中央空调监控系统温湿度控制

中央空调监控系统温湿度控制
中央空调监控系统温湿度控制

中央空调监控系统温湿度控制的分析

1引言

楼宇自动化系统是智能建筑的一个重要组成部分。楼宇自动化系统的功能就是对大厦内的各种机电设施,包括中央空调、给排水、变配电、照明、电梯、消防、安全防范等进行全面的计算机监控管理。其中,中央空调的能耗占整个建筑能耗的50%以上,是楼宇自动化系统节能的重点[1]。

由于中央空调系统十分庞大,反应速度较慢、滞后现象较为严重,现阶段中央空调监控系统几乎都采用传统的控制技术,对于工况及环境变化的适应性差,控制惯性较大,节能效果不理想。传统控制技术存在的问题主要是难以解决各种不确定性因素对空调系统温湿度影响及控制品质不够理想。而智能控制特别适用于对那些具有复杂性、不完全性、模糊性、不确定性、不存在已知算法和变动性大的系统的控制。

“绿色建筑”主要强调的是:环保、节能、资源和材料的有效利用,特别是对空气的温度、湿度、通风以及洁净度的要求,因此,空调系统的应用越来越广泛。空调控制系统涉及面广,而要实现的任务比较复杂,需要有冷、热源的支持。空调机组内有大功率的风机,但它的能耗很大。在满足用户对空气环境要求的前提下,只有采用先进的控制策略对空调系统进行控制,才能达到节约能源和降低运行费用的目的。以下将从控制策略角度对与监控系统相关的问题作简要讨论。

2空调系统的基本结构及工作原理

空调系统结构组成一般包括以下几部分:

(1) 新风部分

空调系统在运行过程中必须采集部分室外的新鲜空气(即新风),这部分新风必须满足室内工作人员所需要的最小新鲜空气量,因此空调系统的新风取入量决定于空调系统的服务用途和卫生要求。新风的导入口一般设在周围不受污染影响的地方。这些新风的导入口和空调系统的新风管道以及新风的滤尘装置(新风空气过滤器)、新风预热器(又称为空调系统的一次加热器)共同组成了空调系统的新风系统。

(2) 空气的净化部分

空调系统根据其用途不同,对空气的净化处理方式也不同。因此,在空调净化系统中有设置一级初效空气过滤器的简单净化系统,也有设置一级初效空气过滤器和一级中效空气过滤器的一般净化系统,另外还有设置一级初效空气过滤器,一级中效空气过滤器和一级高效空气过滤器的三级过滤装置的高净化系统。

(3) 空气的热、湿处理部分

对空气进行加热、加湿和降温、去湿,将有关的处理过程组合在一起,称为空调系统的热、湿处理部分。

在对空气进行热、湿处理过程中,采用表面式空气换热器(在表面式换热器内通过热水或水蒸气的称为表面式空气加热器,简称为空气的汽水加热器)。设置在系统的新风入口,一次回风之前的空气加热器称为空气的一次加热器;设置在降温去湿之后的空气加热器,称为空气的二次加热器;设置在空调房间送风口之前的空气加热器,称为空气的三次加热器。三次空气加热器主要起调节空调房间内温度的

作用,常用的热媒为热水或电加热。在表面式换热器内通过低温冷水或制冷剂的称为水冷式表面冷却器或直接蒸发式表面冷却器,也有采用喷淋冷水或热水的喷水室,此外也有采用直接喷水蒸汽的处理方法来实现空气的热、湿处理过程。

(4) 空气的输送和分配、控制部分

空调系统中的风机和送、回风管道称为空气的输送部分。风管中的调节风阀、蝶阀、防火阀、启动阀及风口等称为空气的分配、控制部分。根据空调系统中空气阻力的不同,设置风机的数量也不同,如果空调系统中设置一台风机,该风机既起送风作用,又起回风作用的称为单风机系统;如果空调系统中设置两台风机,一台为送风机,另一台为回风机,则称为双风机系统。

(5) 空调系统的冷、热源

空调系统中所使用的冷源一般分为天然冷源和人工冷源。天然冷源一般指地下深井水,人工冷源一般是指利用人工制冷方式来获得的,它包括蒸汽压缩式制冷、吸收式制冷以及蒸汽喷射式制冷等多种形式。现代化的大型建筑中通常都采用集中式空调系统,

这种形式的结构示意图如图1所示。

其工作原理是当环境温度过高时,空调系统通过循环方式把室内的热量带走,以使室内温度维持于一定值。当循环空气通过风机盘管时,高温空气经过冷却盘管的铝金属先进行热交换,盘管的铝片吸收了空气中的热量,使空气温度降低,然后再将冷冻后的循环空气送入室内。冷却盘管的冷冻水由冷却机提供,冷却机由压缩机、冷凝器和蒸发器组成。压缩机把制冷剂压缩,经压缩的制冷剂进入冷凝器,被冷却水冷却后,变成液体,析出的热量由冷却水带走,并在冷却塔里排入大气。液体制冷剂由冷凝器进入蒸发器进行蒸发吸热,使冷冻水降温,然后冷冻水进入水冷风机盘管吸收空气中的热量,如此周而复始,循环不断,把室内热量带走。当环境温度过低时,需要以热水进入风机盘管,和上述原理一样,空气加热后送入室内。空气经过冷却后,有水分析出,空气相对湿度减少,变的干燥,所以需增加湿度,这就要加装加湿器,进行喷水或喷蒸汽,对空气进行加湿处理,用这样的湿空气去补充室内水汽量的不足。

3中央空调自动控制系统

3.1 中央空调自动控制的内容与被控参数

中央空调系统由空气加热、冷却、加湿、去湿、空气净化、风量调节设备以及空调用冷、热源等设备组成。这些设备的容量是设计容量,但在日常运行中的实际负荷在大部分时间里是部分负荷,不会达到设计容量。所以,为了舒适和节能,必须对上述设备进行实时控制,使其实际输出量与实际负荷相适应。目前,对其容量控制已实现不同程度的自动化,其内容也日渐丰富。被控参数主要有空气的温度、湿度、压力(压差)以及空气清新度、气流方向等,在冷、热源方面主要是冷、热水温度,蒸汽压力。有时还需要测量、控制供回水干管的压力差,测量供回水温度以及回水流量等。在对这些参数进行控制的同时,还要对主要参数进行指示、记录、打印,并监测各机电设备的运行状态及事故状态、报警。

中央空调设备主要具有以下自控系统:风机盘管控制系统、新风机组控制系统、空调机组控制系统、冷冻站控制系统、热交换站控制系统以及有关给排水控制系统等。

3.2 中央空调自动控制的功能

(1) 创造舒适宜人的生活与工作环境

·对室内空气的温度、相对湿度、清新度等加以自动控制,保持空气的最佳品质;

·具有防噪音措施(采用低噪音机器设备);

·可以在建筑物自动化系统中开放背景轻音乐等。

通过中央空调自动控制系统,能够使人们生活、工作在这种环境中,心情舒畅,从而能大大提高工作效率。而对工艺性空调而言,可提供生产工艺所需的空气的温度、湿度、洁净度的条件,从而保证产品的质量。

(2) 节约能源

在建筑物的电器设备中,中央空调的能耗是最大的,因此需要对这类电器设备进行节能控制。中央空调采用自动控制系统后,能够大大节约能源。

(3) 创造了安全可靠的生产条件

自动监测与安全系统,使中央空调系统能够正常工作,在发现故障时能及时报警并进行事故处理。

3.3 中央空调自动控制系统的基本组成

图2为一室温的自动控制系统。它是由恒温室、热水加热器、传感器、调节器、执行器机构和(调节阀)调节机构组成。其中恒温室和热水加热器组成调节对象(简称对象),所谓调节对象是指被调参数按照给定的规律变化的房间、设备、器械、容器等。图2所示的室温自动调节系统也可以用图3所示的方块图来表示。室温就是室内要求的温度参数,在自动调节系统中称为被调参数(或被调量),用θa表示。在室温调节系统中,被调参数就是对象的输出信号。被调参数规定的数值称为给定值(或设定值),用θg表示。室外温度的变化,室内热源的变化,加热器送风温度的变化,以及热水温度的变化等,都会使室内温度发生变化,从而室内温度的实际值与给定值之间产生偏差。

这些引起室内温度偏差的外界因素,在调节系统中称为干扰(或称为扰动),用

f表示。在该系统中,导致室温变化的另一个因素是加热器内热水流量的变化,这一变化往往是热水温度或热水流量的变化引起的,热水流量的变化是由于控制系统的执行机构—调节阀的开度变化所引起的,是自动调节系统用于补偿干扰的作用使被调量保持在给定值上的调节参数,或称调节量q。调节量q和干扰f对对象的作用方向是相反的。

4、中央空调系统控制中存在的问题

4.1 被控对象的特点

空调系统中的控制对象多属热工对象,从控制角度分析,具有以下特点[3]:

(1) 多干扰性

例如,通过窗户进来的太阳辐射热是时间的函数,受气象条件的影响;室外空气温度通过围护结构对室温产生影响;通过门、窗、建筑缝隙侵入的室外空气对室温产生影响;为了换气(或保持室内一定正压)所采用的新风,其温度变化对室温有直接影响。此外,电加热器(空气加热器)电源电压的波动以及热水加热器热水压力、温度、蒸汽压力的波动等,都将影响室温。

如此多的干扰,使空调负荷在较大范围内变化,而它们进入系统的位置、形式、幅值大小和频繁程度等,均随建筑的构造(建筑热工性能)、用途的不同而异,更与空调技术本身有关。在设计空调系统时应考虑到尽量减少干扰或采取抗干扰措施。因此,可以说空调工程是建立在建筑热工、空调技术和自控技术基础上的一种综合

工程技术。

(2) 多工况性

空调技术中对空气的处理过程具有很强的季节性。一年中,至少要分为冬季、过渡季和夏季。近年来,由于集散型系统在空调系统中的应用,为多工况的空调应用创造了良好的条件。由于空调运行制度的多样化,使运行管理和自动控制设备趋于复杂。因此,要求操作人员必须严格按照包括节能技术措施在内的设计要求进行操作和维护,不得随意改变运行程序和拆改系统中的设备。

(3) 温、湿度相关性

描述空气状态的两个主要参数为温度和湿度,它们并不是完全独立的两个变量。当相对湿度发生变化时会引起加湿(或减湿)动作,其结果将引起室温波动;而室温变化时,使室内空气中水蒸气的饱和压力变化,在绝对含湿量不变的情况下,就直接改变了相对湿度(温度增高相对湿度减少,温度降低相对湿度增加)。这种相对关联着的参数称为相关参数。显然,在对温、湿度都有要求的空调系统中,组成自控系统时应充分注意这一特性。

4.2 控制中存在的主要问题

目前中央空调系统主要采用的控制方式是pid控制,即采用测温元件(温感器)+pid温度调节器+电动二通调节阀的pid调节方式。夏季调节表冷器冷水管上的电动调节阀,冬季调节加热器热水管上的电动调节阀,由调节阀的开度大小实现冷(热)水量的调节,达到温度控制的目的。为方便管理,简化控制过程,把温度传感器设于空调机组的总回风管道中,由于回风温度与室温有所差别,其回风控制的温度设定值,在夏季应比要求的室温高(0.5~1.0)℃,在冬季应比要求的室温低(0.5~1.0)℃。

pid调节的实质就是根据输入的偏差值,按比例、积分、微分的函数关系进行运算,将其运算结果用于控制输出。现场监控站监测空调机组的工作状态对象有:过滤器阻塞(压力差),过滤器阻塞时报警,以了解过滤器是否需要更换;调节冷热水阀门的开度,以达到调节室内温度的目的;送风机与回风机启/停;调节新风、回风与排风阀的开度,改变新风、回风比例,在保证卫生度要求下降低能耗,以节约运行费用;检测回风机和送风机两侧的压差,以便得知风机的工作状态;检测新风、回风与送风的温度、湿度,由于回风能近似反映被调对象的平均状态,故以回风温湿度为控制参数。

根据设定的空调机组工作参数与上述监测的状态数据,现场控制站控制送、回风机的启/停,新风与回风的比例调节,盘管冷、热水的流量,以保证空调区域内空气的温度与湿度既能在设定范围内满足舒适性要求,同时也能使空调机组以较低的能量消耗方式运行。pid调节能满足对环境要求不高的一般场所,但是pid调节同样存在一些不足,如控制容易产生超调,对于工况及环境变化的适应性差,控制惯性较大,节能效果也不理想,所以对于环境要求较高或者对环境有特殊要求的场所,pid调节就无法满足要求了。

对于像中央空调系统这样的大型复杂过程(或对象)的控制实现,一般是按某种准则在低层把其分解为若干子系统实施控制,在上层协调各子系统之间的性能指标,使得集成后的整个系统处于某种意义下的优化状态。在控制中存在问题主要表现在:

(1) 不确定性

传统控制是基于数学模型的控制,即认为控制、对象和干扰的模型是已知的或者通过辩识可以得到的。但复杂系统中的很多控制问题具有不确定性,甚至会发生突变。对于“未知”、不确定、或者知之甚少的控制问题,用传统方法难以建模,因而难以实现有效的控制。

(2) 高度非线性

传统控制理论中,对于具有高度非线性的控制对象,虽然也有一些非线性方法可以利用,但总体上看,非线性理论远不如线性理论成熟,因方法过分复杂在工程上难以广泛应用,而在复杂的系统中有大量的非线性问题存在。

(3) 半结构化与非结构化

传统控制理论主要采用微分方程、状态方程以及各种数学变换作为研究工具,其本质是一种数值计算方法,属定量控制范畴,要求控制问题结构化程度高,易于用定量数学方法进行描述或建模。而复杂系统中最关注的和需要支持的,有时恰恰是半结构化与非结构化问题。

(4) 系统复杂性

按系统工程观点,广义的对象应包括通常意义下的操作对象和所处的环境。而复杂系统中各子系统之间关系错综复杂,各要素间高度耦合,互相制约,外部环境又极其复杂,有时甚至变化莫测。传统控制缺乏有效的解决方法。

(5) 可靠性

常规的基于数学模型的控制方法倾向于是一个相互依赖的整体,尽管基于这种方法的系统经常存在鲁棒性与灵敏度之间的矛盾,但简单系统的控制可靠性问题并不突出。而对复杂系统,如果采用上述方法,则可能由于条件的改变使得整个控制系统崩溃。

归纳上述问题,复杂对象(过程)表现出如下的特性:

·系统参数的未知性、时变性、随机性和分散性;

·系统时滞的未知性和时变性;

·系统严重的非线性;

·系统各变量间的关联性;

·环境干扰的未知性、多样性和随机性。

面对上述空调系统的特性,因其属于不确定性复杂对象(或过程)的控制范畴,传统的控制方法难以对这类对象进行有效的控制,必须探索更有效的控制策略。

5控制策略的选取

对于复杂的不确定性系统而言,由于被控对象(过程)的特性难于用精确的数学模型描述。用传统的基于经典控制理论的pid控制和基于状态空间描述的近代控制理论方法来实现对被控对象的高动静态品质的控制是非常困难的,一般都采用黑箱法,即输入输出描述法对控制系统进行分析设计,大量引入人的能量与智慧、经验与技巧。控制器是用基于数学模型和知识系统相结合的广义模型进行设计的,也就是说对不确定性复杂系统的控制一般采用智能控制策略[5]。这类控制系统具有以

下基本特点:

(1) 具有足够的关于人的控制策略、被控对象及环境的有关知识以及运用这些知识的“智慧”;

(2) 是能以知识表示的非数学广义模型和以数学描述表示的混合过程,采用开闭环控制和定性及定量控制相结合的多模态控制方式;

(3) 具有变结构特点,能总体自寻优,具有自适应、自组织、自学习和自协调能力;

(4) 具有补偿和自修复能力、判断决策能力和高度的可靠性。

智能控制策略的突出优点是充分利用人的控制性能,信息获取、传递、处理性能的研究结果和心理、生理测试数据,建立控制者—“人”环节的模型,以便与被控制对象—机器的模型相互配合,设计人机系统,为系统分析设计提供灵活性。例如,当建立被控制对象模型很困难时,可以建立控制者模型,如建立控制专家模型、设计专家控制器等;当建立控制者模型很困难时,可以建立被控制对象模型;而设计被控对象模型有困难时,又可建立“控制者—被控制对象”的联合模型,即控制论系统模型,如“人—人”控制论系统的对策论模型。

由于现代传感变换检测技术和计算机硬件相关技术的发展基本上已经妥善地解决了控制系统中的硬件问题,难点在于信息的处理和信息流的控制,因此其控制目标的实现和控制功能的完成往往采用全软件方式。不同的控制策略所构造出的算法其复杂程度、鲁棒性、解耦性能等差别是很大的,在技术实现上软硬件资源成本也不同,人们期待的是成本最低的控制策略,在这方面仿人智能控制[6]策略具有其独特的优势。仿人智能控制是总结、模仿人的控制经验和行为,以产生式规则描述人在控制方面的启发与直觉推理行为,其基本特点是模仿控制专家的控制行为,控制算法是多模态的和多模态控制间的交替使用,并具有较好的解耦性能和很强的鲁棒性。从复杂系统控制工程实践的经验看,选取仿人智能控制策略还是明智之举。除了仿人智能控制策略,还有模糊控制策略、专家系统控制策略等。

6工程实现与监控信息平台的选择

大型复杂系统控制的工程实现中除了低层的ddc控制外,由于各子系统需要结集协调,有大量的信息需要实时处理和存储。从控制论层次考虑,无论管理信息还是控制信息,控制的本质都是对信息流的控制和信息的处理,因此信息平台的选取是至关重要的,应从系统工程角度妥善处理工程实现问题,既要使建设系统的软硬件成本最低,又要考虑系统运行维护升级换代及扩展与发展的长期效益,对系统进行优化配置,保证系统的长期可靠稳定运行。硬件固然是控制系统实现的基础,但在大型复杂系统控制中强调的应不再是硬件,如传感装置、仪器仪表、传动装置、执行机构等,应改变某些由于技术背景等原因造成的轻视软件重硬件的倾向,避免因信息平台选取不当而形成大量的自动化“孤岛”,给企业的信息化留下隐患,使大量的宝贵信息资源沉淀、流失。

目前市场上可供使用的国内外工业控制组态软件不少,但用于大型复杂系统未必都那么合适。事实上,各软件厂商在设计系统时各有侧重,实现技术与设计方案也各有自己的鲜明特点,都是为了解决自动化控制问题提供手段与方案,但解决问题的深度和广度是有较大差别的,这正是设计中有待解决的问题。

7结束语

由于中央空调系统在楼宇自动化系统节能中占据的特殊地位,显示出了对中央空调系统控制模式进行研究的重要意义。本文针对该系统温、湿控制问题进行了较为详细地分析,并介绍了智能控制策略的突出优点,为同类系统的设计提供了有益的帮助。

智能温湿度监控系统概要

智能温湿度管理系统 设 计 方 案

目录 1. 系统概述 (2) 1.1系统建设目标 (2) 1.2系统设计原则 (2) 1.3智能温湿度监控系统的概述 (2) 2. 多功能厅各子系统的功能描述: (5) 2.1、silverlight版网络实时监控系统 (5) 2.2、C/S版设备数据采集系统 (5) 2.3、远程控制模块系统 (5) 3. 各子系统的功能以及设计方案 (6) 3.1、silverlight版网络实时监控系统 (6) 3.1.1功能描述: (6) 3.1.2系统特点 (6) 3.1.3主要功能简介 (8) 3.1.3.1实时显示数据和状态 (8) 3.1.3.2 TCP远程访问控制 (9) 3.1.3.3 TCP查看历史温湿度记录 (10) 3.2、C/S版设备数据采集系统 (11) 3.2.1 功能描述 (11) 3.2.2 系统特点 (11) 3.3、远程控制模块系统 (12) 3.3.1功能描述: (12) 3.3.2主要设备简介: (13)

1.系统概述 1.1系统建设目标 此次工程项目是承担智能温湿度系统的设计、施工。包括网络实时监控系统、数据采集系统、远程控制模块系统。其他子系统在本系统的设计中要达到提供的以上功能实现的活动环境。 1.2系统设计原则 1.先进型性原则 采用的系统结构应该是先进的、开放的体系结构,和系统使用当中的科学性。整个系统能体现当今会议技术的发展水平。 2.实用性原则 能够最大限度的满足实际工作的要求,把满足用户的业务管理作为第一要素进行考虑,采用集中管理控制的模式,在满足功能需求的基础上操作方便、维护简单、管理简便。 3.可扩充性、可维护性原则 要为系统以后的升级预留空间,系统维护是整个系统生命周期中所占比例最大的,要充分考虑结构设计的合理、规范对系统的维护可以在很短时间内完成。 4.经济性原则 在保证系统先进、可靠和高性能价格比的前提下,通过优化设计达到最经济性的目标。 5.系统设备选型原则 1.用国际知名的器材,以及有雄厚实力和绝对优秀技术支持能力的厂家、 代理商,以保证设计指标的实现和系统工作的可靠性。 2.基本上选用同类产品中技术最成熟、性能先进、使用可靠的产品型号, 以保证器材和系统的先进性、成熟性。 3.选用高度智能化、高技术含量的产品,建立系统开放式的架构,以标准 化和模块化为设计要求,既便于系统的管理和维护使用,又可保持系统较长时间的先进性。 1.3智能温湿度监控系统的概述 本系统针对多个库房内温度、湿度的集中监测和管理,是一套可无人值守24小时不间断实时监控记录的自动化监测系统。系统能对所有库房的温湿度进

温湿度自动监控系统设计方案

天成药业有限公司 药品储存温湿度自动监测系统 建设服务方案 北京龙鼎金陆测控技术有限公司

一、北京龙鼎金陆简介 北京龙鼎金陆测控技术有限公司简介 北京龙鼎金陆测控技术有限公司坐落于国家级经济技术开发区-北京经济技术开发区,也称亦庄开发区,是国家计量院高级工程师及地方传感器协会副会长联合成立的一家集科、工、贸为一体的现代化高科技企业。 公司从成立伊始一直脚踏实地的努力为国人创造“质好而不贵”的国货精品,打造以自主创新为龙鼎企业特色的产业价值链,塑造龙鼎金陆LD的这一民族品牌,并一定坚信会成为振兴民族传感器事业及工业自动化控制系统的一面旗帜来迎接国际化的 挑战。 近年来,公司又荟萃了环材料学、力学等多种学科的精良人材,不但吸取了日本株式会社共和电业、美国KULITE公司的箔式传感器、扩散硅传感器的制造技术,而且凭借雄厚的技术、科技开发力量及精湛的生产工艺水平,研制、开发、制造上百种称重测力传感器、压力变送器、智能仪表及计算机控制系统。广泛应用于船舶、汽车制造、内燃机、电机、冶金、化工、食品、医疗、航空航天、各大科研所、院校、交通、能源、机械制造、建材等领域。 公司全体员工以热情周到的售前和售后服务,深得用户的好评和信赖。北京龙鼎金陆测控技术有限公司全体员工热忱欢迎各界人士的光临与指导,同时也希望各界人士对我司做深入的监督,以便我们随时的纠正我们的不足,力争向您提供更优质的产品和服务。 以良好的信誉、周到的服务、可靠的质量铸造国货精品是我们一贯的宗旨 以创新技术、优化管理和齐心协力提升品质来嬴取客户信赖是我们的根本 二、我们的优势 北京龙鼎金陆作为一家药品储运温湿度监测系统研发、建设的高新技术企业,为各类涉药企业提供稳定、高效的温湿度监测设备及系统解决方案。 服务专业专注 公司深入研究药品产业政策及行业管理特点,专注服务于药品监管部门与药品相关企业。 公司建立了具备行业资格准入要求的人员队伍,温湿度监管平台及温湿度监

温湿度监控系统

温湿度监控系统 目录 行业需求 系统概况 行业需求 系统概况 展开 随着科技的飞速发展和普及,高性能设备越来越多,各行各业对温湿度的要求也越来越高。传统的温湿度监测模式是以人为基础,依靠人工轮流值班,人工巡回查看等方式来测量和记录环境状况信息。 温湿度采集系统 在这种模式下,不仅效率低下不利于人才资源的充分利用,而且缺乏科学性,许多重大事故都是由人为因素造成的,人工维护缺乏完整的管理系统。 石家庄恒必达科技基于这种对温湿度测控的需求而设计开发了温湿度监控系统。 环境温湿度的监控包括以下步骤:感应环境温湿度;判断感应到的温湿度是否异常;若感应到的温湿度异常,判断异常是否超过预设时间;若异常超过预设时间,则输出异常信号至主控机;异常报警;判断异常是否处理完毕;以及若异常处理完毕,解除报警。并可以利用控制器和主控机来达到机房温湿度的远程控制,从而实现环境温湿度管理的实时性和有效性。 编辑本段 行业需求

食品行业:温湿度对于食品储存来说至关重要,温湿度的变化会带来食物变质,引发食品安全问题。 档案管理:纸制品对于温湿度极为敏感,不当的保存会严重降低档案保存年限。 温室大棚:植物的生长对于温湿度要求极为严格,不当的温湿度下,植物会停止生长、甚至死亡。 动物养殖:各种动物在不同的温度下会表现出不同的生长状态,高质高产的目标要依靠适宜的环境来保障。 药品储存:根据国家相关要求,药品保存必须按照相应的温湿度进行控制。 石家庄恒必达科技有限公司设计开发的HBD-300温湿度监控系统: 系统功能 1、如实采集和记录各空间温度/温湿度情况。 2、所有的温度/温湿度数据采集和记录到一台主机计算机上,数据可以按照使用人员的要求定时自动记录并长期保存。 3、授权用户可查询历史数据,进行数据分析、打印等操作。 4、在出现异常数据的时候,可进行多种方式的报警,如:电脑图文报警、声光报警、短信报警等。 5、使用网络版软件,局域网内的远程计算机在经过授权后,可以共享温湿度数据。 6、可连接控制模块,在温湿度超出设定值后报警同时自动启动控制模块来进行降温除湿等工作。 系统组成 系统由温湿度传感器、数据通讯转换部分、上位机管理软件和控制模块(可选)组成。 1、温湿度传感器:负责检测并采集各控制点温湿度数据。 2、数据通讯转换器:负责温湿度数据采集数据的信号转换。 3、软件部分:软件部分负责对所有数据进行读取分析,并执行各项管理功能。 4、控制部分:执行远程控制指令。 系统特点

运输车辆温湿度监控系统解决方案

运输车辆温湿度监控系 统解决方案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

车辆温湿度、路径实时监测系统 解决方案 目录 1 系统简介 随着快速消费品市场的扩大,冷运网络急速扩大成为一个规模庞大的、设备专业性强、涉及行业广泛、从业人员众多的产业。目前行业现状是普遍存在

劳动密集、从业人员数量规模大、基本素质不高等特点,配送、营销等业务中车辆的在途管理存在“盲区”“黑箱”。现代冷链物流属于控温型物流,为了实现冷链物流的信息处理及时、配送流程优化,以及存取选拣自动化、物流管理智能化,冷链物流需要信息化技术作为辅助手段。 现阶段我国还缺乏行之有效的冷链物流的管理方法,原有监测技术手段滞后是最大的技术瓶颈。现阶段我国技术手段的主要症结是:无统一数据系统支持;实时性差、监管脱节;取证困难、无法确定责任;无法进行预警、损失率大等。 东创科技为适应运输行业对订单管理、温湿度监测、车辆实时位置、行程轨迹的监测需求,提供“订单管理、车辆温湿度、路径实时监测系统”全面解决方案。 该解决方案在车厢内安装部署温湿度、门磁监测装置,司机手机安装客户端软件,实现温湿度数据采集以及人员、车辆位置信息采集。其核心思想是对各分散的车辆、人员进行集中的精准温湿度、位置监测。 系统利用传感技术、数据通讯处理技术和GPS定位技术,实现对运输车辆车厢内的温湿度实时监测、记录、存储、数据查询等功能,同时对司机的行车路径进行实时记录,当车厢内温湿度超过阀值或司机偏离行车路线时,系统及时发出告警;订单管理系统将帮助企业建议规范的配送体系。 功能实现的方法 功能实现的主要特点 系统主要功能 订单管理:手工录入配送订单,对送货人员进行区域和订单管理,实现订单配送责任制。 移动终端管理:系统可通过手机、平板电脑联网远程查看。

冷链温湿度监控方案

CCTS冷链监控系统 随着社会的高速发展和日益增长的健康需求,现代社会对医药行业的质量控制有了更高的要求,实现药品冷链全程化储运尤为重要。依据新修订的《药品经营质量管理规范》(简称GSP)的相关规范,结合国家药品监管的要求和政策,从药品监管的安全性与国家药品管理相关政策及药品生产、经营企业顺利通过GSP认证等方面考虑,建立一套智能化、可视化、稳定可靠的冷链监控系统势在必行。

冷链监控系统——系统简介CCTS冷链监控系统主要用于药品、医疗器械各种冷链货品的温CCTS.. 湿度实时监测。该系统温湿度采集器将采集数据通过无线方式发送到无线管理主机,管理主机对数据进行打包,利用GPRS、TCP/IP或者WIFI通讯的方式将数据传输至服务器。由对应的管理软件进行数据解析、数据存储等操作。在存在异常情况的情况下,及时发出报警信息。

CCTS冷链监控系统——硬件组成 冷链监控系统硬件部分主要组成部分有:智慧温湿度采集CCTS.. 卡、智能无线管理主机、NFC移动终端、NFC读写终端、便携打印机组成。采用高精度传感芯片、多级数据加密处理,完善的产品体系,保障了数据信息的精确采集、稳定传输、有效应用。提高监控效率,保证冷链环境下物品的质量安全。

冷链监控系统——软件平台CCTS冷链监控系统软件部分主要组成有:冷链监控云平台、智CCTS.. 慧冷链APP。通过一体化平台建设,整合仓库、物流车辆冷链环境监测数据,配套先进的云端数据汇总、分析、处理软件,同时分别提供PC端监控软件和移动端监控App,实现对整个冷链环境过程实时化科学管理。

GSP冷链监控系统——完全满足相关标准CCTS标准的一套软硬件结合冷链监控系统是完全遵循国家新版CCTSGSP.. 的物联网监测系统,采用超高精度的传感芯片、精细化产品设计,设备采集精度超越国家GSP相关标准,满足需要严格遵循GSP相关要求的各类应用环境。

Proteus仿真下的SHT11温度湿度监控系统设计

上海交通大学 温度湿度监控系统仿真设计 研究报告 设计题目:基于SHT11的温度湿度监控系统Proteus仿真设计学院:电子信息与电气工程学院 姓名: 2019年5月24日

设计任务书 题目基于SHT11的温度湿度监控系统Proteus仿真设计 一、设计的目的 1.将理论知识运用于实践当中,掌握模拟电路设计的基本方法、基本步骤以及基本要求。在实践中了解电子器件的功能与作用。 2.学会温湿度监测系统的设计方法,完成要求的性能和指标 3.锻炼、提高在电子设计中发现问题、分析问题、解决问题的能力。 二、设计的内容及要求 1.设计一套基于51单片机的温湿度Proteus仿真监控系统; 2.采用高精度SHT11温湿度传感器模块; 3.LCD液晶实时显示当前环境温度、湿度值; 4.设计报警单元,实现系统对超限温湿度监控报警; 5.设计输入单元,可对系统正常温湿度范围进行调节; 6.仿真系统能够可靠、稳定地运行; 三、指导教师评语 四、成绩 指导教师(签章) 年月日

摘要 在日常生活中,温度、湿度是两种最基本的环境参数,是与人类的生活、工作关系最密切的物理量,也是各门学科与工程研究设计中经常遇到的,必须精确测量和不可忽略的物理量。从工业炉温、环境气温到人体温度,从空间、海洋到家用电器,每个技术领域都离不开温度、湿度的测量与监控。 SHT11是基于CMOSens技术的新型智能温湿度传感器,它将温度湿度传感器、信号放大调理、A/D转换、二线串行接口全部集成于一个芯片内,融合了CMOS 芯片技术与传感器技术,使传感器具有品质卓越、超快响应、抗干扰能力强、性价比极高等特点。 温湿度监控系统的软件部分是以Keil为开发平台,C语言为软件系统的开发语言,同时采用模块化编程。具体分为以下几个部分:主控制、温湿度采集程序、温湿度数据处理程序、LCD显示程序、按键设置程序和LED,蜂鸣器报警程序。 系统通过SHT11温湿度传感器感应周围的环境的温度和湿度,通过单片机对采集到的数据进行读取处理,经过LCD1602显示模块实时显示温湿度数据,同时可以通过按键模块对温湿度报警上、下限值进行设定。当SHT11读取的温湿度值不再设定范围内时,报警模块LED灯指示故障信息,同时蜂鸣器报警;当温湿度读取数据正常后,LED灯熄灭,蜂鸣器关闭。 关键词: 51单片机;SHT11传感器;温湿度监控;Keil;C语言

新版GSP温湿度自动监测系统验证验证方案

温湿度自动监测系统验证验证方案 目的 建立库房温湿度验证方案,证明库房温湿度系统是否可以自动运行及监测,24小时内库房的温度和湿度达到规定要求。 范围 适用于仓库常温库、阴凉库、冷库温湿度自动监测系统验证。 责任 验证领导小组成员、项目验证小组成员、与验证项目相关人员。 依据 2013版《药品经营质量管理规范》 规程 1 概述:商品在贮存的过程中,有温湿度的要求,仓库的温湿度自动监测系统是否符合商品贮存的要求,需进行验证。 1.1 公司现有常温度、阴凉库,冷库位于仓库区,用于存放公司购进的商品。对于库房温湿度自动监测系统是否能达到规定的自动运行、监测、并使温度和湿度达到规定要求,需验证。 2 验证目的 2.1 检查资料和文件是否符合GSP管理要求。 2.2 检查并确认库房空调安装是否符合设计要求。 2.3 检查并确认库房空调运行是否符合设计要求。 2.4 检查并确认温度和湿度是否符合仓储要求。 3 验证小组成员情况 3.1 验证小组成员

3.2 验证小组职责 3.2.1 负责验证方案的起草、审核与批准。 3.2.2 负责按批准的验证方案组织、协调各项验证工作,并组织实施验证工作。 3.2.3 负责验证数据的收集、整理、汇总,并对各项验证结果进行分析与评价。 3.2.4 负责组织、协调完成各项因验证而出现的变更工作。 3.2.5 负责验证报告的起草、审核与批准,并出具验证结果评定及结论。 4 验证实施的必备条件 4.1、系统条件:空调系统安装完好,能正常运行。 4.2、文件要求:已制订相应岗位的设备操作程序及岗位标准操作程序。 4.3、仪表校验:用于校验库房的温湿度检测仪需经过合法的校验,并具有合格证书。 4.4、环境卫生:成品阴凉库的清洁卫生应符合相关规定的要求。 4.5、人员培训:参加验证人员应经过验证专项培训工作。 5 验证可接受标准 5.1 阴凉库温度控制范围:<20℃;常温库温度控制范围:0~30℃;冷库温度控制范围2~10℃。 5.2库房的湿度控制范围:35%-75%。 6 验证日期进度表

(完整word版)温度监测系统设计仿真与实现

实用温度监测系统 学院:电子信息工程学院专业:通信工程1303 学生姓名:张艺 学号:13211075 任课教师:刘颖 2015年06 月10 日

目录 实验题目:失真放大电路 .............. 错误!未定义书签。 1 实验题目及要求 (2) 2 实验目的与知识背景 (2) 2.1 实验目的 (2) 2.2 知识点 (2) 3 实验过程 (4) 3.1 选取的实验电路及输入输出波形 (4) 3.2 每个电路的讨论和方案比较 (16) 3.3 分析研究实验数据............. 错误!未定义书签。 4 总结与体会 (20) 4.1 通过本次实验那些能力得到提高,那些解决的问题印象深刻, 有那些创新点。 (20) 4.2 对本课程的意见与建议......... 错误!未定义书签。 5 参考文献 (21)

目录 1.电路设计及原理分析 (3) 1.1设计任务 (4) 1.2技术指标 (4) 1.3电路原理图 (5) 1.4基本原理 (5) 2.电路模拟与仿真 (6) 2.1仿真软件 (6) 2.2创建电路模拟图 (9) 2.3元件列表 (9) 2.4仿真记录与结果分析 (10) 3.实际电路的安装调试 (15) 3.1 元件参数确定 (15) 3.2 电路板布线设计 (15) 3.3 焊接 (15) 3.4调试与测量 (15) 3.5分析结果及改进 (16) 4.总结 (176) 5.心得体会 (177) 6.参考文献 (198)

1.电路设计及原理分析 1.1设计任务 通过Proteus软件仿真精密双限温度报警仪设计,在老师点拨我们自学的基础上了解了运放的作用,用了比较器,震荡电路等知识,根据找到的电路图进行仿真,调试电路,明白了温度报警的意义。 通过比较器产生“数字模拟信号”,使得在信号产生的时候,震荡电路工作产生震荡信号驱动扬声器报警。 1.2技术指标 a.当温度在设定范围内时报警电路不工作; b.当温度低于下限值或高于上限值时,声光报警; c.上下限低于报警led用不同颜色; d.上下限可调; e.控温精度度 1℃ f.监测范围0.5℃

温湿度监控系统操作规程

百草堂大药房连锁有限责任公司文件 一、目的:按《药品经营质量管理规范》及其相关附录《验证管理》,药品储存阴凉库、冷库、中药饮片库应配有自动监测、显示和记录温湿度状况及自动报警的设备,要求自动记录间隔应在半小时以内,同时还要求所安装的温湿度探头能真实反映该仓库的温度分布情况。 二、范围:药品仓库。 三、职责:质量管理部、行政财务部、保管员、养护员。 四、依据:《药品管理法》、《药品经营质量管理规范》、《冷藏、冷冻药品的储存与运输管理》。《药品经营许可证管理办法》 五、内容: 1、库区温湿度要求: 1.1冷库:温度2-8℃、相对湿度35%-75%; 1.2阴凉库:温度2-20℃、相对湿度35%-75%;(有明确保管温度标示的药品应按实际要求放入相应的库中) 1.3中药饮片库温库:温度2-30℃、相对湿度35%-75%。 2、温湿度监测器分布: 2.1为真实反映仓库温湿度情况,按仓库面积安装温湿度监测探头。

(一)每一独立的药品库或仓间至少安装2个测点终端,并均匀分布。(二)平面仓库面积在300平方米以下的,至少安装2个测点终端;300平方米以上的,每增加300平方米至少增加1个测点终端,不足300平方米的按300平方米计算。 平面仓库测点终端安装的位置,不得低于药品货架或药品堆码垛高度的2/3位置。 3、在线监管系统的使用和维护: 3.1温湿度在线监管系统的使用:企业质量管理负责人、质量管理部、仓库管理负责人、养护员工作电脑上均应安装“在线监管系统软件”,便于随时检查仓库各区域温湿度控制情况,及时发现问题采取措施。温湿度检测器设置为每半小时检测一次,并自动记录数据在电脑中保存,电脑中可查历史记录、当前温湿度检测数据、温湿度超标记录以及设备使用记录。 3.2温湿度在线监管系统的维护:公司计算机管理部门应定时检查系统运行情况,发现问题应及时解决,保证系统正常运行。及时做好记录数据的备份工作,做到温湿度记录历史数据可查可追溯,温湿度记录数据应保存三年。 4、温湿度超标后处理: 4.1养护员实时监控温湿度监控软件温度和湿度的动态变化,做好相关记录工作,发生异常及时汇报.

温湿度监控系统方案

温湿度监控系统方 案

药品仓库温湿度监控系统介绍 一、开发背景 当前医药行业对药品储存环境的要求越来越高,药监部门已明确要求对药品仓库需要有历史环境监控数据,并纳入发证考核指标,由于要求监测的点数较多,采用传统的记录仪方式已不适应,因此需要开发一种具有多点、远程、易安装的温湿度监控记录系统。 二、系统架构 方案采用分布式智能网络型监控系统,被监控的点位可根据需要扩展硬件种类,增加监控点数量,监控终端采用触摸屏工控机可嵌入安装在现场也能够置于专门的监测机房。 基于现场总线的方式的传输,采用数字化变送器,便于现场布线,记录平台采用PC或嵌入式触摸屏,支持数据导出和以太网传输。软件界面采用图形化,拟采用商业组态软件。 系统组成: 系统由温湿度传感器、数字变送器(带LCD显示)、通讯总线(中继器)和嵌入版触摸屏及上位机管理软件四部分组成。 1、温湿度传感器:负责检测各温湿度数据。 2、数字变送器:负责采集各温湿度传感器采集的数据, 进行数据校正转换,进行现场LCD显示,接受上位机通讯指

令并向其传输数据。 3、通讯总线(中继器):负责数据的有线传输,并能延 长通讯距离。 4、触摸屏及软件部分:负责对数字变送器的通讯,读取 变送器的温湿度数据,进行显示、记录,并执行各项管理功 能。 一层 二层库 变送 第三层 中继 监控系统结构图 三、系统功能 1.操作界面图形化,操作过程简单、直观,用户只需经 简单培训即可操作; 2.以表格和曲线方式的显示各监控点实时测量值。

3.以表格和曲线方式的显示各监控点的历史数据。 4.可查询任意一天、一月、一年的数据,并可进行表格和图形方式显示和打印。 5.可统计任意区间的数据最大值、最小值及平均值。 6.可设置各监控点的上下限报警值。并记录报警值,可查询报警历史记录 7.当被测量值超过上下限报警值时,可经过声光、自动电话语音报警、也可自动发送短信到手机、Email自 动发送报警信号,轻松实现无人值守。 8.数据导出功能,可U盘数据导出功能 9.网络版功能可实现远程异地多用户同时使用 10.操作人员需授权才可查询历史数据,进行数据分析、 打印等操作。 四、技术参数: 1.监测点数:1~32个 (可扩充到255个); 2.温度范围:-40℃~+60℃; 3.温度精度:±0.5℃(-10℃~+35℃); 4.湿度范围:0~100%RH 5.湿度精度:±3%RH(30~90%RH) 6. 485总线传输距离: < 1200 M 7.电源:220V/AC ±10%

智能温度控制系统

摘要 智能温度控制系统 近年来随着科技的飞速发展,单片机的应用正在不断地走向深入,同时带动传统控制检测日新月益更新。在实时检测和自动控制的单片机应用系统中,单片机往往是作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构,以及针对具体应用对象特点的软件结合,以作完善。本系统是以单片机的基本语言汇编语言来进行软件设计编程的,其指令的执行速度快,节省存储空间。为了便于扩展和更改,软件的设计采用模块化结构,使程序设计的逻辑关系更加简洁明了。使硬件在软件的控制下协调运作。 根据本温度系统的设计要求,该系统是由单片机和温度传感器与一体的综合设计,由于是用单片机采集温度信号,所以在之前必须对温度信号进行放大和转换,就应该选择放大器和A/D转换器,本系统要实现人工智能化,就必须有对温度进行设定,所以还需要设计键盘与单片机系统进行沟通。 关键字:单片机温度传感器键盘 A/D转换器放大器

目录 摘要 ........................................................................................................................... I 第一章绪论.. (1) 第二章设计要求 (2) 2.1 设计课题工艺过程简介 (2) 2.2 控制任务指标及要求: (2) 第三章系统设计思想 (3) 第四章硬件的选择 (4) 4.1 单片机的选择 (4) 4.2 温度传感器的选择 (4) 4.3 显示器的选择 (4) 4.4 键盘的选择 (4) 4.5 温度控制部分 (5) 4.6 自动推舟控制部分 (5) 4.7 实现方案 (5) 第五章硬件设计 (6) 5.1单片机基本系统: (6) 5.1.1 单片机8051 (6) 5.1.2 8155简介 (9) 5.2前向通道 (13) 5.2.3 温度传感器: (13) 5.2.4 运算放大器 (15) 5.2.5 A/D转换器: (18) 5.3 后向通道.................................................................................... 错误!未定义书签。 5.4 人机对话通道 (20) 5.4.1 显示器: (20) 5.4.2 键盘 (23) 5.4.374922引脚说明及功能 (26) 5.5 其他外围器件 (26) 第六章软件设计 (29) 6.1 软件设计思路: (29) 6.2 程序设计流程说明: (29) 6.3 主程序流程图如下: (30) 6.4 键盘输入中断服务程序 (31) 6.5 温度检测子程序流程图 (31) 6.6 程序清单 (32) 结论 (37) 谢辞 (38) 参考文献 (39)

温湿度监测系统及方法与设计方案

图片简介: 本技术介绍了一种温湿度监测系统及方法,其中,温湿度监测系统包括显示屏、中心控制器、交换机以及多个安装在各个应用环境内的温湿度检测单元,中心控制器的信号端分别与各个温湿度检测单元连接,中心控制器的信号输出端与显示屏连接,所述交换机分别与中心控制器、数据服务器以及客户端电脑信号连接。本技术能够实时监控各个应用环境的温湿度,并根据实时的温湿度信息与设定的温湿度信息对比,如果超标,能够实时报警提示,确保生产安全,操作使用方便。 技术要求 1.一种温湿度监测系统,其特征在于:包括显示屏(1)、中心控制器(2)、交换机(3)以及多个安装在各个应用环境内的温湿度检测单元(6),中心控制器(2)的信号端分别与各个温湿度检测单元(6)连接,中心控制器(2)的信号输出端与显示屏(1)连接,所述交换机(3)分别与中心控制器(2)、数据服务器(4)以及客户端电脑(5)信号连接。 2.根据权利要求1所述的一种温湿度监测系统,其特征在于:所述温湿度检测单元(6)包括温湿度检测盒体、温湿度控制器(61)以及温湿度检测探头(62),所述温湿度检测盒体内安装温湿度控制器(61),温湿度控制器(61)与温湿度检测探头(62)信号连接,温湿度检测探头(62)伸出温湿度检测盒体。

接有用于显示温度正常的绿灯(63)、用于显示温度非正常的红灯(64)以及用于报警提示的蜂鸣器(65)。 4.根据权利要求1所述的一种温湿度监测系统,其特征在于:所述中心控制器(2)与各个温湿度检测单元(6)之间连接的线缆穿插在KBG管内,KBG管通过管扣固定在墙上。 5.根据权利要求3所述的一种温湿度监测系统,其特征在于:所述温湿度控制器(61)采用485控制器。 6.一种温湿度监测方法,其特征在于:具体包括如下步骤: S1、在各个应用环境中分别安装温湿度检测单元(6),将温湿度检测单元(6)的供电端与市电接通,在监控室内安装显示屏(1)和中心控制器(2),将显示屏(1)和中心控制器(2)的供电端与市电接通; S2、将各个温湿度检测单元(6)的信号端与中心控制器(2)的信号端接通,将显示屏(1)和中心控制器(2)的信号端接通; S3、将中心控制器(2)的信号端与交换机(3)接通,交换机(3)与对应的数据服务器(4)接通,交换机通过互联网与客户端电脑(5)信号连接; S4、通过客户端电脑(5)设定各个应用环境中的预定温度范围和预定湿度范围,并将数据保存至数据服务器(4)内; S5、各个温湿度检测单元(6)检测对应应用环境中的温度和湿度,并将温度信息和湿度信息发送至中心控制器(2),中心控制器(2)将接收的温度信息和湿度信息通过交换机(3)存储在数据服务器(4)内,以便后期查询,同时中心控制器(2)将接收的温度信息和湿度信息通过显示屏(1)显示出来,并显示对应的应用环境信息以及对应的预定温度范围和预定湿度范围。

远程温湿度监控系统

基于单片机环境温湿度监测系统设计 院(系)别信息工程学院 专业物联网工程 班级 131 姓名李建昊,黄佳佳,吴世谱 学号 20131554103,20131554120 20131554102 指导教师王建平,白林峰

远程温湿度监控系统 吴世谱,黄佳佳,李建昊 (河南科技学院,河南新乡453003) 摘要:随着人们生活质量的逐渐提高,人们越来越关注自己的生活环境,尤其是室内环境的舒适度,如何实时的监控居住环境的各种环境指标,并实时的把这些信息传递给用户,并实现室内环境的自动调节,达到智能控制的目的,成为智能家居的重要组成部分和研究问题。本文介绍了通过嵌入式系统,以C语言和C#为开发基础的下位机和上位机的软件开发任务。主要应用15F单片机为控制芯片,DH11温湿度传感器采集室内的温湿度,实现温湿度的检测,用网络模块实现数据向网络传输的功能,在windows窗体的界面上显示出来,并实现网络与单片机的双工通信功能。 关键字:智能控制,温湿度检测,双工通信。

目录 1 引言 (4) 1.1研究背景及意义 (4) 1.2主要解决的问题 (6) 2. 基于单片机的温湿度网络远程采集器 (7) 2.1温湿度网络远程采集器的组成和工作原理 (7) 2.2温度传感器概述 (8) 2.3STC15F60S2单片机简介 (10) 2.3.1单片机的特点 (10) 4.2 单片机的特点: (10) 3. 程序介绍和实物展示 (12) 3.1硬件设计和基于控制系统的编程 (12) 3.2基于C#的windows窗体上位机编程 (16) 4.0总结与展望 (19) 参考文献 (20)

物联网温湿度监控系统

项目设计报告 课程名称:微机原理与接口技术 题目:物联网温湿度监控系统 学院:信息科学与技术学院 专业:计算机科学与技术 小组: 组长: 班级: 任课老师: 2014年01月10日

目录 1、项目概述 (1) 2、需求分析 (2) 2.1硬件平台 (2) 2.2软件平台 (2) 2.3软件介绍 (2) 2.4系统与应用分析 (2) 3、项目团队架构及分工 (3) 3.1小组组织结构 (3) 2.2小组成员及分工安排表 (3) 4、概要设计 (4) 4.1传感器 (4) 4.2工作原理 (4) 4.3UML模型 (4) 5、详细设计 (5) 5.1对实验所需的环境进行安装,配置 (5) 5.1.1安装IAR (5) 5.1.2安装Setup_SmartRFProgr_1.6.2 (8) 5.1.3安装ZStack-CC2530-2.3.0-1.4.0 (8) 5.2打开相应的工程空间,本实验做的是温湿度采集实验 (9) 5.3将相应的程序代码下载到相应的模块中 (10) 5.3.1协调器模块 (10) 5.3.2温湿度传感器模块 (10) 5.4对温湿度传感器与协调器的组网到LED1灯同时不闪烁为 (10) 5.4.1温湿度传感器 (11) 5.4.2协调器 (12) 5.5打开串口配置软件配置相应的串口 (10) 5.6打开串口软件获取相应的温湿度。 (12) 6、系统测试 (13) 7、出现问题与解决 (14) 7.1、程序在IAR上不能运行 (14) 7.2不能够组网 (14) 7.3传感器接收到的信息不能传到电脑上 (14) 8、总结 (14) 9、参考文献 (16)

基于STM32的温湿度监控系统设计

基于STM32的温湿度监控系统设计 温湿度的监测对于当前控制室内环境,改善室内环境起着重要的作用,为了提高室内用户的舒适度,一般都会对室内的温湿度进行监控,通过监测温湿度的变化情况来确定下一步的动作,例如在温室中严格监控室内温度,使得温室内的植物能到最合适的生存环境。文章就基于STM32的温湿度监控系统设计问题进行了全面分析,通过其有效提高温度的时效性管理意义重大。 标签:STM32;温湿度;ucosII系统;监控系统设计 此次的基于STM32的温湿度监控系统设计主要是32位的单片机为主控芯片,DHT11为温湿度监测装置,搭载的是ucosII操作系统,显示设备为主控ITL9438的彩屏,通过DHT11采集的信息对经过单片机的内部程序的处理,将其以数字的形式显示在彩屏上,并且同时根据单片机内部的温度设定值进行相应的动作,实现的室内温湿度的智能控制。 1 温湿度监控系统设计 1.1 温湿度监控系统硬件设计 系统主控芯片为STM32F103ZET6,除了必须的STM32单片机正常的驱动的电路之外,彩屏为使用的是已经做成模块的ITL9438彩屏,而采集模块则是使用的DHT11,如图所示为使用的DHT11的引脚图,可得知只要通过采集Dout 引脚的输出的电平变化,查看数据手册,根据DHT11的时序图写出相应的驱动程序,驱动DHT11温湿度传感器。彩屏的程序可以直接使用的屏幕厂家写好的程序,移植到STM32上既可,而通过将Dout引脚上的高低电平变化,进行相应的数据处理可以将温湿度数据已数字的形式显现在彩屏上,通过内部的程序根据比较当前的温湿度值与设定的参数值进行比较,使得进行下一步的温湿度调节动作,通过向外部电路发送信号,例如温度高了,打开排风机降低室内的温度等措施优先对温度的控制,这与空调的原理类似,但是系统比空调电路简捷的多。 DHT11数字湿温度传感器采用单总线数据格式,单个数据引脚端口完成输入输出双向传输。其数据包由5Byte(40Bit)组成。数据分小数部分和整数部分,一次完整的数据传输为40bit,高位先出。DHT11的数据格式为:8bit湿度整数数据+8bit湿度小数数据+8bit温度整数数据+8bit温度小数数据+8bit校验和。其中校验和数据为前四个字节相加,传感器数据输出的是未编码的二进制数据。数据(湿度、温度、整数、小数)之间应该分开处理。 1.2 温湿度监控系统软件设计 此次的温湿度监控系统软件设计主要实在keil4中完成,操作系统为UCOSII,将UCOSII系统移植到当前单片机上,并且建立相应的任务堆栈,通过调用任务堆栈的形式实现系统运行,将DHT11的Dout引脚与PG11连接,PG11

小型仓库温湿度监控系统(毕业设计)

南京信息职业技术学院 毕业设计论文 作者陈龚学号 10619s34 系部电子信息工程系 专业电子信息工程技术/电子商务 题目小型仓库温湿度监测系统 指导教师丁宁 评阅教师徐瑞亚 完成时间: 2010 年 4 月 10 日

毕业设计(论文)中文摘要 小型仓库温湿度监测系统 摘要:仓库内要实现温湿度的精确控制必须进行多点测量。基于这一要求,本文采用多个数字温湿度传感器SHTll来设计仓库监测系统,以达到简化软硬件系统设计,提高测量精度的目的。首先介绍了SHTll 的结构特点、接口电路和工作时序,然后确定了采用多个SHTll纽成的温湿度测量系统的软硬件设计方案,最后基于AT89S51单片机设计了电路简洁、大大节省I/O口资源、具有现场独立显示和远距离通信功能的多点温湿度测量系统,并编写了PC机端直观的数据观测界面程序,为现代化仓库的集中管理提供了条件。 关键词:SHT11;AT89S51;串口通信;仓库温湿度监测系统

毕业设计(论文)外文摘要 Title :Small Storage Temperature & Humidity Monitoring System Abstract:Multi—points monitoring is necessary for storage exact temperature & humidity controlling system. For this reason,we use several digital temperature & humidity sensors to design the storage monitoring system,It can make the software and hardware designing easier and the measuring precision higher. Firstly,the paper,introduces SHTl1’s structure characters,I/O connecting circuit and working schedule. The scheme that how to design the software and hardware of temperature & humidity measuring system by using several SHTl1 is presented. Initially,A temperature &humidity measuring system based on AT89S51 is designed.The advantages of the system are simple hardware,less I/O resource,self—displaying and long distance communication.Furthermore,A data observation interface in the PC terminal is programmed,which can provide A good condition for concentrative management of modern sto rage. Keywords: SHTll;AT89S51;Connection to serial interface;Storage Temperature & Humidity Monitoring System

智能温湿度监控系统的组成及发展

智能温湿度监控系统的组成及发展 佟玲,杨玉芬,张本华 (沈阳农业大学工程学院,沈阳110161) 摘要:随着计算机技术及现代传感技术的发展,温湿度监控在工农业控制中的地位越来越重要。近些年来,呈现出智能化、计算机化、全自动等特点。为此,介绍了几种目前国内外比较先进的温湿度检测和控制装置,它们普遍利用温湿度传感器、单片机和微机技术实现对温湿度的检测,并通过对数码管LED、加热装置、排风装置等的控制来实现对温湿度的数值显示和自动调节。 关键词:自动控制技术;智能监控系统;综述;温湿度;单片机;传感器 0 引言 对于动植物培养箱来说,温度和湿度是非常重要的物理参数,它们的检测和控制对提高动植物的成活率、加快生长进程、降低死亡率起着非常重要的作用。目前,国内外研制了许多温湿度的检测和控制装置。现介绍几种新型温湿度测控系统的原理和特点。 1 多通道智能温湿度测试仪 该多通道智能温湿度测试仪是以AT89C52单片机为核心,采用HIH3610大信号线性电压输出湿度传感器和DS18B20数字温度传感器的一种多通道智能温湿度测试仪。该仪器具有测量精度高、显示界面友好、可测试多点温湿度等特点,其硬件电路如图1所示。 该仪器采用了Honeywell公司研制的湿度传感器HIH3610,它为大信号输出且线性度良好,可省去复杂的信号放大及调理电路,仅需1片A/D转换器,将与湿度值成正比的电压值转换成数字量并与单片机接口相连。温度传感器采用DS18B20,它为外加电源供电方式,同时可根据测

温点数的需要将多个DS18B20挂在一根总线上,以实现多点自动测量。因此无须进行信号的调理,也无须对传感器进行重新标定。数字显示采用了内藏中文字库的液晶图形显示模块LCM1286ZK,能够很好地解决LED循环显示周期过长及人机显示界面不友好的弊端。 该系统抛弃了传统单片机的总线扩展方式,采用串行扩展技术来扩展外围功能电路。串行扩展技术简化了仪器接口设计的复杂程度,提高了仪器工作的可靠性。但是串行扩展技术简单的硬件接口是以复杂的接口时序为代价的,因而在软件编程时操作时序的遵守就显得尤为重要。同时,该系统采用了12位的A/D转换器,A/D转换器电压的设定对湿度测量的精度影响很大,需不断地进行调试,因而精密基准电压源及电压调整元件的选型比较麻烦。 2 智能温湿度调节仪 周兵、马英庆、王文华3人研制的智能温湿度调节仪包括两部分:一是检测部分,温度检测采用热敏电阻传感器,湿度检测采用高分子电容湿敏元件,通过温湿度转换电路,将其转换为电流信号,便于远传;二是调节显示部分,A/D转换器采用TLC08328位双通道串行逼近模数转换器,调节部分采用AT89C51单片机和E2PROMAT24C16组成,通过软件编程来实现温度和湿度的指示和调节,其原理框图如图2所示。 温度检测采用热敏电阻传感器,负温度系数的半导体热敏电阻温度系数大,测温灵敏度高;时,ρ值很大,连接导线的误差可以忽略不计,但是它的互换性差,电阻值与温度的关系呈非线性。 因此,该系统将热敏电阻和精密固定电阻并联起来,组成了复合热敏电阻器,合成电阻值随温度呈线性的变化。湿度检测采用高分子电容湿敏元件,高分子介质吸湿后电容发生变化,高分子薄膜做得很薄,元件能够迅速地吸湿和脱湿,所以响应速度特别快。 A/D转换电路采用了TLC0832型8路双通道串行逼近模数转换器。基准电压Vref在内部接到Vcc上,可以得到满比例尺转换,获得最高的转换分辨率。单片机选用AT89C51,显示驱动电路选用达林顿晶体管阵列5G1413作为驱动器件,键盘电路由设定键、移位键、加一键、减一键及相应的上拉电阻组成,进行温度和湿度的设定。 该系统中,湿度检测虽然速度快,但仍存在着滞后现象。同时,湿度检测和温度检测都需

温湿度检测系统的设计与实现

无线传感网络技术 课程实训 温湿度检测系统的设计与实现 院(系)名称电子与信息工程学院 专业班级 学号 学生姓名 指导教师 起止时间:2017.6.26—2017.7.14

课程设计(论文)任务及评语 院(系):电子与信息工程学院教研室:软件工程

本科生课程设计(论文) 目录 第1章绪论 (1) 1.1系统的开发背景 (1) 1.2开发工具 (1) 第2章需求分析 (2) 2.1调研情况 (2) 2.2 模块划分 (2) 2.3 系统原理图 (3) 2.4 系统性能需求 (3) 第3章系统概要设计 (4) 3.1系统总体结构设计 (4) 3.2模块的创建 (4) 第4章硬件设计 (5) 4.1 DHT11温度湿度传感器电路设计 (5) 4.2 晶振电路和复位电路设计 (5) 4.3 LED数码显示模块设计 (6) 4.4 报警模块设计 (7) 4.5 主程序设计 (7) 4.6 LED显示子程序设计 (8) 第5章系统的测试 (10) 5.1 系统安装接线图 (10) 5.2 调试与结果 (10) 第6章总结 (12) 参考文献 (13) 附录程序 (14)

第1章绪论 1.1系统的开发背景 随着科学技术的快速发展,人类社会已取得了巨大进步!在居家生活、工农业生产、环保、气象、国防、科研、航天等部门,经常需要对环境中的湿度和温度进行测量及控制。传统的方法是用温度表、毛发湿度表、双金属式测量计和湿度试纸等测试器材,通过人工进行检测,对不符合温度和湿度要求的场所进行换气、降温和去湿等工作。这种人工测试方法费时费力、效率低,且测试的温度及湿度误差大,随机性相对较大。随着生产的发展急需一个含有微型计算机或微处理器的测量仪器,由于它拥有对数据存储,运算逻辑判断及自动化的功能,有着智能作用等优点,一个低成本和具有较高精度的温度湿度检测器将在许多领域代替人工操作,自动不间断检测环境温度和湿度。目前市场上普遍存在的温湿度检测仪器大都是单点测量,而且温湿度信息传递不及时,精度达不到要求,不利于控制者根据温度、湿度变化及时做出决定。为此,本设计开发了一种能够同时测量多点,并实时性高、精度高,通过显示器显示温湿度信息,并能进行温湿度超限报警的测控产品。 本文设计的是基于单片机的室内温湿度检测与报警系统,运用温湿度传感器进行温度和湿度的检测,该仪器具有测量精度较高、硬件电路简单、并能很好的进行显示,可测试一定范围室内环境温湿度的特点。省去了人工检测的繁琐、耗时的过程,随时通过检测器的显示器进行读数,既方便,又快捷。 1.2开发工具 STC89C52是一种低功耗、高性能CMOS八位微控制器,具有8K在系统可编程Flash 存储器,使用ATMEL公司高密度非易失性存储器技术制造,与工业80C51产品指令和引脚完全兼容。 LED数码管是现在电子设计中使用相当普遍的一种显示设备,每个数码管由7个发光二极管按照一定的排列结构组成,根据七个发光二极管的正负极连接不同,又分为共阴极数码管和共阳极数码管两种,选择的数码管不同,程序设计上也有一定的差别。 编程采用Keil C 软件,使用C语音。

相关文档
最新文档