等离子体技术

等离子体技术
等离子体技术

等离子体技术

等离子体技术

plasma technology

应用等离子体发生器产生的部分电离等离子体完成一定工业生产目标的手段。等离子体的温度高,能提供高焓值的工作介质,生产常规方法不能得到的材料,加之有气氛可控、设备相对简单、能显著缩短工艺流程等优点,所以等离子体技术有很大发展。1879年W.克鲁克斯指出放电管中的电离气体是不同于气体、液体、固体的物质第四态,1928年I.朗缪尔给它起名为等离子体。最常见的等离子体有电弧、霓虹灯和日光灯的发光气体以及闪电、极光等。随着科学技术的发展,人们已能用多种方法人工产生等离子体,从而形成一种应用广泛的等离子体技术。一般来说,温度在108 K左右的等离子体称高温等离子体,目前只用于受控热核聚变实验中;具有工业应用价值的等离子体是温度在2×103~5×104K之间、能持续几分钟乃至几十小时的低温等离子体,主要用气体放电法和燃烧法获得。气体放电又分为电弧放电、高频感应放电和低气压放电。前两者产生的等离子体称热等离子体,主要用作高温热源;后者产生的等离子体称冷等离子体,具有工业上可利用的特殊的物理性质。它们主要用在以下几方面:

①等离子体机械加工。利用等离子体喷枪产生的高温高速射流,可进行焊接、堆焊、喷涂、切割、加热切削等机械加工。等离子弧焊接比钨极氩弧焊接快得多。196 5年问世的微等离子弧焊接,火炬尺寸只有2~3毫米,可用于加工十分细小的工件。等离子弧堆焊可在部件上堆焊耐磨、耐腐蚀、耐高温的合金,用来加工各种特殊阀门、钻头、刀具、模具和机轴等。利用电弧等离子体的高温和强喷射力,还能把金属或非金属喷涂在工件表面,以提高工件的耐磨、耐腐蚀、耐高温氧化、抗震等性能。等离子体切割是用电弧等离子体将被切割的金属迅速局部加热到熔化状态,同时用高速气流将已熔金属吹掉而形成狭窄的切口。等离子体加热切削是在刀具前适当设置一等离子体弧,让金属在切削前受热,改变加工材料的机械性能,使之易于切削。这种方法比常规切削方法提高工效5~20倍。

②等离子体化工。利用等离子体的高温或其中的活性粒子和辐射来促成某些化学反应,以获取新的物质。如用电弧等离子体制备氮化硼超细粉,用高频等离子体制备二氧化钛(钛白)粉等。

③等离子体冶金。从20世纪60年代开始,人们利用热等离子体熔化和精炼金属,现在等离子体电弧熔炼炉已广泛用于熔化耐高温合金和炼制高级合金钢;还可用来促进化学反应以及从矿物中提取所需产物。

④等离子体表面处理。用冷等离子体处理金属或非金属固体表面,效果显著。如在光学透镜表面沉积10微米的有机硅单体薄膜,可改善透镜的抗划痕性能和反射指数;用冷等离子体处理聚酯织物,可改变其表面浸润性。这一技术还常用于金属固体表面的清洗和刻蚀。

⑤气动热模拟。用电弧加热器产生的高温气流,能模拟超高速飞行器进入大气层时所处的严重气动加热环境,从而可用于研制适于超高速飞行器的热防护系统和材料。

此外,燃烧产生的等离子体还用于磁流体发电。70年代以来,人们利用电离气

体中电流和磁场的相互作用力使气体高速喷射而产生的推力,制造出磁等离子体动力推进器和脉冲等离子体推进器。它们的比冲(火箭排气速度与重力加速度之比)比化学燃料推进器高得多,已成为航天技术中较为理想的推进方法。

等离子污泥处理技术简介

等离子污泥处理技术简介 等离子体技术处理危险废物是一种新型环保技术,主要用于工业污水固粒饱水污泥、焚烧炉产生的飞灰及炉渣、工业危险废弃物等危险废物的处理工作。 (1) 等离子技术基本原理等离子体是与固态、液态和气态并列的第四种物质存在状态,它可以存在的参数范围相当宽广(其密度、温度以及磁场强度都可以跨越十几个数量级)。当一股强电流通过惰性气体(例如氮气)产生电离,即可形成等离子体。如果 等离子体的形态和性质受到外加电磁场的强烈影响,就会发生强烈的粒子集体运动。 此时能量发生瞬时集中,产生极高的电热效率(85%—95%),等离子体温度即时升 高上千度。这种极高的温度可完全分解有毒物质中存在的有机物或无机物分子,同时 完全分解了焚烧过程中可能形成的二氧化物类物质。整个过程在瞬间即可完成,产生 的高温可以还原一切难以还原和难熔性的物质。等离子体弧心温度可达7000℃,而反应器工作温度可在3000℃内调整。 (2) 等离子体处理工业污泥技术试验分析全国各危险废物处置中心的工业污泥处理技术和能源化研究现状,采用荷兰PANalytical公司Magix(PW2403)X射线荧光光谱仪测定了广西省和海南省主要城市取样工业污泥的组成和热值(试验用脱水污泥含水量74.3%,污泥干基固体挥发份含量62.9%),测试结果示于表1。利用等离子体产生 的瞬时高温突跃,进行了电弧等离子体技术的高温T-jump特性作用于工业污泥的处理试验。在数千度的高温下引起快速反应,使工业污泥中有机物质发生高温下物理化学 变化,如挥发、裂解、氧化、聚合等。反应后的固体残渣表面明显碳化或呈现玻璃态,含水率与挥发成份含量明显下降,性质状态非常稳定。其中受到电弧直接作用的污泥 反应后显熔融态,分解彻底。得到了类似水煤气的气体产物(主要成分CO和CH4气体)。这种物质可以直接点燃,火焰温度高达750℃—850℃。至此,初步完成了高温突跃T-jump处理工业危险废物活性污泥的可能性的实验。此外,在美国进行的测试已表明,经等离子体处理后的工业污泥可以完全分解,二噁英等致癌类再生物质实现零 排放。 (3) 等离子体焚烧技术处理工业污泥工艺流程工业污泥成分是复杂的混和物,其成分、水分均随时间、随地点、随产生源种类的不同发生变化,组分各不相同。与生活污泥、

等离子体的应用

等离子体技术与应用 学号 队别 专业 姓名

摘要 等离子体作为物质存在的一种基本形态,自18世纪中期被发现以来,对它的认识和利用不断深化。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。目前,等离子体技术已被广泛的用于国防、工业、农业、环境、通信等一系列国民经济发展领域,极大地推动了信息产业的发展,促进了工业科技进步。 关键词等离子体微波放电隐身技术材料的表面改性微波等离子灯 引言 等离子体是由带电的正粒子、负粒子(其中包括正离子、负离子、电子、自由基和各种活性基团等)组成的集合体,其中正电荷和负电荷电量相等故称等离子体。他们在宏观上呈电中性的电离态气体(也有你液态、固态)。当温度足够高时,构成分子的原子也获得足够大的的动能,开始彼此分离,这一过程称为离解。在此基础上进一步提高温度,就会出现一种全新的现象,原子的外层电子将摆脱原子核的束缚而成为自由电子,失去电子的原子变成带正电的离子,这个过程叫电离。等离子体指的就是这种电离气体,它通常由光子、电子、基态原子(或分子)、激发态原子(或分子)以及正离子和负离子六种基本粒子构成的集合体。因此,等离子体也被称为物质的第四态。 内容 一、等离子的性质 物质的第四态等离子体有着许多独特的物理、化学性质。只要表现如下: 1) 温度高、粒子动能大。 2) 作为带电粒子的集合体,具有类似金属的导电性能。等离子体从整体上看是一种导体电流体。 3) 化学性质活泼,容易发生化学反应。 4) 发光特性,可以作光源。 二、等离子技术的应用 2.1微波放电等离子体技术与应用 通常,低气压、低温等离子体是在1~100pa的气体中进行直流或射频放电产生的。直流辉光发电首先被研究和应用,但该等离子体是有极放电,而且密度低、电离度低、运行气压高,这就限制了其应用的广泛性。随后,射频放电技术逐步被发展起来,这是一种无极放电,且等离子体工作与控制参数比辉光放电有所提高,因而获得了较广泛的应用。但是其密度和电离度仍较低,应用范围依然受到限制。 微波放电初始阶段的物理过程如下。微波引入反应腔中建立起电磁场,反应气体中的电子在微波场作用下获得能量,与气体分子碰撞使其电离,从而得到更多的

等离子体技术的应用

等离子体技术的应用 -------废气处理及航天推进器 等离子体是一种电离气体,由电子、离子、中性粒子等组成,属于物质的高能凝聚态。等离子体中含有大量的带电粒子,使得它与普通气体有着本质的区别,具有很多普通气体没有的特性。对等离子体的研究己发展成为一门独立的物理学分支——等离子体物理学,等离子体物理学在工程技术中的应用形成了大有发展前景的专门技术,即等离子体技术。近年来,等离子体技术的实际应用获得了快速的发展,应用领域越来越广泛。目前,世界各国正加紧研究把等离子体技术用于武器系统隐身、通信和探测、火炮发射、飞行器拦截、环境污染、航天推进等方面,等离子体技术的应用对未来具有深远的意义 一、环境污染 近几年来,等离子体技术在能源、信息、材料、化工、物理医学、军工、航天等领域中大量应用,同时,国外许多研究机构不断将等离子体技术应用在环境工程中。目前,等离子体技术处理废水、废气及固体废弃物的研究已经取得了一定进展。在环境监测中电感耦合等离子体原子发射光谱法和质谱法已广泛应用于生态环境监测体系中(包括大气、水、土壤等)微量元素的测定。在大气污染治理中主要应用于烟气净化、脱硫、脱硝等方面。在水污染治理中主要应用于高浓度有机废液、垃圾渗滤液等废水的治理。在固体废物处理方面,等离子体技术逐渐取代传统的焚烧法应用于城市固体废弃物及生物武器、化学武器、化学毒品等特种固体废物的处理。1997年,美国开始采用等离子体废物处理系统处理军方废弃武器,1999年初,美国、欧盟、日本等逐渐关闭焚化炉后开始转向等离子废物处理系统,目前,瑞典、美国、德国、日本等国已建立了一定规模的城市固体废物的等离子体处理厂。 随着工业现代化的不断进步和发展,排放到大气中的硫氧化物、氮氧化物及有机废气等不断增加,大气污染造成的大气质量的恶化、酸雨现象、温室效应及臭氧层破坏足以威胁人类在地球上的生存和居住,其后果十分严峻,废气排放造成的环境污染问题逐渐引起人们的广泛重视。大气压等离子体技术是一门新兴的环境污染处理手段,其在废气处理应用中具有成本低,效果好、操作简单,无需高价格的真空系统等特点,具有广泛的应用前景。大气压等离子体技术的实质也就是气体放电原理,气体在电场作用下被击穿而导电,由此产生的电离气体叫做气体放电等离子体。大气压等离子体分解气态污染物的机理为:等离子体中的高能电子在大气压等离子体分解气体污染物中起决定性的作用,数万度的高能电子与气体分子(原子)发生非弹性碰撞,巨大的能量转换成基态分子(原子)的内能,发生激发、离解以及电离等一系列物理和化学变化使气体处于活化状态。电子能量小于10ev时产生活性自由基,活化后的污染物分子经过等离子体定向链化学反应后被脱除。而当电子平均能量超过污染物分子化学键结合能时,污染物气体分子键断裂,污染物分解,在大气压等离子体中可能发生各种类型的化学反应,反应程度取决于电子的平均能量、电子密度、气体温度、污染物气体分子浓度及共存的气体成分。大气压等离子体在废气处理中应用的机理是在等离子体中的高能电子、离子、自由基、激发态分子和原子等的作用下,将NOx与SO2被氧化成更易参与反应和更易吸收的NO2和SO3,从而实现对废气的净化处理。大气压等离子体降解污染物是一个十分复杂的过程,而且影响这一过程的因素很多,虽然目前已有大量有关低温等离子体降解污染物机理的研究,但还未形成能指导实践的理论体系,使其工业应用缺乏理论保障。其

低温等离子体表面处理技术

低温等离子体表面处 理技术

Plasma and first wall Introduction Today I will talk about something about my study on the first wall in the tokamak. Firstly, I will show you that what the plasma is in our life thought the following pictures such as: Fig.1 Lighning Fig.2 Aurora Fig.3 Astrospace Just as the pictures mentioned above , they are all consist of plasma. But, what does have in the plasma, now our scientist had given a definition that the plasma state is often referred to as the fourth state of matter and contains enough free charged particles(negative ions 、positive ions)and electronics. Like the photo below. Fig.4 Plasma production Plasma production In our research, we produce the plasma through an ICP (inductively coupled plasma)

等离子体法处理危险废弃物技术与设备

等离子体法处理危险废弃物技术与设备 等离子体法是处理危险废物的新型技术。日前,力学所工程科学部废物处理技术组建成了等离子体热解处理模拟医疗废物的全套实验室系统。 全套实验室模拟处理装置为中试规模,设计能力最大可达到5吨/日,包括进料子系统、等离子体核心处理设备和完善的尾气后处理子系统。进料子系统主要是柱塞式液压给料机,核心处理设备由等离子体炉、电源设备、测量控制系统、工作气体控制供应系统等设备组成;尾气后处理子系统由尾气急冷器、空气预热器、碳纤维吸附器、烟气脱酸、烟气再热器、尾气燃烧炉、引风机等设备组成。该系统还包括冷却和散热系统等辅助设备。 等离子体法利用电弧放电,可以将裂解温度提高到1500~2000oC,有效打断有机物的化学键,达到很高的摧毁效率,并能避免在处理过程中排放NOx、CO 和二噁英类等在焚烧时生成的有害物质,因此适合处理各类难分解的危险废物,达到近零排放的水平。实验数据显示,等离子体法仅形成少量裂解气体、炭黑和玻璃体,特别有利于二次产物的后处理和无害化,处理一吨废物的电耗约 1200~1500 kWh,低于焚烧多氯联苯等高危废物的能耗和能源成本,产生的可燃性尾气中的能源还可以回收利用,因而也是节能型技术。但是由于技术复杂,成本昂贵,国际上发展速度并不快,主要是用于处理多氯联苯(PCBs)、废农药、焚烧飞灰、医疗废物等有机与无机废物的处置,国内尚没有成熟的商业化产品。 近年来,课题组以交流等离子体弧技术为基础,在处理废塑料、废橡胶、医疗废物、有机废物、化学试剂和电子线路板等实验研究的基础上,承担了国家863计划课题和院知识创新工程方向性重要项目,研制交流等离子体处理医疗废物的成套设备和技术,并于2006年在四川晨光化工研究院建成国内首套工业规模的化工固体危险废物处理系统。 现在,课题组与深圳迈科瑞环境技术有限公司的合作,全面开发等离子体处理危险废物的技术和设备,努力通过走产业化的道路,尽早实现科研成果向生产力的转化。

等离子体及其技术的应用

等离子体及其技术的应用 摘要: 随着等离子体技术的迅速发展,逐渐形成了一个新兴的等离子体化工体系。我们知道,普通化学反应和化工设备中所产生的温度只有二千多度。而在各种形式的气体放电所形成的低温等离子体中电子温度可达一万度以上,足以造成各种化学键的断裂,或使气体分子激发电离,产生许多在通常条件下不能发生的化学反应,获得通常条件下不能得到的化合物或化工产品,并且获得的化合物与化工产品不会产生热分解。这势必会造就很多性能优良的新物质,其也将会有广泛的应用前景。 关键词:等离子体;喷涂;焊接;尾气处理;隐身技术

Plasma and its technical application ABSTRACT With the rapid development of plasma technology, and gradually formed a new plasma chemical system.We know, the common chemical reaction and chemical engineering equipments only produce two thousand degrees temperature.The temperatures that in low temperature plasma electronic produced by all forms of gas discharge up to ten thousand degrees or above,more enough to fracture all sorts of the chemical bonds, or make the gas molecule ionization, produce many chemical reactions that can't happened in usual conditions , get compound or chemical products that can't achieved in usual conditions , and the products won't occur thermal decomposition.It will produce a lot of new substances that performance excellent ,and have a broad application prospect. keywords:plasma;flame plating;soldering;tail gas treatment;invisible technology

等离子体技术在大气污染防治中的应用

等离子体技术在大气污染防治中的应用 等离子体技术在大气污染防治中的应用 发布时间:2010-09-19 08:51:48 1 等离子体概况 1.1 等离子体及等离子体技术的基本概念等离子体是由大量正负带电粒子和中性粒子组成的,并表现出集体行为的一种准中性非凝聚系统,整个体系呈电中性,具有与一般气体不同的性质, 容易受磁场、电场的影响它为化学反应提供必须的能量粒子和活性物种,在化学工业、 材料工业、电子工业、机械工业、国防工业、生物医学和环境保护等方面有着广泛的应用。它是物质存在的基本形态之一,与固态、液态、气态并列,成为物质第四态。 1.2 等离子体产生的机理及方法当气体分子以一定的方式在外部激励 源的电场被加速 获能时, 能量高于气体原子的电离电势时, 电子与原子间的 非弹性碰撞将导致电离而产生离子电子,当气体的电离率足够大

时,中性粒子的物理性质开始退居次要地位。整个系统受带电粒子的支配,此时电离的气体即为等离子体。等离子体发生器有以下两大类共计八种产生方法。 等离子包括放电等离子和化学等离子,放电等离子可分 为有电极和无电极两类。有电极有电弧放电、辉光放电、电晕放电 和无声放电。无电极有高频感应、微波放电和激波 放电。其中电弧放电、辉光放电和高频放电分直流和交流两种。电弧 直流放电有内极和外极之分。 1.3 等离子体的分类及特点应用按热力学状态不同和中性气体温度的 高低,等离子体可分为高温等离子体和低温等离子体,按温度可将等 离子体划分为热力学平衡态等离子体和非热力学平衡态等离子体。当 电子温度(Te)与离子温度(Ti)、中性粒子温度(Tg)相等时,等离子体处于热力学平衡状态,称之为平衡态等离子体(Equilibrium Plasma) 。因为温度一般在5000K 以上,故而又称其为高温等离子体(Thermal Plasma) 。当Te>>Ti 时,称之为非平衡态等离子体(Non—thermal Equilibrium Plasma) 。其电子温度高达10 的四次方K 以上,而其离子和中性粒子的温度却低至300~500 K ,因此,整个体系的表观温度还是很低的,故又称之为低温等离子体(Cold Plasma), 而低温等离子体可分为热等离子体、冷等离子体和燃烧等离子体。热等 离子体为局域热力学平衡态等离子体,是由高强度直流电弧放电与高频感应耦合放电产生的,其特点是重粒子(原子、分子、离子)温度接近于电子温度;冷等离子体是非平衡等离子体,是由辉光放电、微波放电、电晕放电或无声放电产生的,其特点是电子温度远远高于重粒子温度;燃烧等离子体通过燃烧形成,其特点是电离度极

等离子技术的概念及应用

等离子的概念及其应用 (一)等离子的概念 如果温度不断升高,气体又会怎样变化呢?科学家告诉我们,这时构成分子的原子发生分裂,形成为独立的原子,如氮分子会分裂成两个氮原子,我们称这种过程为气体中分子的离解。如果再进一步升高温度,原子中的电子就会从原子中剥离出来,成为带正电荷的原子核和带负电荷的电子,这个过程称为原子的电离。当电离过程频繁发生,使电子和离子的浓度达到一定的数值时,物质的状态也就起了根本的变化,它的性质也变得与气体完全不同。为区别于固体、液体和气体这三种状态,我们称物质的这种状态为物质的第四态,又起名叫等离子态。 (二)特点 (三)用途 等离子体的用途非常广泛。从我们的日常生活到工业、农业、环保、军事、医学、宇航、能源、天体等方面,它都有非常重要的应用价值。 (1)切割机 在工业上的应用有等离子切割机,等离子切割配合不同的工作气体可以切割各种氧气切割难以切割的金属,尤其是对于有色金属(不锈钢、铝、铜、钛、镍)切割效果更佳;其主要优点在于切割厚度不大的金属的时候,等离子切割速度快,尤其在切割普通碳素钢薄板时,速度可达氧切割法的5~6倍、切割面光洁、热变形小、几乎没有热影响区。 (2)焊机 离子弧是离子气被电离产生高温离子气流,从喷嘴细孔中喷出,经压缩形成细长的弧柱,其温度可达1,高于常规的自由电弧,如:氩弧焊仅达5000-8000K。由于等离子弧具有弧柱细长,能量密度高的特点,因而在焊接领域有着广泛的应用。 等离子焊机具有以下明显特点: 1.高效高质量的等离子焊接工艺方法,利用等离子电弧良好的小孔穿透的能力,在保 证单面焊双面成型的同时,尽量提高焊接速度,是TIG焊接效率的5~7倍。 2.采用等离子与TIG复合焊,等离子打底,TIG盖面,可以更加有效提高焊接质量和 效率。TIG焊的自由电弧有良好的履盖能力,再配合上适量的填充金属重熔,达到正面成形美观的效果,是单枪等离子焊接效率的1.3-1.5倍。 3.主要针对薄壁3~10mm不锈钢板、钛合金板等材料容器的纵环缝焊接。 4.对于壁厚8mm以下不锈钢板、壁厚10mm以下钛合金板不开坡口可实现单面焊双面 成型。

等离子体表面处理技术

等离子体表面处理技术的原理及应用 前言:随着高科技产业的讯速发展,各种工艺对使用产品的技术要求越来越高。 等离子表面处理技术的出现,不仅改进了产品性能、提高了生产效率,更随着高科技产业的迅猛发展,各种工艺对使用产品的技术要求也越来越高。这种材料表面处理技术是目前材料科学的前沿领域,利用它在一些表面性能差和价格便宜的基材表面形成合金层,取代昂贵的整体合金,节约贵金属和战略材料,从而大幅度降低成本。正是这种广泛的应用领域和巨大的发展空间使等离子表面处理技术迅速在国外发达国家发展起来。 一、等离子体表面改性的原理 等离子,即物质的第四态,是由部分电子被剥夺后的原子以及原子被电离后产生的正负电子组成的离子化气状物质。它的能量范围比气态、液态、固态物质都高,存在具有一定能量分布的电子、离子和中性粒子,在与材料表面的撞击时会将自己的能量传递给材料表面的分子和原子,产生一系列物理和化学过程。其作用在物体表面可以实现物体的超洁净清洗、物体表面活化、蚀刻、精整以及等离子表面涂覆。 二、等离子体表面处理技术的应用 1、在工艺产业方面的应用 1)、在测量被处理材料的表面张力 表面张力测定是用来评估材料表面是否能够获得良好的油墨附着力或者粘接附着品质的重要手段。为了能够评估等离子处理是否有效的改善了表面状态,或者为了寻求最佳的等离子表面处理工艺参数,通常通过测量表面能的方式来测定表面,比如使用Plasmatreat 测试墨水。最主要的表面测定方式包括测试墨水,接触角测量以及动态测量 评价表面状态 低表面能, 低于28 mN/m良好的表面附着能力,高表面能 2)预处理–Openair? 等离子技术,对表面进行清洗、活化和涂层处理的高技术表面处理工艺 常压等离子处理是最有效的对表面进行清洗、活化和涂层的处理工艺之一,可以用于处理各种材料,包括塑料、金属或者玻璃等等。 使用Openair?等离子技术进行表面清洗,可以清除表面上的脱模剂和添加剂等,而其活化过程,则可以确保后续的粘接工艺和涂装工艺等的品质,对于涂层处理而言,则可以进一步改善复合物的表面特性。使用这种等离子技术,可以根据特定的工艺需求,高效地对材料进行表面预处理。

等离子体处理有机废气技术综述

等离子体处理有机废气技术综述 [摘要]本文旨在综述等离子体降解有机废气技术。阐述了等离子体的概念,讨论了等离子体处理有机废气的机理,又分别综述了联合处理VOCs废气技术的研究进展。最后提出了该项技术在有机废气治理领域的研究方向。 [关键字]低温等离子体;联合;研究方向 引言 目前对有机废气治理采用的处理方法主要有吸收、吸附、催化燃烧等,这些方法所用设备多、工艺繁、能耗大:而相对比较热门的生物处理法又面临占地面积大,易受负荷变化影响,微生物菌种筛选和驯化难度大等问题。而等离子体技术作为一种高效率、占地少、运行费用低、使用范围广的环保处理新技术已成为近年来的研究热点。 1.等离子体技术处理有机废气机理分析 1.1等离子体概念 等离子体就是处于电离状态的气体,其英文名称为plasma。等离子体是被称作除固态、液态和气态之外的第四种物质存在形态。它是由大量带电粒子(离子、电子)和中性粒子(原子、激发态分子及光子)和自由基组成的导电性流体,因其总的正、负电荷数相等,故称为等离子体。 按热力学平衡状态进行分类,等离子体可分为热力学平衡状态等离子体(高温等离子体)和非热力学平衡状态等离子体(低温等离子体)。非平衡等离子体较平衡等离子体易在常温常压下产生,因此在环保领域有着广泛的应用前景。以下等离子体处理技术即低温等离子体技术。 1.2等离子体处理有机废气的机理 虽然对低温等离子体去除污染物的机理还不清楚,但一般都认为是粒子间非弹性碰撞的结果。其降解机理可概括为:1、高能电子直接作用于有机废气分子,污染物分子受碰撞激发或离解形成相应的基团和自由基。2、高能电子与气态污染物中所含的空气、水蒸气和其它分子作用产生新的自由基和激发态物质活性粒子及氧化性极强的O3,将有机物彻底氧化。3、活性基团从高能激发态向下跃迁产生紫外光,紫外光直接与有害气体反应而使气体分子键断裂从而得以降解。 2.等离子体处理有机废气的工艺分析 2.1等离子体单独作用处理有机废气

等离子体及其技术应用

等离子体及其技术应用 生化系化学教育姓名:蒋敏学号:20101420 摘要:通过介绍等离子体的概念、分类、特性、原理及其在化学工业、材料工业、电子工业、能源方面和机械工业、国防工业、生物医学及环境保护方面的技术应用。 关键词:等离子体、概念、特性、原理、应用 前言:等离子体是宇宙中物质存在的一种状态。物质除固、液、气三态外,还有第四种状态即等离子态。所谓等离子体就是气体在外力作用下发生电离,产生电荷相反、数量相等的电子和正离子以及游离基(电子、离子和游离基之间又可复合成原子和分子),由于在宏观上呈中性,故称之为等离子体。处于等离于态的各种物质微粒具有较强的化学活性,在一定的条件下可获得较完全的化学反应,物质的各态之间是可以相互转化的。 1. 等离子体 等离子体是由电子、离子等带电粒子以及中性粒子(原子、分子、微料等)组成的, 宏观上呈现准中性, 且具有集体效应的混合气体。所谓准中性是指在等离子体中的正负离子数目基本相等, 系统在宏观上呈现中性, 但在小尺度上则呈现出电磁性, 而集体效应则突出地反映了等离子体与中性气体的区别。 1.1等离子体的含义 由电子、离子和中性粒子三种成分组成。其中电子和离子的电荷总数基本相等,因而作为整体是电中性的。等离子体是由大量带电粒子组成的有宏观空间尺度和时间尺度的体系。 1.2等离子体的产生 对液体加热使之温度升高,可以使它转化为气体。在通常的气体中,物质的最小单元是分子。如果对气体再加热使气体温度升高时,分子会分解成单个原子,这种以原子为基本单元而组成的气体叫做原子气体。使原子气体的温度再升高,原子运动的速度增大。通过相互碰撞使之电离出自由电子和阳离子,当许多原子被电离之后,会形成一个电离过程、电离成的离子与电子复合成中性微粒过程之间的动态平衡,因此

等离子体加工技术

等离子体加工技术 摘要 随着科学技术的不断发展,工业需求的不断提高,各种高新设备应运而生,然而要加工这些设备就要使用更先进的加工技术。而等离子体加工技术就是一种不断发展的新型加工技术。本文简要介绍了工业用等离子体的分类及等离子体加工技术涉及的科学工程问题。围绕材料添加与去除加工,讨论了等离子体喷涂、增强沉积、离子去除等若干典型加工工艺的技术发展和应用情况,并对一些工艺中出现的现象以及某待深入研究的潜在科学问题进行了举例说明。 关键词:等离些有子体;加工;等离子体喷涂;等离子体聚合 Abstract With the continuous development of science and technology,increasing industrial demand,a variety of high-tech equipment came into being,however, to the processing of these devices is necessary to use more advanced processing technology.The plasma processing technology is a continuous development of new processing technology.This article briefly describes the classification of industrial plasma and plasma processing technology involved in scientific engineering problems.Adding and removing surrounding material processing,Discusses the plasma spraying, enhanced deposition, ion removal, etc. Several typical processing technology development and application,And some of the processes the phenomenon appears to be in-depth study as well as some of the potential scientific issues illustrate. Key words: Plasma;Machining;Plasma spraying;Plasma polymerization 引言 随着科学与工程技术的迅速发展,对新材料、新结构、新工艺的要求日益迫切。人们不仅要对材料的表面性能进行改进,而且还要了解元素(原子)的相互作用,新相的形成,亚稳态、非晶态的形成等机制;对一些结构器件的要求已达到了μm、nm 量级。在实现这些要求的过程中,作为特种加工手段之一的等离子体加工工艺的应用越来越广泛,实际上,等离子体之所以成为现代制造技术的重要手段之一,是由其能量状态决定的。物体由固体到等离子体态的转化过程中,都伴随有足够能量的输入。所以作为一种物质形态的等离子体具有最高的能量状态,为现代材料加工提供了巨大潜力。

等离子体显示技术的基本原理

等离子体显示技术的基本原理 等离子体显示器又称电浆显示器,是继CRT(阴极射线管)、LCD(液晶显示器)后的最新一代显示器,其特点是厚度极薄,分辨率佳。可以当家中的壁挂电视使用,占用极少的空间,代表了未来显示器的发展趋势(不过对于现在中国大多数的家庭来说,那还是一种奢侈品)。 等离子体显示技术之所以令人激动,主要出于以下两个原因:可以制造出超大尺寸的平面显示器(50英寸甚至更大);与阴极射线管显示器不同,它没有弯曲的视觉表面,从而使视角扩大到了160度以上。另外,等离子体显示器的分辨率等于甚至超过传统的显示器,所显示图像的色彩也更亮丽,更鲜艳。 等离子体显示技术(Plasma Display)的基本原理是这样的:显示屏上排列有上千个密封的小低压气体室(一般都是氙气和氖气的混合物),电流激发气体,使其发出肉眼看不见的紫外光,这种紫外光碰击后面玻璃上的红、绿、蓝三色荧光体,它们再发出我们在显示器上所看到的可见光。 换句话说,利用惰性气体(Ne、He、Xe等)放电时所产生的紫外光来激发彩色荧光粉发光,然后将这种光转换成人眼可见的光。等离子显示器采用等离子管作为发光元器件,大量的等离子管排列在一起构成屏幕,每个等离子对应的每个小室内都充有氖氙气体。在等离子管电极间加上高压后,封在两层玻璃之间的等离子管小室中的气体会产生紫外光激发平板显示屏上的红、绿、蓝三原色荧光粉发出可见光。每个等离子管作为一个像素,由这些像素的明暗和颜色变化组合使之产生各种灰度和彩色的图像,与显像管发光很相似。 从工作原理上讲,等离子体技术同其它显示方式相比存在明显的差别,在结构和组成方面领先一步。其工作原理类似普通日光灯和电视彩色图像,由各个独立的荧光粉像素发光组合而成,因此图像鲜艳、明亮、干净而清晰。另外,等离子体显示设备最突出的特点是可做到超薄,可轻易做到40英寸以上的完全平面大屏幕,而厚度不到100毫米(实际上这也是它的一个弱点:即不能做得较小。目前成品最小只有42英寸,只能面向大屏幕需求的用户,和家庭影院等方面)。依据电流工作方式的不同,等离子体显示器可以分为直流型(DC)和交流型(AC)两种,而目前研究的多以交流型为主,并可依照电极的安排区分为二电极对向放电(Column Discharge)和三电极表面放电(Surface Discharge)两种结构。 等离子体显示器具有体积小、重量轻、无X射线辐射的特点,由于各个发光单元的结构完全相同,因此不会出现CRT显像管常见的图像几何畸变。等离子体显示器屏幕亮度非常均匀,没有亮区和暗区,不像显像管的亮度——屏幕中心比四周亮度要高一些,而且,等离子体显示器不会受磁场的影响,具有更好的环境适应能力。 等离子体显示器屏幕也不存在聚焦的问题,因此,完全消除了CRT显像管某些区域聚焦不良或使用时间过长开始散焦的毛病;不会产生CRT显像管的色彩漂移现象,而表面平直也使大屏幕边角处的失真和色纯度变化得到彻底改善。同时,其高亮度、大视角、全彩色和高对比度,意味着等离子体显示器图像更加清晰,色彩更加鲜艳,感受更加舒适,效果更加理想,令传统显示设备自愧不如。 与LCD液晶显示器相比,等离子体显示器有亮度高、色彩还原性好、灰度丰富、对快速变化的画面响应速度快等优点。由于屏幕亮度很高,因此可以在明亮的环境下使用。另外,等离子体显示器视野开阔,视角宽广(高达160度),能提供格外亮丽、均匀平滑的画面和前所未有的更大观赏角度。当然,由于等离子体显示器的结构特殊也带来一些弱点。比如由于等离子体显示是平面设计,其显示屏上的玻璃极薄,所以它的表面不能承受太大或太小的大气压力,更不能承受意外的重压。等离子体显示器的每一个像素都是

等离子体技术

等离子体技术 等离子体技术 plasma technology 应用等离子体发生器产生的部分电离等离子体完成一定工业生产目标的手段。等离子体的温度高,能提供高焓值的工作介质,生产常规方法不能得到的材料,加之有气氛可控、设备相对简单、能显著缩短工艺流程等优点,所以等离子体技术有很大发展。1879年W.克鲁克斯指出放电管中的电离气体是不同于气体、液体、固体的物质第四态,1928年I.朗缪尔给它起名为等离子体。最常见的等离子体有电弧、霓虹灯和日光灯的发光气体以及闪电、极光等。随着科学技术的发展,人们已能用多种方法人工产生等离子体,从而形成一种应用广泛的等离子体技术。一般来说,温度在108 K左右的等离子体称高温等离子体,目前只用于受控热核聚变实验中;具有工业应用价值的等离子体是温度在2×103~5×104K之间、能持续几分钟乃至几十小时的低温等离子体,主要用气体放电法和燃烧法获得。气体放电又分为电弧放电、高频感应放电和低气压放电。前两者产生的等离子体称热等离子体,主要用作高温热源;后者产生的等离子体称冷等离子体,具有工业上可利用的特殊的物理性质。它们主要用在以下几方面: ①等离子体机械加工。利用等离子体喷枪产生的高温高速射流,可进行焊接、堆焊、喷涂、切割、加热切削等机械加工。等离子弧焊接比钨极氩弧焊接快得多。196 5年问世的微等离子弧焊接,火炬尺寸只有2~3毫米,可用于加工十分细小的工件。等离子弧堆焊可在部件上堆焊耐磨、耐腐蚀、耐高温的合金,用来加工各种特殊阀门、钻头、刀具、模具和机轴等。利用电弧等离子体的高温和强喷射力,还能把金属或非金属喷涂在工件表面,以提高工件的耐磨、耐腐蚀、耐高温氧化、抗震等性能。等离子体切割是用电弧等离子体将被切割的金属迅速局部加热到熔化状态,同时用高速气流将已熔金属吹掉而形成狭窄的切口。等离子体加热切削是在刀具前适当设置一等离子体弧,让金属在切削前受热,改变加工材料的机械性能,使之易于切削。这种方法比常规切削方法提高工效5~20倍。 ②等离子体化工。利用等离子体的高温或其中的活性粒子和辐射来促成某些化学反应,以获取新的物质。如用电弧等离子体制备氮化硼超细粉,用高频等离子体制备二氧化钛(钛白)粉等。 ③等离子体冶金。从20世纪60年代开始,人们利用热等离子体熔化和精炼金属,现在等离子体电弧熔炼炉已广泛用于熔化耐高温合金和炼制高级合金钢;还可用来促进化学反应以及从矿物中提取所需产物。 ④等离子体表面处理。用冷等离子体处理金属或非金属固体表面,效果显著。如在光学透镜表面沉积10微米的有机硅单体薄膜,可改善透镜的抗划痕性能和反射指数;用冷等离子体处理聚酯织物,可改变其表面浸润性。这一技术还常用于金属固体表面的清洗和刻蚀。

等离子体物理及应用领域

等离子体物理及应用领域 什么是等离子体? 由大量的带电粒子组成的非束缚态的宏观体系 非束缚性:异类带电粒子之间相互“自由”,等离子体的基本粒子元是正负荷电的粒子(电子、离子),而不是其结合体。 粒子与电磁场的不可分割性:等离子体中粒子的运动与电磁场(外场及粒子产生的自洽场)的运动紧密耦合,不可分割。 集体效应起主导作用:等离子体中相互作用的电磁力是长程的。 等离子体是物质第四态 电离气体是一种常见的等离子体 需要有足够的电离度的电离气体才具有等离子体性质。 “电性”比“中性”更重要 ( 电离度 >10-4 ) 放电是使气体转变成等离子体的一种常见形式 等离子体 电离气体 宇宙中90%物质处于等离子体态 人类的生存伴随着水,水存在的环境是地球文明得以进化、发展的的热力学环境,这种环境远离等离子体物态普遍存在的状态。因而,天然等离子

体就只能存在于远离人群的地方,以闪电、极光的形式为人们所敬畏、所赞叹。 由地球表面向外,等离子体是几乎所有可见物质的存在形式,大气外侧的电离层、日地空间的太阳风、太阳日冕、太阳内部、星际空间、星云及星团,毫无例外的都是等离子体。 地球上,人造的等离子体也越来越多地出现在我们的周围。 日常生活中:日光灯、电弧、等离子体显示屏、臭氧发生器 典型的工业应用:等离子体刻蚀、镀膜、表面改性、喷涂、烧结、冶炼、加热、有害物处理 高技术应用:托卡马克、惯性约束聚变、氢弹、高功率微波器件、离子源、强流束、飞行器鞘套与尾迹 等离子体参数空间 密度(cm -3) 温度 (度) 太阳核心 磁约束 聚 变 霓虹灯 北极光 火 闪电 日冕 氢 星际空间 荧光 气体 液 体 固 体 惯性聚变 星 太阳风

低温等离子原理与应用

低温等离子体技术在环境工程中的应用: 低温等离子体技术在废气处理中的应用随着工业经济的发展,石油、制药、油漆、印刷和涂料等行业产生的挥发性有机废气也日渐增多,这些废气不仅会在大气中停留较长的时间,还会扩散和漂移到较远的地方,给环境带来严重的污染,这些废气吸入***,直接对***的健康产生极大的危害;另外工业烟气的无控制排放使全球性的大气环境日益恶化,酸雨(主要来源于工业排放的硫氧化物和氮氧化物) 的危害引起了各国的重视。由于大气受污染而酸化,导致了生态环境的破坏,重大灾难频繁发生,给人类造成了巨大损失。因此选择一种经济、可行性强的处理方法势在必行。 降解挥发性有机污染物(VOCs)传统的处理方法如吸收、吸附、冷凝和燃烧等,对于低浓度的VOCs很难实现,而光催化降解VOCs又存在催化剂容易失活的问题,利用低温等离子体处理VOCs可以不受上述条件的限制,具有潜在的优势。但由于等离子体是一门包含放电物理学、放电化学、化学反应工程学及真空技术等基础学科之上的交叉学科。因此, 目前能成熟的掌握该技术的单位非常的少。大部分宣传采用低温等离子技术处理废气的宣传都不是真正意义上的低温等离子废气处理技术。 是否是低温等离子体处理技术的简单判断方法: 现在,各传媒上宣传低温等离子废气处理的产品和技术很多,可这些产品的宣传大部分都是在炒低温等离子体概念。如何判断是否是真正意义上的低温等离子体技术?可以用下面两个简单的规则来判断,即使你不懂低温等离子体技术也能判断出是真是假。 (1) 在废气处理的通道上必须充满了低温等离子体。这条规则判断很简单,只要用眼睛观察一下处理通道是否充满紫蓝色的放电就可以直观的了解是否是低温等离子体了(需要注意的是不要将各种颜色的灯光当作电离子体放电)。如果在废气处理的通道上只零星的分布若干的放电点或线,则处理的效果是非常有限的,因为,大部分的(VOCs)气体没有进过低温等离子体处理区域。 (2) 低温等离子体处理系统必须要有一定的放电处理功率。通常需

(完整word版)一种处理废弃物的理想方法——等离子体技术

一种处理废弃物的理想方法——等离子体技术 1 引言 经济的飞速发展,使人们的生活水平有了很大的提高,同时带来的环境问题日益成为人们关注的焦点,环境污染成为人们健康生活的隐形杀手。在城市垃圾处理中,最普遍的方法是集中焚烧掩埋,通过焚烧,使垃圾的量最少化,进而再进行掩埋处理。但这样,不仅不能浪费了垃圾中所含有的宝贵资源,同时也会造成严重的的空气问题和土壤问题。垃圾掩埋处理只是使垃圾短期内离开人们的视野,深埋地下的垃圾由于洪水等原因可能会重见天日,危害人类,深埋的垃圾不仅污染土壤,也会造成地下水污染,严重威胁人们的健康。癌症村的出现或许是最好的例证。加强对各类固体废弃物( 城市生活垃圾、工业三废、医疗和电子危废、污水污泥等) 的无害化、减量化和资源化处理是十二五国家环保事业和环保产业发展的主要内容之一,也是关系到坚持科学发展观,推进循环经济和建设和谐社会的重要任务。 一种新兴的废弃物处理技术——等离子体技术,成为近年来世界各国学者进行污染物处理新技术研究的方向之一。等离子体技术不仅可以对气相中的化学、生物废物进行破坏, 而且可以对液相、固相中的化学- 放射性废物进行破坏分解, 不仅对高浓度有机污染物有较好分解效果, 更可对大流量、低浓度污染物进行分解。很多情况下, 污染物只采用一种方法来处理难以得到预定的效果, 通常需要将物理、化学、生物等方法联合起来进行合理配置, 增加了系统的复杂性, 而应用等离子体技术则可以简化这一处理过程。作为一种可高效、便捷对污染物进行破坏分解的替代技术, 等离子体技术正受到各国学者越来越多的关注, 成为环境污染治理领域中最有发展前途的一项高科技技术。 2 等离子体概述 2.1等离子体的发展及应用 20世纪60年代形成的等离子体技术是一门交叉学科,涉及高能物理、放电物理、放电化学、反应工程学、高压脉冲技术等领域。在进入80年代后,将等离子体技术应用于处理各类污染物成为国内研究的热点之一。与其他污染治理技术相比,等离子体技术具有处理流程短、效率高、能耗低、适用范围广等特点。

低温等离子体的应用领域

低温等离子体的应用领域 低温等离子体物理与技术经历了一个由60年代初的空间等离子体研究向80年代和90年代以材料为导向研究领域的大转变,高速发展的微电子科学、环境科学、能源与材料科学等,为低温等离子体科学发展带来了新的机遇和挑战。 现在,低温等离子体物理与应用已经是一个具有全球影响的重要的科学与工程,对高科技经济的发展及传统工业的改造有着巨大的影响。例如,1995年全球微电子工业的销售额达1400亿美元,而三分之一微电子器件设备采用等离子体技术。塑料包装材料百分之九十都要经过低温等离子体的表面处理和改性。科学家预测:二十一世纪低温等离子体科学与技术将会产生突破。据估计,低温等离子体技术在半导体工业、聚合物薄膜、材料防腐蚀、等离子体电子学、等离子体合成、等离子体冶金、等离子体煤化工、等离子体三废处理等领域的潜在市场每年将达一千几百亿美元。 等离子体辅助加工被用来制造特种优良性能的新材料、研制新的化学物质和化学过程,加工、改造和精制材料及其表面,具有极其广泛的工业应用--从薄膜沉积、等离子体聚合、微电路制造到焊接、工具硬化、超微粉的合成、等离子体喷涂、等离子体冶金、等离子体化工、微波源。等离子体辅助加工已开辟的和潜在的应用领域包括: ●半导体集成电路及其它微电子设备的制造 ●工具、模具及工程金属的硬化 ●药品的生物相溶性包装材料的制备 ●表面防蚀及其它薄层的沉积 ●特殊陶瓷(包括超导材料) ●新的化学物质及材料的制造 ●金属的提炼 ●聚合物薄膜的印刷和制备 ●有害废物的处理 ●焊接 ●磁记录材料和光学波导材料 ●精细加工 ●照明及显示 ●电子电路及等离子体二极管开关 ●等离子体化工(氢等离子体裂解煤制乙炔、等离子体煤气化、等离子体裂解重烃、等离子体制炭黑、等离子体制电石等) 对上述某些部分领域的目前潜在市场估计: ●半导体工业约为260亿美元 ●等离子体电子学约为400亿美元 ●工具及模具硬化约为20亿美元 ●作记录和医用聚合物薄膜领域约为几十亿美元的市场 对一些新的有活力的市场估计: ●金属腐蚀防护约为500亿美元 ●优质陶瓷约为50亿美元 ●在废物处理、金属提练、包装材料及制药业中的应用约为几十亿美元市场。 低温等离子体物理与应用是一个具有全球性影响的重要的科学与工程,对全世界的高科技工业发展及许多传统工业的改造都有着直接的影响,二十一世纪初等离子体辅助加工会产生重要的突破,而这些突破对高科技产业的保护及提高其在市场中的地位将是极为重要的,例如

相关文档
最新文档