作物需水量和作物耗水量的差别

作物需水量和作物耗水量的差别

作物需水量和作物耗水量的差别

作物耗水量与作物需水量不同,是指作物在任何土壤水分条件下实际消耗的植株蒸腾、土壤蒸发与植物体含水量之和。而后者指在特定的适宜条件下的作物耗水量。

作物的实际耗水量在干旱和低产条件下可能少于作物需水量,但在灌溉条件下大多超过作物需水量,其中一个重要的途径是根层以下的深层渗漏。旱田的深层渗漏一般都是无益的,进入地下水流走而不能被作物利用,还造成养分的流失。但土质粘重地下水位又高的水稻田需要有适度的深层渗漏,否则会造成氧气不足,产生硫化氢、氧化亚铁等有毒还原物质,影响水稻的生长发育。适度渗漏可改善透气和消除有毒物质。但渗漏过多则造成水分养分的损失。

田间无效耗水的另一种方式是地面径流。降雨量过大,雨势过猛,或大水漫灌,地面又不平整时,最容易形成径流损失。地面不平还造成高处浇不上水仍然干旱,低处积水成涝。

中国是一个水资源不足且时空分布极不均匀的国家,北方的水资源尤为紧缺。但另一方面,在农田灌溉中水的浪费又很大,作物水分利用率远低于发达国家的水平,农业节水增产的潜力还很大。除上述水分无效消耗外,作物需水量中的土壤蒸发对于作物的生理活动基本上是无效的,应尽可能减少,特别是在苗期。即使是植物蒸腾,也有一部分是所谓“嗜好蒸腾量”,并非作物生长所必需,而是长期充分供水造成的,也是可以节约的。

作物需水量与灌溉制度

作物需水量与灌溉制度 2.1 作物需水量 2.1.1农田水分消耗途径 农田水分消耗的途径主要有植株蒸腾、棵间蒸发和深层渗漏。 (一)植株蒸腾 植株蒸腾是指作物根系从土壤中吸入体内的水分,通过叶片的气孔扩散到大气中去的现象。试验证明,植株蒸腾要消耗大量水分,作物根系吸入体内的水分有99%以上消耗于 蒸腾,只有不足1%的水量留在植物体内,成为植物体的组成部分。 植株蒸腾过程是由液态水变为气态水的过程,在此过程中,需要消耗作物体内的大量热量,从而降低了作物的体温,以免作物在炎热的夏季被太阳光所灼伤。蒸腾作用还可以增强作物根系从土壤中吸取水分和养分的能力,促进作物体内水分和无机盐的运转。所以,作物蒸腾是作物的正常活动,这部分水分消耗是必需的和有益的,对作物生长有重要意义。 (二)棵间蒸发 棵间蒸发是指植株间土壤或水面的水分蒸发。棵间蒸发和植株蒸腾都受气象因素的影响,但蒸腾因植株的繁茂而增加,棵间蒸发因植株造成的地面覆盖率加大而减小,所以蒸腾与棵间蒸发二者互为消长。一般作物生育初期植株小,地面裸露大,以棵间蒸发为主;随着植株增大,叶面覆盖率增大,植株蒸腾逐渐大于棵间蒸发;到作物生育后期,作物生理活动减弱,蒸腾耗水又逐渐减小,棵间蒸发又相对增加。棵间蒸发虽然能增加近地面的空气湿度,对作物的生长环境产生有利影响,但大部分水分消耗与作物的生长发育没有直接关系。因此,应采取措施,减少棵间蒸发,如农田覆盖、中耕松土、改进灌水技术等。 (三)深层渗漏 深层渗漏是指旱田中由于降雨量或灌溉水量太多,使土壤水分超过了田间持水率,向根系活动层以下的土层产生渗漏的现象。深层渗漏对旱作物来说是无益的,且会造成水分和养分的流失,合理的灌溉应尽可能地避免深层渗漏。由于水稻田经常保持一定的水层,所以深层渗漏是不可避免的,适当的渗漏,可以促进土壤通气,改善还原条件,消除有毒物质,有利于作物生长。但是渗漏量过大,会造成水量和肥料的流失,与开展节水灌溉有一定矛盾。 在上述几项水量消耗中,植株蒸腾和棵间蒸发合称为腾发,两者消耗的水量合称为腾 发量(Evapotranspiration ),通常又把腾发量称为作物需水量(Water Requirement of Crops )。腾发量的大小及其变化规律,主要决定于气象条件、作物特性、土壤性质和农业技术措施等。渗漏量的大小主要与土壤性质、水文地质条件等因素有关,它和腾发量的性质完全不同,一般将蒸发蒸腾量与渗漏量分别进行计算。旱作物在正常灌溉情况下,不允许发生深层渗漏,因此,旱作物需水量即为腾发量。对稻田来说适宜的渗漏是有益的,通常把水稻腾发量与稻田渗漏量之和称为水稻的田间耗水量。 就某一地区而言,具体条件下作物获得一定产量时实际所消耗的水量为作物田间耗水量,简称耗水量。所以需水量是一个理论值,又称为潜在蒸散量(或潜在腾发量),而耗水 量是一个实际值,又称为实际蒸散量。需水量与耗水量的单位一样,常以水层表示。m3? hm-2或mm

作物蒸发蒸腾量计算公式

作物蒸发蒸腾量计算公式 一、采用彭曼—蒙蒂斯(Penman —Monteith )法计算参考作物蒸发蒸腾量(ET 0) 1、彭曼—蒙蒂斯(Penman —Monteith )公式 彭曼—蒙蒂斯(Penman —Monteith )公式是联合国粮农组织(FAO ,1998)提出的最新修正彭曼公式,并已被广泛应用且已证实具有较高精度及可使用性。P-M 公式对参考作物的蒸发蒸腾量定义如下:参考作物的蒸发蒸腾量为一种假想的参考作物冠层的蒸发蒸腾速率,假想作物的高度为0.12m ,固定的叶面阻力为70s/m ,反射率为0.23,非常类似于表面开阔、高度一致、生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。 Penman ——Monteith 公式: )34.01()(273900)(408.0220U e e U T G R ET d a n ++?-++-?= γγ (1) 式中 0ET ——参考作物蒸发蒸腾量,mm/d ; ?——温度~饱和水汽压关系曲线在T 处的切线斜率,kPa?℃-1; 2 )3.237(4098+?=?T e a (2) T ——平均气温,℃ e a ——饱和水汽压,kpa ; ()3.23727.17ex p 611.0+=T T a e (3) R n ——净辐射,MJ/(m 2·d ); nl ns n R R R -= (4) R ns ——净短波辐射,MJ/(m 2·d ); R nl ——净长波辐射,MJ/(m 2·d ); a ns R N n R )/5.025.0(77.0+= (5) n ——实际日照时数,h ; N ——最大可能日照时数,h ; Ws N 64.7= (6)

单作物系数法和双作物系数法计算ET

单作物系数法和双作物系数法计算作物需水量的比较研究 樊引琴,蔡焕杰 (西北农林科技大学农业水土工程实验室) 摘要:本文采用FA0-56推荐的计算作物需水量的单作物系数和双作物系数方法,应用陕西杨凌地区的资料,分别计算了作物需水量,并和蒸渗仪的实测值进行了对比,分析了其差异及原因。结果表明,在地面部分覆盖的情况下,双作物系数法比单作物系数法更接近实测值,而在地面完全覆盖情况下,两者差别不大。 关键词:作物需水量;蒸渗仪;作物系数 基金项目:高等学校博士点基金和国家留学回国人员启动基金资助项目的部分内容。 作者简介:樊引琴(1976-),女,陕西宝鸡人,硕士,研究方向:节水灌溉。 作物需水量是制定流域规划,地区水利规划及灌排工程规划、设计、 管理和农田灌排实施的基本依据,在农业生产实践中占有重要地位。因 此,准确地确定作物需水量是十分必要的。作物需水量的计算方法很多, 最常用的方法是作物系数-参考作物需水量(K c ET0)法。作物系数反映作 物和参考作物之间需水量的差异,可用一个系数来综合反映,也可用两 个系数分别来描述蒸发和蒸腾的影响,即所谓的单作物系数和双作物系 数。双作物系数是把作物系数分为基础作物系数和土壤蒸发系数两部 分。基础作物系数说明蒸腾作用,而土壤蒸发系数则描述蒸发部分。在 已往对作物系数的研究中总是把植株蒸腾和土壤蒸发统一考虑,即用单 作物系数。但土壤蒸发与植株蒸腾的比例在作物生育期内会有很大变 化。在作物完全覆盖地面以后,土壤蒸发相对较小,蒸腾占主导地位; 但当作物较小或比较稀疏时,在降雨或灌溉后,土壤蒸发则起主要作用, 可以占到很大比例,特别是在土壤表面经常湿润的条件下。由于大部分

作物需水量与灌溉制度

作物需水量与灌溉制度 2.1作物需水量 2.1.1农田水分消耗途径 农田水分消耗的途径主要有植株蒸腾、棵间蒸发和深层渗漏。 (一)植株蒸腾 植株蒸腾是指作物根系从土壤中吸入体内的水分,通过叶片的气孔扩散到大气中去的现象。试验证明,植株蒸腾要消耗大量水分,作物根系吸入体内的水分有99%以上消耗于蒸腾,只有不足1%的水量留在植物体内,成为植物体的组成部分。 植株蒸腾过程是由液态水变为气态水的过程,在此过程中,需要消耗作物体内的大量热量,从而降低了作物的体温,以免作物在炎热的夏季被太阳光所灼伤。蒸腾作用还可以增强作物根系从土壤中吸取水分和养分的能力,促进作物体内水分和无机盐的运转。所以,作 物蒸腾是作物的正常活动,这部分水分消耗是必需的和有益的,对作物生长有重要意义。(二)棵间蒸发 棵间蒸发是指植株间土壤或水面的水分蒸发。棵间蒸发和植株蒸腾都受气象因素的影响,但蒸腾因植株的繁茂而增加,棵间蒸发因植株造成的地面覆盖率加大而减小,所以蒸腾与棵间蒸发二者互为消长。一般作物生育初期植株小,地面裸露大,以棵间蒸发为主;随着植株增大,叶面覆盖率增大,植株蒸腾逐渐大于棵间蒸发;到作物生育后期,作物生理活动减弱,蒸腾耗水又逐渐减小,棵间蒸发又相对增加。棵间蒸发虽然能增加近地面的空气湿度,对作物的生长环境产生有利影响,但大部分水分消耗与作物的生长发育没有直接关系。因此, 应采取措施,减少棵间蒸发,如农田覆盖、中耕松土、改进灌水技术等。 (三)深层渗漏 深层渗漏是指旱田中由于降雨量或灌溉水量太多,使土壤水分超过了田间持水率,向根系活动层以下的土层产生渗漏的现象。深层渗漏对旱作物来说是无益的,且会造成水分和养分的流失,合理的灌溉应尽可能地避免深层渗漏。由于水稻田经常保持一定的水层,所以深层渗漏是不可避免的,适当的渗漏,可以促进土壤通气,改善还原条件,消除有毒物质,有利于作物生长。但是渗漏量过大,会造成水量和肥料的流失,与开展节水灌溉有一定矛盾。 在上述几项水量消耗中,植株蒸腾和棵间蒸发合称为腾发,两者消耗的水量合称为腾发量(Evapotranspiration),通常又把腾发量称为作物需水量(Water Requirement of Crops)。腾发量的大小及其变化规律,主要决定于气象条件、作物特性、土壤性质和农业技术措施等。渗漏量的大小主要与土壤性质、水文地质条件等因素有关,它和腾发量的性质完全不同,一般将蒸发蒸腾量与渗漏量分别进行计算。旱作物在正常灌溉情况下,不允许发生深层渗漏,因此,旱作物需水量即为腾发量。对稻田来说适宜的渗漏是有益的,通常把水稻腾发量与稻田渗漏量之和称为水稻的田间耗水量。 就某一地区而言,具体条件下作物获得一定产量时实际所消耗的水量为作物田间耗水量,简称耗水量。所以需水量是一个理论值,又称为潜在蒸散量(或潜在腾发量),而耗水

作物蒸发蒸腾量计算公式

作物蒸发蒸腾量计算 公式

作物蒸发蒸腾量计算公式 一、采用彭曼—蒙蒂斯(Penman —Monteith )法计算参考作物蒸发蒸腾量(ET 0) 1、彭曼—蒙蒂斯(Penman —Monteith )公式 彭曼—蒙蒂斯(Penman —Monteith )公式是联合国粮农组织(FAO ,1998)提出的最新修正彭曼公式,并已被广泛应用且已证实具有较高精度及可使用性。P-M 公式对参考作物的蒸发蒸腾量定义如下:参考作物的蒸发蒸腾量为一种假想的参考作物冠层的蒸发蒸腾速率,假想作物的高度为0.12m ,固定的叶面阻力为70s/m ,反射率为0.23,非常类似于表面开阔、高度一致、生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。 Penman ——Monteith 公式: ) 34.01() (273900 )(408.0220U e e U T G R ET d a n ++?-++-?= γγ (1) 式中 0ET ——参考作物蒸发蒸腾量,mm/d ; ?——温度~饱和水汽压关系曲线在T 处的切线斜率,kPa?℃-1; 2 ) 3.237(4098+?= ?T e a (2) T ——平均气温,℃ e a ——饱和水汽压,kpa ; ()3.23727.17ex p 611.0+=T T a e (3) R n ——净辐射,MJ/(m 2·d ); nl ns n R R R -= (4) R ns ——净短波辐射,MJ/(m 2·d ); R nl ——净长波辐射,MJ/(m 2·d ); a ns R N n R )/5.025.0(77.0+= (5)

灌溉制度知识讲解

2.6.2.1作物灌溉定额的确定 参照项目涉及村目前的种植制度和今后种植业结构调整的要求,以中稻典型作物来确定灌溉定额。 2.6.2.1.1中稻灌溉制度的确定 (1)水稻的泡田定额的确定: 根据当地群众的耕作经验,划定中稻的泡田时间为5月11日~5月25日,历时15天。 M1=0.667 (h0+S1+e1t1-P1) 式中M1-水稻的泡田定额,m3/亩 h0-插秧时田面所需的水层深度,mm,取30mm; S1-泡田期的渗漏量,mm; e1-泡田期内水田的田面平均蒸发量,mm/d; t1-泡田期的日数,d; P1-泡田期的降雨量,mm。 根据彭水县国土局提供的资料,项目区土壤为小黄泥和大土黄泥,土壤中含沙,属中粘含沙土,取其渗漏强度为 1.4mm/d(《中国主要作物需水量与灌溉》,P136)。 项目区紧邻武隆县,两地气象条件基本相同,本项目设计所用资料采用武隆县的气象资料。根据武隆县气象局1950年-1980年的实测降水资料,75%设计频率年为1974年,由1974年的逐日降雨资料,可得泡田期的有效降水量为38mm。

泡田期的田面平均了蒸发量由下表选取: 表2- 多年平均蒸发量统计表 月份 1 2 3 4 5 6 全年拆算 系数 年蒸发 量(mm) 蒸发量(mm)42.1 38.0 63.4 98.7 125.0 123.4 月份7 8 9 10 11 12 蒸发量(mm)90.8 160.5 125.0 69.0 47.7 37.2 1120.8 0.8 896.6 资料来源:《四川省涪陵地区水资源调查与水利区划(附表)》,涪陵地区水利电力局编制,1993年4月,附表4、 蒸发资料采用折算后(60cm蒸发皿)的数值计算。 计算得中稻的泡田定额为M1=50.4m3/亩。 (2)中稻生育期灌溉制度的确定 利用水量平衡方程确定中稻的灌溉制度。 h1+P+m-WC-d=h2 式中h1-时段初田面水层深度,mm; h2-时段末田面水层深度,mm; P-时段内降雨量,mm; d-时段内的排水量,mm; m-时段内的灌水量,mm; WC-时段内的田间耗水量,mm。 时段内的降雨量根据武隆县气象局提供的1974年逐日降雨资料计算。 田间耗水量的计算采用参考作物系数法,根据联合国粮农组织

作物需水量与灌溉用水量

第三章、作物需水量与灌溉用水量 §3—1 作物需水量 作物需水量——是指作物在适宜的外界环境条件下(包括对土壤水分、养分充分供应)正常生长发育达到或接近达到该作物品种的最高产量水平所消耗的水量。 作物需水量的作用: 1、是农业用水的主要组成部分,是整个国民经济中消耗水分的最主要部分。 2、是水资源开发利用时的必备资料,也是灌排工程规划、设计、管理的基本依据。 3、作物需水量在农业用水和国民经济用水中的比例 4、作物需水量是农业用水的主要组成部分。 作物需水量以水汽形式散入大气,无法再利用 一、作物田间水分的消耗 (三种途径:叶面蒸腾、棵间蒸发和深层渗漏) 叶面蒸腾:作物植株内水分通过叶面气孔散发到大气中的现象; 棵间蒸发:植株间土壤或水面(水稻田)的水分蒸发; 深层渗漏:土壤水分超过了田间持水率而向根系以下土层产生渗漏的现象。 解释:棵间蒸发能增加地面附近空气的湿度,对作物生长环境有利,但大部分是无益的消耗,因此在缺水地区或干旱季节应尽量采取措施,减少棵间蒸发(如滴灌<局部灌溉>、水田不建立水层)和地面覆盖等措施。 深层渗漏对旱田是无益的,会浪费水源,流失养分,地下水含盐较多的地区,易形成次生盐碱化。但对水稻来说,适当的深层渗漏是有益的,可增加根部氧分,消除有毒物质,促进根系生长,常熟、沙河、涟水等灌溉试验站结果都表明:有渗漏的水稻产量比无渗漏的水稻产量高3.9% ~ 26.5%。 叶面蒸滕量+棵间蒸发量=腾发量=作物田间需水量 水田:田间需水量+渗漏量=田间耗水量 由于水田不同土壤渗漏量大小差别很大,为了使不同土质田块水稻需水具有可比性,因此水稻的田间需水量不包括渗漏量,如计入渗漏量,则称为田间耗水量。 二、作物需水规律 (一)影响作物需水量的因素 1、气象条件主要因素,气温高、日照时间长、空气湿度低、风速大、气压低等使需水量增加; 2、土壤条件含水量大,砂性大,则需水量大(棵间蒸发大) 3、作物条件水稻需水量较大,麦类、棉花需水量中等,高粱、薯类需水量较少; 4、农业技术措施地面覆盖、采用滴灌、水稻控灌等能减少作物需水量。

作物蒸腾量-彭曼(penman)计算方法

四、作物蒸腾量ET c的计算流程 4.1 ET c计算方法的选择 作物蒸腾量由参考作物蒸腾量ET0和作物蒸腾系数K c乘积确定。目前,计算参考作物蒸腾量(ET0)的方法主要有蒸发皿法、Penman-monteith、Blaney-Criddle、Priestly-Taylor、Hargreaves和FAO-24 Radiation等方法。Penman-monteith、Blaney-Criddle、Priestly-Taylor、Hargreaves和FAO-24 Radiation等公式都是采用环境参数、如空气温度、空气湿度、风速等经过计算获得参考作物蒸腾量。由于Penman-monteith公式使用常规气象资料即可求得ET0,特别是在变化的气候环境,计算时间尺度较短的情况下,研究证明Penman-monteith公式计算精度优于其它公式,又具有易于操作等应用价值,故采用Penman-monteith公式计算参考作物蒸腾量ET0。 4.2 ET c的计算过程 植物蒸腾量ET c由参考作物蒸腾量ET0和作物系数K c决定,ET c的计算方法如式6所示。 ET c=ET0×K c(6) Penman-monteith公式依据的是能量平衡原理和水汽扩散原理及空气的热导定律,1948年由英国的科学家彭曼提出,由于它的准确性和易操作性,为作物ET0的计算开辟了一条严谨和标准化的新途径,FAO-56重新将Penman-monteith 公式推荐为新计算ET0的标准方法,成为当前国内外通用的计算ET0的主流,并编入我国《灌溉试验规范》,是现今被广泛应用来计算作物蒸腾量的方法。Penman-monteith公式以时间尺度分为小时、天和月三种计算方法,在能够获取小时环境数据的情况,小时为尺度的Penman-monteith公式更为准确。本文采用小时计算方法计算当前的ET0,采用天计算方法预测未来三天的ET0。Penman-monteith公式以小时为尺度的计算公式如式7。 ET0=0.408ΔR n?G+γ37 T?r u2e s?e a Δ+γ1+0.34u2 (7) 其中各变量的含义为: ET0 [mm day-1],小时内的参考作物蒸发量; R n [MJ m-2 day-1],小时内的作物表面的平均净辐射; G [MJ m-2 day-1],土壤热通量; T?r[°C],小时内的平均温度; u2 [m s-1],小时内两米处的平均风速; e s [kP a],饱和水汽压; e a [kPa],实际水汽压; D [kP a °C-1],Δ为饱和水汽压温度曲线上的斜率(kP a/℃);

作物蒸发蒸腾量计算公式

作物蒸发蒸腾量计算公式 一、采用曼—蒙蒂斯(Penman —Monteith )法计算参考作物蒸发蒸腾量(ET 0) 1、曼—蒙蒂斯(Penman —Monteith )公式 曼—蒙蒂斯(Penman —Monteith )公式是联合国粮农组织(FAO ,1998)提出的最新修正曼公式,并已被广泛应用且已证实具有较高精度及可使用性。P-M 公式对参考作物的蒸发蒸腾量定义如下:参考作物的蒸发蒸腾量为一种假想的参考作物冠层的蒸发蒸腾速率,假想作物的高度为0.12m ,固定的叶面阻力为70s/m ,反射率为0.23,非常类似于表面开阔、高度一致、生长旺盛、完全覆盖地面且不缺水的绿色草地蒸发蒸腾量。 Penman ——Monteith 公式: ) 34.01() (273900 )(408.0220U e e U T G R ET d a n ++?-++-?= γγ (1) 式中 0ET ——参考作物蒸发蒸腾量,mm/d ; ?——温度~饱和水汽压关系曲线在T 处的切线斜率,kPa ?℃-1 ; 2 )3.237(4098+?= ?T e a (2) T ——平均气温,℃ e a ——饱和水汽压,kpa ; ()3.23727.17ex p 611.0+=T T a e (3) R n ——净辐射,MJ/(m 2·d ); nl ns n R R R -= (4) R ns ——净短波辐射,MJ/(m 2 ·d ); R nl ——净长波辐射,MJ/(m 2·d ); a ns R N n R )/5.025.0(77.0+= (5) n ——实际日照时数,h ; N ——最大可能日照时数,h ; Ws N 64.7= (6)

农田水利学—作物需水量与灌溉用水量

第二章作物需水量与灌溉用水量 §1 作物需水量 一、作物田间水分的消耗 (三种途径:叶面蒸腾、棵间蒸发和深层渗漏) 叶面蒸腾:作物植株内水分通过叶面气孔散发到大气中的现象; 棵间蒸发:植株间土壤或水面(水稻田)的水分蒸发; 深层渗漏:土壤水分超过了田间持水率而向根系以下土层产生渗漏的现象。 解释:棵间蒸发能增加地面附近空气的湿度,对作物生长环境有利,但大部分是无益的消耗,因此在缺水地区或干旱季节应尽量采取措施,减少棵间蒸发(如滴灌<局部灌溉>、水田不建立水层)和地面覆盖等措施。 深层渗漏对旱田是无益的,会浪费水源,流失养分,地下水含盐较多的地区,易形成次生盐碱化。但对水稻来说,适当的深层渗漏是有益的,可增加根部氧分,消除有毒物质,促进根系生长,常熟、沙河、涟水等灌溉试验站结果都表明:有渗漏的水稻产量比无渗漏的水稻产量高3.9% ~26.5%。 叶面蒸滕量+棵间蒸发量=腾发量=作物田间需水量 水田:田间需水量+渗漏量=田间耗水量 由于水田不同土壤渗漏量大小差别很大,为了使不同土质田块水稻需水具有可比性,因此水稻的田间需水量不包括渗漏量,如计入渗漏量,则称为田间耗水量。 二、作物需水规律 (一)影响作物需水量的因素 1、气象条件主要因素,气温高、日照时间长、空气湿度低、风速大、气压低等使需水量增加; 2、土壤条件含水量大,砂性大,则需水量大(棵间蒸发大) 3、作物条件水稻需水量较大,麦类、棉花需水量中等,高粱、薯类需水量较少; 4、农业技术措施地面覆盖、采用滴灌、水稻控灌等能减少作物需水量。 (二)作物需水特性 1、中间多,两头少;开花结实期需水量最大 2、存在需水临界期 需水临界期:在作物全生育期中,对缺水最敏感,影响产量最大的时期。 几种作物的需水临界期: 水稻孕穗至开花期 棉花开花至幼铃形成期

利用彭曼公式计算作物需水量

利用彭曼公式计算 作物需水量 作物需水量的计算方法很多,过去常采用经验公式,即采用主要气象因子与作物需水量的经验关系进行估算,误差较大.近年来,国内外采用较多的是利用彭曼公式计算作物需水量,即通过采用参考作物需水量ETO 与作物系数KC的计算方法.彭曼公式理论基础可靠,计算精度较高,但计算较复杂?本文简要介绍利用彭曼公式计算作物需水量的方法和过程. ,计算参考作物需水量 参考作物在供水充足条件下的需 水量彭曼公式为:

R+E ETo F' 式中各项的意义及确定方法如 下: (一)FPo?A 因子 式中,P为海平面标准大气压, kPa;P为计算地点的实际气压,kPa;A为饱和水汽压一温度曲线上的斜率;为湿度计常数,kPaFC. 已知计算点的海拔高度及气温, 便可方便地从农田水利学课本或有关规范的附表中查得?令. (二)净辐射因子R R为达到地表的净辐射,可以用 辐射平衡表直接测量?没有直接测量数据时,可以用下式计算:尼=凡一尼o 1?净短波辐射: 凡=0.75( n +6)几 兄为大气外圈接收阳光的辐射,可根据计算点的纬度从地平面大气边缘太阳辐射表中查出不同月份的兄值.

用H代表0.75(.+b等),N值 为不同月份天文上可能出现的最大日平均日照时数,它决定于纬度的多少,n为当地实际日照时间,温带地 区a值为0.18,b值为0.55有了 H值便可算得到达地表的净波辐射能 量 R:HR.. 2?净长波辐射损失:R: (0.56— 0.079) 在大气层和地表之间有长波辐射存在,通常从大气层向地表的长波辐射量小于从地表向大气层的长波辐射量,二者之差即为净长波损失掉的能量,其大小与黑体辐射量,实际水气压ed和n/N值有关. 在黑体辐射量中,or为斯 提芬一保勒斯曼常数,可取02 为绝对温度,二T+273.有了温度 ,可以计算或从黑体辐射量表中查 得or值,以mm/d表示. 实际水气压e,通常各气象站都 有实测记录.如无实测记录,可间接计

土壤含水量及求农田作物需水量

土壤含水量及农田作物需水量 一、土壤含水量的计算 1.土壤重量含水量(重量百分数) 指一定重量的土壤中水分重量占干土重的百分数。干土指在105℃ 下烘干的土壤(干土≠风干土),通常要求烘干时间达8小时以上,准确则要求烘至衡重。它是普遍应用的一种表示方法,也是经典方法。一般情况下,如果文献中未做任何说明,则均表示“重量含水量”。如烘干法测定的结果,其含水量的重量百分数(水重%)可由下式求得: 例1:测得湿土重为95克,烘干后重79克,求重量含水量。 % 3.20%10079 7995%=?-=水重 2.土壤容积含水量(水容积百分数) 指一定土壤水的容积占土壤容积的百分数。它可以表明土壤水充满土壤孔隙的程度及土壤中水、气的比率。常温下如土壤的密度为1 克/厘米3,因此土壤容积含水量或水容积百分数(水容积%)可由下式求得: 土壤容重 自然状态下,单位体积内干土重,单:g/cm 3。容重是土壤的一个十分重要的基本参数,在土壤工作中用途较广,以下举例说明。 (1)判断土壤的松紧程度 容重可用来表示土壤的松紧程度,疏 蓊或有团粒结构的土壤容重小,紧实板结的土壤则容重大,如下表。

容重(g/cm3)松紧程 度 孔隙度 (%) < 1.00 最松> 60 1.00~1.1 4 松60~56 1.14~1.2 6 适合56~52 1.26~1.3 稍紧52~50 > 1.30 紧< 50 (2)计算土壤重量每公顷或每亩耕层土壤有多重,可用土壤的平均容重来计算,同样一定面积土壤(地)上的挖土或盆裁填土量,也要利用容重来计算。 例1:一个直径为40cm,高为50cm的盆,如果按1.15g/cm3容重计算,问需装多少(干)土? 解:(40/2)2? 3.14 ? 50 ? 1.15 = 72220克= 72公斤 如一亩地面积(6.67?106cm2)的耕层厚度为20cm,容重为1.15g/cm3,其总重量为: 6.67 ? 106? 20 ? 1.15 = 1.5 ? 108(g) = 150(t) = 150000kg = 30 万斤土 (3)计算土壤各组分的数量根据土壤容重,可以计算单位面积土壤的水分、有机质含量、养分和盐分含量等,作为灌溉排水、养分和盐分平衡计算和施肥的依据。 如上例中的土壤耕层,现有土壤含水量为5%,要求灌水后达到25%,则每亩的灌水定额为: 6.67 ? 106? 20 ? 1.15 ? (25% - 15%) = 30(m3)

灌溉制度的计算

一、灌溉制度的计算 根据《灌溉与排水工程规范》(GB50288-1999)规范,使用水量平衡图解法确定旱作物的灌溉制度。 a ET M K P W W W T t -+++=-00 式中 t W ——时段末土壤计划湿润层内的储水量(2 3 hm /m mm 或) 0W ——时段初土壤计划湿润层内的储水量(2 3hm /m mm 或) T W ——由于计划湿润层增加而增加的水量()]d hm /(m ([mm 23?或) 0P ——土壤计划湿润层内保存的有效降雨量(2 3hm /m mm 或) K ——时段t 内的地下水补给量(2 3hm /m mm 或) M ——时段t 内的灌溉水量(2 3hm /m mm 或) ET ——时段t 内的作物需水量(2 3hm /m mm 或) 二、旱作物播前的灌水定额1M 计算。 一般可按下式计算: )(1000 0max 1θθ-=H M 式中:H ——计划湿润层深度(m ) m a x θ——允许最大土壤体积含水率(3 3 m /m ) 0θ——灌前计划湿润层深度内土壤平均体积含水率(3 3m /m ) 根据所给资料,可以得到播前灌溉定额为 )mm (5.50%)50%5.50%75%5.50(4.01000)(10000max 1=?-???=-=θθH M

播前灌水的目的在于保证作物种子发芽和出苗所必需的土壤含水量。通过查阅油菜的种植技术知油菜种子发芽时的土壤含水量为田间持水量的60%~70%,因此在这里保证生育初期的土壤含水量为70%。在播前灌水后,土壤的含水率为75%,考虑到蒸发损失及土壤较好的保水性,将播前灌水时间提前在生育初期5天进行,即播前灌水时间定为3月23日。 三、作物需水量ET 的计算: 使用“K 值法”计算,计算公式为: KY ET = 式中:ET ——作物全生育期内的总需水量(2 3 hm /m mm 或) Y ——作物单位面积产量(2 hm /kg ) K ——需水系数(kg /m 3 ) 则作物全生育期内的总需水量)mm (5406006.0=?==KY ET 。 按照需水模系数法进行分配得到作物各生育阶段的需水量,计算公式为 ET K ET i i = 式中:i ET 为某一生育阶段作物需水量;i K 为需水量模系数;ET 的意义同前。 各生育阶段的作物需水量计算结果如下表: 日期 28/3~6/5 7/5~28/5 29/5~6/6 7/6~20/6 21/6~9/7 10/7~25/7 模比系数 20 10 10 15 24 10 各生育阶段作物需 水量(mm ) 108 54 54 81 129.6 54 四、计算渗入土壤内的降雨量 各旬有效降雨量及逐旬有效降雨累积量如下表:

作物灌溉制度表

竭诚为您提供优质文档/双击可除 作物灌溉制度表 篇一:主要作物节水灌溉制度 (一)冬小麦的节水灌溉制度 冬小麦是跨年度生长的作物,生长过程有两个峰期。与此相应,需水过程也呈双峰型。出苗后,随着群体不断加大,需水强度也明显增加,达到冬前峰期。之后,随着气温不断下降,需水强度也相应降低,并在整个越冬期间维持在较低的水平。来年春天返青后,随着气温不断上升,群体逐渐加大,耗水量也迅速增加,至抽穗后达到最大。这一阶段是穗分化与形成的关键阶段,缺水会严重影响产量。研究资料表明,这一时期的土壤含水量低于70%,即会对作物生长产生 明显的影响。此外,鄂西北地区这一时期降雨少,又经常出现持续大风天气,并且经过返青后一段时期的利用,土壤贮水消耗程度也较重,所以冬小麦田的土壤含水量常常会接近允许的低限值。这一阶段要随时监测土壤含水量,出现严重干旱时应及时进行补充灌溉。抽穗~成熟期是小麦整个生育期中至关重要的时期,籽粒形成及干物质积累都发生在其中,因而这一阶段也是决定产量高低的重要时期。生产中应当尽

可能地使这一阶段土壤水分状况保持在较高的水平。尤其是这一阶段的前期,是冬小麦的需水临界期(水分敏感系数最大的时期),土壤含水量应当不低于田间持水量的70%。这一阶段的后期对水分的要求有所降低,但仍然不应低于60%。这一时段的平均降雨量有明显增加,缺水状况有表1冬小麦节水灌溉制度 应当随时监测,视土壤水分状况变化,及时进行补充灌溉。根据河南引黄人民胜利渠试验站,山西省晋中、晋南灌溉试验站、山东省菏泽地区灌溉试验站的资料,并进行理论分析,得出如下地区的冬小麦节水灌溉制度仅供参考(表1)。(二)玉米的节水灌溉制度 表2是根据灌溉试验资料确定的玉米各生育阶段的水分敏感指数。依照敏感指数从大到小的排序,玉米各生育阶段实施灌溉的优先考虑次序为:抽雄~灌浆,拔节~抽雄。灌浆~成熟,播种~拔节。这一次序中没有包括播前灌溉,但在实际生产中,播前灌溉是经常需要考虑的。播种时良好的土壤水分状况才能保证全苗、壮苗,也是后期作物良好生长的先决条件,因此播前灌溉应予以特别重视。播种时如果墒情较差,要优先动用贮水实施灌溉。播前补灌宜采用穴灌或细流沟灌,灌水量10~15mm即可。 表2玉米各生育阶段的水分敏感指数 表3夏玉米节水灌溉制度

灌溉制度

1.该研究的目的、意义,国内外研究现状及发展趋势并列出主要参考文献 1.1研究的目的、意义 1.1.1选题背景 水是自然资源的重要组成部分,是所有生物的结构组成和生命活动的主要物质基础。从全球范围讲,水是连接所有生态系统的纽带,自然生态系统既能控制水的流动又能不断促使水的净化和反复循环。因此水在自然环境中,对于生物和人类的生存来说具有决定性的意义。地球上的水资源,从广义来说是指水圈内水量的总体。 海水是咸水,不能直接利用,所以通常所说的水资源主要是指陆地上的淡水资源,如河流水、淡水、湖泊水、地下水和冰川等。陆地上的淡水资源只占地球上水体总量2.53%,其中大部分(近70%)是固体冰川,即分布在两极地区和中、低纬度地区的高山冰川,还很难加以利用。目前人类比较容易利用的淡水资源,主要是河流水、淡水湖泊水,以及浅层地下水,储量约占全球淡水总储量的0.3%,只占全球总储水量的十万分之七。据研究,从水循环的观点来看,全世界真正有效利用的淡水资源每年约有9000千立方米。节约水资源是我们每个人都要做到得!!我国地表水年均径流总量约为2.7万亿立方米,相当于全球陆地径流总量的5.5%,占世界第5位,低于巴西、前苏联、加拿大和美国。我国还有年平均融水量近500亿立方米的冰川,约8000亿立方米的地下水及近500万立方千米的近海海水。目前我国可供利用的水量年约1.1万亿立方米,而1980年我国实际用水总量已达5075亿立方米,占可利用水资源的46%。 建国以来,在水资源的开发利用、江河整治及防治水害方面都做了大量的工作,取得较大的成绩。 在城市供水上,目前全国已有300多个城市建起了供水系统,自来水日供水能力为4000万吨,年供水量100多亿立方米;城市工矿企业、事业单位自备水源的日供水能力总计为6000多万吨,年供水量170亿立方米;在7400多个建制镇中有28%建立了供水设备,日供水能力约800万吨,年供水量29亿立方米。 农田灌溉方面,全国现有农田灌溉面积近7.2亿亩,林地果园和牧草灌溉面积约0.3亿亩有灌溉设施的农田占全国耕地面积的48%,但它生产的粮食却占全国粮食总产量的74%。 防洪方面,现有堤防20万多千米,保护着耕地5亿亩和大、中城市100多个。现有大中小型水库8万多座,总库容4400多亿立方米,控制流域面积约150万平方千米。 水力发电,我国水电装机近3000万千瓦,在电力总装机中的比重约为29%,在发电量中的比重约为20%。 然而,随着工业和城市的迅速发展,需水不断增加,出现了供水紧张的局面。据1984年196个缺水城市的统计,日缺水量合计达1400万立方米,水资源的保证程度已成为某些地区经济开发的主要制约因素。 水资源的供需矛盾,既受水资源数量、质量、分布规律及其开发条件等自然因素的影响,同时也受各部门对水资源需求的社会经济因素的制约。 我国水资源总量不算少,而人均占有水资源量却很贫乏,只有世界人均值的1/4(我国人均占有地表水资源约2700立方米,居世界第88位)。按人均占有水资源量比较,加拿大为我国的48倍、巴西为16倍、印度尼西亚为9倍、前苏联为7倍、美国为5倍,而且也低于日本、墨西哥、法国、前南斯拉夫、澳大利亚等国家。 我国水资源南多北少,地区分布差异很大。黄河流域的年径流量只占全国年径流总量的约2%,为长江水量的6%左右。在全国年径流总量中,淮、海河、滦河及辽河三流域只分别约占2%、1%及0.6%。黄河、淮河、海滦河、辽河四流域的人均水量分别仅为我国人均值的26%、15%、11.5%、21%。 随着人口的增长,工农业生产的不断发展,造成了水资源供需矛盾的日益加剧。从本世纪初

作物系数计算方法

方法一:作物需水量/参考作物需水量 1.作物需水量: 2.参考作物蒸散量 由我国气象站常规高度的风速测定值换算成2 m高处的风速值时需乘以0.75的系数。为了考虑干热空气平流作用和温度层结对风速的影响,需要对风速进行修正,其修正系数值C如表5所示。

方法二:地下水埋深法 地下水埋深对作物产量与水分利用效率的影响及作物系数变化,地下水[J],2011,vol33:20-23

地下水埋深对作物产量与水分利用效率的影响及作物系数变化.pdf 三、 参考腾发量(ET。)用Penman—Monteith公式计算,冬小麦在拔节抽穗期的日蒸散量(E T)由大型蒸渗仪测量 冬小麦拔节抽穗期作物系数的研究.PDF

以K cini 、K cmid 、K cend表示作物生长发育初期、中期及成熟后的3个作物系数值。(陕西杨凌,西北农林科技大学教育部旱区农业水土工程重点实验室的灌溉试验站) 分段单值平均作物系数法将作物系数的变化过程概化为几个阶段,根据各阶段叶面蒸腾和土面蒸划分4个阶段;双值作物系数法将作物系数分成两部分分别算,一部分是反映作物叶面蒸腾的基本作物系K cb,另一部分是反映土面蒸发的系数K e 由实测数据概化的冬小麦各阶段的单作物系数分别为: 冬小麦:K cini =0.55;K cmid =1.25;K cend =0.76。 双作物系数调整后的基础作物系数冬小麦为: K cini =0.55;K cmid =1.25;K cend =0.79 关中西部冬小麦作物系数的试验研究.PDF 节水灌溉条件下作物系数和土壤水分修正系数试验研究.PDF

主要作物节水灌溉制度

(一)冬小麦的节水灌溉制度 冬小麦是跨年度生长的作物,生长过程有两个峰期。与此相应,需水过程也呈双峰型。出苗后,随着群体不断加大,需水强度也明显增加,达到冬前峰期。之后,随着气温不断下降,需水强度也相应降低,并在整个越冬期间维持在较低的水平。来年春天返青后,随着气温不断上升,群体逐渐加大,耗水量也迅速增加,至抽穗后达到最大。这一阶段是穗分化与形成的关键阶段,缺水会严重影响产量。研究资料表明,这一时期的土壤含水量低于70%,即会对作物生长产生明显的影响。此外,鄂西北地区这一时期降雨少,又经常出现持续大风天气,并且经过返青后一段时期的利用,土壤贮水消耗程度也较重,所以冬小麦田的土壤含水量常常会接近允许的低限值。这一阶段要随时监测土壤含水量,出现严重干旱时应及时进行补充灌溉。抽穗~成熟期是小麦整个生育期中至关重要的时期,籽粒形成及干物质积累都发生在其中,因而这一阶段也是决定产量高低的重要时期。生产中应当尽可能地使这一阶段土壤水分状况保持在较高的水平。尤其是这一阶段的前期,是冬小麦的需水临界期(水分敏感系数最大的时期),土壤含水量应当不低于田间持水量的70%。这一阶段的后期对水分的要求有所降低,但仍然不应低于60%。这一时段的平均降雨量有明显增加,缺水状况有 表1 冬小麦节水灌溉制度

应当随时监测,视土壤水分状况变化,及时进行补充灌溉。 根据河南引黄人民胜利渠试验站,山西省晋中、晋南灌溉试验站、山东省菏泽地区灌溉试验站的资料,并进行理论分析,得出如下地区的冬小麦节水灌溉制度仅供参考(表1)。 (二)玉米的节水灌溉制度 表2是根据灌溉试验资料确定的玉米各生育阶段的水分敏感指数。依照敏感指数从大到小的排序,玉米各生育阶段实施灌溉的优先考虑次序为:抽雄~灌浆,拔节~抽雄。灌浆~成熟,播种~拔节。这一次序中没有包括播前灌溉,但在实际生产中,播前灌溉是经常需要考虑的。播种时良好的土壤水分状况才能保证全苗、壮苗,也是后期作物良好生长的先决条件,因此播前灌溉应予以特别重视。播种时如果墒情较差,要优先动用贮水实施灌溉。播前补灌宜采用穴灌或细流沟灌,灌水量10~15mm 即可。

作物需水量的计算方法与分析

作物需水量的计算方法与分析 彭曼法计算作物需水量 《灌溉与排水工程设计规范(GB50288-99)》附录中对彭曼法作了介绍,《规范》推荐的是Penman-FAO方法,近年来Penman,Monteith方法得到重视,建议在计算时同时采用这两种方法,并作一比较。 (1)计算参照作物需水量 Penman-FAO方法计算参考作物需水量的基本公式如下: (1) 式中,——标准大气压,,1013.25hPa; ——计算地点平均气压,hPa; ——平均气温时饱和水汽压与温度相关曲线的斜率,hPa/?; ——湿度计常数,,0.66hPa/?; ——太阳净辐射,以所能蒸发的水层深度计,mm/d; ——干燥力,mm/d。 可根据计算地点高程及气温从气象图表中查得,或按公式(2)直接计算数值: (2) 式中,——计算地点海拔高程,m;

——阶段平均气温,?。 可按公式(3)或(4),即气象学中的马格奴斯公式计算,即: (3) 或 (4) 式中,饱和水汽压,hPa。可按下式计算: (5) 或 (6) 可按公式(7)计算: (7) 式中,——大气顶层的太阳辐射,可由《喷灌工程设计手册》查得,mm/d; 、——计算净辐射的经验系数,可由《喷灌工程设计手册》查得; ——实际日照时数; ——最大可能日照时数,可由《喷灌工程设计手册》查得;; ——黑体辐射,mm/d;

-94——斯蒂芬,博茨曼常数,可取2.01×10mm/??d; ——绝对温度,可取273,; ——实际水汽压,可从当地气象站取得,或取饱和水汽压与相对湿度的乘积,hPa。 可按公式(8)计算: (8) 式中,——地面以上2m处的风速(m/s),其它高度的风速应换算为2m高处风速; ——风速修正系数。 如果利用气象站的地面以上10m处的风速资料时,需乘以 0.2(2/10),换算为2m高的风速。在日最低气温平均值大于5?且日最高气温与日最低气温之差的平均值大于12?时, ;其余条件下,。 (2)计算作物实际需水量 作物实际需水量可由参考作物潜在腾发量和作物系数计算 (9) 式中:——作物潜在腾发量,mm / d ; ——参照腾发量,mm/d; ——作物系数。 其中:

灌溉制度习题

灌溉制度习题 灌溉制度习题 1. 冬小麦播前灌水定额计算 播前灌水的目的是使土壤在播种时的含水率适于发芽需要,并供给苗期蒸发蒸腾的需水,同时使最大计划湿润层内储存足够的水分,以便在作物根系深扎后使用。 基本资料:(1)土壤最大计划湿润层H=0.8m。(2)土壤平均孔隙率n=41.3%(占土体%)。 (3)土壤田间持水率θmax=75.0%(占孔隙体积的百分比)。(4)播前土壤天然含水率 θ0=48.0%(占孔隙体积的百分比)。 要求:计算播前灌水定额。 2. 用水量平衡方程式估算冬小麦全生育期的灌溉定额 基本资料:某灌区冬小麦全生育期田间需水量E=380m3/mu,设计降雨量 P=150mm,降雨有效利用系数σ=0.8,全生育期地下水补给量K=30m3/mu。生育初期 土壤计划湿润层的深度取0.3m,生育后期取0.8m。土壤孔隙率n=48%(占土体),田间持水率θ田=70%(占孔隙体积的百分数)。在冬小麦播前进行灌溉,灌后使土壤最大计划湿润 层范围内的含水率皆达到田间持水率,收割时可使土壤含水率降至田间持水率的80%。 要求:用水量平衡法,估算冬小麦全生育期的灌溉定额M2。 3. 西北干旱地区春小麦灌溉制度设计——图解法 基本资料:西北内陆某地,气候干旱,降雨量少,平均年降雨量117mm,其中3~7月 降雨量65.2mm,每次降雨量多属微雨(5mm)或小雨(10mm),且历时短;灌区地下水埋藏深 度大于3m,且矿化度大,麦田需水全靠灌溉。土壤为轻、中壤土,土壤干容重为 1.48t/m3,田间持水量为28%(干土重的百分数计)。春小麦地在年前进行秋冬灌溉,开春 解冻后进行抢墒播种。春小麦各生育阶段的田间需水量、计划湿润层深度、计划湿润层增 深土层平均含水率及允许最大、最小含水率(田间持水量百分数计),如表1所列。据农民 的生产经验,抢墒播种时的土壤含水率为75%(田间持水量百分数计)。 要求:用图解法制定春小麦灌溉制度。 表1 春小麦灌溉制度设计资料表 4. 南方湿润地区早稻灌溉制度设计——列表计算法 基本资料:(1)根据该地区灌溉试验站多年观测资料,早稻各生育阶段需水量、田间 允许水层深度及渗漏强度,见(2)根据当地气象资料,中等干旱年(相应的降雨频率75%)

相关文档
最新文档