第十一章 细胞质遗传第十一章 细胞质遗传

第十一章 细胞质遗传第十一章 细胞质遗传
第十一章 细胞质遗传第十一章 细胞质遗传

第十一章细胞质遗传

第一节细胞质遗传的概念和特点

一、细胞质遗传的概念

由细胞质内的基因即细胞质基因所决定的遗传现象和遗传规律叫做细胞质遗传,有时又称非染色体遗传、非孟德尔遗传、染色体外遗传、核外遗传、母体遗传等。

真核生物的细胞质中的遗传物质主要存在于线粒体、质体、中心体等细胞器中。通常把上述所有细胞器和细胞质颗粒中的遗传物质,统称为细胞质基因组。

二、细胞质遗传的特点

细胞学的研究表明,在真核生物的有性繁殖过程中,卵细胞内除细胞核外,还有大量的细胞质及其所含的各种细胞器;精子内除细胞核外,没有或极少有细胞质,因而也就没有或极少有各种细胞器(图11-1)。

细胞质遗传的特点是:

1、遗传方式是非孟德尔式的;杂交后代—般不表现一定比例的分离;

2、正交和反交的遗传表现不同;F1通常只表现母本的性状,故细胞质遗传又称为母性遗传;

3、通过连续回交能将母本的核基因几乎全部置换掉,但母本的细胞质基因及其所控制的性状仍不消失;

4、由附加体或共生体决定的性状,其表现往往类似病毒的转导或感染。

第二节母性影响

一、概念:母性影响:由核基因的产物积累在卵细胞中的物质所引起的,子代表现母本性状的遗传现象。∴母性影响不属于胞质遗传的范畴,十分相似而已。

二、特点:下一代表现型受上一代母体基因的影响。

三、实例:

椎实螺的外壳旋转方向的遗传。

椎实螺是一种♀、♂同体的软体动物,每一个体又能同时产生卵子和精子,但一般通过异体受精进行繁殖。

∴椎实螺即可进行异体杂交、又可单独进行个体的自体受精。椎实螺外壳的旋转方向有左旋和右旋之分,属于一对相对性状。

第六节植物雄性不育的遗传

植物雄性不育的主要特征是雄蕊发育不正常,不能产生有正常功能的花粉,但是它的雌蕊发育正常,能接受正常花粉而受精结实。

一、雄性不育的类别及其遗传特点

可遗传的雄性不育性可分为核不育型和质核不育型等多种类型。

(一)核不育型

由核内染色体上基因所决定的雄性不育类型,简称核不育型。多属自然发生的变异。这类变异在水稻、小麦、大麦、玉米、谷子、番茄和洋葱许多作物中都发现过。这种不育型的败育过程发生于花粉母细胞减数分裂期间,不能形成正常花粉。由于败育过程发生较早,败育得十分彻底,因此在含有这种不育株的群体中,能育株与不育株有明显的界限。

多数核不育型均受简单的一对隐性基因(ms)所控制,纯合体(msms)表现雄性不育。这种不育性能为相对显性基因Ms所恢复,杂合体(Msms)后代呈简单的孟德尔式分离。(二)质—核不育型:

由细胞质基因和核基因互作控制的不育类型,简称质核型,又叫胞质不育型(CMS)。质核型不育性是由不育的细胞质基因和相对应的核基因所决定的。

胞质不育基因为S;

胞质可育基因为N;

核不育基因r,不能恢复不育株育性;

核可育基因R,能够恢复不育株育性。

S(rr)×N(rr)à S(rr)中,F1表现不育。

N(rr)个体具有保持母本不育性在世代中稳定的能力,称为保持系(B)。S(rr)个体由于能够被N(rr)个体所保持,其后代全部为稳定不育的个体,称为不育系(A)。

S(rr)×N(RR)或S(RR) à S(Rr)中,F1全部正常可育。N(RR)或S(RR) 个体具有恢复育性的能力,称为恢复系(R)。

S(rr)×N(Rr)或S(Rr) à S(Rr) + S(rr)中,F1表现育性分离。N(Rr)或S(Rr) + S(rr)具有杂合的恢复能力,称恢复性杂合体。

根据理论研究和实践表明,质核型不育性的遗传往往比较复杂,现介绍以下三方面的特点:

(1)孢子体不育和配子体不育

孢子体不育是指花粉的育性受孢子体(植株)基因型所控制,而与花粉本身所含基因无关。配子体不育是指花粉育性直接受雄配子体(花粉)本身的基因所决定。

(2)胞质不育基因的多样性与核育性基因的对应性

例如,在一般正常状态下,如果细胞质中的有关可育因子分别为N1、N2、N3、……、Nn;它们不育性的变异便相应地为:S1、S2、S3、……、Sn;同时在核内染色体上相对应的不育基因分别为r1、r2、r3、……、rn;其恢复基因则相应地为R1、R2、R3、……、Rn。核内的育性基因总是与细胞质中的育性基因发生对应的互作,即:r1(或R1)对N1(或S1)、r2(或R2)对N2(或S2)、r3(或R3)对N3(或S3)、……、rn(或Rn)对Nn(或Sn)等等。(3)单基因不育性和多基因不育性

核遗传型的不育性多数表现单基因的遗传,很少有多基因控制的报道。

质核型不育性比核型不育性容易受到环境条件的影响。特别是多基因不育性对环境的变化更为敏感。已知气温就是一个重要的影响因素。

二、雄性不育性的发生机理

(一)胞质不育基因的载体:

线粒体基因组是雄性不育基因的载体。在水稻、小麦、玉米和甜菜等作物中都有类似的报道。

还有人认为叶绿体DNA是雄性不育基因的载体。

另有人认为存在一种决定育性的游离基因,使个体正常能育。

(二)关于质核不育型的假说

1、质核互补控制假说

认为,细胞质不育基因存在于线粒体上。在正常情况下(N)线粒体DNA携带能育的遗传信息,正常转录mRNA,继而在线粒体的核糖体上合成各种蛋白质(或酶),从而保证雄蕊发育过程中的全部代谢活动正常进行,最终导致形成结构、功能正常的花粉。当线粒体DNA的某个(或某些)节段发生变异,并使可育的胞质基因突变为S时,线粒体mRNA所转录的不育性信息使某些酶不能形成,或形成某些不正常的酶,从而破坏了花粉形成的正常代谢过程,最终导致花粉败育。线粒体DNA发生变异后,是否一定导致花粉的败育,还要看核基因的状态。当核基因为R时,携带正常可育的遗传信息,这些信息通过mRNA的转录,转移到细胞质核糖体上,翻译成各种蛋白质(或酶),最终导致花粉的正常发育。当核基因为

r时,仅携带不育性的遗传信息,因此不能形成正常花粉。一般情况下,只要质、核双方有一方携带可育性遗传信息,无论是N或R,都能形成正常育性。R可以补偿S的不足,N 可以补偿r的不足。只有S与r共存时,由于不能互相补偿,所以表现不育。如果N与R 同时存在,由于N同时有调节基因的作用,线粒体DNA能控制产生某种抑制物质,使R 处于阻遏状态,因此不会在细胞质中形成多余的物质而造成浪费。如果S与R同时存在,S 不产生抑制物质,因此R基因能执行正常的功能,从而导致花粉可育。

(2)、能量供求假说

假说认为线粒体是细胞质雄性不育性的重要载体。植物的育性与线粒体的能量转化效率有关。进化程度低的野生种或栽培品种的线粒体能量转换率低,供能低,耗能也低,供求平衡,所以雄性能育,反之,进化程度较高的栽培品种线粒体能量转换率高,供能高,耗能也高,供求平衡,因此雄花育性也是正常的。在核置换杂交时会出现两种情况:(1)低供能的作母本,高耗能的作父本,得到的核质杂种由于能量供求不平衡,因而表现雄性不育。(2)高供能的作母本,低耗能的作父本,由于杂种的供能高而耗能低,因而育性正常。不难看出,这个假说是假定供能水平的高低取决于mt DNA,而耗能水平的高低则取决于核基因。这个假说没有能够回答为何能量的平衡仅仅影响雄性的育性,而不影响其它性状的表现。(3)、亲缘假说

两亲间亲缘差距越大,杂交后的生理不协调程度也越大。当这种不协调达到一定程度,就会导致植株代谢水平下降,合成能力减弱,分解大于合成,使花粉中的生活物质(如蛋白质、核酸)减少,最终导致花粉的败育。

三、雄性不育性的利用

质核型不育性由于细胞质基因育核基因间的互作,故即可以找到保持系à不育性得到保持、也可找到相应恢复系à育性得到恢复,实现三系配套。

不育系A:S(rr)

保持系B:N(rr)、恢复系R:S(RR)或N(RR)

三系法的一般原理是首先把杂交母本转育成不育系,父本必须是恢复系。

三系法的制种方法见图11-16。

自从1973年我国学者石明松从晚粳品种农垦58中发现“湖北光敏核不育水稻”—“农垦58S”以来,核不育型的利用受到极大关注。“湖北光敏核不育水稻”具有在长日光周期诱导不育、短日光周期诱导可育的特性,因此这种不育水稻可以将不育系和保持系合二为一,为此我国学者提出了利用光敏核不育水稻生产杂交种子的“两系法”,这种方法目前已在我国水稻生产上大面积推广应用。两系法的制种方法见图11-17。

第十一章 细胞质遗传《遗传学》

第十一章细胞质遗传 本章习题 1、什么叫细胞质遗传?它有哪些特点?试举例说明之。 答:细胞质遗传指由细胞质内的遗传物质即细胞质基因所决定的遗传现象和规律,又称非染色体遗传、非孟德尔遗传、染色体外遗传、核外遗传、母体遗传。 细胞质遗传的特点:⑴. 遗传方式是非孟德尔式的;杂交后一般不表现一定比例的分离。⑵. 正交和反交的遗传表现不同;F1通常只表现母体的性状,故又称母性遗传。⑶. 通过连续回交能将母本的核基因几乎全部置换掉,但母本的细胞质基因及其所控制的性状仍不消失。⑷. 由附加体或共生体决定的性状,其表现往往类似病毒的转导或感染。 举例:罗兹(Rhoades M. M.)报道玉米的第7染色体上有一个控制白色条纹的基因(ij),纯合的ijij植株叶片表现为白色和绿色相间的条纹。以这种条纹株与正常绿色进行正反杂交,并将F1自交其结果如下:当以绿色株为母本时,F1全部表现正常绿色与非绿色为一对基因的差别,纯合隐性(ijij)个体表现白化或条纹,但以条纹株为母本时,F1却出现正常绿色、条纹和白化三类植株,并且没有一定的比例,如果将F1的条纹株与正常绿色株回交,后代仍然出现比例不定的三类植株,继续用正常绿色株做父本与条纹株回交,直至ij基因被全部取代,仍然没有发现父本对这个性状的影响,可见是叶绿体变异之后的细胞质遗传方式。 2、何谓母性影响?试举例说明它与母性遗传的区别。 答:由于母本基因型的影响,使子代表现母本性状的现象叫做母性影响,又叫前定作用。 母性影响所表现的遗传现象与母性遗传十分相似,但并不是由于细胞质基因组所决定的,而是由于核基因的产物在卵细胞中积累所决定的,故不属于母性遗传的范畴。

遗传学简答(缺第三、五章)

第一章 1、如何辩证的理解遗传和变异的关系? 遗传和变异之间是相互对立而又相互联系的,因而是辩证统一的关系。遗传是相对的、保守的,变异是绝对的、发展的。没有遗传,就不可能保持性状和物种的相对稳定性,就是产生了变异也不能传递下去,变异不能积累,那么便宜也就失去其意义了;没有变异,就不会产生新的形状,也就不可能有物种的进化和新品种的选育,遗传只是简单的重复。只有遗传和变异这对矛盾不断地运动,经过自然选择,才形成了形形色色的物种。 第二章 1、有丝分裂的遗传学意义是什么? 核内各染色体准确复制分裂为二,为形成两个子细胞与母细胞在遗传组成上完全一样奠定了基础。 2、减数分裂的遗传学意义是什么? 减数分裂的特点是DNA复制一次,而细胞连续分裂两次,形成单倍体的精子和卵子,通过受精作用又恢复二倍体,减数分裂过程中同源染色体间发生交换,使配子的遗传多样化,增加了后代的适应性,因此减数分裂不仅是保证生物种染色体数目稳定的机制,同且也是物种适应环境变化不断进化的机制。 3、试说明双脱氧法测定DNA序列的原理和方法。 原理: 在体外合成DNA的同时,加入使链合成终止的试剂(通常是2’,3’-二脱氧核苷酸),与4种脱氧核苷酸按一定比例混合,参与DNA的体外合成,产生长短不一、具有特定末端的DNA 片段,由于二脱氧核苷酸没有3’-OH,不能进一步延伸产生3’,5’-磷酸二酯键,合成反应就在该处停止。 方法: ①选取待测DNA的一条链为模板,用5’端标记的短引物与模板的3’端互补。 ②将样品分为4等份,每份中添加4种脱氧核苷三磷酸和相应于其中一种的双脱氧核苷酸。例如,第一份中添加4种dNTP和一定比例的ddATP,第二份则添加四种dNTP和一定比例的ddGTP,第三份添加ddCTP,第四份添加ddTTP。 ③加入DNA聚合酶引发DNA合成,由于双脱氧核苷酸与脱氧核苷酸的竞争作用,合成反应在双脱氧核苷酸掺入处终止,结果合成出一套长短不同的片段。 ④将4组片段进行聚丙烯酰胺凝胶电泳分离,根据所得条带,读出待测DNA的碱基顺序。 4、什么是PCR,试述PCR技术的原理,以及PCR的反应过程。 原理: 首先,双链DNA分子在临近沸点的温度下加热分离成两条单链DNA分子;然后,加入到反应混合物中的引物与模板DNA的特定末端相结合:接着,DNA聚合酶以单链DNA为模板,利用反应混合物中的4种脱氧核苷三磷酸,在引物的3’-OH端合成新生的DNA互补链。反应过程: DNA解链(变性)、引物与模板相结合(退火)、DNA合成(链的延伸)三步,不断重复。 5、用实验证明DNA是以半保留复制方式进行复制的。 先将大肠杆菌细胞培养在用15NH4Cl作为唯一氮源的培养液里养很长时间(14代),使得细胞内所有的氮原子都以15N的形式存在(包括DNA分子里的氮原子)。这时再加入大大过量的14NH4Cl和各种14N的核苷酸分子,细菌从此开始摄入14N,因此所有既存的“老”

刘祖洞遗传学第三版答案 第13章 细胞质和遗传

第十三章细胞质和遗传 1.母性影响和细胞质遗传有什么不同? 答: 1)母性影响是亲代核基因的某些产物或者某种因子积累在卵细胞的细胞质中,对子代某些性状的表现产生影响的现象。这种效应只能影响子代的性状,不能遗传。 因此F1代表型受母亲的基因型控制,属于细胞核遗传体系; 细胞质遗传是细胞质中的DNA或基因对遗传性状的决定作用。由于精卵结合时,精子的细胞质往往不进入受精卵中,因此,细胞质遗传性状只能通过母体或 卵细胞传递给子代,子代总是表现为母本性状,属于细胞质遗传体系,2)母性影响符合孟德尔遗传规律;细胞质遗传是非孟德尔式遗传。 3)母性遗传杂交后代有一定的分离比, 只不过是要推迟一个世代而已;细胞质遗传杂交后代一般不出现一定的分离比。 2.细胞质基因和核基因有什么相同的地方,有什么不同的地方? 答: 1)相同:细胞核遗传和细胞质遗传各自都有相对的独立性。这是因为,尽管在细胞质中找不到染色体一样的结构,但质基因与核基因一样,可以自我复制,可以控制蛋白质的合成,也就是说,都具有稳定性、连续性、变异性和独立性。 2)不同: A. 细胞质和细胞核的遗传物质都是DNA分子,但是其分布的位置不同。细胞核遗 传的遗传物质在细胞核中的染色体上;细胞质中的遗传物质在细胞质中的线粒体 和叶绿体中。 B. 细胞质和细胞核的遗传都是通过配子,但是细胞核遗传雌雄配子的核遗传物质相 等,而细胞质遗传物质主要存在于卵细胞中; C. 细胞核和细胞质的性状表达都是通过体细胞进行的。核遗传物质的载体(染色体) 有均分机制,遵循三大遗传定律;细胞质遗传物质(具有DNA的细胞器如线粒 体、叶绿体等)没有均分机制,是随机分配的。 D. 细胞核遗传时,正反交相同,即子一代均表现显性亲本的性状;细胞质遗传时, 正反交不同,子一代性状均与母本相同,即母系遗传。 3.在玉米中,利用细胞质雄性不育和育性恢复基因,制造双交种,有一个方式是这样的:先把雄性不育自交系A【(S)rfrf】与雄性可育自交系B【(N)rfrf】杂交,得单交种AB,把雄性不育自交系C【(S)rfrf】与雄性可育自交系D【(N)RfRf】杂交,得单交种CD。然后再把两个单交种杂交,得双交种ABCD,问双交种的基因型和表型有哪几种,它们的比例怎样? 解: A【(S)rfrf】? B【(N)rfrf】C【(S)rfrf】? D【(N)RfRf】 ↓↓ AB【(S)rfrf】?CD【(S)Rfrf】 ↓ 基因型:1/2【(S)rfrf】1/2【(S)Rfrf】 表型:雄性不育雄性可育 4.“遗传上分离的”小菌落酵母菌在表型上跟我们讲过的“细胞质”小菌落酵母菌相似。 当一个遗传上分离的小菌落酵母菌与一个正常酵母菌杂交,二倍体细胞是正常的,以后形成子囊孢子时,每个子囊中两个孢子是正常的,两个孢子产生小菌落酵母菌。用

遗传学(朱军,第三版)第十一章细胞质遗传复习总结

一、细胞质遗传的概念 细胞质遗传(cytoplasmic inheritance):由细胞质基因所决定的遗传现象和遗传规律(又称非孟德尔遗传、母体遗传) 细胞质基因组:包括细胞器基因组(线粒体基因组、叶绿体基因组、中心粒基因组、膜体系基因组和动粒基因组)和非细胞器基因组(细胞共生体基因组和细胞质粒基因组) 二、细胞质遗传的特点 1、正反交结果不一样,杂种后代只表现母本的性状,呈现母系遗传 2、不遵循孟德尔遗传定律,杂交后代不出现一定的分离比 3、性状直接由细胞质基因控制,并通过细胞质遗传下去,即使连续回交,母本核基因可被全部置换掉,但由母本细胞质基因所控制的性状仍不会消失; 4、细胞质基因只存在于细胞质的某些成分中,不能在染色体上定位。 5、由细胞质中的附加体或共生体决定的性状往往可传递给其它细胞。 三、叶绿体遗传 1、表现 A.紫茉莉花斑性状类是由于叶绿体前体质体变异产生白色体,导致植物细胞呈现白色。同时含有白色体和叶绿体的卵细胞受精会发育成花斑植株(同时有绿色、白色和花斑枝条)。而只含叶绿体或者白色体的卵细胞受精就会只能对应发育成绿色植株或者白色植株。B.玉米条纹(白色)叶也是由于叶绿体的变异造成,服从与紫茉莉花斑性状类似的遗传特性,只是玉米七号染色体上的白色条纹基因(ij)纯合时ij核基因使胞质内质体突变为白色,且一旦变异就以细胞质遗传的方式稳定遗传。 2、分子基础 A.叶绿体DNA的分子特点 ①.ct DNA与细菌DNA相似,裸露的DNA; ②.闭合双链环状结构; ③.多拷贝:高等植物每个叶绿体中有30-60个DNA,整个细胞约有几千个DNA分子;藻类中,叶绿体中有几十至上百个DNA分子,整个细胞中约有上千个DNA分子。 ④.单细胞藻类中GC含量较核DNA小,高等植物差异不明显; ⑤.一般藻类ctDNA的浮力密度轻于核DNA,而高等植物两者的差异较小。 B.叶绿体基因组的构成: a.低等植物的叶绿体基因组: ⑴ct DNA仅能编码叶绿体本身结构和组成的一部分物质; ⑵特性:与抗药性、温度敏感性和某些营养缺陷有关。 b.高等植物的叶绿体基因组: ①.多数高等植物的ctDNA大约为150kbp:烟草ctDNA为155844bp、水稻ctDNA为134525bp。 ②.ctDNA能编码126个蛋白质:12%序列是专为叶绿体的组成进行编码; ③.叶绿体的半自主性:有一套完整的复制、转录和翻译系统,但功能有限需要与核基因组紧密联系。 C.叶绿体内遗传信息的复制、转录和翻译系统: 1.ctDNA与核DNA复制相互独立,但都是半保留复制方式; 2.叶绿体核糖体为70S、而细胞质中核糖体为80S; 3.叶绿体中核糖体的rRNA碱基成分与细胞质和原核生物中rRNA不同; 4.叶绿体中蛋白质合成需要的20种氨基酸载体tRNA分别由核DNA和ct DNA共同编码。其中脯氨酸、赖氨酸、天冬氨酸、谷氨酸和半胱氨酸为核DNA所编码,其余10多种氨基酸为ctDNA所编码。

11第十一章细胞质遗传只是分享

第十一章细胞质遗传 一、名词解释 1、细胞质基因:也叫染色体外基因,是所有细胞器和细胞质颗粒中的遗传物质的统称。 2、细胞质遗传:子代的性状是由细胞质内的基因所控制的遗传现象。也叫母系遗传、核外 遗传、母体遗传。 3、母性影响:子代的某一表型受到母亲基因型的影响,而和母亲的基因型所控制的表型一 样。 4、持续饰变:环境引起的表型改变通过母亲细胞质而连续传递几代,变异性逐渐减少,最 终消失的遗传现象。 5、雄性不育:植株不能产生正常的花药、花粉或雄配子,但它的雌蕊正常,能接受正常花 粉而受精结实。 6、核质互作雄性不育型:也叫质核互作型,核基因和细胞质基因共同作用控制的雄性不育 类型。 二、是非题 1、已知一个右旋的椎实螺基因型为Dd,它自体受精产生后代应该全部是左旋。(×) 2、母性影响不属于细胞质遗传的范畴,是受母亲核基因控制的。(√) 3、叶绿体基因组控制的性状在杂交后代中不分离。(×) 4、玉米埃型条纹的遗传过程中,叶绿体变异一经发生,便以细胞质遗传的方式稳定传递, 不再受核基因的控制。(√)5、高等动植物的精细胞中几乎不含有细胞质(器),因而细胞质内的遗传物质主要通过卵细 胞传递给后代。(√)6、核基因型为Aa的草履虫自体受精,产生核基因型为AA、Aa、aa的三种后代,且三者比 为1:2:1。(×) 7、草履虫的放毒特性依赖于核基因K,因此有K基因就是放毒型,否则就是敏感型。(×) 8、利用化学药物杀死一个正常植株的花粉,它的雌花与正常花粉授粉,受精获得的子代也 就能表现出雄性不育的特性了。(×) 9、植物的雄性不育的主要特征是雄蕊和雌蕊发育不正常。(×) 10、在质不育型的植物雄性不育中,找不到不育系的保持系。(×) 11、在核不育型的植物雄性不育中,找不到不育系的恢复系。(×) 12、核不育型雄性不育植株后代的分离符合孟德尔遗传规律。(√) 13、持续饰变不能隔代遗传,无论在后代中怎样选择,最终性状终将消失。(√) 三、填空题 1、紫茉莉花斑遗传是受叶绿体控制的;红色面包霉缓慢生长突变型是由线粒体所 决定的。 2、草履虫放毒型的稳定遗传必须有核基因K 和卡巴粒同时存在,核基因K决定 卡巴粒的增殖,而草履虫素则是由卡巴粒产生的。 3、一个放毒型草履虫与一敏感型个体短时间接合,无细胞质的转移,结果半数的接合后体 是敏感型,其余为放毒型的,而后放毒型接合后体自体受精,只产生放毒型的,敏感型接合后体自体受精,亦只产生敏感型个体,则这两个原始品系中放毒型基因型是 KK+卡巴粒,敏感型基因型是 KK无卡巴粒。 4、将生长缓慢的小酵母菌落与正常野生型菌落进行杂交,如子代都为野生型,说明缓 慢生长的性状是由细胞质基因控制的,如子代发生了野生型和小菌落的分离,说

作物遗传育种学课程教学大纲

作物遗传育种学课程教学大纲 (Genetics and Plant Breeding) 课程编号:081122 课程性质:专业选修课 适用专业:农业 先修课程:植物学、植物生理学 后续课程:种子工程学 总学分:4.5,其中实验学分0.5 教学目的与要求: 作物遗传育种学包括遗传学和育种学两部分。遗传学是研究生物在繁殖过程中遗传和变异的内在和外在表现及规律的科学。作物育种学是研究选育优良品种的理论与方法的科学。作物育种学以遗传学作为主要理论基础。通过作物遗传育种学的学习,使学生在了解和掌握遗传变异规律及其原因的基础上,理解和掌握主要农作物新品种选育的基本原理和方法。在整个教学过程中,根据教学的总体进程,结合田间农作物生长发育情况,通过实践性教学,掌握主要农作物新品种选育的基本方法和实际操作技能。基本要求是: 1、遗传学部分介绍遗传学的基本原理及主要遗传学分支学科的基本理论。通过遗传学教学,使学生了解和掌握遗传学基本现象和基本规律,并培养学生分析、推理等解决实际问题的能力,为作物育种学和有关分支遗传学的学习奠定理论基础。 2、育种学部分要求了解制定育种目标的原则,作物的繁殖方式与育种方法的关系,掌握品种资源的搜集、研究与利用、引种的基本规律、选择育种、杂交育种、杂种优势利用、抗病虫育种、生物技术育种的原理和方法。在实践教学中,掌握主要农作物的有性杂交(自交)技术、育种程序及选种方法。 教学内容与安排(第一部分) 教学内容与安排(第二部分)

第一部分作物遗传学(32学时) 绪论(1学时) 一、遗传学研究的对象和任务 二、遗传学的发展 三、遗传学在科学和生产发展中的应用 本章重点:遗传学的研究对象、发展简史以及在科学和生产中的作用本章难点:无 第一章遗传的细胞学基础(3学时) 第一节细胞的主要结构和功能 一、细胞膜 二、细胞质 三、细胞核 第二节染色体 一、染色体的形态 二、染色体的结构 三、染色体的数目 第三节细胞分裂与染色体行为 一、有丝分裂与染色体行为 二、减数分裂与染色体行为 三、有丝分裂与减数分裂的区别 第四节高等动物与植物的繁殖

(完整版)微生物学第八章微生物遗传学

第十九授课单元 一、教学目的: 1.掌握遗传与变异的概念,了解遗传性变异与饰变的区别 2.了解遗传变异的物质基础 3.掌握质粒的定义、质粒的结构、检测方法、特性和主要类型 二、教学内容: 1.引言 遗传与变异的概念,遗传性变异与饰变的区别 2.第一节:遗传变异的物质基础 1).转化实验 2).噬菌体感染实验 3).植物病毒的重建实验 3.第二节:质粒 1).质粒的定义和特点 2).质粒的分离和鉴定 3).质粒的分类和典型质粒介绍 4.第三节基因突变的规律与类型 一、突变 三、教学重点、难点及处理: 重点 1.遗传变异的物质基础 3个经典实的微生物学验证实了DNA和RNA是遗传物质。 1)经典转化实验:证明DNA是遗传变异的物质基础。 2)噬菌体感染实验:证明DNA是遗传变异的物质基础。 3)植物病毒的重建实验:说明病毒蛋白质的特性为它的核酸所决定,而不是由蛋 白质所决定。证明核酸(RNA)是遗传的物质基础。 2..质粒的定义 质粒(plasmid):一种独立于染色体外,能进行自主复制的细胞质遗传因子,主要存在于各种微生物细胞中。 附加体:指那些既可以整合到核染色体上,作为染色体的一部分而进行复制,又可以再游离出来或携带一些寄主的染色体基因游离出来,这类质粒被称为附加体。 3.质粒的分子结构 通常以共价闭合环状(covalently closed circle,简称CCC)的超螺旋双链DNA分子存在于细胞中;也发现有线型双链DNA质粒和RNA质粒;质粒分子的大小范围从1kb左右到

1000kb;(细菌质粒多在10kb以内) 4.质粒的分离 方法很多,主要介绍碱提取法,其步骤如下: ①菌体的培养和收集:一般采用丰富培养基对菌体进行培养,当细胞生长到指数期后期时,离心收集细胞。 ②溶菌:一般用溶菌酶去壁以形成原生质体或原生质球。 ③碱变性处理:在SDS等表面活性剂存在下加NaOH液使pH升至12.4,可使菌体蛋白质、染色体DNA以及质粒DNA变性。 ④质粒复性:加入pH4.8的KAc-HAc缓冲液,将提取液调至中性,由于质粒分子量小而容易复性,并稳定存在于溶液中;染色体DNA分子量太大,在复性过程中形成DNA之间的交联导致其形成更大分子的不溶性物质。 ⑤离心分离:经高速离心可以使细胞碎片和已变性的菌体蛋白及染色体DNA一起沉淀,上清液中主要是质粒DNA,经乙醇沉淀后,可获得质粒DNA。 5.质粒的检测 提取所有胞内DNA后电镜观察;超速离心或琼脂糖凝胶电泳后观察;对于实验室常用菌,可用质粒所带的某些特点,如抗药性初步判断。 对于由于三种构型同时存在时造成的多带现象(提取质粒时造成或自然存在),可以进行特异性单酶切,使其成为一条带。 6.质粒的特性 位于核基因组外;cccDNA(链霉菌和酵母菌中发现了线状dsDNA质粒和RNA质粒);自主复制; 有的质粒可整合到核染色体上;可重组(质粒与质粒间,质粒与染色体间); 人为消除(丫叮类,UV,电离辐射,高于最适温度,利福平等) 有的质粒可在细胞间转移(F因子,R因子); 质粒所含的基因对宿主细胞一般是非必需的;有时能赋予宿主细胞以特殊的机能,从而使宿主得到生长优势 7.质粒的分类和主要类型 7.1分类 6.1.1根据质粒所编码的功能和赋予宿主的表型效来分: 致育因子(Fertility factor,F因子) 抗性质粒(Resistance factor,R因子) 产细菌素的质粒(Bacteriocin production plasmid) 毒性质粒(virulence plasmid) 代谢质粒(Metabolic plasmid)

第十一章 细胞质遗传(习题)

第十一章细胞质遗传(习题) 1. 什么叫细胞质遗传?它有哪些特点?试举例说明之。 2. 何谓母性影响?试举例说明它与母性遗传的区别。 3. 如果正反杂交试验获得的F 1 表现不同,这可能是由于(1)性连锁;(2)细胞质遗传;(3)母性影响。你如何用试验方法确定它属于哪一种情况? 4. 细胞质遗传的物质基础是什么? 5. 细胞质基因与核基因有何异同?二者在遗传上的相互关系如何? 6. 试比较线粒体DNA、叶绿体DNA和核DNA的异同。 7. 植物雄性不育主要有几种类型?其遗传基础如何? 8. 一般认为细胞质的雄性不育基因存在于线粒体DNA上,为什么? 9. 如果你发现了一株雄性不育植株,你如何确定它究竟是单倍体、远缘杂交F 1 、生理不育、核不育还是细胞质不育? 10. 用某不育系与恢复系杂交,得到F 1全部正常可育。将F 1 的花粉再给不育系亲 本授粉,后代中出现90株可育株和270株不育株。试分析该不育系的类型及遗传 基础。 11. 现有一个不育材料,找不到它的恢复系。一般的杂交后代都是不育的。但有的F 1 不育株也能产生极少量的花粉,自交得到少数后代,呈3:1不育株与可育株 分离。将F 1 不育株与可育亲本回交,后代呈1:1不育株与可育株的分离。试分析该不育材料的遗传基础。 第十一章细胞质遗传(参考答案) 1、(P273-274)遗传方式为非孟德尔式,后代无一定比例.正交和反交的遗传表现不同。 (核遗传:表现相同,其遗传物质完全由雌核和雄核共同提供的;质遗传:表现不同,某些性状只表现于母本时才能遗传给子代,故胞质遗传又称母性遗传。)连续回交,母本核基因可被全部置换掉,但由母本细胞质基因所控制的性状仍不会消失; 由细胞质中的附加体或共生体决定的性状,其表现往往类似病毒的转导或感染,

第八章 微物的遗传和变异 复习题解

第八章微生物的遗传和变异习题与题解 一、填空题 1、证明DNA是遗传物质的事例很多,其中最直接的证明有1928年Griffith的细菌转化实验、Avery等的1944年发表的细菌细胞抽提物的降解、转化实验和1952年Alfred等进行的35S、32P标记的T2噬菌体繁殖实验。 而1956年,H.Fraenkel-Conrat 用RNA病毒(烟草花叶病毒TMV)所进行的拆分和重建实验,证明了RNA也是遗传物质。 2、细菌在一般情况下是一套基因,即单倍体;真核微生物通常是有两套基因又称二倍体。 3、大肠杆菌基因组为双链环状的在细胞中以紧密缠绕成的较致密的不规则小体形式存在于细胞中,该小体被称为拟核。 4、酵母菌基因组最显著的特点是高度重复。酵母基因组全序列测定完成后,在其基因组上发现了许多较高同源性的DNA重复序列,称之为遗传丰余。 5、质粒DNA分子存在于细胞中,但从细胞中分离的质粒大多是3种构型,即CCC型、OC型和L型。 6、转座因子1)是细胞中位于染色体或质粒上能改变自身位置(如从染色体或质粒的一个位点转到另一个位点,或者在两个复制子之间转移)的一段DNA序列。2)原核微生物中的转座因子有三种类型:插入序列(IS)、转座子(Tn)和某些特殊病毒(如Mu)。 3)转座因子可引发多种遗传变化,主要包括插入突变、产生染色体畸变、基因的移动和重排。 7、在普遍性转导中,噬菌体可以将供体细菌染色体的任何部分转导到受体细菌中;而在局限性转导中,噬菌体总是携带同样的片段到受体细胞中。 8、细菌的结合作用是指细菌与细菌的直接接触而产生的遗传信息的转移和重组过程 9、线粒体遗传特征的遗传发生在核外,且在有丝分裂和减数分裂过程以外,因此它是一种细胞质遗传。 10、丝状真菌遗传学研究主要是借助有性过程和准性生殖过程,并通过遗传分析进行的,而准性生殖是丝状真菌,特别是不产生有性孢子的丝状真菌特有的遗传现象。准性生殖是指不经过减数分裂就能导致基因重组的生殖过程。在该过程中,染色体的交换和减少,不像有性生殖那样有规律,而且也是不协调的。

第十一章 细胞质遗传第十一章 细胞质遗传

第十一章细胞质遗传 第一节细胞质遗传的概念和特点 一、细胞质遗传的概念 由细胞质内的基因即细胞质基因所决定的遗传现象和遗传规律叫做细胞质遗传,有时又称非染色体遗传、非孟德尔遗传、染色体外遗传、核外遗传、母体遗传等。 真核生物的细胞质中的遗传物质主要存在于线粒体、质体、中心体等细胞器中。通常把上述所有细胞器和细胞质颗粒中的遗传物质,统称为细胞质基因组。 二、细胞质遗传的特点 细胞学的研究表明,在真核生物的有性繁殖过程中,卵细胞内除细胞核外,还有大量的细胞质及其所含的各种细胞器;精子内除细胞核外,没有或极少有细胞质,因而也就没有或极少有各种细胞器(图11-1)。 细胞质遗传的特点是: 1、遗传方式是非孟德尔式的;杂交后代—般不表现一定比例的分离; 2、正交和反交的遗传表现不同;F1通常只表现母本的性状,故细胞质遗传又称为母性遗传; 3、通过连续回交能将母本的核基因几乎全部置换掉,但母本的细胞质基因及其所控制的性状仍不消失; 4、由附加体或共生体决定的性状,其表现往往类似病毒的转导或感染。 第二节母性影响 一、概念:母性影响:由核基因的产物积累在卵细胞中的物质所引起的,子代表现母本性状的遗传现象。∴母性影响不属于胞质遗传的范畴,十分相似而已。 二、特点:下一代表现型受上一代母体基因的影响。 三、实例: 椎实螺的外壳旋转方向的遗传。 椎实螺是一种♀、♂同体的软体动物,每一个体又能同时产生卵子和精子,但一般通过异体受精进行繁殖。 ∴椎实螺即可进行异体杂交、又可单独进行个体的自体受精。椎实螺外壳的旋转方向有左旋和右旋之分,属于一对相对性状。 第六节植物雄性不育的遗传 植物雄性不育的主要特征是雄蕊发育不正常,不能产生有正常功能的花粉,但是它的雌蕊发育正常,能接受正常花粉而受精结实。 一、雄性不育的类别及其遗传特点 可遗传的雄性不育性可分为核不育型和质核不育型等多种类型。 (一)核不育型 由核内染色体上基因所决定的雄性不育类型,简称核不育型。多属自然发生的变异。这类变异在水稻、小麦、大麦、玉米、谷子、番茄和洋葱许多作物中都发现过。这种不育型的败育过程发生于花粉母细胞减数分裂期间,不能形成正常花粉。由于败育过程发生较早,败育得十分彻底,因此在含有这种不育株的群体中,能育株与不育株有明显的界限。 多数核不育型均受简单的一对隐性基因(ms)所控制,纯合体(msms)表现雄性不育。这种不育性能为相对显性基因Ms所恢复,杂合体(Msms)后代呈简单的孟德尔式分离。(二)质—核不育型:

chapter11 细胞质遗传

第十一章细胞质遗传(p254-255) 3. 如果正反杂交试验获得的F1表现不同,这可能是由于:①性连锁。②细胞质遗传。③母性影响。 你如何用试验方法确定它属于哪一种情况? [答案] X染色体上基因控制的性状:以纯合显性母本与隐性父本杂交时,F1代雌雄个体均表现为显性;以隐性母本与显性父本杂交时,F1代雌性表现为显性,雄性表现为隐性。因此,只需要考察正反F1代性状表现与性别间的关系。就可以确定是否属于性连锁遗传。 正反交F1分别进行自交,考察F2性状表现:如果两种F2群体均一致表现为同一种性状,则属于母性影响;如果两个F2群体分别表现两种不同的性状(与对应的F1一致),则属于细胞质遗传。 4. 玉米埃形条纹叶(ijij)与正常绿叶(IjIj)植株杂交,F1的条纹叶(Ijij)作母本与正常绿色叶植 株(IjIj)回交。将回交后代作母本进行下列杂交,请写出后代的基因型和表现型。 (1)绿叶(Ijij)♀ × ♂条纹叶(Ijij) (2)条纹叶(IjIj)♀ × ♂绿叶(IjIj) (3)绿叶(Ijij)♀ × ♂绿叶(Ijij) [答案] F1的条纹叶核基因型为:Ijij,细胞质有两种基因型:+/-。回交后代遗传组成与表型如下:+(IjIj)绿叶+(Ijij)绿叶 -(IjIj)白化-(Iji)白化 +/-(IjIj)条纹叶+/-(Ijij)条纹叶 (1)绿叶(Ijij)回交后代细胞质全部为正常叶绿体基因+,杂交后代基因型及表现型分别为:+(IjIj)、+(Ijij)绿色,+(ijij)会产生突变叶绿体基因?+/-(ijij)为条纹叶或白(2)条纹叶(IjIj)产生的后代可能有3种细胞质细胞类型,但核基因均为IjIj,即:+(IjIj)为绿色、-(IjIj)为白化苗和+/-(IjIj)为条纹叶。 (3)绿叶(Ijij)细胞质全部为正常叶绿体基因,杂交后代: +(IjIj)、+(Ijij)绿色,+(ijij)会产生突变叶绿体基因?+/-(ijij)为条纹叶或白化。 5. 大麦的淡绿色叶片可由细胞质因子(L1=正常绿叶,L2=淡绿叶)引起,也可由隐性核基因(vv= 淡绿叶)引起。请预测下列各组合中子代的基因型和表现型: (1)纯合正常♀ × ♂L1(vv) (2)L1(vv)♀ × ♂纯合正常 (3)纯合正常♀ × ♂L2(vv) (4)L2(vv)♀ × ♂纯合正常 (5)来自(1)的F1♀ × ♂来自(4)的F1 (6)来自(4)的F1♀ × ♂来自(1)的F1 [答案] (1)亲代遗传组成及子代基因型与表现型:L1(VV)♀ × ♂L1(vv)?L1(Vv)为正常绿叶(2)L1(vv)♀ × ♂L1(VV)? L1(Vv)为正常绿叶

第十二章 细胞质遗传参考答案

第十二章细胞质遗传参考答案 1、什么叫细胞质遗传?它有哪些特点?试举例说明之。 答:细胞质遗传指由细胞质内的遗传物质即细胞质基因所决定的遗传现象和规律,又称非染色体遗传、非孟德尔遗传、染色体外遗传、核外遗传、母体遗传。 细胞质遗传的特点:⑴. 遗传方式是非孟德尔式的;杂交后一般不表现一定比例的分离。 ⑵. 正交和反交的遗传表现不同;F1通常只表现母体的性状,故又称母性遗传。⑶. 通过连续回交能将母本的核基因几乎全部置换掉,但母本的细胞质基因及其所控制的性状仍不消失。⑷. 由附加体或共生体决定的性状,其表现往往类似病毒的转导或感染。 举例:罗兹(Rhoades M. M.)报道玉米的第7染色体上有一个控制白色条纹的基因(ij),纯合的ijij植株叶片表现为白色和绿色相间的条纹。以这种条纹株与正常绿色进行正反杂交,并将F1自交其结果如下:当以绿色株为母本时,F1全部表现正常绿色与非绿色为一对基因的差别,纯合隐性(ijij)个体表现白化或条纹,但以条纹株为母本时,F1却出现正常绿色、条纹和白化三类植株,并且没有一定的比例,如果将F1的条纹株与正常绿色株回交,后代仍然出现比例不定的三类植株,继续用正常绿色株做父本与条纹株回交,直至ij基因被全部取代,仍然没有发现父本对这个性状的影响,可见是叶绿体变异之后的细胞质遗传方式。 2、何谓母性影响?试举例说明它与母性遗传的区别。 答:由于母本基因型的影响,使子代表现母本性状的现象叫做母性影响,又叫前定作用。 母性影响所表现的遗传现象与母性遗传十分相似,但并不是由于细胞质基因组所决定的,而是由于核基因的产物在卵细胞中积累所决定的,故不属于母性遗传的范畴。 举例:如椎实螺外壳的旋转方向有左旋和右旋,这对相对性状是母性影响。把这两种椎实螺进行正反交,F1外壳的旋转方向都与各自的母体相似,成为右旋或为左旋,但其F2却都有全部为右旋,到F3世代才出现右旋和左旋的分离。这是由一对基因差别决定的,右旋(S+)对左旋(S)为显性,某个体的表现型并不由本身的基因型直接决定,而是由母体卵细胞的状态所决定,母本卵细胞的状态又由母本的基因型所决定。F1的基因型(S+S)决定了F2均为右旋,而F2的三种基因型决定了F3的二种类型的分离,其中S+S+和S+S的后代为右旋,SS后代为左旋。 3、如果正反交试验获得的F1表现不同,这可能是由于⑴. 性连锁;⑵. 细胞质遗传; ⑶. 母性影响。你如何用试验方法确定它属于哪一种情况? 答:正反杂交获得的F1分别进行自交或近亲交配,分析F1和F2性状分离与性别的关系,如群体中性状分离符合分离规律,但雌雄群体间性状分离比例不同者为性连锁;若正交F1表现与母本相同,反交不同,正交F1与其它任何亲本回交仍表现为母本性状者,并通过连续回交将母本的核基因置换掉,但该性状仍保留在母本中,则为细胞质遗传。若F1表现与母本相似,而自交后F2表现相同,继续自交其F3表现分离,且符合分离规律,则为母性影响。 4、细胞质遗传的物质基础是什么? 答:所有细胞器和细胞质颗粒中的遗传物质均为细胞质遗传的物质基础。细胞器基因组

第十一章 细胞质遗传(F)

第十一章细胞质遗传 由细胞核内染色体上的基因即核基因所决定的遗传现象和遗传规律称为细胞核遗传或核遗传(nuclear inheritance)。前面所介绍的遗传现象和规律都是由核基因所决定的。早期遗传学曾经把染色体看作基因或遗传信息的唯一载体。随着遗传学的发展逐渐证实,尽管核基因在遗传上占有重要和主导地位,但是细胞质不但是核基因发生作用的场所,而且存在着决定某些性状的遗传基因。早在1909年柯伦斯(C.E.Correns)就报道了紫茉莉(Mirabilis jalapa)花斑叶色的遗传不符合孟德尔定律的遗传现象,但未引起重视。以后在其他高等植物中也陆续报道了类似的核外遗传现象。20世纪40年代初,有关红色面包霉、酵母和一些原生生物如草履虫、衣藻中核外遗传现象也被发现,人们推测细胞质中可能存在遗传物质。但直到1963~1964年才获得了在线粒体和叶绿体中存在DNA的直接证据。从此,核外遗传的研究逐渐成为遗传学中的重要领域之一。这个领域的深入研究,对于正确认识核质关系,全面地理解生物遗传现象和人工创造新的生物类型具有重要意义。 第一节细胞质遗传的概念和特点 一、细胞质遗传的概念 由细胞质内的基因即细胞质基因所决定的遗传现象和遗传规律叫做细胞质遗传(cytoplasmic inheritance)。研究发现,真核生物的细胞质中存在着一些具有一定形态结构和功能的细胞器,如线粒体、质体、核糖体等。这些细胞器在细胞内执行一定的代谢功能,是细胞生存不可缺少的组成部分。在原核生物和某些真核生物的细胞质中,除了细胞器外,还有另一类称为附加体(episome)和共生体(symbiont)的细胞质颗粒,它们是细胞的非固定成分,也能影响细胞的代谢活动,但它们并不是细胞生存必不可少的组成部分。例如,果蝇的 (sigma)粒子、大肠杆菌的F因子以及草履虫的卡巴粒(Kappa particle)等,这些成分一般都游离在染色体之外,有些颗粒如F因子还能与染色体整合在一起,并进行同步复制。通常把上述所有细胞器和细胞质颗粒中的遗传物质,统称为细胞质基因组(plasmon)。因研究的遗传物质所在部位不同,细胞质遗传有时又称为非染色体遗传(non-chromosomal inheritance)、非孟德尔遗传(non-Mendelian inheritance)、染色体外遗传(extra-chromosomal inheritance)、核外遗传(extra-nuclear inheritance)等。大多数细胞质基因通过母本传递因此也称为母体遗传(maternal inheritance)。但是,近年来发现某些 裸子植物如红杉等的线粒体和叶绿体属于父本遗传。 1

(完整word版)刘祖洞的遗传学(第二版)笔记

遗传学总复习 第一章绪论 遗传学及分支学科 遗传学的发展、任务 第二章孟德尔定律 key words: 反应规范(reaction norm)、等位基因(allele)、复等位基因(multiple alleles)、表型模写(phenocopy)、外现率(penetrance)、互补基因(complementary gene)、抑制基因(suppress gene)、表现度(expressivity)、抑制基因(inhibitor)、上位效应(epistatic effect )、叠加效应(duplicate effect) 一、积加概率卡平方测验三大定律系谱符号概率的应用 二、遗传的染色体学说 三、细胞分裂中染色体的变化核型染色体形态分析 四、基因的作用及与环境的关系 五、基因与环境 六、一因多效、多因一效 七、显、隐性的相对性 八、致死基因 九、ABO血型、Rh血型、HLA血型、血型不亲和、孟买型与类孟买型 十、非等位基因间的作用:互补、抑制、显性上位、隐性上位 第三章连锁遗传分析与染色体作图 key word: 伴性遗传(sex-linked inheritance)、从性遗传(sex-condition inheritance)、 限雄遗传(holandric inheritance)、基因组印迹(genomic imprinting)、 Lyon 假说、动态突变(dynamic mutation)、拟常染色体基因(pseudoautosomal gene)、性分化(sex differentiation)、脆性X综合症(fragile X syndrome )、睾丸决定因子(testis-determining factor ) 一、性别决定与伴性遗传

第八章 细胞质遗传

第八章细胞质遗传 1、母性影响和细胞遗传有什么不同? 2、细胞质基因和核基因有什么相同的地方,有什么不同的地方? 3、在玉米中,利用细胞质雄性不育和育性恢复基因,制造双交种,有一个方式是这样的:先把雄性不育自交系A(与雄性可育成千上万交系B得单交种AB,把雄性不育自交系C (Srfrf)与雄性可育自交系D(Nrfrf)杂交,得单交种CD。然后再把两个单交种杂交,得双交种ABCD,问双交种的基因型和表型有哪几种,它们的比例怎样? 4、“遗传上分离的”小菌落酵母菌在表型上跟我们讲过的“细胞质”小菌落酵母相似。当一个遗传上分离的小菌落酵母菌与一个正常酵母菌杂交,二倍体细胞是正常的,以后形成子囊孢子时,每个子囊中两个孢子是正常的,两个孢子产生小落酵母菌。用图说明这些结果,并注明相应的基因型。 5、分离的小菌落酵母菌与我们讲过的那种小菌落酵母菌杂交,形成的二倍体是正常的。这些二倍体细胞形成的子囊,正常细胞与突变细胞各有两个。解释这些结果,作一图概括你的说明。 6、一个雄性不育植株,用对育性恢复基因Rf是纯合的花粉授粉,F1的基因型怎样?表型怎样? 7、上题的F1植株作为母本,用一正常植株(rfrf)的花粉测交,测交的结果应该怎样?写出基因型和表型,注明细胞质种类。 8、举一个经典的孟德尔式遗传的例子,正交和反交的结果是不同的。 9、一个Dd的椎实螺自交。子代的基因型和表型怎样?如子代个体自交,它们的下一代表型又怎样? 10、上题中开始做实验所用的杂合体椎实螺的表型是怎样的?说明。 11、正反交在F1往往得出不同的结果。这可以由(1)伴性遗传,(2)细胞质遗传,(3)母性影响。如果你得到这样的一种结果,怎样用实验方法来决定是属于哪一种范畴? 12、从现有科学事实,怎样正确理解在遗传中细胞核与细胞质之间的关系。 13、Chlamydononas的一个链霉素抗性品系,在细胞核和细胞质中都有抗性因子。它与链霉素敏感品系杂交,(a)如果抗性品系是“+”亲本,敏感品系是“-”亲本,预期的结果是什么?(b)如果做的是反交呢?

遗传学第十二章 细胞质遗传12.6 习题

第十二章细胞质遗传 一、填空题 1、椎实螺的右旋对左旋是显性,当含有纯合右旋和含有纯合左旋基因型的椎实螺交配后, F1代为左旋,当F1代自交后,F2的表型_______。 2、“三系”配套中的“三系”是指雄性不育的保持系、和不育系。雄性的育性是 基因共同作用的结果。S(rf rf)是控制系基因型,N(RfRf)是控制系 的基因型。 3、细胞质遗传的特点是、、。 4、植物雄性不育系和保持系杂交得到,与恢复系杂交得到,而保持系 自交得到。 5、母性影响和细胞质遗传都表现为,但前者基因的遗传方式为,后者为。 6、椎实螺的外壳旋转方向是属于()的遗传现象。 7、红色面包霉缓慢生长突变的遗传是受()决定的 8、草履虫放毒型的稳定遗传必须有()和()同时存在,而草履虫素则是由()产生的。 9、草履虫接合的结果是( ),自体融合的结果是( )。 10、草履虫放毒型遗传研究的意义在于阐明了( )关系,为作物育种上对( )的研究奠定了理 论基础。 11、由核基因控制的植物雄性不育性,用经典遗传学方法一般难以得到它的()。 12、核雄性不育性的利用受到很大限制是因为()。 13、孢子体不育是指花粉育性由()的基因型控制,自交后代表现为()分离,配子体不 育是指花粉育性由()的基因型控制,自交后代表现为()分离。 14、设N和S分别代表细胞质可育和不育基因,R和r分别代表细胞核可育和不育基因,则 不育系基因型为(),恢复系为()和(),保持系为()。 15、水稻杂种优势的利用一般要具备( )、( )和恢复系,这样,以( )和( )杂交解决不育系 的保种,以( )和( )杂交产生具有优势的杂交种。 二、选择题 1、雄性不育系(ms/ms)×杂合可育株(Ms/ms)的F1:。 A. 全为不育株; B. 全为可育株; C. 3/4为可育株,1/4为不育株; D. 可育株和不育株各占1/2 2、椎实螺外壳的右旋和左旋是由一对基因控制的,右旋雌螺和左旋雄螺交配时,子二代为。 A.全为右旋 B.全为左旋 C.有右旋也有左旋,比例不确定 D.有右旋也有左旋,右旋与左旋比为3:1 3、我国的杂交水稻主要是在袁隆平教授的主持下研究成功。他提出了通过选育水稻_______ ___________,利用水稻的杂种优势,打破了“水稻等自花授粉作物没有杂种优势”的传统观 念丰富了遗传育种理论和技术具有很高的学术价值。 A 雄性不育系、雄性不育保持系、雄性不育恢复系的三系法途径。

刘祖洞遗传学第三版答案-第13章-细胞质和遗传

刘祖洞遗传学第三版答案-第13章-细胞质和遗传

第十三章细胞质和遗传 1.母性影响和细胞质遗传有什么不同? 答: 1)母性影响是亲代核基因的某些产物或者某种因子积累在卵细胞的细胞质中,对 子代某些性状的表现产生影响的现象。 这种效应只能影响子代的性状,不能遗 传。因此F1代表型受母亲的基因型控 制,属于细胞核遗传体系; 细胞质遗传是细胞质中的DNA或基因对遗传性状的决定作用。由于精 卵结合时,精子的细胞质往往不进入 受精卵中,因此,细胞质遗传性状只 能通过母体或卵细胞传递给子代,子 代总是表现为母本性状,属于细胞质 遗传体系, 2)母性影响符合孟德尔遗传规律;细胞质遗传是非孟德尔式遗传。 3)母性遗传杂交后代有一定的分离比, 只不过是要推迟一个世代而已;细胞质遗 传杂交后代一般不出现一定的分离比。 2.细胞质基因和核基因有什么相同的地方,

的细胞器如线粒体、叶绿体等)没有均 分机制,是随机分配的。 D. 细胞核遗传时,正反交相同,即子一 代均表现显性亲本的性状;细胞质遗 传时,正反交不同,子一代性状均与 母本相同,即母系遗传。 3.在玉米中,利用细胞质雄性不育和育性恢复基因,制造双交种,有一个方式是这样 的:先把雄性不育自交系A【(S)rfrf】与 雄性可育自交系B【(N)rfrf】杂交,得单 交种AB,把雄性不育自交系C【(S)rfrf】 与雄性可育自交系D【(N)RfRf】杂交, 得单交种CD。然后再把两个单交种杂交, 得双交种ABCD,问双交种的基因型和表 型有哪几种,它们的比例怎样? 解: A【(S)rfrf】?B【(N)rfrf】C【(S)rfrf】? D【(N)RfRf】 ↓ ↓ AB【(S)rfrf】?

浙江大学 遗传学课件chpt8

本章重点
1. 细胞质遗传与核遗传的差异.
第八章 细胞质遗传
2. 细胞质遗传的特点. 3. 质核基因间的关系. 4. 雄性不育:

①.核不育型,质核互作不育型; ②.孢子体不育,配子体不育; ③.生产应用.
遗传学第八章 2


浙江大学
一,细胞质遗传的概念:
核基因组 染色体 基因(核DNA)
第一节 细胞质遗传的特点
遗 传 物 质
细胞质 基因组
叶绿体基因组(ctDNA) 细胞器 基因组 线粒体基因组(mtDNA) 中心粒基因组(centro DNA) 动粒基因组(kinto DNA) 膜体系基因组(membrane DNA) 非细胞器 基因组 共生体基因组(symbiont DNA) 细菌质粒基因组(plasmid DNA)
4
浙江大学
遗传学第八章
二,细胞质遗传的特点:
细胞质遗传:
由胞质遗传物质引起的遗传现象(又称非染色体遗传, 非孟德尔遗传,染色体外遗传,核外遗传,母性遗传).
1.特点:
①.正交和反交的遗传表现 不同. 核遗传:表现相同,其
细胞质基因组:
所有细胞器和细胞质颗粒中遗传物质 的统称.
遗传物质由雌核和雄核共同 提供; 质遗传:表现不同,某些 性状表现于母本时才能遗传 给子代,故又称母性遗传.
浙江大学
遗传学第八章
5
浙江大学
遗传学第八章
6

②.连续回交,母本核基因可被全部 置换掉,但由母本细胞质基因所
控制的性状仍不会消失;
2.母性遗传:
真核生物有性过程:
卵细胞:有细胞核,大量的细胞质和细胞器. ∴能为子代提供核基因和全部或绝大部分胞质基因. 精细胞:只有细胞核,细胞质或细胞器极少或没有. ∴只能提供其核基因,不能或极少提供胞质基因. ∴一切受细胞质基因所决定的性状,其遗传信息一般只能
③.由细胞质中的附加体或共生体
决定的性状,其表现往往类似 病毒的转导或感染,即可传递 给其它细胞.
④.基因定位困难:
遗传方式是非孟德尔遗传, 杂交后代不表现有比例的分离. 带有胞质基因的细胞器在 细胞分裂时分配是不均匀的.
浙江大学 遗传学第八章 7
通过卵细胞传给子代,而不能通过精细胞遗传给子代.
卵细胞
精细胞
8
浙江大学
遗传学第八章
一,母性影响的概念: 母性影响:由核基因的产物积累在卵细胞中的物质
所引起的一种遗传现象.
∴母性影响不属于胞质遗传的范畴.
第二节 母性影响
二,母性影响的特点: 下一代表现型受上一代母体基因的影响.
浙江大学
遗传学第八章
10
3.杂交试验:
三,实例:
椎实螺的外壳旋转方向的遗传. 椎实螺是一种♀,♂同体的软体 动物,每一个体又能同时产生卵子和 精子,但一般通过异体受精进行繁殖. ∴椎实螺即可进行异体杂交,又可单独进行个体的自体 受精. 椎实螺外壳的旋转方向有左旋和右旋之分,属于一对 相对性状.
浙江大学 遗传学第八章 11

①.过程:椎实螺进行正反交,F1旋转方向都与各自母本相似,
即右旋或左旋,F2均为右旋,F3才出现右旋和左旋的 分离.
浙江大学
遗传学第八章
12

相关文档
最新文档