支持体重和运动的主要工具,使登陆的目标得以实现。羊膜卵出B现的进步意义: 1羊膜卵可以产在陆地上并在陆地上孵化。 2体内受精,受精作用可无需借助水作为介质。 3胚胎悬浮在羊水中,使胚胎在自身的水域中发育,环境更稳定,既避免了陆地干燥的威胁,又减少振动,以防机械损伤。 C恒温出现的进步意义: 1恒温的出现,是动物有机体在漫长的发展过程中与环境条件对立统一的结果。 2高而恒定的体温,促进了体内各种酶的活动、发酵过程,使数以千计的各种酶催化反应获得最大的化学协调,从而大大提高了新陈代谢水平。 3高温下,机体细胞(特别是神经和肌肉细胞)对刺激的反应迅速而持久,肌肉的粘滞性下降,因而肌肉收缩快而有力,显著提高了恒温动物快速运动的能力,有利于捕食及避敌。 4恒温还减少了对外界环境的依赖性,扩大了生活和分布的范围,特别是获得在夜间积极活动的能力和得以在寒冷地区生活。这也是中生代哺乳类能战胜在陆地上占统治地位的爬行类的重要原因。 D胎生和哺乳的进步意义 1胎生和哺乳对后代的发育和生长具有完善、有利的保护。 2从受精卵、胚胎、胎儿产出、至幼仔自立的整个过程均有母兽的良好的保护,使后代的成活率大为提高,而使哺乳类在生存竞争中占有较高的起点,在地球上的生存和发展中具有较大的优势。

无脊椎动物的主要类群3

课时课题:第二章第1节无脊椎动物的主要类群第3课时 课型:新授课 一、教学目标 知识目标 (1)描述常见软体动物及主要特征。(重点) (2)说明节肢动物与陆地环境相适应的主要形态、结构和生理功能特点。(难点)(3)描述节肢动物的主要特征。(重点) 能力目标 (1)通过实验观察,阐明蝗虫形态结构与其陆地生活环境相适应的特点。 情感态度价值观目标 (1)强化“生物与其生活环境相适应”的观点。 (2)进一步强化环保的意识。 二、重点与难点: 重点:理解节肢动物与陆地环境相适应的主要形态、结构和生理功能特点。 难点:描述软体动物、节肢动物的主要特征。 三、教学准备 教师:蝗虫、放大镜、镊子、解剖盘、课件等。 学生:兴趣小组搜集贝壳,准备关于观察蝗虫的实验材料。 四、教法: 1、直观教学法:利用直观教学手段,启发学生积极思考,实现知识的升华和内 化。 2、引导发现法:引导学生层层深入发现未知,并在“动脑、动手、动口”状态 中提高探究能力和创新意识。 3、体验互动法:在师生、生生互动中,实现学生认知过程与情感体验过程的有 机结合。 学法: 1、自主探究法:通过观察的实验,体验科学探究的一般方法,分析问题解决问 题的能力。 2、合作学习法:通过观察蝗虫的结构实验,节肢动物与陆地环境相适应的主要 形态、结构和生理功能特点,提高交流表达能力和团队合作能力。 五、教学过程: (一)创设情境,激趣导入(5分钟)

2、扁形动物,线形动物,环节动物合起来又称为什么动物?以上四类动物都是 什么动物?无脊椎动物还有哪些? 【设计意图】学生认真回忆,复述四类动物的代表动物、主要特征、生活环境、营养方式,进一步加深对知识的记忆与理解。在学生了解了一部分无脊椎动物的类群后继续深入思考,无脊椎动物在进化到环节动物后,又进化到哪类动物?它们比环节动物高等在哪里?继而展开第一个活动: (二)自主探究,讨论交流 展示小螺号的图片并播放《小螺号》歌曲。 探究活动一:软体动物(5分钟) 1、学生阅读教材并完成: (1)常见软体动物有:、、、。 (2)软体动物身体,外壳为,可随身体的生长而增大,呈现出年轮般的花纹,乌贼的贝壳退化为,蜗牛的运动器官是,河蚌的运动器官是,古代用的贝壳作为货币使用。 2、引导学生归纳常见的软体动物,主要特征及生活环境。 主要特征:身体柔软,外壳能随身体的生长而增大,呈现年轮般的花纹。 生活环境:水中或潮湿的陆地。 进一步探究:软体动物比环节动物高等在哪里? 引导学生分析:软体动物大都有坚硬的贝壳,有保护功能,更能适应外部环境。软体动物大多有坚硬的贝壳,节肢动物也有坚硬的外壳,节肢动物的外壳与软体动物的贝壳有什么不同呢?为什么节肢动物比软体动物更能适应陆地的生活呢?引导学生继续探究。 (三)实验探究,互动交流 1、探究活动二:观察蝗虫、虾(5分钟) (1)轻轻地捏一下蝗虫和虾的身体,有什么感觉?

脊椎动物演化历程 双语

脊椎动物演化历程 达尔文主义者认为,两栖类和现代鱼类源出于一种上古的鱼;爬虫出自两栖动物的祖先;飞鸟和哺乳动物分别从爬虫祖先进化而来。最后,他们指出,人与猩猩都是源出于一个相同的猿类祖宗,而且这些猿人的过渡化石已被发掘出来。根据古尔德所言,从爬虫到哺乳动物,和从猿至人之间的过渡化石,已确实证明了进化的事实。 在未分析这些证据之前,我需要加上一些条件,这些条件一定使达尔文主义者很不好受,就是这些证据不能根据"假定学说真实"的大前提来衡量,应从一个独立的立场来考究。 我们已指出古生物学奉达尔文主义为金科玉律,不再怀疑它的真实性,只求在这理论的"骨骼"上加上"肌肉"而已。古生物学家的成就,乃是在于进化祖先的鉴定,因此他们已经建立鉴定进化祖先的标准。美国自然历史博物馆古生物学家加勒特·纳尔逊,直截了当地形容他们的治学态度: 我们必定有一些祖先,我们要找出来。为什么呢?因为我们知道,早晚一定会找出来的。这就是古生物学的作风,我并非夸大其词。 当然,这些"祖先"不能用来证实这套理论,因为学者乃是根据"一定有祖先"的理论,来鉴定祖先。 鱼纲至两栖类 要考证的理论,就是鱼纲进化到一个地步,使它爬出水面,登上陆地,而且同时发展两栖纲的生殖功能和其他特征,达尔文主义者并没有指出一种特别的鱼纲为两栖纲的祖先,但是他们都以一类绝种的扇鳍目(rhipidistians)为祖先类属,这些化石有与早期两栖动物相似的骨骼,如一些可能进化为腿的小骨,但是,据《脊椎动物历史》(Vertebrate History)的作者巴尔巴拉·施塔尔说:"在已知的一切鱼纲中,我们找不到最早的陆地脊椎动物的祖先,因为这些鱼纲都是在最早的两栖纲出现之后才生存的,在这些鱼纲之先的化石都没有发展早期四足动物特有的强壮四肢和肋骨的证据。" 1938年,印度的渔夫捕获一种腔棘鱼(colelacanth),鉴定为7000万年前绝种的样本。很多古生物学家都认为这种鱼与上述的扇鳍目有密切关系,因此这活生生的样本应在研究早期两栖动物的进化上占重要的地位。但是根据腔棘鱼的解剖研究,它的内脏并无任何适应陆地生活的征状,在鱼至两栖动物的进化中并无贡献,这发现使人怀疑此前的扇鳍目也是同样缺乏说服力。 两栖纲至爬虫纲 在这转变时期中并无化石的证据。塞莫利亚(Seymouria)乃是早期的两栖动物化石,具有多少类似爬虫的特征,但是它们在化石历史中出现太晚,最近的证据鉴定它们为道地的两栖动物。而爬虫与两栖动物的骨骼相似,最重要的分别就在于不能变为化石的生殖系统,两栖动物在水中产卵,卵子经过复杂的孵化才变为成长的动物,但爬虫的卵子却有很厚的硬壳,内有羊膜保护胚胎,因此胚胎与成长的动物相若。达尔文的自然选择论不能解释两栖动物如何进化出爬虫的一套生殖系统。 爬虫纲至哺乳纲 最后我们谈谈达尔文主义者最引以为荣的化石证据,即古尔德和其他一些人作为结论性证据引用的具有哺乳动物特征的兽孔目爬虫(Therapsida),这一目(Order)的动物具有很多化石拥有爬虫与哺乳动物的构造,好像是这两纲之间的中间动物。其实在这两纲动物之间的分界线是很难划分的。普遍通用的标准乃是爬虫的颚骨内几个小骨,其中一块与头颅骨连

无脊椎动物各系统进化主线 3

物发生律或称重演律: 德国学者赫克尔提出 生物发展史可分为两个相互密切联系的部分,即个体发育和系统发展,也就是个体的发育历史和由同一起源所产生的生物群的发展历史。个体发育史是系统发展史的 简单而迅速的重演。 消化系统的进化主线: 原生动物只有胞内消化,可用伪足或胞口摄食,另外还可植食和腐食性; 海绵动物仍然是胞内消化; 腔肠动物开始有了消化管;胞内和胞外消化; 扁形动物为胞外消化,但消化管是不完全的; 线形动物出现了完全的消化管,并且有了分化; 环节动物以后由于真体腔的出现,消化管更加复杂和分化,同时有了消化腺。 呼吸系统的进化主线: 原生动物、海绵动物、腔肠动物都没有呼吸和排泄系统,呼吸作用通过体表完成的;扁形动物和线形动物也无呼吸系统,呼吸也是体表进行的,寄生种类为厌氧呼吸,环节动物的呼吸可通过体表和疣足进行; 软体动物的呼吸通过体壁突起的鳃和外套膜进行; 节肢动物的呼吸器官包括鳃(虾)、书鳃(鲎)、书肺(蜘蛛)、气管(昆虫)、气管鳃(幼虫) 以及体表; 棘皮动物的呼吸是通过管足和皮鳃完成。 排泄系统的进化主线: 原生动物、海绵动物、腔肠动物的排泄活动也是借体表完成的;原生动物还可通过伸缩泡进行排泄; 扁形动物和线形动物的排泄系统为外胚层内陷形成的原肾; 扁形动物的排泄系统是焰细胞,线形动物则是原肾管; 环节动物的排泄系统是由外胚层和中胚层共同组成的混合型的后肾; 软体动物的排泄系统是中胚层的后肾; 节肢动物排泄系统有两类,一是体腔管演化而来的肾管,一是马氏管; 棘皮动物的排泄是通过管足和皮鳃完成。 循环系统的进化主线: 环节动物之前的各门类没有专门的循环系统;原生动物中的细胞质流动起到循环的作用; 海绵动物、腔肠动物和扁形动物通过消化循环腔起着循环的作用; 线形动物的原体腔也有输送养料的功能; 真体腔的出现产生了血管,环节动物开始有了真正的循环系统; 除环节动物中的大部分为闭管系统外,其他的高等无脊椎动物的循环系统均为开管式。 神经系统的进化主线: 原生动物没有神经系统,只有纤毛虫有纤维系统联系,起着感觉传递的作用; 海绵动物也无神经系统,借原生质来传递刺激; 腔肠动物的神经系统为网状; 扁形动物和线形动物的神经系统为梯形; 环节动物和节肢动物的神经系统为链式;

《生物进化的历程》word版 公开课获奖教案 (2)

当我们在日常办公时,经常会遇到一些不太好编辑和制作的资料。这些资料因为用的比较少,所以在全网范围内,都不易被找到。您看到的资料,制作于2021年,是根据最新版课本编辑而成。我们集合了衡中、洋思、毛毯厂等知名学校的多位名师,进行集体创作,将日常教学中的一些珍贵资料,融合以后进行再制作,形成了本套作品。 本套作品是集合了多位教学大咖的创作经验,经过创作、审核、优化、发布等环节,最终形成了本作品。本作品为珍贵资源,如果您现在不用,请您收藏一下吧。因为下次再搜索到我的机会不多哦! 22-2生物进化的历程(2) 教学目标: (一)知识目标: 概述生物进化的主要历程,形成生物进化的观点。 (二)能力目标: 根据各种生物的主要特征,要求学生排列出生物的进化顺序,进一步锻炼学生解决问题的能力。 (三)情感态度与价值观目标: 结合生物进化历程的学习,进一步加强学生与生物和谐相处的教育和保护生物圈的意识。 教学重点难点: 重点:生物进化的历程和规律 难点:生物进化的历程和规律 教学设计思想: 动、植物进化的历程是本小节学习的重点。通过了解动物、植物进化的历程,帮助学生认识生物进化的基本规律——从简单到复杂、从低等到高等、从水生到陆生。教学中根据学生已经学习过的动物学、植物学知识,引导学生分析归纳,抓往能反映生物进化的线索,认识生物进化的规律。同时,注意引导学生认识生物进化是生物发展的必然结果。 教师准备:1.查找有关生物进化历程的图片或文字资料。 2.CAI课件 学生准备:查找有关生物进化历程的图片或文字资料。 一.导入新课: 教师:与原始生命起源一样,生物进化的历程也是极其漫长的过程。现在地球上的丰富多彩的生物界是经过漫长的历程逐渐进化形成的。生物进化究竟经历了哪些进化环节呢?今天,我们就一起来探讨一下这个问题。 二.新授: 教师:原始生命在原始海洋中不断繁殖,不断进化。在进化的早期,由于营养方式的差异,原始生命的一部分进化为具有叶绿素的原始藻类,另一部分进化为不含叶绿素的原始单细胞动物。 以后,这两类原始生物分别沿着一定的历程发展为各种各样的植物和动物。 学生:结合已有的动植物的知识,自学生物进化的历程。 1.植物进化的历程

脊椎动物的进化与演化

脊索动物的起源进化演化 脊索动物的起源: 有人认为脊索动物与棘皮动物有共同祖先。此说根据半索动物的成体有接近于脊索动物的特点,而胚胎发育和幼体形态却和棘皮动物的极为相似,加以对肌肉的肌蛋白生化成分的分析,可以说半索动物,棘皮动物和脊索动物有明显的共同点,均具肌酸,而半索动物与棘皮动物的肌蛋白中除含有肌酸,尚含有精氨酸,无脊椎动物的肌蛋白含精氨酸不含肌酸。故主张半索动物、棘皮动物与脊索动物源自共同祖先,由此共同祖先分为3支演化:一个侧支进化为棘皮动物,这从近来发现的一类棘皮动物化石得到更好地证明,它们具一系列类似鲨鱼样的鳃裂,具肛后尾和一个背神经索,它们是一类用鳃裂滤食的动物,十分类似现代的原索动物,另一侧支进化为半索动物;主干进化为脊索动物。并将半索动物与棘皮动物作为从无脊椎动物向脊椎动物演化之过渡类型。 某些具柄的棘皮动物,如已灭绝的棘皮动物中的海果类以及腕足类在这方面都有相似处,也许这些动物间均有亲缘关系,并与早期脊索动物有共同祖先。也许这些动物均各自独立地经适应辐射而形成这些相似性。而它们的循环系统和按节分布的神经系统与肌肉系统均类似于脊椎动物,消化管中的内柱与脊椎动物的甲状腺同源,尤其是其胚胎发育的中胚层体腔囊的形成方式,在前14对体节的形成方式同于棘皮动物与半索动物,14对体节之后的中胚层是从一条独立的细胞带形成,这种方式又与脊椎动物是—致的。另外,文昌鱼的受精卵在卵裂过程中的染色体具明显的双层膜结构,这又与棘皮动物的海胆等相似,而不同于脊椎动物。但文昌鱼又是十分特化的动物,它们的脊索向前超过神经管,按节排列的肾管和生殖腺均与脊椎动物不同。因此,一般动物学者认为文昌鱼类不能代表脊椎动物的祖先。故文昌鱼类或许是脊索动物进化中离开主干的一个侧支,与脊椎动物有共同祖先。

脊椎动物心脏的进化历程

脊椎动物心脏的进化历程 发表时间:2014-09-05T10:41:57.497Z 来源:《教育学文摘》2014年8月总第128期供稿作者:徐照宇[导读] 脊椎动物是动物界中最高等的、与人类关系最密切的动物类群,也是动物界中结构最复杂、数量最多的一个类群。 ◆徐照宇中国农业大学动物医学院动物医学系2010级2班100193 摘要:在动物进化的漫长历程中,因为适应各种不同的环境,动物的身体结构也发生了巨大的变化。本文以进化论的观点、比较解剖学的手法, 以心脏的进化为例,论述了脊椎动物从鱼类、两栖类、爬行类到哺乳类,由水生到陆生、由简单到复杂、由低等到高等, 按一定的顺序发展和演变的规律。 关键词:循环系统鱼类两栖类爬行类哺乳动物心脏脊椎动物是动物界中最高等的、与人类关系最密切的动物类群,也是动物界中结构最复杂、数量最多的一个类群。生物的结构都是与其生活环境相适应的,由于运动和适应复杂环境的需要, 脊椎动物进化出了能够支撑身体的脊柱。随着脊椎动物从水生环境到陆地环境的过渡, 生活环境变得越来越复杂,其身体结构也发生了巨大的演变。本文用进化的观点,用比较解剖学的方法, 论述了脊椎动物心脏结构发生的演变过程。 循环系统是生物体的体液及其管道组成的系统。从动物有了心脏以后,心血管循环系统分心脏和血管两大部分,形成了一个相对封闭的管道系统,血液在其中按照一定的方向循环流动。心脏是血液循环动力的源泉,具有较厚的肌肉壁,内有空腔,肌肉的收缩和舒张使心脏产生有节律的搏动,使血液在血管中循环流动。 一、用鳃呼吸的动物的心脏模式 典型的用鳃呼吸的脊椎动物的心脏,由后向前依次为静脉窦、心房、心室、动脉圆锥。静脉窦接受来自全身的静脉血,静脉血依次通过心房、心室和动脉圆锥,心房和心室没有任何的间隔,只是在静脉窦和心房之间、心房和心室之间有瓣膜,这些瓣膜能防止血液的倒流。 有些动物,如软骨鱼和硬骨鱼,它们的心脏模式与原始的以鳃呼吸的心脏结构相似,但是由于心脏的扭曲,心脏的整体形态逐渐向“S”型过渡,因此这些动物心脏的静脉窦和心房都位于心室的背面。有些动物动脉球代替了动脉圆锥。 二、用肺呼吸的动物的心脏模式 动物在从水生向陆生过渡的过程中,因为生活环境的变化,出现了新的呼吸器官——肺,两栖类的循环系统也因此发生了比较大的变化,循环路线由于增加了肺循环而由单一循环转向双循环,心房此时出现房间隔,由一心房变为两心房;到了爬行类,心室出现了不完全间隔(类似于现在临床上的一些室间隔缺损病症,是一种先天性的心脏病,因为主动脉输血到全身各处,室间隔缺损会导致主动脉射出的血液不足而导致组织器官供血不足,出现一些缺血症状),鳄类则出现了完全的室间隔;到鸟类和哺乳类,心房和心室都分为两部分并且发育完备。从上述过程就可以看出:心脏在演化的过程中,最主要的目的是将来自身体其他部位的动脉血和静脉血分开,适应不同的循环路径,从而提高血液中物质的利用效率。 1.三个腔的心脏模式 两栖类是动物从水生到陆生的过渡类型,因此循环系统也是从单循环向双循环的过渡类型。心房由一腔转变为两腔,左心房接受来自肺静脉的动脉血,右心房接受来自体静脉的静脉血。但是在不同的种类中心房分割的程度也不一样,有些两栖类的心房是完全分隔,而另一些两栖类中,由于没有出现肺这种呼吸器官,因此没有肺循环,心房也是不完全的分隔。 在两栖动物的心室中,没有出现完全的室间隔,但是在内壁却出现了一些肌肉质的网柱和小梁,对两种血液有一定程度的分流作用,但是两种血液不能完全分开,因此血液的运输效率不是很高(如前面提到的室间隔缺损)。但是由于两栖类的皮肤可以辅助呼吸,可以在一定程度上弥补由于血液不分流造成的对氧的利用效率的降低。 2.室间隔不完全的心脏模式 爬行类的心室是不完全的分隔,因此血液的循环也是不完全的双循环。不过有一些种类,如龟鳖类和蛇类,心室则出现了完全的分隔。从这一点也可以看出,动物的心脏在演化过程中是一个渐变的过程,因此也可以认为两栖类中心室出现肌肉质网柱和小梁的结构,为心室出现完全的分隔提供了结构基础。在龟鳖类和蛇类中,心室一方面被一水平隔分为上下两腔,背腔同时被一垂直隔分隔为左右两个腔,这样造成进入心脏的血液的分隔程度比在两栖类中要高得多。在爬行类中,心室的分隔同样在不同的种类中分隔程度不同,在鳄类则出现了完全的室间隔。同时在爬行类中,动脉圆锥消失,静脉窦也趋于退化,成为心房的一部分,对提高血压和提高血液运输效率起到了一定的作用。 3.完美的四个腔的心脏模式 到了鸟类和哺乳类,心脏完全分隔为左右心房和左右心室,在心房和心室之间具有防止血液倒流的房室瓣,从而不完全的双循环转向完全的双循环,在结构上提供了保障。进入心脏的静脉血和动脉血被完全分开而进入体循环和肺循环,大大提高了血液中营养物质的利用效率。 通过对各种脊椎动物心脏结构的比较,可以看出心脏结构演化方向是形成多个腔,以协助脊椎动物由单循环向双循环的演化。由此实例也可以看出:脊椎动物的身体结构是在漫长的时间里,由水生到陆生、由简单到复杂、由低等到高等, 按一定的顺序不断地发展和进化的。

脊椎动物的演化的认识

脊椎动物的演化证据 摘要:在漫长的地史时期中,脊椎动物经历了鱼类-两栖类-爬行类-鸟类-哺乳类,一步步地演化。这其中的每一步都是艰难而又漫长的。这些变化的总趋势是使脊椎动物由低等到高等,由简单到复杂,由水生到陆生逐步演进。使最初的海洋脊椎动物向海、陆、空各领域大规模辐射。 The evidence of evolution of vertebrates Abstract:In the long geological history, the evolution of vertebrates have experienced fish - Amphibians - Reptiles - Birds - Mammals. Each step of which is difficult and lengthy. The general trend of the evolution is to make the next generations of these creatures more advanced. They can also adapt to the life of the land. Thus the living space of vertebrates rangs from the ocean to the sky. 最早的脊椎动物起源假说的是法国进化思想启蒙者G. Saint-Hillaire(1822)的“发育颠倒说”。他发现所有脊椎动物的中枢神经系统和心脏分别位于身体的背部和腹部, 而这种器官布局恰好与节肢动物环节动物等无脊椎动物相反.于是这一学派推测, 在无脊椎动物胚胎发育的某个阶段发生了背腹颠倒, 结果便产生了脊椎动物。然而, 人们终难相信, 分别位于后口动物和原口动物两大谱系顶端的脊椎动物和节肢动物会有直接的亲缘关系, 因为进化生物学的共识是,脊椎动物的起源不大可能与原口动物中的较高等类群直接相关, 而应该根植于较低等的后口动物系列之中。在经历了漫长而曲折的争论后, 至20世纪80年代形成了基于分支系统学的“棘皮动物-半索动物-尾索动物-头索动物-脊椎动物”四步走的演化理论以及后来舒德干的“五步走”理论。 无论脊椎动物的演化理论怎么发展,鱼是最早出现的脊椎动物似乎已经成为了一个定论。1999年11月,先后采自云南昆明市海口地区下寒武统筇竹寺组的昆明鱼和海口鱼“迄今已知最令人信服的早寒武世脊椎动物”和“整个脊椎动物的演化始点”。化石的研究表明所发现的昆明鱼化石是昆明鱼活埋后快速石化形成的,海口鱼化石是海口鱼正常死亡后不久被快速埋葬矿化形成的。这两种鱼皆呈鱼形,不仅具带鳃软骨的原始头颅和比无头类简单“人”字形肌节更为复杂的双“人”字形肌节,而且还发育了原始偶鳍和围心腔构造,表明它们已演化成高

无脊椎动物免疫功能性物质概述

无脊椎动物免疫功能性物质概述 专业:动物学姓名:李波学号:S2******* 无脊椎动物免疫 脊椎动物在长期进化过程中形成了巧妙而又复杂的免疫系统,其免疫机制中既有先天性免疫(innate immunity)又有获得性免疫(acquired immunity),而无脊椎动物缺乏真正的抗体,因此目前认为无脊椎动物仅具有先天性免疫功能,而且,无脊椎动物对病原体的防御是非特异性的。无脊椎动物的免疫反应主要通过物理屏障、吞噬作用、溶菌作用和凝集作用等清除病原菌的侵入和外来异物。因此,缺乏免疫球蛋白的无脊椎动物主要是通过吞噬细胞和非特异性免疫因子来发挥免疫功能的,即细胞免疫和体液免疫,且二者密切相关。 1.细胞免疫 无脊椎动物重要的机体防御机能主要由免疫细胞通过吞噬、包被以及形成结节来实现的,亦由固着性细胞产生的吞噬作用和胞饮作用来实现的。 病原或异物突破机体的防御屏障进入机体后被快速滤入具有滤过作用的组织和器官,在这些部位病原的清除和杀灭由血清和血细胞共同作用来完成,参与吞噬杀菌过程的主要是吞噬细胞,包括血淋巴中的血细胞和淋巴器官中的淋巴细胞。 当病原体穿透体表物理屏障进入到甲壳动物的血淋巴后,会引发一系列的细胞防御反应,主要包括吞噬作用(phagocytosis)、结节形成(nodule formation)、包囊作用(encapsulation)和凝集反应(aggregation)等。吞噬作用是免疫细胞摄取入侵颗粒,并利用胞内产生的活性氧将其杀死的过程。如果侵入体内的病原体数量太多或颗粒太大而不能被吞噬,大量的血细胞会协同作用来封锁病原体,这种现象分别被称作结节形成和包囊作用。血细胞还参与蛋白酶原、凝集酶原以及酚氧化酶原等的相关物质的合成与储存。 吞噬作用在动物界中普遍存在,低等的单细胞动物通过吞噬作用摄取食物,在高等的多细胞动物中,吞噬作用则是控制和清除外来物质侵扰的重要手段。目前已证实甲壳动物的血细胞的确能够吞噬入侵体内的细菌、真菌、洋红颗粒、松脂等,其吞噬过程包括:异物识别、粘连、凝集、摄入、清除等。对异物的识别可能是由该物质的表面性质和血细胞膜上的受体共同决定的。 包囊作用是针对单个细胞无法吞入的较大异物发生的反应。甲壳动物机体首先将外来物质隔离,若异物颗粒直接超过10μm(如某些真菌、寄生虫等),则不能通过单个细胞的吞噬作用摄入,而是在其周围包被数层成纤维细胞而形成包囊,构成包囊的细胞之间形成致密的纤维状连接,可以起到防止被包围的入侵物逃逸的作用。 甲壳动物的血细胞内含有细胞黏附蛋白,能够将细胞和外来异物结合形成紧密凝集状的结节,这些结节就是黏附了外来入侵物的血细胞的聚集体,并且通常在酚氧化酶的作用下发生黑化反应。研究表明,当把外来物注射到动物体内时,循环系统中血细胞数目会显著下降,血细胞发生凝集反应,严重时能阻塞鳃丝的维管结构。 2.体液免疫 无脊椎动物缺乏免疫球蛋白,体液免疫是靠血淋巴中的一些非特异性的酶或因子来进行的。 (1)酚氧化酶 酚氧化酶(Phenoloxidase,PO)又称为酪氨酸酶,能够催化单酚羟化成二酚(如多巴),并把二酚氧化成醌;醌在非酶促条件下形成最终的反应产物黑色素。这些黑色素协同具有细胞毒性的醌类中间产物沉积到入侵的病原体周围,起到隔离杀死病原体的作用,即所谓的黑化包被反应。目前,己从数种无脊椎动物中分离纯化出proPO和PO,并对此作了鉴定。依据物种的不同,它们的最适pH值、最适反应温度、抑制剂等性质有所不同。在甲壳动物中proPO一般为单体蛋白,分子量一般在70-80 kD左右,被激活后所产生的PO的分子量一

无脊椎动物的进化与演变

无脊椎动物的进化与演变 张明月 20141641067 (内江师范学院;生命科学学院;内江;641112) 摘要:无脊椎动物总的演化趋势是由低级到高级,从简单到复杂,从水生到陆生,从分散到集中。对这个总的趋势,起柱石作用的是无脊椎动物各大系统的演化趋势。无脊椎动物二十多个门,从进化树上来看,越高等一点的类群,其神经系统越发达;越低级一点的类群,其神经系统就越简单。消化系统也从不完整进化为完整,然后出现专门的消化腺,今天我们谈论无脊椎动物的进化与演变,主要从神经系统与消化系统两个方面来探究。 关键字:无脊椎动物神经系统消化系统 引言:无脊椎只动物在地球上的总数和数量远远多于脊椎动物。种类多样化,结构也多样化。换而言之,无脊椎动物的多样性导致了生物的多样性。由原生动物开始,无脊椎动物经过了细胞数量,形态,受精卵裂,囊胚及原肠胚的形成,中胚层及体腔的形成,胚层的分化。由单细胞的原生动物开始逐渐发展,出现了腔肠动物,扁形动物、线形动物、环节动物、软体动物和节肢动物。实现了生物由简单到复杂、由低等到高等的生物进化。 无脊椎动物神经系统的进化与演变 原生动物是真核单细胞动物,是动物界里最原始,最低等的动物,它们的主要特征是身体由单个细胞构成因此也称单细胞动物。它没有像高等动物那样的器官,系统而是由细胞分化出不同的部分来完成各种生理活动。如有些种类分化出鞭毛和纤毛完成运动的机能,有些种类分化出胞口,胞咽摄取食物后在体内形成食物泡进行消化,完成营养的机能等。 从腔肠动物起出现了原始的神经系统——神经网。神经网是动物界里最简单最原始的神经系统,一般认为它基本上是由二极和多极神经的细胞组成。这些细胞具有形态上的相似突起,相互连接形成一个输送的网,因此称神经网。有些种

是脊椎动物进化历程中的一个重要类群.

两栖纲(Amphibia) 是脊椎动物进化历程中的一个重要类群,处于从水生向陆生过渡的中间地位。是硬骨鱼类中的古总鳍鱼类在泥盆纪晚期演化而来。属于四足类中的低等类群,初步完成了由水栖向陆栖的转变,各大系统基本具备了陆生脊椎动物的结构模式,但仍不能脱离水环境而生活。包括无足目、有尾目和无尾目3大类。 第一节从水生到陆生的转变 从水生到陆生是脊椎动物生活的一个巨大的飞跃,也是脊椎动物进化中的一个重大事件,陆生脊椎动物因此构成了一个被称为四足类(tetrapods)的动物类群。水是动物体的重要组成成分,并且所有的细胞活动都是在水中进行。从水环境来到干燥的陆地,由于水、陆环境的巨大反差,由水生鱼类进化而来的两栖类的几乎每一个器官系统的形态结构,在完全不同于水环境的陆地上得到了深刻的演变,但仅仅是初步适应了陆地生活,具有了一些典型的陆生脊椎动物的特征,同时与水生脊椎动物在结构和功能上仍保留了许多基本的相似,处于由水上陆的中间过渡状态。 大约在古生代泥盆纪末期(距今约三亿年前),某些具有肺的古代总鳍鱼类尝试登陆并获得成功。这在脊椎动物演化史上是一个划时代的事件。生命起源于水中,动物躯体结构的绝大部分是水,所有细胞活动也都是在水环境下进行的。具有这种结构和功能的水生动物一旦登陆,首先面临着严峻的环境条件,存在着一系列有待解决的矛盾。 大多数两栖动物对人类是有益的,它们是许多农业有害昆虫的天敌,是多种药物的来源,一些种类是人类的食物;在教学和科学实验中两栖类是良好的实验材料,广泛用于生物和医学的各个领域。 1.水、陆环境的差异 陆地环境与水环境之间存在着巨大差异,除了湿度条件最为明显之外,还有一些重要的不同,例如: 1.1空气含氧量比水中充足 空气中所含氧气至少比水大20倍。水中含氧量为3-9mL/L,而空气含氧为210mL/L,是水的20多倍。水中氧气的扩散和渗透率较低,而陆生动物获得氧气容易得多,但摄取氧气的器官必须进行彻底变革。 1.2 水的密度比空气大 水的密度约比空气大1,000倍,比粘液大100倍。这大约等于动物体的原生质的密度。因而尽管它对于动物运动的阻力比空气大得多,却很容易把动物躯体飘浮起来,因而不存在支撑躯体的矛盾。而陆生动物所面临的关键性问题,首先是如何能把躯体支撑起来并完成运动。 1.3水温的恒定性 水体是由含有巨大热能的介质构成,水环境较为稳定,水温变动幅度较小,一般不超过25~30℃。海洋温度近于恒定。而陆地温度则存在着剧烈的周期性变化,例如四季的变化、冻冰与解冻、加上干旱、冰冻、洪水、飓风

动物进化历程资料讲解

动物进化历程

精品文档 简述动物界演化的历程 一、无脊椎动物的演化历程 地球上最早的动物是单细胞的原生动物。 多细胞动物是由原始的单细胞动物演变而来的。一般认为多细胞动物起源于原始的鞭毛虫类,因为它们有许多种类表现出向多细胞状态发展的倾向,如团藻、空球藻等。 低等多细胞动物有多孔动物和腔肠动物。它们具有内外两胚层。内胚层是由囊胚细胞内陷或移入形成。在多孔动物,内胚层围的原肠腔不具有消化能力,只有细胞内消化,被认为是进化过程的侧生动物;而在腔肠动物,原肠腔即消化循环腔,原肠胚的开口则成为将来的口。腔肠、扁形、原腔、环节、软体、节肢动物等各门动物都为原口动物。 扁形动物是无体腔的三胚层动物,环节动物、软体动物在个体发育上都有担轮幼虫期,被认为是由原始的担轮动物祖先演变而来的。 节肢动物和环节动物有许多共同特点,如相似的体形,两侧对称,分节现象,链状神经系统,因此节肢动物被认为是由古代的环节动物演变而来的。 在棘皮动物、半索动物和脊索动物,它们的口是在原口的相对的一端发生的,原口封闭为肛门,而在相对的一端发生口,故称为后口动物。 后口动物中棘皮动物虽体呈辐射对称,但幼体是两侧对称的,这说明其祖先仍然是两侧对称的动物。棘皮动物的幼虫和半索动物的幼虫很相似,这说明两者的亲缘关系。 二、脊椎动物的演化 从进化的过程和规律看,脊椎动物应该是从无脊椎动物演化而来的,其间一定具有许多中间类型的阶段。由于无脊椎动物没有坚硬的骨骼,所以只有从比较解剖学和比较胚胎学方面的材料来寻找演化的线索。 脊椎动物个体发育过程中具有脊索、咽腮裂和背神经管,因此脊椎动物与原索动物有着共同的祖先,即原始无头类,推测可能发生在寒武纪。原始无头类演化出前端具有脑、感官和头骨的原始有头类,即成为脊椎动物的祖先。而尾索动物和头索动物可能是原始无头的两个特化分支。 收集于网络,如有侵权请联系管理员删除

脊椎动物的进化(讲义)

脊椎动物的进化 Evolution of Vertebrates 教学目的和要求: 本课程为古生物学与地层学(含古人类学)、第四纪地质学研究生的专业基础课。本课程同时面向动物学、生态学、进化生物学等专业的研究生。 本课程将脊椎动物的进化置于地质历史的框架中予以介绍,重点介绍一些高阶元类群(如脊椎动物、四足动物、鸟类、哺乳动物)的起源、早期进化历史以及最新研究进展。本课程主要让学生认识脊椎动物进化的基本格局,并了解脊椎动物重要类群起源、灭绝与辐射的环境控制因素,为进一步开展古脊椎动物学、古人类学、进化生物学研究工作积累知识。 内容提要: 第一章引言 古脊椎动物学研究的基本内容、基本方法——研究史,化石概念,地质时代,地质时代中脊椎动物发展的顺序,分类学基本知识 第二章脊椎动物的起源与无颌脊椎动物的进化 脊索动物,最早的脊椎动物,“戴盔披甲”的甲胄鱼类 第三章有颌类的起源与早期进化 有颌类四大类群(棘鱼纲、盾皮鱼纲、软骨鱼纲和硬骨鱼纲)之间的系统发育关系,辐鳍鱼类的进化 第四章从水到陆 四足动物起源假说与化石证据,脊椎动物登陆的环境背景 第五章早期陆生脊椎动物群 两栖类的进化,爬行动物的起源与早期进化 第六章恐龙起源、进化与灭绝(徐星) 恐龙的近亲——翼龙,恐龙家族(蜥臀类与鸟臀类),温血恐龙,恐龙灭绝假说 第七章鸟类起源与进化(周忠和) 带“毛”恐龙与鸟类起源,羽毛与鸟类飞行起源,鸟类早期进化 第八章哺乳动物的起源与早期进化(王元青) 似哺乳爬行动物、哺乳型动物与哺乳动物的起源,中生代哺乳动物的进化 第九章新生代哺乳动物的辐射与环境背景(邓涛) 古新世哺乳动物,哺乳动物群的更替与环境变迁,新生代大陆与有袋类的历史 第十章哺乳动物重要类群的起源与进化(邓涛) 马的进化,偶蹄类的进化,长鼻类(象)的进化,重返海洋的鲸类,灵长类的起 源与早期进化 主要参考书 (1) E. H. 科尔伯特,《脊椎动物进化——各时代脊椎动物的历史》,地质出版社(周明镇、刘后一、周本雄译,1976) (2) 李传夔、王原主编,《史前生物历程》,2002,北京教育出版社。 (3) M. J. Benton, Vertebrate Paleontology, 2nd edition, 1997, Chapman & Hall, London. (4) R. L. Carroll, Vertebrate Paleontology and Evolution, 1987, W.H. Freeman. (5) R. L. Carroll, Pattern and Process of Vertebrate Evolution, 1997, Cambridge University Press.

相关文档
最新文档