概率算法

概率算法
概率算法

很多算法的每一个计算步骤都是固定的,而在下面我们要讨论的概率算法,允许算法在执行的过程中随机选择下一个计算步骤。许多情况下,当算法在执行过程中面临一个选择时,随机性选择常比最优选择省时。因此概率算法可在很大程度上降低算法的复杂度。

概率算法的一个基本特征是对所求解问题的同一实例用同一概率算法求解两次可能得到完

全不同的效果。这两次求解问题所需的时间甚至所得到的结果可能会有相当大的差别。一般情况下,可将概率算法大致分为四类:数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法。

数值概率算法常用于数值问题的求解。这类算法所得到的往往是近似解。而且近似解的精度随计算时间的增加不断提高。在许多情况下,要计算出问题的精确解是不可能或没有必要的,因此用数值概率算法可得到相当满意的解。

蒙特卡罗算法用于求问题的准确解。对于许多问题来说,近似解毫无意义。例如,一个判定问题其解为“是”或“否”,二者必居其一,不存在任何近似解答。又如,我们要求一个整数的因子时所给出的解答必须是准确的,一个整数的近似因子没有任何意义。用蒙特卡罗算法能求得问题的一个解,但这个解未必是正确的。求得正确解的概率依赖于算法所用的时间。算法所用的时间越多,得到正确解的概率就越高。蒙特卡罗算法的主要缺点就在于此。一般情况下,无法有效判断得到的解是否肯定正确。

拉斯维加斯算法不会得到不正确的解,一旦用拉斯维加斯算法找到一个解,那么这个解肯定是正确的。但是有时候用拉斯维加斯算法可能找不到解。与蒙特卡罗算法类似。拉斯维加斯算法得到正确解的概率随着它用的计算时间的增加而提高。对于所求解问题的任一实例,用同一拉斯维加斯算法反复对该实例求解足够多次,可使求解失效的概率任意小。

舍伍德算法总能求得问题的一个解,且所求得的解总是正确的。当一个确定性算法在最坏情况下的计算复杂性与其在平均情况下的计算复杂性有较大差别时,可以在这个确定算法中引入随机性将它改造成一个舍伍德算法,消除或减少问题的好坏实例间的这种差别。舍伍德算法精髓不是避免算法的最坏情况行为,而是设法消除这种最坏行为与特定实例之间的关联性。

本文简要的介绍一下数值概率算法和舍伍德算法。

首先来谈谈随机数。随机数在概率算法设计中扮演着十分重要的角色。在现实计算机上无法产生真正的随机数,因此在概率算法中使用的随机数都是一定程度上随机的,即伪随机数。

产生随机数最常用的方法是线性同余法。由线性同余法产生的随机序列a1,a2,...,an满足

a0=d

an=(ban-1+c)mod m n=1,2.......

其中,b>=0, c>=0, d>=m。d称为该随机序列的种子。

下面我们建立一个随机数类RadomNumber,该类包含一个由用户初始化的种子randSeed。给定种子之后,既可产生与之相应的随机数序列。randseed是一个无符号长整型数,既可由用户指定也可由系统时间自动产生。

const unsigned long maxshort=65536L;

const unsigned long multiplier=1194211693L;

const unsigned long adder=12345L;

class RandomNumber

{

private:

//当前种子

unsigned long randseed;

public:

//构造函数,缺省值0表示由系统自动产生种子

RandomNumber(unsigned long s=0);

//产生0-n-1之间的随机整数

unsigned short Random(unsigned long n);

//产生[0,1)之间的随机实数

double fRandom(void);

};

RandomNumber::RandomNumber(unsigned long s)

{

if(s==0)

randseed=time(0);

else

randseed=s;

}

unsigned short RandomNumber::Random(unsigned long n)

{

randseed=multiplier*randseed+adder;

return (unsigned short)((randseed>>16)%n);

}

double RandomNumber::fRandom(void)

{

return Random(maxshort)/double(maxshort);

}

函数Random在每次计算时,用线性同余式计算新的种子。它的高16位的随机性较好,将randseed右移16位得到一个0-65535之间的随机整数然后再将此随机整数映射到0-n-1范围内。

对于函数fRandom,先用Random(maxshort)产生一个0-(maxshort-1之间的整型随机序列),将每个整型随机数除以maxshort,就得到[0,1)区间中的随机实数。

下面来看看数值概率算法的两个例子:

1.用随机投点法计算π

设有一半径为r的圆及其外切四边形,如图所示。向该正方形随机投掷n个点。设落入圆内的点在正方形上均匀分布,因而所投入点落入圆内的概率为πr^2/4r^2,所以当n足够大时,k与n之比就逼近这一概率,即π/4。由此可得使用随机投点法计算π值的数值概率算法。具体实现时,只需要在第一次象限计算即可。

double Darts(int n)

{

static RandomNumber dart;

int k=0;

for(int i=1;i<=n;i++){

double x=dart.fRandom();

double y=dart.fRandom();

if((x*x+y*y)<1)

k++;

}

return 4*k/double(n);

}

再简单举个舍伍德算法的例子。

我们在分析一个算法在平均情况下的计算复杂性时,通常假定算法的输入数据服从某一特定的概率分布。例如,在输入数据是均匀分布时,快速排序算法所需的平均时间是O(n logn)。但是如果其输入已经基本上排好序时,所用时间就大大增加了。此时,可采用舍伍德算法消除算法所需计算时间与输入实例间的这种联系。

在这里,我们用舍伍德型选择算法随机的选择一个数组元素作为划分标准。这样既能保证算法的线性时间平均性能又避免了计算拟中位数的麻烦。非递归的舍伍德型算法可描述如下:

template

Type select(Type a[], int l, int r, int k) {

static RandomNumber rnd;

while(true){

if(l>=r)

return a[l];

int i=l, j=l=rnd.Random(r-l+1);

Swap(a[i], a[j]);

j=r+1;

Type pivot=a[l];

while(true)

{

while(a[++i]

while(a[--j]>pivot);

if(i>=j)

break;

Swap(a[i], a[j]);

}

if(j-l+1==k)

return pivot;

a[l]=a[j];

a[j]=pivot;

if(j-l+1

{

k=k-j+l-1;

l=j+1;

}

else

r=j-1;

}

}

template

Type Select(Type a[], int n, int k)

{

if(k<1||k>n)

throw OutOfBounds();

return select(a, 0, n-1, k);

}

平时我们一般开始考虑的是一个有着很好平均性能的选择算法,但在最坏情况下对某些实例算法效率较低。这时候我们用概率算法,将上述算法改造成一个舍伍德型算法,使得该算法对任何实例均有效。

不过在有些情况下,所给的确定性算法无法直接改造成舍伍德型算法。这时候就可以借助随机预处理技术,不改变原有的确定性算法,仅对其输入进行随机洗牌,同样可以得到舍伍德算法的效果。还是刚才的例子,换一种方法实现:

template

void Shuffle(Type a[], int n)

{

static RandomNumber rnd;

for(int i=1;i

int j=rnd.Random(n-i)+i;

Swap(a[i], a[j]);

}

}

在上文里,我们对概率算法中的数值概率算法以及舍伍德算法举例作了简要的介绍,希望能使大家对概率算法有一个初步的认识,并且将这种思想运用到自己平时的编程中。

FileInputStream fin=new FileInputStream(sourceFile);

BufferedReader br=new BufferedReader(new InputStreamReader(fin));

String str=br.readLine();

String[] s=str.split(" ");

TreeMap map = new TreeMap();

for (int i = 0; i < s.length; i++) {

String key = s[i].toLowerCase();

if (s[i].length() > 1) {

if (map.get(key) == null) {

map.put(key, 1);

}

else {

int value = map.get(key).intValue();

value++;

map.put(key, value);

}

}

}

}

}

111111111111111111111

前几天读到google研究员吴军的数学之美系列篇,颇有感触。而恰好自己前段时间做了个基于统计语言模型的中文切分系统的课程项目,于是乎,帖出来与大家共同学习。

分词技术在搜索引擎,信息提取,机器翻译等领域的重要地位与应用就不敖述了。步入正题:)

一、项目概述

本切分系统的统计语料是用我们学校自己开放的那部分,大家可以在这里下载,中文字符约184万,当然这都是已切分好了的,可以用此建立一个比较小的语

料库。本系统我主要分下面四个步骤完成:

1、语料预处理

2、建立2-gram(统计二元模型)

3、实现全切分

4、评估测试

下面我分别对这四个方面一一道来。

1、语料预处理

下载的已切分的语料都是形如“19980131-04-012-001/m 现实/n 的/u 顿

悟/vn 却/d 被/p 描/v 出/v 形/Ng 来/v 。/w ” ,有的前面还保留了日期编号,因为这些切分语料的来源是人民日报。预处理主要是按标点符号分句,句子简单定义为(。?!:;)这五种标点符号结尾的词串,句子首尾分别添加这两个表示句子开始和结束的标记,这在2-gram建模时要

用的,后面会提到。处理过程中,忽略词类信息和前面的日期信息,因为我这个切分系统不考虑词类标注。如前面这句预处理后应该为下面形式“现实

的顿悟却被描出形来。” ,当然切分词之间你可以用你想用的

符号标记,而不必是空格。因为考虑到所有的英文字符和数字的ASCII,我用了下面方法实现之:

out ; //输出流

in; //输入流

StringBuffer s1 = new StringBuffer(); //缓冲

char a = in.read();

while (a != -1) //判断是否已到流的终点

{

if ((a == '。' || a == '?' || a == '!' || a == ':' || a == ';' )) //一句结束{

String s2 = new String(s1);

out.write(""); //在句子前加

out.write(s2);

out.write(""); //在句子末尾加

out.write('/n'); //换行

s1 = new StringBuffer();

}

else if ( a == '/')

s1 = s1.append((char)32); //分词位置空格

else if (a > 256 )

s1 = s1.append((char)a);

a = in.read();

}

out.close();

in.close();

2、建立2-gram模型(统计二元模型)

在这里首先简单介绍一下n-gram模型和2-gram模型。

根据语言样本估计出的概率分布P就称为语言L的语言模型。对给定的句子s = w1w2…wn,(数字,n,i都为下标,wi为句子s的一个词)。由链式规则(Chain rule),P(s) = p(w1)p(w2|w1)p(w3|w1w2)……p(wn|w1w2w3…w(n-1)) , 对

p(wi|w1w2…w(i-1))而言,(w1w2…w(i-1))即为wi的历史。考虑前面n-1个词构成历史的模型即为n-gram模型。n越大,提供的语境信息也越多,但代价就越大,且需训练语料多;n较小时,提供的信息比较少,但计算代价小,且无需太多训练语料。

令c(w1,…,wi)表示词串w1,w2…wi在训练语料中出现的次数,则由最大似然估计,P(wn|w1,…,w(n-1)) = c(w1,…,wn) / c(w1,…,w(n-1)). 同理,则2-gram为P(wn|w(n-1)) = c(w(n-1),wn) / c(w(n-1)).

若想了解更多相关知识,大家找相关资料看看,随便把大学时的那本概率与统计课本拿出来翻翻,数学真是一个好东东:)

回归项目:)训练语料一共有5万多个不同的词。建立2-gram统计模型时不断要把每个词在训练语料中出现频率统计出来,还要把每个词及其后面的那个词组成的2-gram在训练语料中出现频率统计出来。因为在切分时会频繁的在建立的2-gram模型中查找相关的数据,所有,存储这个2-gram模型数据的数据结构一定要能提供高效的查找。故选择hash表,它能提供常数时间的查找。Java类库里提供了HashMap类,基于数据两还不是非常大,故可直接拿来用。在存储时,每一个key值对应一个在训练语料中出现过的词语,而每一个key

值对应的value值又是一个HashMap。暂且称为子hashmap.这个结构有点类似文件结构里的二级索引。其相关代码如下:

怎么在预处理文件里把词分别读出来就不罗嗦了,方法:每读入一行,按空格分成String数组,用个正则表达式匹配下即能得到。

//此方法传入的两个词组成一个2-gram,prewd为前一个词,currwd为紧随其后的词

public static void add(String prewd , String currwd){

String key = prewd;

String curr = currwd;

boolean bb = HMap.containsKey(key);

//Hmap是一个已存在的HashMap,用来存储2-gram统计模型。在这里判断preword 是否在主map 中

if (bb == false) { //若主map 中无,则添加

HashMap hm = new HashMap(); //首先,新构造一个子MAP

hm.put(key , new Integer(1)); //存储主KEY 的频率

hm.put(curr , new Integer(1)); //存储主KEY 后面紧接着的那个词频率

HMap.put(key,hm); //将主KEY 和对应的子MAP 放入主MAP 中

}

else //若主map 中含有该词

{

HashMap temp = (HashMap)HMap.get(key); //返回主KEY 所对应的子MAP ,进行值的修改

int count = ((Integer)temp.get(key)).intValue() + 1; //在子map 中将主key 次数加1

temp.put(key , new Integer(count));

if (temp.containsKey(curr))

//判断子map 中是否含有该词

{

int value =

((Integer)temp.get(curr)).intValue() + 1;

temp.put(curr , new Integer(value));

}

else

temp.put(curr, new Integer(1));

//若无,则将其存入子map

HMap.put(key , temp); //子map 修改完毕,将其重新放入主map

}

}

}

因为语言中的大部分词属于低频词,所以稀疏问题肯定存在。而MLE(最大似然估计)给在训练语料中没有出现的2-gram的赋给0概率。所以还得对2-gram 模型进行数据平滑,以期得到更好的参数。目前平滑技术比较多,如

Add-one,Add-delta,Witten-Bell,held-out留存平滑等。本系统主要采用了

Add-delta和held-out两中平滑方式,下面就Add-delta平滑技术为例,对2-gram 进行平滑。对2-gram模型,其平滑公式为:

P(wn|w(n-1)) = [c(w(n-1),wn) + delta ] / ( N + delta * V) ,这里去delta为0.5

其中,N:训练语料中所有的2-gram的数量

V:所有的可能的不同的2-gram的数量

平滑思路:1.产生主hashmap的迭代器iterator,依次读key;

2.对每一个key,又读出其value,即一个子hashmap;

3.然后根据平滑公式对子map里的值进行计算修改

算法框架:

Iterator it = 主hashmap.keySet().iterator();

While(it.hasNext())

{

主key = it.next();

子hashmap = (HashMap)主hashmap.get(主key);

Iterator itr = 子hashmap.keySet().iterator();

While(itr.hasNext())

{

根据平滑公式依次计算修改

}

}

注意问题:1.因为计算得出的概率值一般都比较小,为了防止出现下溢,可对其取对数,再取反。

2.每一个主key所对应的所有没有出现过的,即频率为零的

2-gram,统一用一个键值对存储在相应的子hashmap里即可。

完毕,对象序列化。使用该系统时,lazy load将其载入内存,然后可让其一直存活在内存,这会大大加快速度。

到此,2-gram模型建立完毕。

3、全切分实现

切词一般有最大匹配法(MM、RMM),基于规则的方法,基于统计的方法。关于前两者就不罗嗦了。所谓全切分就是要根据字典得到所以可能的切分形式。歧义识别的方法主要有:基于规则的方法和基于统计的方法。这里当然是采用基于2-gram统计模型的方法了:)为了避免切分后再进行歧义分析的时间浪费。并且这里采用边切分边评价的方法,即在切分进行的同时进行评价的方法。

对一个句子进行全切分的结果,即所以可能的组合,可以形成一棵解空间树

于是,可用回溯法搜索最优解

若将所有的全切分组合先搜索出来,然后再根据2-gram选择最佳,显然会很浪费时间,因为过程中可能存在很多的重复搜索,而回溯搜索的时间复杂度为指数时间

所以,在搜索过程中要结合剪枝,避免无效搜索,可很大提高效率

采用树的深度优先法则。可找到最优解

具体算法如下:

Stack.push(BOS) //树节点

while stack不为空

x=stack.pop()

pos:=x.Pos,w = x.w oldvalue:= x.value preword:

=x.preword

if m>O then //m为首词串的个数

forj:=1 to m do

FWj为fwc的第j个元素l

if length(w+FWj) =length(c)且概率最大then output w+FWjl且设置最新的句子最大概率值

else

posl:=pos+length(FWj)l

if probability(w+FWj,posl,

newsate)>maxValue(pos1)

stack.push(x)

endif

endfor

endif

endwhile

end.

在算法实现过程中需要考虑一些诸如树节点保存,首词串处理等问题。

4.评估测试

环境:windows XP2, AMD Athlon 1800+, Memory 768m,JDK1.5

Delta平滑:随着delta的取值变小,准确率上升,0.5,0.01,0.0001

召回率:0.9756 0.9826 0.9928

准确率:0.9638 0.9710 0.9883

留存平滑

召回率:0.9946

准确率:0.9902

一般情况下,留存平滑应该还是比delta平滑更好

所有建模过程及平滑过程在1分钟内都可完成。

切分时间与效率:

n 测试语料,17455字符,(中文17287),平均句长41个字,时间:340ms, 平均切分速度:5.1 万/S

n 20.5万测试语料(取自笑傲江湖),预处理后17.46万,时间110 MS,句子文本行数目24945,平均句长7 ,切分时间1300MS ,平均13.46 万/ 秒

n 20.5万测试语料(取自笑傲江湖),不预处理,平均句长239 ,切分时间40S,平均5000字/秒

回溯算法是时间开销为O(N!),所以在切分过程中句子长度直接决定了切分的速度,因为句子越长词越多

经过预处理,句子短,平均句长7, 回溯短,故速度要快很多。

到此,该系统基本完成,告一段落。感觉写的挺乱的呵呵

现在在做另一个作业,做个简单搜索引擎,准备把这个东东结合在搜索引擎里面,实现切分功能:)

概率计算方法

概率计算方法

概率计算方法 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0

摸一个球,请用画树状图法,求两次摸到都是白球的概率. 解析:⑴设蓝球个数为x 个 . 由题意得2 1 1 22=++x ∴x=1 答:蓝球有1个 (2)树状图如下: ∴ 两次摸到都是白球的概率 =6 1 122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的. 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 黄 白2白1蓝 黄白1蓝黄白2

四.列表法 例4 (07山西)如图3,有四张编号为1,2,3,4的卡片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一 张,抽到的卡片是眼睛的概率是多少? (2)从四张卡片中随机抽取一张贴在如图4所示的大头娃娃的左眼处,然后再随机抽取一张贴在大头娃娃的右眼处,用树状图或列表法求贴法正确的概率. 1 2 3 图 图3

概率论与数理统计公式定理全总结

第一章 P(A+B)=P(A)+P(B)- P(AB) 特别地,当A 、B 互斥时, P(A+B)=P(A)+P(B) 条件概率公式 概率的乘法公式 全概率公式:从原因计算结果 Bayes 公式:从结果找原因 第二章 二项分布(Bernoulli 分布)——X~B(n,p) 泊松分布——X~P(λ) 概率密度函数 怎样计算概率 均匀分布X~U(a,b) 指数分布X~Exp (θ) 分布函数 对离散型随机变量 对连续型随机变量 分布函数与密度函数的重要关系: 二元随机变量及其边缘分布 分布规律的描述方法 联合密度函数 联合分布函数 联合密度与边缘密度 离散型随机变量的独立性 连续型随机变量的独立性 第三章 数学期望 离散型随机变量,数学期望定义 连续型随机变量,数学期望定义 ● E(a)=a ,其中a 为常数 ● E(a+bX)=a+bE(X),其中a 、b 为常数 ● E(X+Y)=E(X)+E(Y),X 、Y 为任意随机变量 随机变量g(X)的数学期望 常用公式 ) () ()|(B P AB P B A P =)|()()(B A P B P AB P =) |()(A B P A P =∑ ==n k k k B A P B P A P 1)|()()(∑ ==n k k k i i k B A P B P B A P B P A B P 1 )|()()|()()|() ,...,1,0()1()(n k p p C k X P k n k k n =-==-,,...) 1,0(! )(== =-k e k k X P k ,λλ 1)(=? +∞ ∞ -dx x f )(b X a P ≤≤?=≤≤b a dx x f b X a P )()() 0(1 )(/≥= -x e x f x θ θ ∑≤==≤=x k k X P x X P x F ) ()()(? ∞ -=≤=x dt t f x X P x F )()()(? ∞ -=≤=x dt t f x X P x F )()()() ,(y x f ),(y x F 0 ),(≥y x f 1),(=?? +∞∞-+∞ ∞ -dxdy y x f 1),(0≤≤y x F },{),(y Y x X P y x F ≤≤=?+∞ ∞ -=dy y x f x f X ),()(?+∞ ∞ -=dx y x f y f Y ),()(} {}{},{j Y P i X P j Y i X P =====) ()(),(y f x f y x f Y X =∑+∞ -∞ =?= k k k P x X E )(? +∞ ∞ -?=dx x f x X E )()(∑ =k k k p x g X g E )())((∑∑=i j ij i p x X E )(dxdy y x xf X E ??=),()() (1 )(b x a a b x f ≤≤-= ) ()('x f x F =

概率统计常见题型及方法总结

常见大题: 1. 全概率公式和贝叶斯公式问题 B 看做“结果”,有多个“原因或者条件 i A ”可以导致 B 这个“结果”发生,考虑结果B 发生的概率,或者求在B 发生的条件下,源于某个原因i A 的概率问题 全概率公式: ()()() 1B |n i i i P B P A P A ==∑ 贝叶斯公式: 1(|)()() ()()n i i i j j j P A B P A P B A P A P B A ==∑|| 一(12分)今有四个口袋,它们是甲、乙、丙、丁,每个口袋中都装有a 只红球和b 只白球。先从甲口袋中任取一只球放入乙口袋,再从乙口袋中任取一只球放入丙口袋,然后再从丙口袋中任取一只球放入丁口袋,最后从丁口袋中任取一球,问取到红球的概率为多少? 解 i B 表示从第i 个口袋放入第1+i 个口袋红球,4,3,2,1=i i A 表示从第i 个口袋中任取一个球为红球, 2分 则 b a a B P += )(1, 2分 )()()()()(1111111B A P B P B A P B P A P += 111++++++++= b a a b a b b a a b a a b a a += 2分 依次类推 2分 b a a A P i += )( 二(10分)袋中装有m 只正品硬币,n 只次品硬币(次品硬币的两面均印有国徽),在袋中任取一只,将它投掷r 次,已知每次都出现国徽,问这只硬币是次品的概率为多少?

、解 记B ={取到次品},B ={取到正品},A ={将硬币投掷r 次每次都出现国徽} 则()(),n m P B P B m n m n = = ++,()1P A B =,()1 2r P A B =―—5分 ()()1()212()()()()12 r r r n P B P A B n m n P B A n m n m P B P A B P B P A B m n m n ?+===++?+?++ 三、(10分)一批产品共100件,其中有4件次品,其余皆为正品。现在每次从中任 取一件产品进行检验,检验后放回,连续检验3次,如果发现有次品,则认为这批产品不合格。在检验时,一件正品被误判为次品的概率为0.05,而一件次品被误判为正品的概率为0.01。(1)求任取一件产品被检验为正品的概率;(2)求这批产品被检验为合格品的概率。 解 设 A 表示“任取一件产品被检验为正品”, B 表示“任取一件产品是正品”,则 ()96100P B = ,()4 100 P B =,()|0.95P A B =,()|0.01P A B = (1)由全概率公式得 ()()()()()||0.9124P A P B P A B P B P A B =+= (2)这批产品被检验为合格品的概率为 ()3 3 0.91240.7596p P A ===???? 四、在电报通讯中不断发出信号‘0’和‘1’,统计资料表明,发出‘0’和‘1’的概 率分别为0.6和0.4,由于存在干扰,发出‘0’时,分别以概率0.7和0.1接收到‘0’和‘1’,以0.2的概率收为模糊信号‘x ’;发出‘1’时,分别以概率0.85和0.05收到‘1’和‘0’,以概率0.1收到模糊信号‘x ’。 (1)求收到模糊信号‘x ’的概率; (2)当收到模糊信号‘x ’时,以译成哪个信号为好?为什么? 解 设i A =“发出信号i ”)1,0(=i , i B =“收到信号i ”),1,0(x i =。由题意知 6.0)(0=A P , 4.0)(1=A P , 2.0)|(0=A B P x , 1.0)|(1=A B P x 。 (1)由全概率公式得 ) ()|()()|()(1100A P A B P A P A B P B P x x x += 4分 16.04.01.06.02.0=?+?=。 2分 (2)由贝叶斯公式得 75.016 .06 .02.0)()()|()|(000=?== x x x B P A P A B P B A P , 3分 25 .075.01)|(1)|(01=-=-=x x B A P B A P 3分

概率算法的介绍与分析

算法分析与设计课程课外学习论文 概率算法的介绍与分析 摘要:介绍概率算法,以主元素问题与n皇后问题为例重点介绍并分析蒙特卡洛算法以及拉斯维加斯算法,以及算法应用方法。 关键词:概率算法;蒙特卡洛算法;拉斯维加斯算法 一、引言 很多算法的每一个计算步骤都是固定的,而概率算法允许算法在执行的过程中随机选择下一个计算步骤。许多情况下,当算法在执行过程中面临一个选择时,随机性选择常比最优选择省时。因此概率算法可在很大程度上降低算法的复杂度。概率算法大致分为:数值概率算法,蒙特卡罗(Monte Carlo)算法,拉斯维加斯(Las Vegas)算法和舍伍德(Sherwood)算法。本文将重点介绍蒙特卡洛算法以及拉斯维加斯算法。 二、蒙特卡洛算法 1、产生随机数的机制 随机数在概率算法设计中扮演着十分重要的角色。在现实计算机上无法产生真正的随机数,因此在概率算法中使用的随机数都是一定程度上随机的,即伪随机数。产生随机数最常用的方法是线性同余法。 由线性同余法产生的随机序列a1,a2,...,an满足 其中,b>=0, c>=0, d>=m。d称为该随机序列的种子。当a,c,m确定后,随着d的不同产生不同的随机数列,为了使随机数数列的随机性能好,我们通常取m充分大的素数,而且取gcd(m,a)=1。 2、蒙特卡洛算法 如果一个蒙特卡罗算法对于问题的任一实例得到正确解的概率不小于p,则称该蒙特卡罗算法是p正确的,且称p-1/2是该算法的优势。对于一个一致的p正确蒙特卡罗算法,要提高获得正确解的概率,只要执行该算法若干次,并选择出现频次最高的解即可。 例:主元素问题

设T[1:n]是一个含有n个元素的数组。当|{i|T[i]=x}|>n/2时,称元素x是数组T的主元素。判断所给数组是否含有主元素。 对于任何给定的ε>0,算法majorityMC重复调用 log(1/ε) 次算法majority。它是一个偏真蒙特卡罗算法,且其错误概率小于ε。算法majorityMC所需的计算时间显然是O(nlog(1/ ε))。 源码见附录一。 三、拉斯维加斯算法 拉斯维加斯算法思想: void obstinate(Object x, Object y) {// 反复调用拉斯维加斯算法LV(x,y),直到找到问题的一个解y bool success= false; while (!success) success=lv(x,y); } 例:n皇后问题 n 皇后问题:在n×n 格的棋盘上放置彼此不受攻击的n 个皇后.按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子.n 皇后问题等价于在n×n 格的棋盘上放置n个皇后,任何2 个皇后不放在同一行或同一列或同一斜线上. 对于n 皇后问题的任何一个解而言,每一个皇后在棋盘上的位置无任何规律,不具有系统性,而更像是随机放置 的.由此想到可采用拉斯维加斯算法,在棋盘上相继的各行中随机地放置皇后,并注意使新放置的皇后与已放置的皇后互不攻击,直至n 个皇后均已相容地放置好,或已没有下一个皇后的可放置位置时为止. 方法queensLV ( ) 实现在棋盘上随机放置n个皇后的拉斯维加斯算法. 通过反复调用随机放置n 个皇后的拉斯维加斯算法queensLV ( ),直至找到n 皇后问题的一个解. 源码见附录二 四、算法比较 蒙特卡罗算法用于求问题的准确解。对于许多问题来说,近似解毫无意义。例如,一个判定问题其解为“是”或“否”,二者必居其一,不存在任何近似解答。又如,我们要求一个整数的因子时所给出的解答必须是准确的,一个整数的近似因子没有任何意义。用蒙特卡罗算法能求得问题的一个解,但这个解未必是正确的。求得正确解的概率依赖于算法所用的时间。算法所用的时间越多,得到正确解的概率就越高。蒙特卡罗算法的主要缺点就在于此。一般情况下,无法有效判断得到的解是否肯定正确。 拉斯维加斯算法求得的解肯定是正确的,不会得到不正确的解,但是有时候用拉斯维加斯算法可能找不到解。使用拉斯维加斯算法求解同一问题的同一实例,能够得到相同的结果,但算法的执行时间会不一样。拉斯维加斯算法的一个显著特征是它所作的随机性决策有可能导致算法找不到所需的解。

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件) =0;0

统计概率知识点归纳总结归纳大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性与随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率、 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5.掌握离散型随机变量的分布列、 6.掌握离散型随机变量的期望与方差、 7.掌握抽样方法与总体分布的估计、 8.掌握正态分布与线性回归、 考点1、求等可能性事件、互斥事件与相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=)()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复、 (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1、 (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(、其中P 为事件A 在一次试验中发生的概率,此式为二项式 [(1-P)+P]n 展开的第k+1项、

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤就是: 第一步,确定事件性质???????等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种、 第二步,判断事件的运算???和事件积事件 即就是至少有一个发生,还就是同时发生,分别运用相加或相乘事件、 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -?=???+=+???=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复、 考点2离散型随机变量的分布列 1、随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示、 ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量、 ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量、 2、离散型随机变量的分布列 ①离散型随机变量的分布列的概念与性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P(i x =ξ)=i P ,则称下表、

计算概率常用的方法

计算概率的常用方法 掌握概率的求法是这一章节的重点,那么求概率有哪些方法呢?下面以中考题为例说明求概率的常用方法。 1、列举法 (2009年广州)有红、白、蓝三种颜色的小球各一个,它们除颜色外没有任何其他区别。现将3个小球放入编号为①、②、③的三个盒子里,规定每个盒子里放一个且只能放一个小球。 (1)请用树状图或其他适当的形式列举出3个小球放入盒子的所有可能的情况。 (2)求红球恰好被放入②号盒子的概率。 解析:(1)3个小球分别放入编号为①、②、③的三个盒子的所有可能情况有:红白蓝、红蓝白、白红蓝、白蓝红、蓝红白、蓝白红,共6种。 (3)由(1)可知,红球恰好放入②号盒子的情况有白红蓝、蓝红白,共2种,所以红球恰好放入②号盒子的概率P=2/6=1/3。 评注:在一次实验中,如果可能出现的结果只是有限个,且各种结果出现的可能性大小相等,我们可以通过列举实验结果的方法,分析出随机事件发生的概率。 2、列表法

(2009年成都)有一个均匀的正四面体,四个面上分别标有数字1、2、3、4,小红随机地抛掷一次,把着地一面的数字记为x;另有3张背面完全相同,正面上分别写有数字-2、-1、1的卡片,小亮将其混合后,正面朝下放置在桌面上,并从中随机地抽取一张,把卡片正面上的数字记为y;然后他们计算出S=x+y的值。 (1)用树状图或表格表示出的所有可能的情况。 (2)分别求出当S=0和S<2的概率。 解析:(1)列表法分析如下: (2)由表格可知,所有可能出现的情况共有12种,其中S=0的有2种,S<2的有5种。 P(S=0)=2/12=1/6;P(S<2)=5/12。 评注:当一次实验涉及两个因素(例如投掷两个骰子),并且出现的结果数目较多时,为了不重不漏地列出所有可能的结果,通常采用列表法分析随机事件发生的概率。3、树状图法

概率计算方法全攻略

概率计算方法全攻略

概率计算方法全攻略 在新课标实施以来,中考数学试题中加大了 统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)=的结果数 随机事件所有可能出现果数随机事件可能出现的结.其中P(必然事件)=1,P (不可能事件)=0;0

解析:⑴设蓝球个数为x 个 . 由题意得2 1122=++x ∴x=1 答:蓝球有1个 (2)树状图 如下: ∴ 两次摸到都是白球的概率 =6 112 2=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果. ②无论哪种都是机会均等的 . 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗列出来,便于计算结果. 四.列表法 例4 (07山西)如图3,有四张编号为1,2,3,4的卡 片,卡片的背面完全相同.现将它们搅匀并正面朝下放置在桌面上. (1)从中随机抽取一张,抽到的卡片是眼睛的黄白2蓝白2白1蓝黄白1蓝黄白2

概率统计公式大全(复习重点)

第一章随机事件和概率 (1)排列组合公式 )! ( ! n m m P n m- =从m个人中挑出n个人进行排列的可能数。 )! (! ! n m n m C n m- =从m个人中挑出n个人进行组合的可能数。 (2)加法和乘法原理加法原理(两种方法均能完成此事):m+n 某件事由两种方法来完成,第一种方法可由m种方法完成,第二种方法可由n种方法来完成,则这件事可由m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事):m×n 某件事由两个步骤来完成,第一个步骤可由m种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m×n 种方法来完成。 (3)一些常见排列重复排列和非重复排列(有序)对立事件(至少有一个) 顺序问题 (4)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。试验的可能结果称为随机事件。 (5)基本事件、样本空间和事件在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用ω来表示。 基本事件的全体,称为试验的样本空间,用Ω表示。 一个事件就是由Ω中的部分点(基本事件ω)组成的集合。通常用大写字母A,B,C,…表示事件,它们是Ω的子集。 Ω为必然事件,?为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理,必然事件(Ω)的概率为1,而概率为1的事件也不一定是必然事件。 (6)事件的关系与运算①关系: 如果事件A的组成部分也是事件B的组成部分,(A发生必有事件B发生):B A? 如果同时有B A?,A B?,则称事件A与事件B等价,或称A等于B:A=B。 A、B中至少有一个发生的事件:A B,或者A+B。 属于A而不属于B的部分所构成的事件,称为A与B的差,记为A-B,也可表示为A-AB或者B A,它表示A发生而B不发生的事件。 A、B同时发生:A B,或者AB。A B=?,则表示A与B不可能同时发生,称 事件A与事件B互不相容或者互斥。基本事件是互不相容的。 Ω-A称为事件A的逆事件,或称A的对立事件,记为A。它表示A不发生的

最新统计概率知识点归纳总结大全

统计概率知识点归纳总结大全 1.了解随机事件的发生存在着规律性和随机事件概率的意义. 2.了解等可能性事件的概率的意义,会用排列组合的基本公式计算一些等可能性事件的概率. 3.了解互斥事件、相互独立事件的意义,会用互斥事件的概率加法公式与相互独立事件的概率乘法公式计算一些事件的概率. 4.会计算事件在n 次独立重复试验中恰好发生k 次的概率. 5. 掌握离散型随机变量的分布列. 6.掌握离散型随机变量的期望与方差. 7.掌握抽样方法与总体分布的估计. 8.掌握正态分布与线性回归. 考点1. 求等可能性事件、互斥事件和相互独立事件的概率 解此类题目常应用以下知识: (1)等可能性事件(古典概型)的概率:P (A )=) ()(I card A card =n m ; 等可能事件概率的计算步骤: (1) 计算一次试验的基本事件总数n ; (2) 设所求事件A ,并计算事件A 包含的基本事件的个数m ; (3) 依公式()m P A n =求值; (4) 答,即给问题一个明确的答复. (2)互斥事件有一个发生的概率:P (A +B )=P (A )+P (B ); 特例:对立事件的概率:P (A )+P (A )=P (A +A )=1. (3)相互独立事件同时发生的概率:P (A ·B )=P (A )·P (B ); 特例:独立重复试验的概率:P n (k )=k n k k n p p C --)1(.其中P 为事件A 在一次试验中发生的概率,此式为二项式[(1-P)+P]n 展开的第k+1项.

(4)解决概率问题要注意“四个步骤,一个结合”: ① 求概率的步骤是: 第一步,确定事件性质???? ???等可能事件 互斥事件 独立事件 n 次独立重复试验 即所给的问题归结为四类事件中的某一种. 第二步,判断事件的运算?? ?和事件积事件 即是至少有一个发生,还是同时发生,分别运用相加或相乘事件. 第三步,运用公式()()()()()()()()(1) k k n k n n m P A n P A B P A P B P A B P A P B P k C p p -? =???+=+? ??=??=-??等可能事件: 互斥事件: 独立事件: n 次独立重复试验:求解 第四步,答,即给提出的问题有一个明确的答复. 考点2离散型随机变量的分布列 1.随机变量及相关概念 ①随机试验的结果可以用一个变量来表示,这样的变量叫做随机变量,常用希腊字母ξ、η等表示. ②随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量. ③随机变量可以取某区间内的一切值,这样的随机变量叫做连续型随机变量. 2.离散型随机变量的分布列 ①离散型随机变量的分布列的概念和性质 一般地,设离散型随机变量ξ可能取的值为1x ,2x ,……,i x ,……,ξ取每一个值i x (=i 1,2,……)的概率P (i x =ξ)=i P ,则称下表.

求概率的三种方法

求概率的方法 在新课标实施以来,中考数学试题中加大了统计与概率部分的考察,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,常用的方法有:列举法、列表法、画树状图法,这三种方法应该熟练掌握,先就有关问题加以分析. 一、列举法 例1:(05济南)如图1所示,准备了三张大小相同的纸片,其中两张纸片上各画一个半径相等的半圆,另一张纸片上画一个正方形.将这三张纸片放在一个盒子里摇匀,随机地抽取两张纸片,若可以拼成一个圆形(取出的两张纸片都画有半圆形)则甲方赢;若可以拼成一个 蘑菇形(取出的一张纸片画有半圆、一张画有正方形)则乙方赢.你认 为这个游戏对双方是公平的吗?若不是,有利于谁? . 分析:这个游戏不公平,因为抽取两张纸片,所有机会均等的结果为:半圆半圆,半圆正方形,正方形半圆,正方形正方形.所以取出的两张纸片都画有半圆形的概率为4 1 . 取出的一张纸片画有半圆、一张画有正方形的概率为 2 142=,因为二者概率不等,所以游戏不公平. 说明: 本题采用了一种较为有趣的试题背景,重在考查学生对概率模型的理解、以及对不确定事件发生概率值的计算.本题用列举方法,也可以用画树状图,列表法. 二、画树状图法 例2:(06临安市)不透明的口袋里装有白、黄、蓝三种颜色的乒乓球(除颜色外其余都相同),其中白球有2个,黄球有1个,现从中任意摸出一个是白球的概率为12 . (1)试求袋中蓝球的个数. (2)第一次任意摸一个球(不放回),第二次再摸一个球,请用画树状图或列表格法,求两次摸到都是白球的概率. 解析:⑴设蓝球个数为x 个,则由题意得 21 122= ++x , 1=x 答:蓝球有1个. (2)树状图如下: ∴ 两次摸到都是白球的概率 = 6 1 122=. 说明:解有关的概率问题首先弄清:①需要关注的是发生哪个或哪些结果.②无论哪种都是机会均等的,要对实践的分析得出概率通常用列表或画树状图来写出事件发生的结果,这样便于确定相关的概率. 本题是考查用树状图来求概率的方法,这种方法比较直观,把所有可能的结果都一一罗 图1 黄白2蓝白2白1蓝黄白1蓝黄白2

概率公式大全

第一章随机事件和概率 ( 1)排列组从 m 个人中挑出 n 个人进行排列的可能数。 合公式从 m 个人中挑出 n 个人进行组合的可能数。 加法原理(两种方法均能完成此事): m+n 某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种( 2)加法和方法来完成,则这件事可由m+n 种方法来完成。 乘法原理乘法原理(两个步骤分别不能完成这件事): m×n 某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种 方法来完成,则这件事可由m×n 种方法来完成。 ( 3)一些常重复排列和非重复排列(有序)对立事件(至少有一个) 见排列 顺序问题 ( 4)随机试如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在验和随机事进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 件试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如下 性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 ( 5)基本事这样一组事件中的每一个事件称为基本事件,用来表示。 件、样本空间基本事件的全体,称为试验的样本空间,用表示。 和事件一个事件就是由中的部分点(基本事件)组成的集合。通常用大写字母A,B,C,?表示事件,它们是的子集。 为必然事件, ? 为不可能事件。 (6)事件的关系与运算不可能事件( ? )的概率为零,而概率为零的事件不一定是不可能事件;同理,必 然事件(Ω)的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分,( A 发生必有事件 B 发生): 如果同时有,,则称事件 A 与事件 B 等价,或称 A 等于 B: A=B 。 A 、 B 中至少有一个发生的事件: A B,或者 A+B 。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B ,也可表示为 A-AB 或者,它表示 A 发生而 B 不发生的事件。 A 、 B 同时发生: A B ,或者 AB 。A B=? ,则表示 A 与 B 不可能同时发生,称事件 A 与事件 B 互不相容或者互斥。基本事件是互不相容的。 -A 称为事件 A 的逆事件,或称 A 的对立事件,记为。它表示 A 不发生的事件。互斥未必对立。 ②运算: 结合率: A(BC)=(AB)C A ∪ (B∪ C)=(A ∪ B) ∪ C 分配率: (AB) ∪ C=(A ∪ C)∩ (B∪ C) (A ∪ B) ∩ C=(AC)∪ (BC) 德摩根率:, 设为样本空间,为事件,对每一个事件都有一个实数 P(A) ,若满足下列三个条( 7) 概率的件: 公理化定义1° 0 ≤ P(A),≤1 2° P( Ω)=1

生物遗传概率的六种计算方法

生物遗传概率的六种计算方法 概率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其范围介于0和1之间。相关概率计算方法介绍如下: 一、某一事件出现的概率计算法例题1:杂合子(Aa)自交,求自交后代某一个体是杂合体的概率。 解析:对此问题首先必须明确该个体是已知表现型还是未知表现型。(1)若该个体表现型为显性性状,它的基因型有两种可能:AA和Aa。且比例为1∶2,所以它为杂合子的概率为2/3。(2)若该个体为未知表现型,那么该个体基因型为AA、Aa和aa,且比例为1∶2∶1,因此它为杂合子的概率为 1/2。正确答案:2/3或1/2 二、亲代的基因型在未肯定的情况下,其后代某一性状发生的概率计算法例题2:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的概率是多少? 解析:(1)首先确定该夫妇的基因型及其概率?由前面例题1的分析可推知该夫妇均为Aa的概率为2/3,AA的概率为1/3。(2)假设该夫妇为Aa,后代患病的概率为1/4。(3)最后将该夫妇均为Aa的概率(2/3×2/3)与假设该夫妇均为Aa情况下生白化病患者的概率1/4相乘,其乘积1/9,即为该夫妇后代中出现白化病患者的概率。正确答案:1/9 三、利用不完全数学归纳法例题3:自交系第一代基因型为Aa的玉米,自花传粉,逐代自交,到自交系第n代时,其杂合子的几率为。解析:第一代Aa第二代1AA 2Aa 1aa 杂合体几率为1/2第三代纯1AA 2Aa 1aa 纯杂合体几率为(1/2)2第n代杂合体几率为(1/2)n-1 正确答案:杂合体几率为(1/2)n-1 四、利用棋盘法例题4:人类多指基因(T)是正常指(t)的显性,白化基因(a)是正常(A)的隐性,都在常染色体上,而且都是独立遗传。一个家庭中,父亲是多指,母亲正常,他们有一个白化病和正常指的的孩子,则生下一个孩子只患有一种病和患有两种病以及患病的概率分别是()A.1/2、1/8、

最全的遗传概率计算方法(高中生物) (2)

全:遗传概率的计算方法(高中生物) 概率是对某一可能发生事件的估计,是指总事件与特定事件的比例,其范围介于0和1之间。相关概率计算方法介绍如下: 一、某一事件出现的概率计算法 例题1:杂合子(Aa)自交,求自交后代某一个体是杂合体的概率。 解析:对此问题首先必须明确该个体是已知表现型还是未知表现型。(1)若该个体表现型为显性性状,它的基因型有两种可能:AA和Aa。且比例为1∶2,所以它为杂合子的概率为2/3。(2)若该个体为未知表现型,那么该个体基因型为AA、Aa和aa,且比例为1∶2∶1,因此它为杂合子的概率为1/2。正确答案:2/3或1/2 二、亲代的基因型在未肯定的情况下,其后代某一性状发生的概率计算法 例题2:一对夫妇均正常,且他们的双亲也都正常,但双方都有一白化病的兄弟,求他们婚后生白化病孩子的概率是多少? 解析:(1)首先确定该夫妇的基因型及其概率?由前面例题1的分析可推知该夫妇均为Aa的概率为2/3,AA的概率为1/3。(2)假设该夫妇为Aa,后代患病的概率为1/4。(3)最后将该夫妇均为Aa的概率(2/3×2/3)与假设该夫妇均为Aa情况下生白化病患者的概率1/4相乘,其乘积1/9,即为该夫妇后代中出现白化病患者的概率。正确答案:1/9 三、利用不完全数学归纳法 例题3:自交系第一代基因型为Aa的玉米,自花传粉,逐代自交,到自交系第n代时,其杂合子的几率为。 解析:第一代 Aa 第二代 1AA 2Aa 1aa 杂合体几率为 1/2 第三代纯 1AA 2Aa 1aa 纯杂合体几率为(1/2)2 第n代杂合体几率为(1/2)n-1 正确答案:杂合体几率为(1/2)n-1 四、利用棋盘法 例题4:人类多指基因(T)是正常指(t)的显性,白化基因(a)是正常(A)的隐性,都在常染色体上,而且都是独立遗传。一个家庭中,父亲是多指,母亲正常,他们有一个白化病和正常指的的孩子,则生下一个孩子只患有一种病和患有两种病以及患病的概率分别是() A.1/2、1/8、5/8 B.3/4、1/4、5/8 C.1/4、1/4、1/2 D.1/4,1/8,1/2 解析:据题意分析,先推导出双亲的基因型为TtAa(父),ttAa(母)。然后画棋盘如下:

选择填空统计概率算法框图复数2

绝密★启用前 2013-2014学年度???学校10月月考卷 试卷副标题 考试范围:xxx ;考试时间:100分钟;命题人:xxx 注意事项: 1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上 第I 卷(选择题) 请点击修改第I 卷的文字说明 一、选择题(题型注释) 1.6 (2)x +的展开式中3x 的系数是( ) A .20 B .40 C .80 D .160 【答案】D 【解析】333 3462160T C x x ==,所以应选D 2.某雷达测速区规定:凡车速大于或等于70m/h 视为“超速”,同时汽车将受到处罚,如图是某路 段的一个检测点对200辆汽车的车速进行检测所得结果的频率分布直方图,则从图中可以得出将被处罚的汽车约有 ( ) A .30辆 B .40辆 C .60辆 D .80辆 【答案】B 【解析】被处罚的汽车约有0.0210200 40.??=故选B 3 .已知集合{} 2 |(1) , , A x x a a i a R i ==+-∈是虚数单位,若A R ?,则a 等于A .1 B .1- C .1± D .0 【答案】C 【解析】 2,,10, 1.A R x R a a ?∴∈∴-==±故选 A. 4.则从k 到1k +时左边应添加的项为 ( ) 【答案】D 【解析】n=k 时,n=k+1121k ++ - 1121k ++ -,增加的是 5.两个相关变量满足如下关系: 则两变量的回归方程为( ) A .?0.56997.4y x =+ B .?0.63231.2y x =- C .?0.56501.4 y x =+ D .?60.4400.7y x =+ 【答案】A 【解析】101520253020;5x ++++= =10031005101010111014 1008.65 y ++++== 5 1 2 5 21 50.56,997.4.5i i i i i x y x y b a y bx x x ==-= ≈=-≈-∑∑故选A 6.(8 2展开式中不含..4 x 项的系数的和为( ) A.-1 B.0 C.1 D.2 【答案】B 【解析】展开式中含4 x 项的系数为80 8 2 1.C =所以(8 2展开式中不含..4 x 项的系数的和为 8(210-=故选B x 10 15 20 25 30 y 1003 1005 1010 1011 1014

概率统计公式大全汇总

第一章
n Pm ?
随机事件和概率
(1)排列 组合公式
n Cm ?
m! (m ? n)!
从 m 个人中挑出 n 个人进行排列的可能数。
m! 从 m 个人中挑出 n 个人进行组合的可能数。 n!(m ? n)!
(2)加法 和乘法原 理
加法原理(两种方法均能完成此事) :m+n 某件事由两种方法来完成,第一种方法可由 m 种方法完成,第二种方法可由 n 种 方法来完成,则这件事可由 m+n 种方法来完成。 乘法原理(两个步骤分别不能完成这件事) :m×n 某件事由两个步骤来完成, 第一个步骤可由 m 种方法完成, 第二个步骤可由 n 种 方法来完成,则这件事可由 m×n 种方法来完成。 重复排列和非重复排列(有序) 对立事件(至少有一个) 顺序问题 如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但 在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。 试验的可能结果称为随机事件。 在一个试验下,不管事件有多少个,总可以从其中找出这样一组事件,它具有如 下性质: ①每进行一次试验,必须发生且只能发生这一组中的一个事件; ②任何事件,都是由这一组中的部分事件组成的。 这样一组事件中的每一个事件称为基本事件,用 ? 来表示。 基本事件的全体,称为试验的样本空间,用 ? 表示。 一个事件就是由 ? 中的部分点(基本事件 ? )组成的集合。通常用大写字母 A, B,C,…表示事件,它们是 ? 的子集。 ? 为必然事件,? 为不可能事件。 不可能事件(?)的概率为零,而概率为零的事件不一定是不可能事件;同理, 必然事件(Ω )的概率为 1,而概率为 1 的事件也不一定是必然事件。 ①关系: 如果事件 A 的组成部分也是事件 B 的组成部分, (A 发生必有事件 B 发生) :
(3)一些 常见排列 (4)随机 试验和随 机事件
(5)基本 事件、样本 空间和事 件
(6)事件 的关系与 运算
A? B
如果同时有 A ? B , B ? A ,则称事件 A 与事件 B 等价,或称 A 等于 B:A=B。 A、B 中至少有一个发生的事件:A ? B,或者 A+B。 属于 A 而不属于 B 的部分所构成的事件,称为 A 与 B 的差,记为 A-B,也可表 示为 A-AB 或者 A B ,它表示 A 发生而 B 不发生的事件。
1 / 33

概率计算方法总结3

概率计算方法总结 在新课标实施以来,中考数学试题中加大了统计与概率部分的考查,体现了“学以致用”这一理念. 计算简单事件发生的概率是重点,现对概率计算方法阐述如下: 一.公式法 P(随机事件)= 的结果数 随机事件所有可能出现果数 随机事件可能出现的结.其中P(必然事件)=1,P (不可能事 件)=0;0

相关文档
最新文档