光谱基础知识

光谱基础知识
光谱基础知识

光谱:处于不同状态的物质,在状态发生变化时所产生的电子辐射,经色散系统分光后,按波长或频率或能量顺序排列就形成了光谱。

射频区:核磁共振,电子自旋共振,10m-1cm

微波区:分子转动能级间跃迁,1cm-100um

红外区:分子振动能级变化,100um-1um

可见、紫外光谱区:原子外层电子跃迁,价电子能级间跃迁,1um-10nm

X射线区:原子内壳电子跃迁10nm

分立谱和连续谱

分立谱由一些线光谱组成,线光谱是在某些频率上出现极大值分布的光强分布形式。原子的束缚能级间跃迁产生分立的线光谱。有发射光谱和吸收光谱

连续谱是在一段光谱区上光强为连续过渡而无法分离的光谱,一般热辐射所产生的光谱为连续光谱。当原子或分子在辐射的激发下电离时,能形成连续的吸收光谱,在等离子体中电子的韧致辐射或电子与离子的复合会产生连续的发射光谱

光谱按能量传递方式可分为:发射光谱、吸收光谱、荧光光谱和拉曼光谱。

原子光谱:由于原子状态发生变化而产生的电子辐射。

磷光是一种缓慢发光的光致冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态(通常具有和基态不同的自旋多重度),然后缓慢地退激发并发出比入射光的的波长长的出射光(通常波长在可见光波段),而且与荧光过程不同,当入射光停止后,发光现象持续存在。发出磷光的退激发过程是被量子力学的跃迁选择规则禁戒的,因此这个过程很缓慢。所谓的"在黑暗中发光"的材料通常都是磷光性材料,如夜明珠。

荧光是一种光致发光的冷发光现象。当某种常温物质经某种波长的入射光(通常是紫外线或X射线)照射,吸收光能后进入激发态,并且立即退激发并发出出射光(通常波长比入射光的的波长长,在可见光波段);而且一旦停止入射光,发光现象也随之立即消失。具有这种性质的出射光就被称之为荧光。

等离子体是原子分子集团处于高度电离的状态。其特点是高温和高度电离

光谱特点:在正常原子的离化限附近存在着一片能记得准连续区。一方面这个区域是常态原子能级的密集区,另一方面高密度的电子与离子的电场和高温使能级大大展宽,以至于在某个能级上,各个挨得很近的能级出现了重叠,于是形成了这种准连续区。

等离子体的温度和电离程度越高,准连续区越向基态扩展,以致出现电子在受束缚的全部范围内都没有分立能级了。

等离子体种可能产生的跃迁光谱有:

分立谱:与常态下原子跃迁相同

韧致辐射:发生在离化限以上的连续区内,这里也是自由电子区,高温下的电子可能具有很高的动能,电子在运动过程中当动能降低时就会伴随有辐射产生,称为韧性辐射,是连续谱。自由电子在离子场作用下发生电子-离子库仑碰撞,使自由电子跃迁到较低能量的另一自由态,伴随着电子因碰撞而产生减速度,从而把多余的能量以光子形式辐射出去,这种由于库仑碰撞引起的辐射称为韧致辐射。

逆韧致辐射即电子的自由—自由跃迁吸收激光能量所致

自由-束缚跃迁:由于自由区中辐射的波长可以连续改变,所以是连续谱。等离子体中自由电子与离子碰撞后复合或者自由电子被中性粒子俘获,被复合或俘获的电子多余能量以光子形式辐射出来。跃迁前电子是自由态,跃迁后电子束缚于某能级,所以称为自由-束缚跃迁,

自由电子具有连续的速度分布,即能量是连续的,因此电子复合辐射也是连续谱。 自由-准连续态跃迁:同上

在等离子体的发射光谱中总会有大量的连续光谱,实际由于准连续区的存在,实际的产生连续跃迁的能量范围是很大的,因此它的连续光谱很宽,从紫外到红外都有。

谱线宽度和线性

线宽:谱线强度下降到一半时相应两个频率之间的间隔FWHM

自然加宽:辐射场随时间的衰减不是纯正弦振荡,而是对应着一定的频带宽度,较小

多普勒加宽:发光原子相对观察者(检测器)运动而产生的一种光波频移现象,与绝对温度的平

碰撞加宽:也称压力展宽,是由于原子间的相互作用而引起的,不仅使轮廓谱线变宽,而且还会使谱线中心移动及线型发生变化,与气体压力相关

色散:分光后不同波长的光线的分开程度。

分辨本领:分辨两条非常接近的谱线的能力

瑞利准则:如果两条强度相等、波长差为λ?的谱线被光栅分开的角距βd 正好和光栅衍射后的每一条谱线的角距'

βd 相等,这是谱线的极大值正好落在另一条谱线的极小值上,可以认为这两条谱线是可以分辨的

没有迭级的区域成为自由光谱区,m /λλ=?。在光谱仪中应避免这种现象,常用的方法有:(1)用滤光片滤去不需要的光谱级次;(2)用棱镜或光栅做预置色散,使它的色散方向垂直于主仪器的色散方向,使不同级次的光谱沿高度方向拉开,达到分离光谱的目的。

平面光栅零级衍射的能量最大,随着衍射级数上的增高,衍射能量将逐渐减少。而在处原来的主极大值变为零,这种情况称为缺级。 由于零级衍射没有分光作用,而色散高的二三级等强度较低,不利于使用光栅色散大的高级次。

为改善这种情况,光谱仪中常采用闪耀光栅。它可使最高能量集中在所需能级上。

光电倍增管:响应时间快,可用于检测快速的光脉冲过程。

锁相放大器:实际上是一个模拟相关器,利用信号与噪声的互不相关性来抑制噪声的设备。相关器由乘法器和积分器组成,乘法器也称相敏检波器。

待测元素的谱线波长的确定:

(1) 光谱比较法:将试样测得的光谱线与标准波长表进行比较,从而确定试样中某元素的特

征波长是否存在的方法。常用的是与铁谱的标准波长进行比对,以确定该谱线是属于哪个元素的谱线。

(2) 波长测定法:依据位置谱线处于两条已知波长的铁谱线中间,这些谱线的波长很接近,

普片上的谱线间的距离与谱线间的波长差可看作成正比,因而谱线的波长可由线间距用比长仪准确测量来确定,再根据波长的数值由谱线表中查出该谱线对应的元素。

原子发射光谱分析的光源:

1、火焰光源:仪器装置简单,激光温度低,产生谱线少,光谱干扰少,价格低廉,稳定性

好。该仪器通常只需使用滤光片作色散元件,光电池作监测器件。常用于碱金属、钙等谱线简单的几个元素的测定,在硅酸盐、血浆等样品的分析中应用较多。但对难激发元素,由于光源激发温度低,激发效率低测定困难,无法进行多元素的同时测定,仪器的选择性差。

2、电弧光源

a、直流电弧:电极温度高,蒸发能力强,分析的绝对灵敏度较高。常用于定性分析及

矿石难熔物中低含量成分的定量测定。缺点是弧焰不稳定,谱线容易发生自吸现象,因此分析精密度差,适用于定性分析;同时适用于矿石、矿物等难熔样品及稀土、

铌、钽tan、铪hao、铪等难熔元素的定量分析。

b、交流电弧:电极温度高、蒸发量大、检出限好,分析精度比直流电弧强,但分析线

性范围窄。该光源尤其对地质试样、粉末和固体样品直接分析,效果颇佳。

3、火花光源

4、等离子体光源

a、电感耦合等离子体炬(ICP):利用电磁感应高频加热原理,在高频电场作用下,使流

经石英炬管的工作气体电离而形成能自持的稳定等离子体。

b、直流等离子体喷焰(DCP):被气体压缩了的大电流直流电弧,对大多数元素的检出

限比ICP差0.5~1个数量级,别适用于难挥发元素、铂bo族和稀土元素的分析。

c、微波感生等离子体炬(MIP):微波能量通过谐振腔耦合给炬管中的气体,主要用于

非金属元素、气体元素和有机元素分析。

5、辉光放电光源:辉光是在低气压下的气体放电现象。最大优势是分析固体样品。

6、激光光源:由于激光激发的光斑直径只有10~300微米,可用于微区分析。

激光诱导等离子体:当高强度的脉冲激光被聚焦到物质上,它所产生的辐射强度超过物质的解离阈值就会在局部产生等离子体,用光谱仪直接收集样品表面等离子体产生的发射谱线信号,根据发射谱线的强度进行定量分析,称为激光诱导解离光谱法(LIBS或LIPS)

色散系统

中阶梯光栅:与普通闪耀光栅相比,其刻槽密度较小,但刻槽深度大,闪耀较大,对可见紫外光谱区工作级次达40~120级,因此谱线重叠十分严重。为将不同级次的重叠谱线分开,通常采用交叉色散的原理,即使谱线色散方向和谱级散开方向正交,在焦面上形成二维色散图像。其具体办法是在中阶梯光栅光路的后方或是前方安设一个辅助色散元件(大多是棱镜)。

色散率:光栅色散系统将不同波长的光分散开来的能力,即将紧邻的两条谱线分开的程度;分辨率:按照瑞利准则能正确分辨出波长相差极小的两条谱线的能力。

光谱分析操作规程

1 适用范围 本规程适用于GVM-1014S光谱分析仪光谱分析、 2 测量原理 将加工好的块状样品作为一个电极,与反电极之间激发激光,通过分光元件将激发光分解成光谱。发射光的光谱特征谱线表示所给样式的含量的特性,对选用的内标线和分析线的强度进行光电测量,根据所用标准样品制作的工作曲线,求出样品中分析元素的含量。 3 操作程序 3.1 开关机程序 3.1.1 开机 顺序打开稳压电源开关、光谱仪主开关、温度调节开关、激发光源开关(随做随开)、CRT、打印机、计算机、真空泵电源及手动阀门。 3.1.2 关机 先关计算机,再关CRT,以下顺序与开机顺序相反。 3.2 准备工作(光谱仪稳定四小时后方可进行描迹、标准化、含量分析)。 3.2.1 抽真空(每天需要进行的工作) 开机后计算机自动进入数据处理系统,按“ENTER”键后,即进入工作状态。 3.2.1.1 按“shift+F1”键,显示主菜单画面,用“↑”,“↓”键,将光标移至“maintenance” 3.2.1.2 用“↑”、“↓”键将光标移至“Instrument Status”(仪器状态)项,按“ENTER”键,则显示出其画面。 3.2.1.3 打开真空泵开关五分钟后,打开手动阀门,待“V ACUUM”黄色指针移至左侧绿色区域中央时关闭手动阀门。一分钟后关掉真空泵电源开关,同时确认“AC 100V”、“TEMP”在绿色区域。 3.2.2 描迹(需要时) 3.2.2.1 按“F10”键回到“维护”画面,用“↑”、“↓”键将光标移至“manual scanning”(描迹)项,按“ENTER”键,则显示其他画面。 3.2.2.2 打开氩气总阀,打开激发光源开关,按“F8”键打开负高压开关。 3.2.2.3 放好描迹的试样,按“F1”键开始激发,用手握紧鼓轮逆时针转动20小格,再顺时针转动,每间隔5个小格按“F6”键,CRT上显示出标记。当描出Fe线有峰值的轮廓时,按“F2”键,停止激发。

红外光谱分析仪基础知识全解

红外光谱分析仪基础知识 前言 (2) 第一章红外光谱法及相关仪器 (4) 一. 红外光谱概述 (4) 1. 红外光区的划分 (4) 2. 红外光谱法的特点 (5) 3. 产生红外吸收的条件 (5) 二. 红外光谱仪 (6) 1. 红外光谱仪的主要部件 (6) 2. 红外光谱仪的分类 (9) 3. 红外光谱仪各项指标的含义 (12) 三.红外光谱仪的应用 (15) 四.红外试样制备 (16) 四.红外光谱仪的新进展 (17)

前言 分析仪器常使用的分析方法是光谱分析法,光谱分析法可分为吸收光谱分析法和发射光谱分析法,而吸收光谱分析法又是目前应用最广泛的一种光谱分析方法:它包括有核磁共振,X射线吸收光谱,紫外-可见吸收光谱,红外光谱,微波谱,原子吸收光谱等。但最常用的则是原子吸收光谱、紫外-可见吸收光谱和红外光谱,这些方法的最基本原理是物质(这里说物质都是指物质中的分子或原子,下同)对电磁辐射的吸收。还有拉曼光谱和荧光光谱,也是比较常用的手段,它们的原理是基于物质发射或散射电磁辐射。其实物质与电磁辐射的作用还有偏振、干涉、衍射等,由此发展而成的是另外一系列的仪器,如椭偏仪、测糖仪、偏光显微镜、X射线衍射仪等等,这些仪器都不是基于光谱分析法,不是我们介绍的重点。 吸收光谱可分为原子吸收光谱和分子吸收光谱。当电磁辐射与物质相互作用时,就会发生反射、散射、透射和吸收电磁辐射的现象,物质所以能够吸收光是由物质本身的能级状态所决定的。例如原子吸收可见光和紫外光,可以使核外电子由基态跃迁到激发态,相应于不同能级之间的跃迁都需吸收一定波长的光。因此,如有一波长连续的光照射单原子元素的蒸气(如汞蒸气、钠蒸气等),将会产生一系列的吸收谱线。由于在一般情况下原子都处于基态,通常只有能量相当于从基态跃迁到激发态的所谓主系谱线出现在原子的吸收光谱中。 而分于吸收光谱则比较复杂。它们不是分立的谱线而是许多吸收带。因为每一个分子的能量包括三部分,即分子的电子能量、振动能量和转动能量。每一种能量都是量子化的。当电子有一种能级跃迁到另一能级时,可能同时还伴有振动能级和转动能级的跃迁。应此分子吸收光谱是一系列的吸收带。通常引起原子或分子中外层价电子的跃迁需要1.5-8.0ev的能量,其相应的辐射波长在 150nm-800nm之间,这是紫外-可见吸收光谱的波长范围。引起振动跃迁或振动-转动跃迁的能量是0.05-1.2ev,相应的辐射波长在1.0-25μm之间,这是红外光谱的范围。

光谱分析系统定标操作指南解析

光谱分析系统定标操作指南 1.打开WY直流电源和光谱仪电源,预热15分钟,启动 PMS-50/80PLUS软件。 2.在PMS-50/80软件主界面“测试”菜单“系统设置”中的“通讯 选项”对话框里设置相应通讯端口,选择任意一种“测试模式”。 3.把负载线连接在积分球上的“1”“2”接线柱和WY电源输出端之 间(WY305电压电流调至最小位置即逆时针方向调节电压和电流旋钮发出响声) 4.安装标准灯,调节灯杆位置使灯泡处于挡光班的中心高度,以确 保标准灯发出的光线不直射光度探测器和光纤。 5.关闭积分球,在“测试”菜单中或工具栏中选择“光通量定标”, 点击“关灯校零”进行光度校零。 6.校零成功后,手动调节WY电源(也可以在软件中的WY系列功 能中输入标准灯的标定电流和参考电压(输入的电压数值比标识的参考电压高1-2伏以把线路上的压降考虑进去),使其输出电流至标准灯标定电流值并处于稳流状态,等待5分钟以上待发光稳定,进行光通量定标,并“存盘推出”。 7.在“测试”菜单中或工具栏中点击“光谱定标”,进行色温定标, 完毕后“存盘退出”。 8.在PMS-50/80软件主页界面“测试”菜单“系统设置”中的“通 讯选项”对话框里选择另一种“测试模式”。 9.在“测试”菜单中或工具栏中点击“光谱定标”进行色温定标,

完毕后“存盘退出”。 10.把标准灯当做被测光源,在“测试”菜单中或工具栏中点击”电光 源测试“开始测试,测试结束验证测试色温和光通量是否正确:(要求色温偏差在±15K以内,光通量偏差在±1%以内)符合进行11步,如不符合关灯后重新5-10步的操作。 11.把WY电源的输出调至最小,以熄灭标准灯,等标准灯冷却后, 取下放入灯盒。 12.关闭WY电源,取下负载线接至机柜后的负载接线柱,至此完成 定标,即可以正常的测试操作了。 注:早期的PMS-50(即测试时间为2-3分钟的机型不需要8、9两步的操作)!

光谱

氢原子光谱 121120123 拓明君引言: 光谱线系的规律与原子结构有内在的联系,因此,原子光谱是研究原子结构的一种重要方法。1885年巴尔末总结了人们对氢光谱测量的结果,发现了氢光谱的规律,提出了著名的巴尔末公式,氢光谱规律的发现为玻尔理论的建立提供了坚实的实验基础,对原子物理学1120123和量子力学的发展起过重要作用。1932年尤里根据里德伯常数随原子核质量不同而变化的规律,对重氢赖曼线系进行摄谱分析,发现氢的同位素氘的存在。通过巴尔末公式求得的里德伯常数是物理学中少数几个最精确的常数之一,成为检验原子理论可靠性的标准和测量其他基本物理常数的依据。 实验目的: (1)熟悉光栅光谱仪的性能和用法; (2)用光栅光谱仪测量氢原子光谱巴尔末系数的波长,求里德伯常数; 实验原理: 氢原子光谱 氢原子光谱是最简单、最典型的原子光谱。用电激发氢放电管(氢灯)中的稀薄氢气(压力在102Pa左右),可得到线状氢原子光谱。瑞士物理学家巴尔末根据实验结果给出氢原子光谱在可见光区域的经验公式 式中为氢原子谱线在真空中的波长。是一经验常数。n取3,4,5等整数。若用波数表示,则上式变为 式中称为氢的里德伯常数。根据玻尔理论,对氢和类氢原子的里德伯常数的计算,得 式中M为原子核质量,m为电子质量,e为电子电荷,c为光速,h为普朗克常数,为真空介电常数,z为原子序数。 当m→∞时,由上式可得出相当于原子核不动时的里德伯常数(普适的里德伯常数) 所以,对于氢,有

由此可知,通过实验测得氢的巴尔末线系的前几条谱线的波长,可求得氢的里德伯常数。里德伯常数是重要的基本物理常数之一,对它的精密测量在科学上 有重要意义,目前它的推荐值为=。 表1 氢的巴尔末线系波长 值得注意的是,计算和时,应该用氢谱线在真空中的波长,而实验是在空 ,气中进行的,所以应将空气中的波长转换成真空中的波长。即 真空空气 实验仪器: 实验中用的仪器是WGD-3型组合式多功能光栅光谱仪,其主要由光栅单色仪、接收单元、扫描系统、电子放大器、A/D采集单元、计算机组成。其光学原理图如图1所示,入射狭缝、出射狭缝均为直狭缝,宽度范围0~2.5mm连续可调,光源发出的光束进入入射狭缝,位于反射式准光镜的焦面上,通过入射的光束经反射成平行光束投向平面光栅G上,衍射后的平行光束经 物镜成像在上和上,通过可以观察光的衍射情况,以便调节光栅;光通过后用光电倍增管接收,送入计算机进行分析。

光谱基础知识解读

太阳光光谱 紫外线谱带:波长280-400nm之间,其特点是穿透性强,可使人体皮肤黑色素沉积,颜色加深,过度的紫外线曝晒会导致皮肤癌,可导致地毯、窗帘、织物及家具油漆褪色。 可见光谱带:波长380~780nm之间,其特点是肉眼可以看见的唯一光谱,可见光波段进一步可以分为不同的颜色(赤橙黄绿蓝靛紫七色),对人体没有直接伤害。 红外光谱带:波长700~2400nm之间,其特点是我们可以直接感受到阳光“不可见”的热量,所含能量最大,所以热量也高。 各波段的远近红外线构成了太阳能的53%,紫外线占3%,可见光占44%。 元素光谱简介 如果物质是以单原子的形式而存在,关键看该原子的电子激发能了。如果在可见光的某个范围内,并且吸收某一部分光线,那它就显剩下的部分的光线的颜色。如该原子的电子激发能非常低,可以吸收任意的光线,该原子就是黑色的,如果该原子的电子激发能非常高。不能吸收任何光线,它就是白色的。如果它能吸收短波部分的光线,那它就是红色或黄色的。 具体的元素光谱:红色代表硫元素,蓝色代表氧元素,而绿色代表氢元素。 元素燃烧发出的光谱 燃烧所发出的光色根据不同的元素发出不同的光谱,每一种元素燃烧时都发出多条光谱,这种光通过三梭镜或光栅后会在屏障上显现出多条亮线,也就是说只发出有限的几种频率的光,这就是这种元素的光谱。其中会有一条或几条最亮的线,这几条最亮的线决定了在人眼中所看到的颜色。 观察光谱的方法 连续光谱的光线在通过含某种元素的气体时在光谱带上会出现多条暗线,这些暗线刚好与这种元素的光谱线位置相同,强度刚好相反,(光谱线越强的位置暗线越明显)这就是元素的吸收光谱。天文学家就是利用吸收光谱来查明遥远的恒星大气和星云中所含的元素,观察恒星红移或蓝移也要利用吸收光谱。 观察固态或液态物质的原子光谱,可以把它们放到煤气灯的火焰或电弧中去烧,使它们气化后发光,就可以从分光镜中看到它们的明线光谱 原子决定明线光谱 实验证明,原子不同,发射的明线光谱也不同,每种元素的原子都有一定的明线光谱.彩图7就是几种元素的明线光谱.每种原子只能发出具有本身特征的某些波长的光,因此,明线光谱的谱线叫做原子的特征谱线.利用原子的特征谱线可以鉴别物质和研究原子的结构。 吸收光谱 吸收光谱高温物体发出的白光(其中包含连续分布的一切波长的光)通过物质时,

光谱分析仪

光谱分析仪 一、概述 光谱分析仪是在平时的光通信波分复用产品中较常使用到的仪表,当WDM系统刚出现时,多用它测试信号波长和光信噪比。其主要特点是动态范围大,一般可达70dB;灵敏度好,可达-90dBm;分辨率带宽小,一般小于0.1nm;比较适合于测试光信噪比。另外测量波长范围大,一般在600~1700nm.,但是测试波长精度时却不如多波长计准确。 在光谱的测量、各参考点通路信号光功率、各参考点光信噪比、光放大器各个波长的增益系数和增益平坦度的测试都可以使用光谱分析仪。光谱分析仪现在也集成了WDM的分析软件,可以很方便地把WDM的各个波长的中心频率、功率、光信噪比等参数用菜单的方式显示出来。 二、常用参数的测试 光谱分析仪的屏幕显示测量条件、标记值、其它数据以及测量波形。屏幕各部分的名称显示如下:

图1:屏幕各部分的名称 1、光谱谱宽的测量 谱宽即光谱的带宽,使用光谱分析仪可以测量LD、发光二极管的谱宽。在光谱的谱宽测量时,要特别注意光谱分析仪系统分辨率的选择,即原理上光谱分析仪的分辨率应当小于被测信号谱宽的1/10.,一般推荐设置为至少小于被测信号谱宽的1/5。 在实际的测量中,为了能够准确测量数据,一般选择分辨率带宽为0.1nm以下。分辨率带宽RES位于SETUP菜单中的第一项,直接输入所要设定的分辨率带宽的大小即可。如下图2、3、4所示(图中只为区别光谱形状的不同),当选择的分辨率带宽不同时,从光谱分析仪观察到的光谱形状有很大的不同,并且所测量得到的谱宽大小的不同。

图2:分辨率带宽RES=0.5nm时的光谱形状 图3:分辨率带宽RES=0.1nm时的光谱形状

光谱学及其应用

光谱学及其应用 摘要:光谱学是光学的一个分支学科,它主要研究各种物质的光谱的产生及其同物质之间的相互作用。光谱是电磁辐射按照波长的有序排列,根据实验条件的不同,各个辐射波长都具有各自的特征强度。通过光谱的研究,人们可以得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。但是,光谱学技术并不仅是一种科学工具,在化学分析中它也提供了重要的定性与定量的分析方法。 关键词:发展简史;内容;发射;吸收;分析;应用 光谱学的发展简史 光谱学的研究已有一百多年的历史了。1666年,牛顿把通过玻璃棱镜的太阳光分解成了从红光到紫光的各种颜色的光谱,他发现白光是由各种颜色的光组成的。这是可算是最早对光谱的研究。 其后一直到1802年,渥拉斯顿观察到了光谱线,其后在1814年夫琅和费也独立地发现它。牛顿之所以没有能观察到光谱线,是因为他使太阳光通过了圆孔而不是通过狭缝。在1814~1815年之间,夫琅和费公布了太阳光谱中的许多条暗线,并以字母来命名,其中有些命名沿用至今。此后便把这些线称为夫琅和费暗线。 实用光谱学是由基尔霍夫与本生在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,并利用这种方法发现了几种当时还未知的元素,并且证明了太阳里也存在着多种已知的元素。 从19世纪中叶起,氢原子光谱一直是光谱学研究的重要课题之一。在试图说明氢原子光谱的过程中,所得到的各项成就对量子力学法则的建立起了很大促进作用。这些法则不仅能够应用于氢原子,也能应用于其他原子、分子和凝聚态物质。 氢原子光谱中最强的一条谱线是1853年由瑞典物理学家埃斯特朗探测出来的。此后的20年,在星体的光谱中观测到了更多的氢原子谱线。1885年,从事天文测量的瑞士科学家巴耳末找到一个经验公式来说明已知的氢原子诺线的位置,此后便把这一组线称为巴耳末系。继巴耳末的成就之后,1889年,瑞典光谱学家里德伯发现了许多元素的线状光谱系,其中最为明显的为碱金属原子的光谱系,它们也都能满足一个简单的公式。 尽管氢原子光谱线的波长的表示式十分简单,不过当时对其起因却茫然不知。一直到1913年,玻尔才对它作出了明确的解释。但玻尔理论并不能解释所观测到的原子光谱的各种特征,即使对于氢原子光谱的进一步的解释也遇到了困难。 能够满意地解释光谱线的成因的是20世纪发展起来的量子力学。电子不仅具有轨道角动量,而且还具有自旋角动量。这两种角动量的结合便成功地解释了光谱线的分裂现象。 电子自旋的概念首先是在1925年由乌伦贝克和古兹密特作为假设而引入的,以便解释碱金属原子光谱的测量结果。在狄喇克的相对论性量子力学中,电子自旋(包括质子自旋与中子自旋)的概念有了牢固的理论基础,它成了基本方程的自然结果而不是作为一种特别的假设了。 1896年,塞曼把光源放在磁场中来观察磁场对光三重线,发现这些谱线都是偏振的。现在把这种现象称为塞曼效应。次年,洛伦兹对于这个效应作了满意的解释。 塞曼效应不仅在理论上具有重要意义,而且在应用中也是重要的。在复杂光谱的分类中,塞曼效应是一种很有用的方法,它有效地帮助了人们对于复杂光谱的理解。

绪论-分子光谱习题参考答案..

第一章 绪 论 ⒈ 解释下列名词 ⑴仪器分析与化学分析; ⑵标准曲线与线性范围; ⑶灵敏度﹑精密度﹑准确度和检出限。 解:⑴化学分析是以物质的化学反应为基础的分析方法。 仪器分析是以物质的物理性质和物理化学性质(光﹑电﹑热﹑磁等)为 基础的分析方法,这类方法一般需要使用比较复杂的仪器。 ⑵标准曲线是被测物质的浓度或含量与仪器响应信号的关系曲线。 标准曲线的直线部分所对应的被测物质浓度(或含量)的范围称该方法的线性范围。 ⑶物质单位浓度或单位质量的变化引起响应信号值变化的程度,称该方法的灵敏度。 精密度是指使用同一方法,对同一试样进行多次测定所得结果的抑制程度。 试液含量的测定值与试液含量的真实值(或标准值)相符合的程度称为准确度。 某一方法在给定的置信水平可以检出被测物质的最小浓度或最小质量,称为这种方法对该物质的检出限。 ⒉ 对试样中某一成分进行5次测定,所得的测量结果(单位μg ﹒mL -1)分别为0.36,0.38,0.35,0.37,0.39. ⑴ 计算测定结果的相对标准偏差; ⑵ 如果试样中该成分的真实值含量是0.38μg ﹒L -1,试计算测定结果的相对误差 解:⑴ x =n 1(x 1+x 2+…+x n )=0.37; S=1 )(12--∑=n x x n i i =0.0158; r s =x s ×100℅=4.27℅。 ⑵ E r =μμ -x ×100℅=-2.63℅。 ⒊ 用次甲基蓝–二氯乙烷光度法测定试样中硼时,为制作标准曲线,配制一系列质量浓度ρB (单位mg ﹒L -1)分别为0.5,1.0,2.0,3.0,4.0,5.0的标准溶液,测得吸光度A 分别为0.140,0.160,0.280,0.380,0.410和0.540。试写出该标准曲线的一元线性回归方程,并求出相关系数。

光谱仪基础知识

第1章衍射光栅:刻划型和全息型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见Diffraction Gratings Ruled & Holographic Handbook). 经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。 本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。 1.1 基础公式 在介绍基础公式前,有必要简要说明单色光和连续谱。 提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。 提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1nm的谱线组成的线状谱。 本书中的公式适用于空气中的情况,即m0=1。因此,l=l0=空气中的波长。 定义单位 α - (alpha) 入射角度 β - (beta) 衍射角度 k - 衍射阶数整数

定义单位 n - 刻线密度刻线数每毫米 D V - 分离角度 μ - 折射率无单位 λ - 真空波长纳米 λ0 - 折射率为μ0介质中的波长 其中λ 0 = λ/μ 1 nm = 10-6 mm; 1 mm = 10-3 mm; 1 A = 10-7 mm 最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角D V成为常数,由下式决定, (1-2) 对于一个给定的波长l,如需求得a和b,光栅方程(1-1)可改写为: (1-3) 假定D V值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

光谱学课程总结

《光谱学与光谱技术》课程总结 第一章 氢原子光谱的基础 1. 氢原子的旧量子理论是由玻尔创立的,玻尔并成功地解释了氢原子光谱。 2. 在光谱学中波数定义为波长的倒数,即 。 3光谱图强度曲线中横坐标可用波长表示,也可用波数表示,还可用频率表示。 4. 当原子被激发到电离限之下时其光谱线为分立谱;当原子被激发到接近或高 于电离限的位置时其光谱线为连续谱。原子光谱是原子的结构的体现。 5. 针对H 原子的Pfund 系光谱, 22115R n ν??=- ??? H , R H =109677.6cm -1 为已知常数。请计算该线系的最长波长和最短波长。 221115R n νλ??==- ???H n =6, 22115R n ??- ??? H 最小,λ最大 n →∞,221115R n νλ??= =- ???H 最大,λ最短 6. 激光作为光谱学研究的光源有优势 (1)单色性好:普通光源发射的光包含各种不相同的频率,含有多种颜色;而激光发射的光频宽极窄, 是最好的单色光源。 (2)相干性好:由于激光是受激辐射的光放大,具有很好的相干性;而普通光 源的光由自发辐射产生是非相干光。 (3)方向性好:激光束的发散角很小,几乎是一平行的光线,便于调整光路;而普 通光源发出的光是发散的,不便于调整光路。 (4)高亮度:激光的亮度可比普通光源高出1012-1019倍,便于做各种实验。 7. 使H 原子解除简并的两种效应及其异同。 部分解除简并是由相对论(速度)效应和LS 耦合(自旋与轨道作用)作用共同 导致的,要想完全解除简并, 则需加磁场(与原子磁矩相互作用产生附加能导致 1λ

光谱学的发展

光谱学的发展 光谱学是光学的一个分支学科,它研究各种物质的光谱的产生及其同物质之间相互作用。光谱是电磁辐射按照波长的有序排列;根据实验条件的不同,各个辐射波长都具有各自的特征强度。通过光谱的研究,人们可以得到原子、分子等的能级结构、能级寿命、电子的组态、分子的几何形状、化学键的性质、反应动力学等多方面物质结构的知识。光谱学的历史应从牛顿的色散实验开始,由于牛顿的精湛技术,使人们对白光的认识和对颜色的认识大大深入了。1752年,英国的梅耳维尔(Thomas Melvill,1726~1753)报告了他对多种物质产生的火焰光谱进行的研究,发现了包括纳谱线在内的一些谱线。19世纪初,赫歇尔(William Herschel,1738~1822)和里特(Johann Wilhelm Ritter,1776~1810)先后发现了在人的视觉范围之外的射线,即红外线和紫外线。1814年夫琅和费(Franhofer Joseph von,1787~1826)观察到了光谱线;但是,光谱学技术并不仅是一种科学工具,在化学分析中它也提供了重要的定性与定量的分析方法。实用光谱学是由基尔霍夫(Kirchhof Gottlieb Sigimund Constantin,1764~1833)与本生(Bunsen Rebent Wilhelm Ebethard,1811~1899)在19世纪60年代发展起来的;他们证明光谱学可以用作定性化学分析的新方法,还利用这种方法发现了几种当时还为人所不知的元素,并且证明了在太阳里存在着多种已知的元素。 1、光谱线的最初观察 1752年,梅耳维尔第一个观察到发光气体的光谱线。自从牛顿对光谱的研究以来,他的研究标志着向前迈进了第一步。梅耳维尔观察了钾碱、明矾、硝石和食盐被连续地放进酒精灯时所产生的光谱,并且发现,当明矾或钾碱放进酒精火焰中时,发射出了数量不相同的各种光线,……并且从它到邻近的较弱的颜色的光的过渡不是逐渐的而是直接的;这明亮的黄光就是“钠线”。后来,伦敦有一位医生在烛光火焰底部观察到蓝光的明亮光谱带;1856年,圣安德鲁斯的威廉·斯旺(Swan William)又一次观察到它,现在称之为“斯旺光谱”(Swan spectrum)。1802年,英国物理学家沃拉斯顿(Wollaston William Hyde,1766~1828)首次观察到太阳光谱中的7条暗线,其中最重要的5条光谱线被他认为是光谱的纯粹单色的自然界标或分界线,他本来得到了开创重要的谱线研究的机会,但他未能准确地解释它。这项工作只能等待更年轻的德国物理学家夫琅和费去完成。 夫琅和费(Fresnel Augustin Jean,1788~1827)1787年3月6日生于斯特劳宾(Straubing),父亲是玻璃工匠,幼年当学徒,后来自学了数学和光学。1806年他在巴伐利亚的贝内迪克特博伊伦的光学工场当了工匠,1818年任经理,1823年担任慕尼黑科学院物理陈列馆馆长和慕尼黑大学教授,后来德国埃朗根大学和英国、丹麦都赠予他荣誉称号。夫琅和费集工艺家与理论家的才干于一身,把丰富的实践经验与理论结合起来,对光学和光谱学做出了重要贡献。他用几何光学理论设计和制造了消色差透镜以取代过去盲目试验的方法,还首创用牛顿环方法检查光学表面加工精度及透镜形状。他所制造的大型折射望远镜等光学仪器,负有盛名。这些成就,使当时光学技术的权威由英国转移到德国,推动了精密光学工业的发展。 夫琅和费开始并不知道沃拉斯顿的发现,在他的光学著 作中,他把理论知识和实际技巧结合得非常好。特别是由于他 的准确计算各种透镜的方法的发明,他把实用光学引向了一条 全新的道路,并且他把消色差望远镜提到了当时意想不到的完 善程度。1814年,夫琅和费为了测定玻璃折射率和色散,以 作为制造消色差透镜的基础,对太阳光谱进行了仔细的观测。 在努力于测定玻璃对特殊颜色的折射率以便设计更为精密的 消色差透镜时,夫琅和费偶然地发现了一种灯光光谱的橙黄色 图7-14夫琅和费的分光仪 的双线,现在称之为钠线。在所有的火光中,他都看到这条精 细的、明亮的双线“精确地在同一地方出现,因此对于测定折 射率十分有用。他把一束来自狭缝的光线照射在有相当距离的放在经纬望远镜前面的最小偏差位置上 130

光谱仪基础知识概要

光谱仪基础知识概要 第1章衍射光栅:刻划型和全息型 衍射光栅由下列两种方法制成:一种是用带钻石刀头的刻划机刻出沟槽的经典方法,另一种是用两束激光形成干涉条纹的全息方法。(更多信息详见& ). 经典刻划方法制成的光栅可以是平面的或者是凹面的,每道沟槽互相平行。全息光栅的沟槽可以是均匀平行的或者为优化性能而特别设计的不均匀分布。全息光栅可在平面、球面、超环面以及很多其他类型表面生成。 本书提到的规律、方法等对各类不同表面形状的经典刻划光栅和全息光栅均适用,如需区分,本书会特别给出解释。 1.1 基础公式 在介绍基础公式前,有必要简要说明单色光和连续谱。 提示:单色光其光谱宽度无限窄。常见良好的单色光源包括单模激光器和超低压低温光谱校正灯。这些即为大家所熟知的“线光源”或者“离散线光源”。 提示:连续谱光谱宽度有限,如“白光”。理论上连续谱应包括所有的波长,但是实际中它往往是全光谱的一段。有时候一段连续谱可能仅仅是几条线宽为1的谱线组成的线状谱。 本书中的公式适用于空气中的情况,即m0=1。因此,0=空气中的波长。 定义单位 α - () 入射角度 β - () 衍射角度 k - 衍射阶数整数 n - 刻线密度刻线数每毫米 - 分离角度

光谱仪基础知识概要 定义单位 μ0 - 折射率无单位 λ - 真空波长纳米 λ0 - 折射率为μ0介质中的波长 其中λ0 = λ/μ0 1 = 10-6 ; 1 = 10-3 ; 1 A = 10-7 最基础的光栅方程如下: (1-1) 在大多数单色仪中,入口狭缝和出口狭缝位置固定,光栅绕其中心旋转。因此,分离角成为常数,由下式决定, (1-2) 对于一个给定的波长l ,如需求得a和b ,光栅方程(1-1)可改写为: (1-3) 假定值已知,则a和b可通过式(1-2)、(1-3)求出,参看图1.1、1.2和第2.6节。

光谱分析仪应用及功能特点

光谱分析仪应用及功能特点 由于近红外光在常规中有良好的传输特性,且其仪器较简单、分析速度快、非破坏性和样品制备量小、几乎适合各类样品(液体、粘稠体、涂层、粉末和固体)分析、多组分多通道同时测定等特点,成为在线分析仪表中的一枝奇葩。近几年,随着化学计量学、光纤和计算机技术的发展,在线近红外光谱分析技术正以惊人的速度应用于包括农牧、食品、化工、石化、制药、烟草等在内的许多领域,为科研、教学以及生产过程控制提供了一个十分广阔的使用空间。光谱分析仪应用于钢铁冶金、有色金属、石油化工、机械制造、能源电力、铁路运输、航空航天、食品卫生、环境保护以及教学科研等各个领域。 直读光谱仪一般属于原子发射光谱,应用于冶金,铸造,有色,黑色金属鉴别,石化,机械制造等行业。国际上比较有名的有美国热电(收购瑞士ARL),德国斯派克,德国布鲁克,日本岛津等比较有名。 手持式光谱仪属于X射线荧光光谱仪,同样属于原子发射光谱仪,但和直读光谱的激发方式不一样,直读光谱靠高压放电激发,X射线是通过X光管来激发,接收原件也不同,检测元素范围和精度低于直读光谱,但应用于合金材料牌号鉴别以及混料筛选,废料回收,野外材料牌号鉴别有特殊用途,因可以做的小巧,一般做成手持式,方便携带。 性能特点 防返油真空技术,采用两级阀门控制。一级通过真空规管控制并与真空泵联动,为世界光谱仪领域最新技术,避免仪器抽真空带来的噪声、故障,防返油真空技术,避免油蒸汽对光学系统造成的污染,大大提高了仪器的使用寿命。 1.仪器采用的独立出射狭缝为国内首创,世界先进。金属整缝的特点是仪器调试方便、快捷,便于出射狭缝增加通道(用户可仅考虑目前应用的元素,以后需要的通道可随时增加)节约成本。 2.自动高压系统为世界先进水平。该系统可通过计算机控制每个通道提供8档高压,使同一通道可以在不同分析程序中得到应用,提高了通道的利用率和谱线最佳线性范围在分析不同材料中的采用,减少了通道的采用数量,降低了成本。 3.自动描迹为世界领先水平,同类仪器国内空白。自动描迹可大大缩短校准仪器所用的时间,使仪器校准变得简单、方便,非专业人员既可进行描迹操作。仪器设有内部恒温系统。大大减小了环境温度变化对光学系统造成的漂移。 4.WINDOWS系统下的中文操作软件,方便国内使用。不同层次的操作员可随时调用相关帮助菜单来指导对仪器的操作;分析速度快捷,20秒内测完所有通道的化学成分;针对不同的分析材料,通过制作预燃曲线来确定分析时间,使仪器用最短的时间达到最优的分析效果;预制好合理的工作曲线,用户可免购大量标样,节约使用成本,安装后即可投入使用。 5.多功能光源国内空白。多功能光源的采用可扩大元素的分析范围,满足超高含量以及痕量元素的分析;各系统独立供电,单元化设计,维修方便快捷。单元化的设计可达到非专业人员的快速维修,为互联网摇诊仪器故障做好了充分准备。

紫外光谱分析仪基础知识

紫外光谱分析仪基础知识 紫外,可见光谱法及相关仪器 UV-VIS Spectrometry & Instrument 紫外,可见光谱法及相关仪器 一(紫外,可见吸收光谱概述 二(紫外,可见分光光度计2 1(紫外,可见分光光度计的主要部件 2(紫外,可见分光光度计的分类 3(紫外,可见分光光度计的各项指标含义 4(紫外,可见分光光度计的校正 三(紫外,可见分光光度计的应用 四(紫外,可见分光光度计的进展 一(紫外,可见吸收光谱概述 利用紫外,可见吸收光谱来进行定量分析由来已久,可追溯到古代,公元60年古希腊已经知道利用五味子浸液来估计醋中铁的含量,这一古老的方法由于最初是运用人眼来进行检测,所以又称比色法。到了16、17世纪,相关分析理论开始蓬勃发展,1852年,比尔(Beer)参考了布给尔(Bouguer)1729年和朗伯(Lambert)在1760年所发表的文章,提出了分光光度的基本定律,即液层厚度相等时,颜色的强度与呈色溶液的浓度成比例,从而奠定了分光光度法的理论基础,这就是著名的朗伯,比尔定律。 1(紫外,可见吸收光谱的形成 吸光光度法也称做分光光度法,但是分光光度法的概念有些含糊,分光光度是指仪器的功能,即仪器进行分光并用光度法测定,这类仪器包括了分光光度计与原

子吸收光谱仪(AAS)。吸光光度法的本质是光的吸收,因此称吸光光度法比较合理,当然,称分子吸光光度法是最确切的。 紫外,可见吸收光谱是物质中分子吸收200-800nm光谱区内的光而产生的。这种分子吸收光谱产生于价电子和分子轨道上的电子在电子能级跃迁(原子或分子中的电子,总是处在某一种运动状态之中。每一种状态都具有一定的能量,属于一定的能级。这些电子由于各种原因(如受光、热、电的激发)而从一个能级转到另一个能级,称为跃迁。)当这些电子吸收了外来辐射的能量就从一个能量较低的能级跃迁到一个能量较高的能级。因此,每一跃迁都对应着吸收一定的能量辐射。具有不同分子结构的各种物质,有对电磁辐射显示选择吸收的特性。吸光光度法就是基于这种物质对电磁辐射的选择性吸收的特性而建立起来的,它属于分子吸收光谱。跃迁所吸收的能量符合波尔条件: hvEE,,2121 二(紫外,可见分光光度计 1854年,杜包斯克(Duboscq)和奈斯勒(Nessler)等人将此理论应用于定量分析化学领域,并且设计了第一台比色计。到1918年,美国国家标准局制成了第一台紫外可见分光光度计。此后,紫外,可见分光光度计经不断改进,又出现自动记录、自动打印、数字显示、微机控制等各种类型的仪器,仪器的灵敏度和准确度也不断提高,其应用范围也不断扩大。 1(紫外,可见分光光度计的主要部件 全世界的紫外,可见分光光度计生产厂家有上百家,产品型号成千上万,但就基本结构来说,都是由五个部分组成,即光源、单色器(单色仪)、吸收池、检测器和信号指示系统。如下图所示: 信号指光源单色器吸收池检测器示系统光源

高精度LED光谱分析系统

一、关于组合式光色电分析系统的数量清单,提供如下: 积分球/光谱分析仪可以配置电脑直接检测光源(节能灯,荧光灯,HID灯,白织灯,LED灯等)的相对光谱功率分布、色品坐标、相关色温、显色指数、色容差、峰值波长、光通量、光效、电压、电流等光色电参数组合式综合测试仪,由以下仪器组成. HSP系列组合式光谱分析系统 1、HSP-3000光谱分析仪(进口器件) 可测试参数: 相对光谱功率分布:P(λ);色品坐标:(x,y)、(u,v);相关色温:(Tc); 显色指数:Ra; Ri(I=1~14);色容差 (含国际和国内标准); 峰值波长、半宽度(光谱辐射带宽);红色比。 可自动测试光电变化曲线,适时监测电参数,光参数以及光效等。可直接保存为EXCEL文档,方便存档记录数据。 主要技术性能指标: 波长:380-780nm;波长准确度:±0.2nm; 波长重复性:±0.1nm;采样间隔:5nm; 光通量测试:根据积分球大小决定 光度线性:0.3%;光度准确度:一级(全范围); 色品坐标准确度:±0.0003(相对于稳定度优于0.0001的标 准光源和中国计量院直接传值); 色温测量范围:1500k-25000k; 色温准确度:±0.3%(相对于稳定度优于±0.1%的标 准光源和中国计量院直接传值)

显色指数测量范围:0-100.0;显色指数测量误差:±(0.3%rd+0.5); 色容差准确度:±0.5(相对于稳定度优于0.15的标准光 源和中国计量院直接量传计算值); 环境温度测量范围:―10℃∽80℃;球内温度测量范围:―10℃∽100℃; 新增功能: ㈠采用RS-232-C串口通讯或USB转RS-232-C串口通讯,无需插卡。 操作系统Windows/2000或Windows/XP。 ㈡快速负高压自动调节,不仅使测量时间更快,更大大降低了仪器的磨损。 ㈢仪器可自动校准系统误差,并增加了定时器功能,能自动进入测量。 ㈣环境温度、测光球内温度的同步监测,使测量条件更直观,资料更可靠。 ㈤光谱功率分布可选择彩色和黑白显示及打印。 ㈥测试报告中色品图与色容差图可自由转换,适合各类光源的测试㈦采用了更高精度的A/D转换,测量灵敏度和重复性更高。 2、1.5米导光纤维 主要用于HSP-3000光谱分析仪和积分球之间的光信号传输。 3、HP502标准灯专用电源 标准光源的供电电源,恒流源,带四位半数显电流表头。 ●输出范围:电压0.00 —30.00V,电流0.000 — 5.000A; ●稳压时电压稳定度:0.10 V —30.00V:≤5mV ●稳流时电流稳定度: 0.000 A —1.000 A:≤0.2mA 1.000 A —3.000 A:≤0.8mA 3.000 A —5.000 A:≤2mA 4、24V/50W通用标准光源(德国OSRAM) ●在标定的工作电流下具有稳定的可复现的色温(光谱分布)及光通量,用于HSP系列光谱分析系统的色温(光谱分布)定标及HP系列等光度计的光通量定标,量值可溯源至中国计量院。 5、2.0米积分球(特殊工艺喷涂) ●设计完全符合相应国际及国内标准的要求,内壁涂层主要材料选用分析纯硫酸钡(BaSO4),化学稳定性好,日久不易泛黄;球体材料选用冷轧钢板,不易变形;底座高度可调,能确保积分球的水平放置;多个接口可满足光源多项测试同时进行。 6、HP105电参数测量仪 在测量光源光参数的同时,监测光源的电压、电流、功率、功率因子/频率。可与HSP-3000 软件自动通讯。 ●四窗口同时显示:电压、电流、功率、功率因数/频率;

最新分子光谱补充

分子光谱补充

一、电磁辐射和电磁波谱 3.电磁波谱:电磁辐射按波长顺序排列,称~。 γ射线→ X 射线→紫外光→可见光→红外光→微波→无线电波 高能辐射区γ射线能量最高,来源于核能级跃迁 χ射线来自内层电子能级的跃迁 光学光谱区紫外光来自原子和分子外层电子能级的跃迁 可见光 红外光来自分子振动和转动能级的跃迁 波谱区微波来自分子转动能级及电子自旋能级跃迁 无线电波来自原子核自旋能级的跃迁 二、光分析法及其特点 光分析法在研究物质组成、结构表征、表面分析等方面具有其他方法不可取代的地位。 概念:基于电磁辐射能量与待测物质相互作用后所产生的辐射信号与物质组成及结构关系所建立起来的分析方法 相互作用方式:发射、吸收、反射、折射、散射、干涉、衍射等 三个基本过程:(1)能源提供能量 (2)能量与被测物之间的相互作用 (3)产生信号 基本特点:(1)所有光分析法均包含三个基本过程 (2)选择性测量,不涉及混合物分离 (3)涉及大量光学元件

分类: 1.光谱法:利用物质与电磁辐射作用时,物质内部发生量子化能级跃迁而产生的吸收、发射或散射辐射等电磁辐射的强度随波长变化的定性、定量分析方法。 按能量交换方向分 吸收光谱法、 发射光谱法 按作用结果不同分 原子光谱→线状光谱、分子光谱→带状光谱 光谱法: 按能量交换方向:发射光谱 例:γ-射线;x-射线;荧光 吸收光谱 例:原子吸收光谱,分子吸收光谱 按作用结果: (1)原子光谱:常见三种 基于原子外层电子跃迁的原子吸收光谱(AAS )、 原子发射光谱(AES )、原子荧光光谱(AFS ) 基于原子内层电子跃迁的X 射线荧光光谱(XFS ) 光基态 激发态释放能量发光ν h M M +?????→?→*发射光谱?→?激发态光基态吸收辐射能量* M h M ????→?+ν吸收光谱 ?→?

红外光谱基础知识问答

红外光谱基础知识问答 1.红外吸收光谱是怎么产生的? 答:红外吸收光谱是在红外辐射的作用下,分子发生振动和转动能级跃迁时所产生的分子吸收光谱。 2.红外吸收光谱用于定性分析的基础是什么? 答:已经证实,除了光学异构体外,没有两种化合物会具有完全相同的红外光谱,因此,红外光谱是每种化合物特异性能很强的一种物理性质,是定性分析的基础。 3.近红外区、中红外区和远红外区是怎么划分的? 答:通常将红外区划分为近红外区(12800~4000cm-1)、中红外区(4000~400cm-1)、远红外区(4000~10cm-1)。 4.通常所指的红外区是近红外区、中红外区和远红外区中的哪一个区? 答:通常所指的红外区是中红外区。 5.中红外区中氢伸展区是怎么划分的? 答:氢伸展区在3700~2700cm-1,在此区域内强吸收光谱主要来自氢原子和其它原子之间的伸展振动。 6.中红外区中指纹区是怎么划分的? 答:指纹区在1500~700 cm-1,在这个光谱区域内,分子构型与结构的微小差别都能引起吸收峰上的明显改变。假若两种化合物在此区域内的光谱很一致,就可断定它们的结构是相同的。 7.利用红外光谱进行定性分析的基本步骤是什么? 答:基本步骤是; (1)测验谱图:关键是得到代表性谱图。 (2)解析谱图:这是红外光谱定性分析最关键的一步,只有当样品吸收谱图中的吸收峰位置、个数、形状与标准谱图相同,才能证明定性的可靠性。 (3)对比利用其它方法提供的信息,综合分析,得出结论。 8.红外光谱定量分析的理论基础是什么? 答;红外光谱定量分析的理论基础是朗伯-比尔定律。 9.红外光谱定量分析的操作要点有哪些? 答:其要点有: (1)选择适当的分析波长,通常应选在被分析组分的特征吸收处。 (2)选择适当的样品厚度。

光谱分析系统使用操作规范

光谱分析系统使用操作规范 1.本标准规定了光谱分析系统的操作步骤、方法和注意事项。测试前应详细阅读操作规范或用户手册,并注意仪器上的警告语。 2.本标准适用于远方 PMS-80光谱分析系统。 3.操作步骤及方法: 3.1 定标 3.1.1定标周期: a、每次更换积分球测试前需要定标。 b、对测试结果有疑义,或其他需要精确测量前应定标。 c、定期定标:每个月需定标1次。 3.1.2 定标方法: a、积分球电源线接直流电源端口,在积分球内放入标准光源,关闭积分球。手拿标准光源时须待白手套,注意保护好标准光源。 b、打开PmsLAB软件,点选“定标“>“光通量定标“,打开光通量定标界面,点击“关灯较零“校零。 c、点击”WY系统电源”按钮,选择以下设置:COM3口,多机模式,按照标准光源的参数设置标准值电压,电流先设置为标准值的80%,点选恒定电流,设置好后点设定,点亮标准光源,预热20min。 d、预热结束后,把电流设置为标准值,等待1min标准光源稳定后,准备定标。 e、在“设定与输入标准灯参数”栏内,选择“标准A光源”,输入标准光源的型号与编号,输入标准光源的“光通量标准值”和“标准A光源色温”。点击“光通量定标”,开始定标。仪器完成定标操作后,点击“开始检验”,检验定标是否正确。确认定标好之后,点击“保存定标”。光通量定标完成。 f、点选“定标“>“光谱定标“,打开光谱定标界面。 g、“光谱定标类型”选择“电光源“,”定标扫描步长“选择”5nm“,按照标准光源的参数输入”标准灯色温“和“光通量标准值“,点击”开始“,开始定标。定标完成后,点击“保存退出“。3.2 测试方法: 3.2.1 直流定标后,接好传输线,按照待测光源是直流输入还是交流输入,接好相应的电源线。放置好待测光源,准备测试。 3.2.2 打开PmsLAB软件,依次点击“设置”>“主机设置”,选择光谱仪型号为“PMS-80“,选择“精确测试”,端口号全为COM3,点选“自动通讯“和“测试灯参数”。若光源是直流输入,则选择功率计类型为WY(9bit),若光源是交流输入,则选择功率计类型为PF9811/10。 3.2.3 直流光源通过“工具”>“WY系统电源”,设置好输出参数,点击“设置“开始输出。交流光源需打开测试柜,直接调节交流变频电源的输出参数,然后按交流变频电源上的”OUTPUT”开始输出。点亮待测光源。 3.2.4 点击“测试”> “电光源测试”,打开电参数界面,确认待测光源的电参数,预热10min。 3.2.5 点击“确定“,进入光参数界面,设置灵敏度为“自动选择“,”扫描步长“为5nm,”扫描范围“为280-800,点选“测试前光校零”。点击“开始测试”,等待测试完成。 3.2.6 同型号光源批量测试时,第一个光源设置灵敏度为“自动选择“,仪器会自动分析并选择灵敏度。继续测试此批光源时,就可以选择相应的灵敏度,以加快测试速度。 3.2.7 保存并导出测试结果,将测试结果打印为PDF文档。测试结束。 制定:审核:批准:

相关文档
最新文档