彩色图像分割算法:Color Image Segmentation Based on Mean Shift and Normalized Cuts

彩色图像分割算法:Color Image Segmentation Based on Mean Shift and Normalized Cuts
彩色图像分割算法:Color Image Segmentation Based on Mean Shift and Normalized Cuts

Color Image Segmentation Based on

Mean Shift and Normalized Cuts

Wenbing Tao,Hai Jin,Senior Member,IEEE,and

Yimin Zhang,Senior Member,IEEE

Abstract—In this correspondence,we develop a novel approach that provides effective and robust segmentation of color images.By incor-porating the advantages of the mean shift(MS)segmentation and the normalized cut(Ncut)partitioning methods,the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing.It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image.The segmented regions are then represented by using the graph structures,and the Ncut method is applied to perform globally optimized clustering.Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with signi?cant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels.In addition,the image clustering using the segmented regions,instead of the image pixels,also reduces the sensitivity to noise and results in enhanced image segmentation performance.Furthermore,to avoid some inappro-priate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region.The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images.

Index Terms—Color image segmentation,graph partitioning,mean shift (MS),normalized cut(Ncut).

I.I NTRODUCTION

Image segmentation is a process of dividing an image into different regions such that each region is nearly homogeneous,whereas the union of any two regions is not.It serves as a key in image analysis and pattern recognition and is a fundamental step toward low-level vision, which is signi?cant for object recognition and tracking,image re-trieval,face detection,and other computer-vision-related applications [1].Color images carry much more information than gray-level ones [24].In many pattern recognition and computer vision applications,the color information can be used to enhance the image analysis process and improve segmentation results compared to gray-scale-based ap-proaches.As a result,great efforts have been made in recent years to investigate segmentation of color images due to demanding needs. Existing image segmentation algorithms can be generally classi?ed into three major categories,i.e.,feature-space-based clustering,spa-tial segmentation,and graph-based approaches.Feature-space-based clustering approaches[12],[13]capture the global characteristics of the image through the selection and calculation of the image features, which are usually based on the color or texture.By using a speci?c distance measure that ignores the spatial information,the feature Manuscript received August3,2006;revised December10,2006.This work was supported by the National Natural Science Foundation of China under Grant60603024.This paper was recommended by Associate Editor I.Bloch. W.Tao and H.Jin are with the Cluster and Grid Computing Laboratory, School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan430074,China,and also with the Service Computing Technology and System Laboratory,School of Computer Science and Technol-ogy,Huazhong University of Science and Technology,Wuhan430074,China (e-mail:wenbingtao@https://www.360docs.net/doc/8013328451.html,;hjin@https://www.360docs.net/doc/8013328451.html,).

Y.Zhang is with the Center for Advanced Communications,Villanova University,Villanova,PA19085USA(e-mail:yimin.zhang@https://www.360docs.net/doc/8013328451.html,). Color versions of one or more of the?gures in this paper are available online at https://www.360docs.net/doc/8013328451.html,.

Digital Object Identi?er10.1109/TSMCB.2007.902249samples are handled as vectors,and the objective is to group them into compact,but well-separated clusters[7].

Although the data clustering approaches are ef?cient in?nding salient image features,they have some serious drawbacks as well.The spatial structure and the detailed edge information of an image are not preserved,and pixels from disconnected regions of the image may be grouped together if their feature spaces overlap.Given the importance of edge information,as well as the need to preserve the spatial relation-ship between the pixels on the image plane,there is a recent tendency to handle images in the spatial domain[11],[28].The spatial segmen-tation method is also referred to as region-based when it is based on region entities.The watershed algorithm[19]is an extensively used technique for this purpose.However,it may undesirably produce a very large number of small but quasi-homogenous regions.Therefore,some merging algorithm should be applied to these regions[20],[28]. Graph-based approaches can be regarded as image perceptual grouping and organization methods based on the fusion of the feature and spatial information.In such approaches,visual group is based on several key factors such as similarity,proximity,and continuation[3], [5],[21],[25].The common theme underlying these approaches is the formation of a weighted graph,where each vertex corresponds to n image pixel or a region,and the weight of each edge connecting two pixels or two regions represents the likelihood that they belong to the same segment.The weights are usually related to the color and texture features,as well as the spatial characteristic of the corresponding pixels or regions.A graph is partitioned into multiple components that minimize some cost function of the vertices in the components and/or the boundaries between those components.So far,several graph cut-based methods have been developed for image segmentations[8], [14],[22],[23],[27],[30],[31].For example,Shi and Malik[23] proposed a general image segmentation approach based on normalized cut(Ncut)by solving an eigensystem,and Wang and Siskind[8] developed an image-partitioning approach by using a complicated graph reduction.Besides graph-based approaches,there are also some other types of image segmentation approaches that mix the feature and spatial information[4],[29].

This correspondence concerns a Ncut method in a large scale. It has been empirically shown that the Ncut method can robustly generate balanced clusters and is superior to other spectral graph-partitioning methods,such as average cut and average association[23]. The Ncut method has been applied in video summarization,scene detection[17],and cluster-based image retrieval[18].However,image segmentation approaches based on Ncut,in general,require high computation complexity and,therefore,are not suitable for real-time processing[23].An ef?cient solution to this problem is to apply the graph representation strategy on the regions that are derived by some region segmentation method.For example,Makrogiannis et al.[20] developed an image segmentation method that incorporates region-based segmentation and graph-partitioning approaches.This method ?rst produces a set of oversegmented regions from an image by using the watershed algorithm,and a graph structure is then applied to represent the relationship between these regions.

Not surprisingly,the overall segmentation performance of the region-based graph-partitioning approaches is sensitive to the region segmentation results and the graph grouping strategy.The inherent oversegmentation effect of the watershed algorithm used in[20]and [28]produces a large number of small but quasi-homogenous regions, which may lead to a loss in the salient features of the overall image and,therefore,yield performance degradation in the consequent region grouping.

To overcome these problems,we propose in this correspondence a novel approach that provides effective and robust image segmentation

1083-4419/$25.00?2007IEEE

with low computational complexity by incorporating the mean shift (MS)and the Ncut methods.In the proposed method,we?rst perform image region segmentation by using the MS algorithm[4],and we then treat these regions as nodes in the image plane and apply a graph structure to represent them.The?nal step is to apply the Ncut method to partition these regions.

The MS algorithm is a robust feature-space analysis approach[4] which can be applied to discontinuity preserving smoothing and image segmentation problems.It can signi?cantly reduce the number of basic image entities,and due to the good discontinuity preserving?ltering characteristic,the salient features of the overall image are retained.The latter property is particularly important in the partitioning of natural images,in which only several distinct regions are used in representing different scenes such as sky,lake,sand beach,person,and animal, whereas other information within a region is often less important and can be neglected.However,it is dif?cult to partition a natural image into signi?cative regions to represent distinct scenes,depending only on the MS segmentation algorithm.The main reason is that the MS algorithm is an unsupervised clustering-based segmentation method, where the number and the shape of the data cluster are unknown a priori.Moreover,the termination of the segmentation process is based on some region-merging strategy applied to the?ltered image result,and the number of regions in the segmented image is mainly determined by the minimum number of pixels in a region,which is denoted as M(i.e.,regions containing less than M pixels will be eliminated and merged into its neighboring region).In our proposed approach,therefore,an appropriate value of M is chosen to yield a good region representation in the sense that the number of segmented regions is larger than the number of typical scenes,but is much smaller than the number of pixels in the image,and the boundary information of the typical scenes is retained by the boundaries of the regions. The Ncut method[23],on the other hand,can be considered as a classi?cation method.In most image segmentation applications,the Ncut method is applied directly to the image pixels,which are typically of very large size and thus require huge computational complexity. For example,to use the Ncut method in[26],a gray image has to be decimated into a size of160×160pixels or smaller.In summary,it is dif?cult to get real-time segmentation using the Ncut method.In the proposed method,the Ncut method is applied to the segmented regions instead of the raw image pixels.As such,it eliminates the major problem of the Ncut method that requires prohibitively high complexity.By applying the Ncut method to the preprocessed regions rather than the raw image pixels,the proposed method achieves a signi?cant reduction of the computational cost and,therefore,renders real-time image segmentation much more practically implemental. On the other hand,due to some approximation in the implementation of the Ncut method,the segmentation processing of a graph exploiting the lower dimensional region-based weight matrix also provides more precise and robust partitioning performance compared to that based on the pixel-based weight matrix.

This correspondence is organized as follows.In Section II,we introduce the background of the proposed method.In Section III,the proposed algorithm is described for effective color image partition-ing.In Section IV,we demonstrate the superiority of the proposed method by comparing the performance of the proposed approach to existing methods using a variety of color natural scene images.Finally, Section V concludes this correspondence.

II.MS AND G RAPH P ARTITIONING

A.Image Region Segmentation Based on MS

The computational module based on the MS procedure is an ex-tremely versatile tool for feature-space analysis.In[4],two applica-tions of the feature-space analysis technique are discussed based on the MS procedure:discontinuity preserving?ltering and the segmentation of gray-level or color images.In this section,we present a brief review of the image segmentation method based on the MS procedure [4],[9],[10].

We consider radially symmetric kernels satisfying K(x)= c k,d k( x 2),where constant c k,d>0is chosen such that ∞

K(x)dx=

c k,

d k( x 2)dx=1[not

e that k(x)is de?ned only for x≥0].k(x)is a monotonically decreasing function and is referred to as the pro?le o

f the kernel.Given the function g(x)=?k (x)for pro?le,the kernel G(x)is de?ned as G(x)=c g,d g( x 2).For n data points x i,i=1,...,n,in the d-dimensional space R d,the MS is de?ned as

m h,G(x)=

n

i=1

x i g

x?x i 2

n

i=1

g

x?x i 2

?x(1)

where x is the center of the kernel(window),and h is a bandwidth parameter.Therefore,the MS is the difference between the weighted mean,using kernel G as the weights and x as the center of the kernel (window).The MS method is guaranteed to converge to a nearby point where the estimate has zero gradient[4].Regions of low-density values are of no interest for the feature-space analysis,and in such regions,the MS steps are large.On the other hand,near local maxima,the steps are small,and the analysis is more re?ned.The MS procedure,thus,is an adaptive gradient ascent method[6].The center position of kernel G can be updated iteratively by

y j+1=

n

i=1

x i g

y j?x i

h

2

n

i=1

g

y j?x i

h

2

,j=1,2, (2)

where y1is the center of the initial position of the kernel.

Based on the above analysis,the MS image?ltering algorithm can be obtained.First,an image is represented as a2-D lattice of p-dimensional vectors(pixels),where p=1for gray-level images, p=3for color images,and p>3for multispectral images.The space of the lattice is known as the spatial domain,while the graph level and the color of spectral information are represented in the range domain.For both domains,the Euclidean metric is assumed.Let x i and z i,i=1,...,n,respectively,be the d-dimensional(d=p+2) input and the?ltered image pixels in the joint spatial-range domain. The segmentation is actually a merging process performed on a region that is produced by the MS?ltering.The use of the MS seg-mentation algorithm requires the selection of the bandwidth parameter h=(h r,h s),which,by controlling the size of the kernel,determines the resolution of the mode detection.

B.Spectral Graph Partitioning

Among many graph theoretic algorithms,spectral graph-partitioning methods have been successfully applied to many areas in computer vision,including motion analysis[16],image segmentation [8],[23],[27],[31],image retrieval[18],video summarization[17], and object recognition[15].In this correspondence,we use one of these techniques,namely,the Ncut method[23],for region clustering. Next,we brie?y review the Ncut method based on the studies in[14], [23],and[27].

Roughly speaking,a graph-partitioning method attempts to organize nodes into groups such that the intragroup similarity is high and the

Fig.1.(a)Original image.(b)Result image after using the MS segmentation algorithm.(c)Labeled regions.(d)RAGs produced by the node space relation,with a region corresponding to a node.(e)Final region-partitioning result using the Ncut method on the RAG in(d).

intergroup similarity is low.Given a graph G=(V,E,W),where V

is the set of nodes,and E is the set of edges connecting the nodes.

A pair of nodes u andνis connected by an edge and is weighted

by w(u,ν)=w(ν,u)≥0to measure the dissimilarity between them.

W is an edge af?nity matrix with w(u,ν)as its(u,ν)th element.The

graph can be partitioned into two disjoint sets A and B=V?A

by removing the edges connecting the two parts.The degree of

dissimilarity between the two sets can be computed as a total weight of

the removed edges.This closely relates to a mathematical formulation

of a cut[22]

cut(A,B)=

u∈A,ν∈B

w(u,ν).(3)

This problem of?nding the minimum cut has been well studied

[22],[23],[27].However,the minimum cut criterion favors grouping

small sets of isolated nodes in the graph because the cut de?ned

in(3)does not contain any intragroup information[23].In other

words,the minimum cut usually yields overclustered results when it

is recursively applied.This motivates several modi?ed graph partition

criteria,including the Ncut[23]

Ncut(A,B)=

cut(A,B)

assoc(A,V)

+

cut(A,B)

assoc(B,V)(4)

where assoc(A,V)denotes the total connection from nodes in A to all nodes in the graph,and asso(B,V)is similarly de?ned.Unlike the cut criterion that has a bias in favor of cutting small sets of nodes,the Ncut criterion is unbiased.

III.P ROPOSED A PPROACH

A.Description of the Algorithm Scheme

We now describe our proposed algorithm.From a data-?ow point of view,the outline of the proposed algorithm can be characterized as the following.First,an image is segmented into multiple separated regions using the MS algorithm.Second,the graph representation of these regions is constructed,and the dissimilarity measure between the regions is de?ned.Finally,a graph-partitioning algorithm based on the Ncut is employed to form the?nal segmentation map.

The regions produced by the MS segmentation can be represented by a planar weighted region adjacency graph(RAG)G=(V,E,W) that incorporates the topological information of the image structure and region connectivity.The majority of region-merging algorithms de?ne the region dissimilarity metric as the distance between two adjacent regions in an appropriate feature space.This dissimilarity metric plays a decisive role in determining the overall performance of the image segmentation process.To de?ne the measure of dissimilarity between neighboring regions,we?rst de?ne an appropriate feature space.Features like color,texture,statistical characteristics,and2-D shape are useful for segmentation purposes and can be extracted from an image region.We adopt the color feature in this paper because it is usually the most dominant and distinguishing visual feature and adequate for a number of segmentation tasks.The average color components are computed over a region’s pixels and are described by a three-element color vector.When an image is segmented based on the MS method into n regions R i,i=1,...,n,the mean vector ˉX

R i={ˉx1i,ˉx2i,ˉx3i}is computed for each region,whereˉx1i,ˉx2i, andˉx3i are the mean pixel intensities of the i th region in the three different color spaces,respectively.

Proper selection of the color spaces is important to the development of a good region-merging algorithm.To obtain meaningful segmentation results,the perceived color difference should be associated with the Euclidean distance in the color space.The spaces L?u?v?and L?a?b?have been particularly designed to closely approximate the perceptually uniform color spaces.In both cases,L?, which is the lightness(relative brightness)coordinate,is de?ned in the same way.The two spaces differ only in the chromaticity coordinates, and in practice,there is no clear advantage of using one over the other. In this paper,we employed L?u?v?motivated by its linear mapping property[2].

By de?ning the color space,we can compute the weight matrix W of all regions.The weight w(u,ν)between regions u andνis de?ned as

w(u,ν)=

e

?

F(u)?F(ν) 22

d I

,if u andνare adjacent

0,otherwise

(5)

where F(u)={L(u),u(u),v(u)}is the color vector of region u,and · 2denotes the vector norm operator.In addition,d I is a positive scaling factor that determines the sensitivity of w(u,ν)to the color difference between nodes u andν.

Under a graph representation,region grouping can be naturally formulated as a graph-partitioning problem.In the proposed method, the Ncut algorithm is used to solve such a problem.The major difference between the proposed method and the conventional Ncut algorithm is that the construction of the weight matrix is based not on the pixels of the original image but rather on the segmentation result of the MS algorithm.The advantages of using regions instead of pixels in constructing the weight matrix are twofold:1)It offers a considerable reduction of computational complexity,since the number of basic image entities is by far smaller than that of the pixels.Thus,the size of the weight matrix and,subsequently,the complexity of the graph

TABLE I

W EIGHT M ATRIX W OF A LL R EGION N ODES

Fig. 2.(a)RAGs produced by the node space relations,with a region

corresponding to three nodes.(b)Final region-partitioning result using the

Ncut method on the RAG in(a).(c)Partitioning result using the Ncut method

implemented by Cour et al.[26].

form the?rst cluster,regions3–5the second cluster,regions6–12the

third cluster,and regions13and14the fourth cluster.

C.Segmentation Improvement Using Multiple Child Nodes

Although the graph-partitioning process merges the regions gener-

ated by the MS algorithm into four clusters,the?nal region segmen-

tation result in Fig.1(e)is not perfect because the sky and the top

region of the mountain near the sky are merged into the same cluster.

The grouping of the other regions is not satisfactory either.It is well

Fig.3.Test results of color images with partitioning class k=3in(a)and k=6in(b).(First column)The original test images.(Second column)The region segmentation results by the MS algorithm.The white lines show the contour boundaries of these regions,and the number of regions of the result image in each row of(a)and(b)(from top to bottom)is90,28,104,106,90,38,159,97,and66,respectively.(Third column)The contour images of the?nal region-merging results using the proposed method.(Fourth column)The original images overlapped with the contour of the?nal region-partitioning results.(Fifth column)The partitioning results by directly applying the Ncut method to the image pixels[26].The image size is240×160.

known that the Ncut algorithms try to?nd a“balanced partition”[23] of a weighted graph,and the cut does not have a bias in favor of cutting small sets of isolated nodes in the graph.Therefore,it is not surprising that the sky cannot be segmented out because it is only considered as a node of the weighted graph.

An effective solution to this problem is to consider every region generated by the MS algorithm as multiple nodes rather than a single one.The child nodes of a region have the same feature value and are all adjacent with all the child nodes of the neighboring region.That is to say,there are edges between all the child nodes of two adjacent

regions.The weights between the child nodes within a region are

all one,whereas the weights between the child nodes between two

adjacent regions are all the same and equal to the weight between

the two regions.This yields a new weight matrix W C=W?1C, where?denotes the Kronecker product operator,and1C is the C×C

matrix with all unit entries.In this experiment,we set the number of

child nodes in each region to C=3,and the top-left12×12entries

of W C,which correspond to regions1–4as shown in bold fonts in

Fig.4.Test results of color images with the variable partitioning class.The partitioning class k of each row(from top to bottom)is4,6,8,10,and12,respectively. The number of regions of the result image in the second column is(from top to bottom)49,117,92,128,and98,respectively.The size of the image is160×240 for the?rst row and240×160for other rows.

TABLE III

C OMPARE

D C OMPUTATIONAL C OST B ETWEEN TH

E P ROPOSED M ETHOD AND THE Ncut M ETHOD

shows the segmentation results of the Ncut method implemented by

Cour et al.[26]where the sky is separated into two parts.

IV.E XPERIMENTAL R ESULTS

We have applied the proposed algorithm for the segmentation of a

set of color images with natural scenes.In this section,we present the

experimental results,indicating the different stages of the method.The

contrastive experiment results using the Ncut method implemented by

Cour et al.[26]are also presented for comparison.The sizes of all

the test images are either240×160or160×240.The parameters

of the MS segmentation algorithm are set to h=(h r,h s)=(6,8) and M=50.With this parameter setting,the number of the regions

produced by the MS algorithm is less than200regions(i.e.,the RAG

has less than200nodes)for all the test images we used.Therefore,

the dimension of the weight matrix is dramatically reduced from the

number of image pixels to the number of regions,and subsequently,the

complexity of the graph structure employed for image representation

is also reduced.To retain the advantage of the balanced partition of the

Ncut method,we use C=3to construct the weight matrix W C.

The test examples include three image sets.The results of the?rst

set of examples are shown in Fig.3(a),where the partitioning class

k is three.The results of the second set of examples are shown in

Fig.3(b),where k=6.The results of the third set of examples are

shown in Fig.4with varying values of k.In each?gure,the?ve

columns respectively show,from left to right,the original test image,

the resultant image after applying the MS segmentation algorithm,

the contour image of the?nal region partitioning,the original images

overlapped with the?nal partitioning contour,and the partitioning

result using the Ncut method implemented by Cour et al.[26].

As discussed in Section III-C,considering a region produced by the

MS algorithm as several identical child nodes can prevent the pixels in

this region from being divided into several parts when the Ncut method

is applied.For example,in the second row of Fig.3(a),the image

includes the?sher in the foreground and the lake in the background.

Therefore,an effective segmentation method should distinguish the

?sher from the lake background.However,when the Ncut method is

directly applied to the image pixels,the image is partitioned into three

regions where each region includes one part of the lake.If we?rst

process the image using the MS segmentation algorithm,then the most

pixels of the lake background are formed into a region.The proposed

method treats this region as several nodes with the identical charac-

teristic and,as such,avoids partitioning the lake into several different

parts.The experimental results of the second and?fth rows in Fig.3(b)

and the third and?fth rows in Fig.4also support the same claim.

For all the experimental results shown in Figs.3and4,the proposed

method effectively partitions the natural scenes into several mean-

ingful regions and provides an improved performance compared to

the Ncut method,which does not always yield meaningful regions.

Fig.3(a)shows images with relatively simple scene,and thus,a small

partitioning class of k=3is chosen.The test sets in Figs.3(b)and4

include more complicated color natural scenes,and thus,a larger value

of k is used.

Finally,we consider the computational cost of the proposed method

and compare it with that of the Ncut method.A PC,which is equipped

with a2.0-GHz Pentium CPU and512-MB memory,is used.The main

computational cost of the Ncut method is to compute the eigenvectors

of the source image.In the experiments used in this paper,the Ncut

method[26]requires30–50s to compute the eigenvectors of the gray

image of240×160pixels.The computation of the proposed method

consists of two sections.The?rst section is to segment the original im-

age using the MS segmentation algorithm,which takes approximately

2s to process an image.The second section is to partition the region nodes produced by the MS segmentation algorithm using the Ncut method,which depends on the number of the initial region nodes and the requested?nal regions.In the experiments performed in this paper, the number of the regions is less than200,and for C=3,the number of the child nodes is less than600.The computation of partitioning the regions using the Ncut method takes less than300ms.Table III compares the computational cost between the proposed method and the Ncut method for the images depicted in Figs.3and4.The signi?cant reduction of the computational cost by using the proposed method is evident.

Moreover,we notice that the MS algorithm is more feasible for parallel operations than the Ncut method because the complicated eigendecomposition problem in the Ncut method is dif?cult to be par-allelized.In the proposed method,the main computational cost is the region segmentation,whereas the computational cost of partitioning the region nodes using the Ncut method is negligibly small.Thus,the proposed method is more feasible to real-time image processing,such as content-based image retrieval,particularly when parallel processing is used.

V.C ONCLUSION

In this correspondence,we have developed a new algorithm for the segmentation of color images.The proposed algorithm takes the advantages of the MS segmentation method and the Ncut grouping method,whereas their drawbacks are avoided.The use of the MS method permits the formation of segments that preserve discontinuity characteristic of an image.On the other hand,the application of the region adjacent graph and Ncut methods to the resulting segments, rather than directly to the image pixels,yields superior image segmen-tation performance.The proposed method requires signi?cantly lower computational complexity and,therefore,is feasible to real-time image processing.

A CKNOWLEDGMENT

The authors would like to thank the anonymous reviewers for their valuable comments.

R EFERENCES

[1]N.Pal and S.Pal,“A review on image segmentation techniques,”Pattern

Recognit.,vol.26,no.9,pp.1277–1294,Sep.1993.

[2]G.Wyszecki and W.S.Stiles,Color Science:Concepts and Methods,

Quantitative Data and Formulae,2nd ed.New York:Wiley,1982.

[3]G.Kanizsa,Grammatica del Vedere.Bologna,Italy,1980.

[4]https://www.360docs.net/doc/8013328451.html,aniciu and P.Meer,“Mean shift:A robust approach toward feature

space analysis,”IEEE Trans.Pattern Anal.Mach.Intell.,vol.24,no.5, pp.603–619,May2002.

[5]B.Caselles,B.Coll,and J.-M.Miorel,“A Kanisza programme,”Progr.

Nonlinear Differential Equations Appl.,vol.25,pp.35–55,1996.

[6]R.van den Boomgaard and J.van de Weijer,“On the equivalence

of local-mode?nding,robust estimation and mean-shift analysis as used in early vision tasks,”in Proc.Int Conf.Pattern Recog.,2002, pp.30927–30930.

[7]R.O.Duda,P.E.Hart,and D.G.Sork,Pattern Classi?cation.New York:

Wiley-Interscience,2000.

[8]S.Wang and J.M.Siskind,“Image segmentation with ratio cut,”IEEE

Trans.Pattern Anal.Mach.Intell.,vol.25,no.6,pp.675–690,Jun.2003.

[9]Y.Cheng,“Mean shift,mode seeking,and clustering,”IEEE Trans.Pat-

tern Anal.Mach.Intell.,vol.17,no.8,pp.790–799,Aug.1995.

[10]https://www.360docs.net/doc/8013328451.html,aniciu,“An algorithm for data-driven bandwidth selection,”IEEE

Trans.Pattern Anal.Mach.Intell.,vol.25,no.2,pp.281–288,Feb.2003.

[11]V.Grau,A.U.J.Mewes,M.Alcaniz,R.Kikinis,and S.K.War?eld,

“Improved watershed transform for medical image segmentation using prior information,”IEEE Trans.Image Process.,vol.23,no.4,pp.447–458,Apr.2004.

[12]D.W.Jacobs,D.Weinshall,and Y.Gdalyahu,“Classi?cation with non-

metric distances:Image retrieval and class representation,”IEEE Trans.

Pattern Anal.Mach.Intell.,vol.22,no.6,pp.583–600,Jun.2000.

[13]A.K.Jain and D.Zongker,“Representation and recognition of handwrit-

ten digits using deformable templates,”IEEE Trans.Pattern Anal.Mach.

Intell.,vol.19,no.12,pp.1386–1391,Dec.1997.

[14]S.X.Yu and J.Shi,“Multiclass spectral clustering,”in Proc.Int.Conf.

Comput.Vis.,2003,pp.313–319.

[15]S.Sarkar and P.Soundararajan,“Supervised learning of large percep-

tual organization:Graph spectral partitioning and learning automata,”

IEEE Trans.Pattern Anal.Mach.Intell.,vol.22,no.5,pp.504–525, May2000.

[16]J.Costeira and T.Kanade,“A multibody factorization method for motion

analysis,”in https://www.360docs.net/doc/8013328451.html,put.Vis.,1995,pp.1071–1076. [17]C.-W.Ngo,Y.-F.Ma,and H.-J.Zhang,“Video summarization and scene

detection by graph modeling,”IEEE Trans.Circuits Syst.Video Technol., vol.15,no.2,pp.296–305,Feb.2005.

[18]Y.Chen,J.Z.Wang,and R.Krovetz,“CLUE:Cluster-based retrieval of

images by unsupervised learning,”IEEE Trans.Image Process.,vol.14, no.8,pp.1187–1201,Aug.2005.

[19]L.Vincent and P.Soille,“Watersheds in digital spaces:An ef?cient algo-

rithm based on immersion simulation,”IEEE Trans.Pattern Anal.Mach.

Intell.,vol.13,no.6,pp.583–597,Jun.1991.

[20]S.Makrogiannis,G.Economou,and S.Fotopoulos,“A region dissim-

ilarity relation that combines feature-space and spatial information for color image segmentation,”IEEE Trans.Syst.,Man,Cybern.B,Cybern., vol.35,no.1,pp.44–53,Feb.2005.

[21]M.Wertheimer,“Laws of organization in perceptual forms(partial trans-

lation),”in Sourcebook of Gestalt Psychology,W.B.Ellis,Ed.Orlando, FL:Harcourt Brace Jovanovich,1938,pp.71–88.[22]Z.-Y.Wu and R.Leahy,“An optimal graph theoretic approach to data clus-

tering:Theory and its application to image segmentation,”IEEE Trans.

Pattern Anal.Mach.Intell.,vol.15,no.11,pp.1101–1113,Nov.1993.

[23]J.Shi and J.Malik,“Normalized cuts and image segmentation,”IEEE

Trans.Pattern Anal.Mach.Intell.,vol.22,no.8,pp.888–905,Aug.2000.

[24]H.D.Cheng,X.H.Jiang,Y.Sun,and J.Wang,“Color image seg-

mentation:Advances and prospects,”Pattern Recognit.,vol.34,no.12, pp.2259–2281,Dec.2001.

[25]O.J.Morris,J.Lee,and A.G.Constantinides,“Graph theory for image

analysis:An approach based on the shortest spanning tree,”Proc.Inst.

Electr.Eng.,F,vol.133,no.2,pp.146–152,1986.

[26]T.Cour,S.Yu,and J.Shi,Normalized cuts Matlab code[Online].Avail-

able:https://www.360docs.net/doc/8013328451.html,/~jshi/software

[27]Y.Weiss,“Segmentation using eigenvectors:A unifying view,”in Proc.

https://www.360docs.net/doc/8013328451.html,put.Vis.,1999,pp.957–982.

[28]K.Haris,S.N.Efstratiadis,N.Maglaveras,and A.K.Katsaggelos,“Hy-

brid image segmentation using watersheds and fast region merging,”IEEE Trans.Image Process.,vol.7,no.12,pp.1684–1699,Dec.1998. [29]S.C.Zhu and A.Yuille,“Region competition:Unifying snakes,region

growing,and Bayes/MDL for multi-band image segmentation,”IEEE Trans.Pattern Anal.Mach.Intell.,vol.18,no.9,pp.884–900,Sep.1996.

[30]B.Sumengen and B.S.Manjunath,“Graph partitioning active contours

(GPAC)for image segmentation,”IEEE Trans.Pattern Anal.Mach.In-tell.,vol.28,no.4,pp.509–521,Apr.2006.

[31]I.H.Jermyn and H.Ishikawa,“Globally optimal regions and bound-

aries as minimum ratio cycles,”IEEE Trans.Pattern Anal.Mach.Intell., vol.23,no.10,pp.1075–1088,Oct.2001.

图像分割算法开题报告

图像分割算法开题报告 摘要:图像分割是图像处理中的一项关键技术,自20世纪70年代起一直受到人们的高度重视,并在医学、工业、军事等领域得到了广泛应用。近年来具有代表性的图像分割方法有:基于区域的分割、基于边缘的分割和基于特定理论的分割方法等。本文主要对基于自动阈值选择思想的迭代法、Otsu法、一维最大熵法、二维最大熵法、简单统计法进行研究,选取一系列运算出的阈值数据和对应的图像效果做一个分析性实验。 关键字:图像分割,阈值法,迭代法,Otsu法,最大熵值法 1 研究背景 1.1图像分割技术的机理 图像分割是将图像划分为若干互不相交的小区域的过程。小区域是某种意义下具有共同属性的像素连通集合,如物体所占的图像区域、天空区域、草地等。连通是指集合中任意两个点之间都存在着完全属于该集合的连通路径。对于离散图像而言,连通有4连通和8连通之分。图像分割有3种不同的方法,其一是将各像素划归到相应物体或区域的像素聚类方法,即区域法,其二是通过直接确定区域间的边界来实现分割的边界方法,其三是首先检测边缘像素,然后再将边缘像素连接起来构成边界的方法。 图像分割是图像理解的基础,而在理论上图像分割又依赖图像理解,两者是紧密关联的。图像分割在一般意义下十分困难的,目前的图像分割处于图像的前期处理阶段,主要针对分割对象的技术,是与问题相关的,如最常用到的利用阈值化处理进行的图像分割。 1.2数字图像分割技术存在的问题

虽然近年来对数字图像处理的研究成果越来越多,但由于图像分割本身所具有的难度,使研究没有大突破性的进展,仍然存在以下几个方面的问题。 现有的许多种算法都是针对不同的数字图像,没有一种普遍适用的分割算法。 缺乏通用的分割评价标准。对分割效果进行评判的标准尚不统一,如何对分割结果做出量化的评价是一个值得研究的问题,该量化测度应有助于视觉系统中的自动决策及评价算法的优劣,同时应考虑到均质性、对比度、紧致性、连续性、心理视觉感知等因素。 与人类视觉机理相脱节。随着对人类视觉机理的研究,人们逐渐认识到,已有方法大都与人类视觉机理相脱节,难以进行更精确的分割。寻找到具有较强的鲁棒性、实时性以及可并行性的分割方法必须充分利用人类视觉特性。 知识的利用问题。仅利用图像中表现出来的灰度和空间信息来对图像进行分割,往往会产生和人类的视觉分割不一致的情况。人类视觉分割中应用了许多图像以外的知识,在很多视觉任务中,人们往往对获得的图像已具有某种先验知识,这对于改善图像分割性能是非常重要的。试图寻找可以分割任何图像的算法目前是不现实,也是不可能的。人们的工作应放在那些实用的、特定图像分割算法的研究上,并且应充分利用某些特定图像的先验知识,力图在实际应用中达到和人类视觉分割更接近的水平。 1.3数字图像分割技术的发展趋势 从图像分割研究的历史来看,可以看到对图像分割的研究有以下几个明显的趋势。 对原有算法的不断改进。人们在大量的实验下,发现一些算法的效

图像分割算法研究与实现

中北大学 课程设计说明书 学生姓名:梁一才学号:10050644X30 学院:信息商务学院 专业:电子信息工程 题目:信息处理综合实践: 图像分割算法研究与实现 指导教师:陈平职称: 副教授 2013 年 12 月 15 日

中北大学 课程设计任务书 13/14 学年第一学期 学院:信息商务学院 专业:电子信息工程 学生姓名:焦晶晶学号:10050644X07 学生姓名:郑晓峰学号:10050644X22 学生姓名:梁一才学号:10050644X30 课程设计题目:信息处理综合实践: 图像分割算法研究与实现 起迄日期:2013年12月16日~2013年12月27日课程设计地点:电子信息科学与技术专业实验室指导教师:陈平 系主任:王浩全 下达任务书日期: 2013 年12月15 日

课程设计任务书 1.设计目的: 1、通过本课程设计的学习,学生将复习所学的专业知识,使课堂学习的理论知识应用于实践,通过本课程设计的实践使学生具有一定的实践操作能力; 2、掌握Matlab使用方法,能熟练运用该软件设计并完成相应的信息处理; 3、通过图像处理实践的课程设计,掌握设计图像处理软件系统的思维方法和基本开发过程。 2.设计内容和要求(包括原始数据、技术参数、条件、设计要求等): (1)编程实现分水岭算法的图像分割; (2)编程实现区域分裂合并法; (3)对比分析两种分割算法的分割效果; (4)要求每位学生进行查阅相关资料,并写出自己的报告。注意每个学生的报告要有所侧重,写出自己所做的内容。 3.设计工作任务及工作量的要求〔包括课程设计计算说明书(论文)、图纸、实物样品等〕: 每个同学独立完成自己的任务,每人写一份设计报告,在课程设计论文中写明自己设计的部分,给出设计结果。

图像分割方法综述

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点,本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract:Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering

analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方

彩色图像分割介绍

第一章绪论 计算机图像处理在医学领域的应用越来越广泛,白细胞图像的自动判断就是其中的代表之一。它能有效地减少主观干扰,提高工作效率,减轻医生负担。近些年来,计算机硬件技术和光谱成像技术的飞速发展,使得成功研制开发出小型实用的基于多光谱的白细胞图像自动分类识别系统成为可能。 本文研究的主要目的在于对白细胞多光谱图像分割进行初步的探索研究,为系统中其后的白细胞能够准确地分类识别奠定基础。 本章简要阐述了基于多光谱的白细胞图像分割的应用背景和研究意义,回顾了国内外细胞图像分割和多光谱遥感图像分类的研究发展状况,并简要介绍了本论文的主要工作。 §1.1 概述 §1.1.1 白细胞检验 白细胞的光学显微镜检查是医院临床检验项目之一,特别是对各种血液病的诊断占有极其重要的地位。它的任务是观察或测定血液中的各种白细胞的总数、相对比值、形态等,用于判断有无疾病、疾病种类以及严重程度等,特别是对类似白血病这类血液病诊断具有更加重要的意义。 白细胞分类计数的传统方法是将血液制成涂片,染色后,临床医生在显微镜下用肉眼按照有关标准,如核的形状、细胞浆的量和颜色,细胞浆颗粒的大小和颜色,整个细胞形状、稀薄与细胞间的接触等,来观察和检查这样的细胞标本[1]。然而这项工作十分繁重,工作效率低,容易误判,且人工识别误差随检查人员而异。同时通过观察的细胞数目较少,从统计的角度看,因样本集较小而影响诊断结果的可靠性。 计算机图像处理与分析技术伴随着信息技术的不断进步在最近20年间得到了飞速的发展,已经迅速渗透到人类生活和社会发展的各个方面,这为智能化细胞分析仪代替人工方法提供了基础。因此,借助于现代计算机技术结合临床医生的实践经验,采用图像处理技术对图像进行处理,从而对细胞进行识别,对于医学科研与实践,以及临床诊断方面有着现实意义和非常广阔的前景。 目前已经制成的自动白细胞分析仪主要有两种类型: 一类是用组织化学染色法,通过连续流动的系统,以光电效应的方式分别数出单一细胞,并可同时报告白细胞总数、各类细胞的百分率和绝对值。因为该法不是由细胞形态学特点识别各类白细胞,所以不能目视观察白细胞形态,亦不能保留样本,对感染中毒细胞无法识别。 另一类是原型认定型,其工作原理模仿人“脑眼系统”[2]的智能识别过程,运用计算机图像处理和模式识别技术,将从显微镜与相机或摄像机得到的数字化图像进行自动处理分析和分类。与前一种类型的白细胞分类仪器相比,其主要优

基于Matlab的彩色图像分割

用Matlab来分割彩色图像的过程如下: 1)获取图像的RGB颜色信息。通过与用户的交互操作来提示用户输入待处理的彩色图像文件路径; 2)RGB彩色空间到lab彩色空间的转换。通过函数makecform()和applycform()来实现; 3)对ab分量进行Kmean聚类。调用函数kmeans()来实现; 4)显示分割后的各个区域。用三副图像分别来显示各个分割目标,背景用黑色表示。Matlab程序源码 %文件读取 clear; clc; file_name = input('请输入图像文件路径:','s'); I_rgb = imread(file_name); %读取文件数据 figure(); imshow(I_rgb); %显示原图 title('原始图像'); %将彩色图像从RGB转化到lab彩色空间 C = makecform('srgb2lab'); %设置转换格式 I_lab = applycform(I_rgb, C); %进行K-mean聚类将图像分割成3个区域 ab = double(I_lab(:,:,2:3)); %取出lab空间的a分量和b分量 nrows = size(ab,1); ncols = size(ab,2); ab = reshape(ab,nrows*ncols,2); nColors = 3; %分割的区域个数为3 [cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); %重复聚类3次 pixel_labels = reshape(cluster_idx,nrows,ncols); figure(); imshow(pixel_labels,[]), title('聚类结果'); %显示分割后的各个区域 segmented_images = cell(1,3); rgb_label = repmat(pixel_labels,[1 1 3]); for k = 1:nColors color = I_rgb; color(rgb_label ~= k) = 0; segmented_images{k} = color;

关于图像分割算法的研究

关于图像分割算法的研究 黄斌 (福州大学物理与信息工程学院 福州 350001) 摘要:图像分割是图像处理中的一个重要问题,也是一个经典难题。因此对于图像分割的研究在过去的四十多年里一直受到人们广泛的重视,也提山了数以千计的不同算法。虽然这些算法大都在不同程度上取得了一定的成功,但是图像分割问题还远远没有解决。本文从图像分割的定义、应用等研究背景入手,深入介绍了目前各种经典的图像分割算法,并在此基础比较了各种算法的优缺点,总结了当前图像分割技术中所面临的挑战,最后展望了其未来值得努力的研究方向。 关键词:图像分割 阀值分割 边缘分割 区域分割 一、 引言 图像分割是图像从处理到分析的转变关键,也是一种基本的计算机视觉技术。通过图像的分割、目标的分离、特征的提取和参数的测量将原始图像转化为更抽象更紧凑的形式,使得更高层的分析和理解成为可能,因此它被称为连接低级视觉和高级视觉的桥梁和纽带。所谓图像分割就是要将图像表示为物理上有意义的连通区域的集合,也就是根据目标与背景的先验知识,对图像中的目标、背景进行标记、定位,然后将目标从背景或其它伪目标中分离出来[1]。 图像分割可以形式化定义如下[2]:令有序集合表示图像区域(像素点集),H 表示为具有相同性质的谓词,图像分割是把I 分割成为n 个区域记为Ri ,i=1,2,…,n ,满足: (1) 1,,,,n i i j i R I R R i j i j ===??≠ (2) (),1,2,,i i i n H R True ?== (3) () ,,,i j i j i j H R R False ?≠= 条件(1)表明分割区域要覆盖整个图像且各区域互不重叠,条件(2)表明每个区域都具有相同性质,条件(3)表明相邻的两个区域性质相异不能合并成一个区域。 自上世纪70年代起,图像分割一直受到人们的高度重视,其应用领域非常广泛,几乎出现在有关图像处理的所有领域,并涉及各种类型的图像。主要表现在: 1)医学影像分析:通过图像分割将医学图像中的不同组织分成不同的区域,以便更好的

图像处理文献综述

文献综述 1.1理论背景 数字图像中的边缘检测是图像分割、目标区域的识别、区域形状提取等图像分析领域的重要基础,图像处理和分析的第一步往往就是边缘检测。 物体的边缘是以图像的局部特征不连续的形式出现的,也就是指图像局部亮度变化最显著的部分,例如灰度值的突变、颜色的突变、纹理结构的突变等,同时物体的边缘也是不同区域的分界处。图像边缘有方向和幅度两个特性,通常沿边缘的走向灰度变化平缓,垂直于边缘走向的像素灰度变化剧烈。根据灰度变化的特点,图像边缘可分为阶跃型、房顶型和凸缘型。 1.2、图像边缘检测技术研究的目的和意义 数字图像边缘检测是伴随着计算机发展起来的一门新兴学科,随着计算机硬件、软件的高度发展,数字图像边缘检测也在生活中的各个领域得到了广泛的应用。边缘检测技术是图像边缘检测和计算机视觉等领域最基本的技术,如何快速、精确的提取图像边缘信息一直是国内外研究的热点,然而边缘检测也是图像处理中的一个难题。 首先要研究图像边缘检测,就要先研究图像去噪和图像锐化。前者是为了得到飞更真实的图像,排除外界的干扰,后者则是为我们的边缘检测提供图像特征更加明显的图片,即加大图像特征。两者虽然在图像边缘检测中都有重要地位,但本次研究主要是针对图像边缘检测的研究,我们最终所要达到的目的是为了处理速度更快,图像特征识别更准确。早期的经典算法有边缘算子法、曲面拟合法、模版匹配法、门限化法等。 早在1959年Julez就曾提及边缘检测技术,Roberts则于1965年开始了最早期的系统研究,从此有关边缘检测的理论方法不断涌现并推陈出新。边缘检测最开始都是使用一些经验性的方法,如利用梯度等微分算子或特征模板对图像进行卷积运算,然而由于这些方法普遍存在一些明显的缺陷,导致其检测结果并不

彩色图像快速分割方法研究【开题报告】

毕业论文开题报告 电子信息工程 彩色图像快速分割方法研究 一、课题研究意义及现状 图像分割是一种重要的图像技术,不论是在理论研究还是实际应用中都得到了人们的广泛重视。图像分割是我们进行图像理解的基础,是图像处理中的难点之一,也是计算机视觉领域的一个重要研究内容。把图像划分为若干个有意义的区域的技术就是图像分割技术,被划分开的这些区域相互不相交,而且每个区域也必须满足特定区域的一致性条件。 彩色图像反映了物体的颜色信息,比灰度图像提供的信息更多,因此,彩色图像的分割得到了越来越多人的关注,彩色图像分割方法的研究具有很大的价值。彩色图像分割一直是彩色图像处理中一个很重要的问题,它可以看作是灰度图像分割技术在各种颜色空间上的应用。 目前,图像分割的主要方法有:基于区域生长的分割方法、基于边缘检测的分割方法、基于统计学理论的分割方法、基于小波变换法、基于模糊集合理论的方法等多种方法。其中,JSEG算法是一种基于区域生长的图像分割方法,它同时考虑了图像的颜色和纹理信息,分割结果较为准确,受到了广泛的关注。但是JSEG算法要在多个尺度下反复进行局部J值计算和区域生长,同时还要进行基于颜色直方图的区域合并,这样,该算法就显得更为繁琐、复杂。针对这些不足之处,有学者提出了一种结合分水岭与JSEG的图像分割新算法。这种新算法在计算得到图像J后,通过引入分水岭算法直接对J图进行空域分割,然后通过形态后处理完成分割。与原JSEG算法比较,新算法能够得到良好的分割效果,有效的降低了JSEG算法的复杂度。 国内外也有很多学者对彩色图像的分割方法进行研究,也提出了许多有价值的彩色图像分割算法及改进的彩色图像分割算法,而多种分割算法的结合使用也改进了单一算法的不足之处,使得彩色图像的分割结果更加理想。但是从目前对彩色图像的研究来看,由于应用领域的不同、图像质量的好与坏以及图像色彩的分布和结果等一些客观因素引起的差异,我们还没有找到一种能够完全适用于所有彩色图像分割的通用的算法。因此,彩色图像的分割方法仍是一个尚未解决的难题,还需要图像处理领域的研究人员进一步的研究探索。 本研究是对基于JSEG的改进彩色图像分割算法的研究,该算法能够有效降低原JSEG算法的复杂度,提高图像分割效率,在图像分割领域有很重要的意义。该算法是在原JSEG算法的基础上,引入了分水岭算法,降低了原算法的计算量,降低了图像分割时间。 二、课题研究的主要内容和预期目标 主要内容:

基于Matlab的彩色图像分割

3 Matlab编程实现 3.1 Matlab编程过程 用Matlab来分割彩色图像的过程如下: 1)获取图像的RGB颜色信息。通过与用户的交互操作来提示用户输入待处理的彩色图像文件路径; 2)RGB彩色空间到lab彩色空间的转换。通过函数makecform()和applycform()来实现; 3)对ab分量进行Kmean聚类。调用函数kmeans()来实现; 4)显示分割后的各个区域。用三副图像分别来显示各个分割目标,背景用黑色表示。3.2 Matlab程序源码 %文件读取 clear; clc; file_name = input('请输入图像文件路径:','s'); I_rgb = imread(file_name); %读取文件数据 figure(); imshow(I_rgb); %显示原图 title('原始图像'); %将彩色图像从RGB转化到lab彩色空间 C = makecform('srgb2lab'); %设置转换格式 I_lab = applycform(I_rgb, C); %进行K-mean聚类将图像分割成3个区域 ab = double(I_lab(:,:,2:3)); %取出lab空间的a分量和b分量 nrows = size(ab,1); ncols = size(ab,2); ab = reshape(ab,nrows*ncols,2); nColors = 3; %分割的区域个数为3 [cluster_idx cluster_center] = kmeans(ab,nColors,'distance','sqEuclidean','Replicates',3); %重复聚类3次 pixel_labels = reshape(cluster_idx,nrows,ncols); figure(); imshow(pixel_labels,[]), title('聚类结果'); %显示分割后的各个区域 segmented_images = cell(1,3); rgb_label = repmat(pixel_labels,[1 1 3]); for k = 1:nColors

图像分割方法综述matlab论文

图像分割方法综述 摘要:图像分割就是根据图像的某些特征或特征集合的相似性准则对图像进行分类,把图像空间分成若干个某些具有一致性属性的不重叠区域。它是图像分析和理解的基础,是计算机视觉领域中最困难的问题之一。图像分割的质量将直接影响着对图像的后续处理,所以图像分割被视为图像处理的瓶颈,具有十分重要的意义。人们很早就开始了对图像分割方法的研究,并且几十年来,这方面的研究从来没有间断过。到目前为止,已经有大量的关于图像分割的理论、技术、方法被人们相继提出并广泛应用。 关键字:图像分割;阈值;区域和边缘;交互式算法;纹理分割彩色图像分割 1.引言 图像分割是一项基于计算机技术的重要的图像分析和处理技术,从其产生至今,已经广泛的应用于各个领域,为人们的生产和生活中图像处理的水平提高做出了重大贡献。 2.国内外发展的状况 人工生命是一个快速发展的多学科交叉的研究领域,是计算机科学新的发展方向之一。目前,已经有科研人员尝试将人工生命应用到图像分割领域中。虽然目前使用人工生命进行图像分割的研究还比较少,但是这些相关研究成果表明将人工生命引入到图像分割中能获得有意义的成功,显示出了巨大的潜力。 在医学数据可视化方面,也有了许多硕果。如:医学图像如CT图像和MRI图像的三维重建、显示与分析处理;大脑生理形态分析,神经细胞中钙活性的可视化;计算机辅助外科手术模拟与计划等。其中值得一提的:如美国国家超级计算机应用中心利用远程的并列计算机资源,用体绘制技术实现了CT扫描三维数据的动态显示。其内容为显示一个狗心脏跳动周期的动态图像。 3.图像分割概述 人类感知外部世界的两大途径是听觉和视觉,尤其是视觉,因此图像信息是非常重要的一类信息。在一幅图像中,人们往往只对其中的某些目标感兴趣,这些目标通常占据一定的区域,并且在某些特性(如灰度、轮廓、颜色、纹理等)上和周围的图像有差别。这些特性差别可能非常明显,也可能很细微,以致人眼觉察不出来。计算机图像处理技术的发展,使得人们可以通过计算机来获取与处理图像信息。现在,图像处理技术已经成功应用于许多领域,其中,纸币识别、车牌识别、文字识别、指纹识别等已为大家所熟悉。 图像分割是指将一幅图像分解为若干互不交叠的、有意义的、具有相同性质的区域。好的图像分割应具有以下特征:(1)分割出来的各区域对某种性质(例如灰度、纹理)而言具有相似性,区域内部是连通的且没有过多小孔。(2)相邻区域对分割所依据的性质有明显的差异。(3)区域边界是明确的。 大多数图像分割方法只是部分满足上述特征。如果强调分割区域的同性质约束,则

彩色图像分割的国内外研究现状

1.阈值分割方法 阈值分割方法的历史可追溯到近40年前,现已提出了大量算法,对灰度图像的取阈值分割就是先确定一个处于图像灰度取值范闱之中的灰度阈值,然后将图像中各个象素的灰度值都与这个阈值相比较,并根据比较结果将对应的像素分为两类。这两类像素一般分属图像的两类区域,从而达到分割的目的。从该方法中可以看出,确定一个最优阈值是分割的关键。现有的大部分算法都是集中在阈值确定的研究上。阈值分割方法根据图像木身的特点,可分为单阈值分割方法和多阈值分割方法;也可分为基于像素值的阈值分割方法、基于区域性质的阈值分割方法和基于坐标位罝的阈值分割方法。若根据分割算法所有的特征或准则,还可以分为直方图与直方图变换法、最大类空间方差法、最小误差法与均匀化误差法、共生矩阵法、最大熵法、简单统计法与局部特性法、概率松弛法、模糊集法、特征空间聚类法、基于过渡区的阈值选取法等。 目前提出了许多新方法,如严学强等人提出了基于量化直方图的最大熵阈值处理算法,将直方图量化后采用最大熵阈值处理算法,使计算量大大减小。薛贵浩、帝毓晋等人提出基于最大类间后验交叉熵的阈值化分割算法,从目标和背景的类间差异性出发,利用贝叶斯公式估计像素属于目标和背景两类区域的后验概率,再搜索这两类区域后验概率之间的最大交叉熵。这种方法结合了基于最小交叉熵以及基于传统香农熵的阈值化算法的特点和分割性能,取得很好的通用性和有效性,该算法也容易实现二维推广,即采用二维统计量(如散射图或共生矩阵)取代直方图,以提高分割的准确性。俞勇等人提出的基于最小能量的图像分割方法,运用了能量直方图来选取分割阈值。任明武等人提出的一种基于边缘模式的直方图构造新方法,使分割阈值受噪声和边缘的影响减少到最小。程杰提出的一种基于直方图的分割方法,该方法对Ostu准则的内在缺陷进行了改进,并运用对直方图的预处理及轮廓追踪,找出了最佳分割阈值。此方法对红外图像有很强的针对性。付忠良提出的基于图像差距度量的阈值选取方法,多次导出Ostu方法,得到了几种与Ostu类似的简单计算公式,使该方法特别适合需自动产生阈值的实时图像分析系统。华长发等人提出了一种基于二维熵阈值的图像分割快速算法,使传统二维阈值方法的复杂度从0(W2 S2)降至0(W2/3 S2/3)。赵雪松等人提出的综合全局二值化与边缘检测的图像方法,将全局二值化与边缘检测有效的结合起来,从而达到对信封图分割的理想效果。靳宏磊等人提出的二维灰度直方图的最佳分割方法,找到了一条最佳分割曲线,使该算法得到的分割效果明显优于一维直方图阈值方法。乐宁等人根据过渡区内象素点具有的邻域方向性特点,引入了基于一元线性回归处理的局部区域随机波动消除方法,将图像过渡区算法进行了改进。模糊技术及其日趋成熟的应用也正适应了大部分图像边缘模糊而难以分析的现状,赵初和王纯提出的模糊边缘检测方法能有效地将物体从背景中分离出来,并已在模式识别中的图像预处理和医学图像处理中获得了良好的应用。金立左、夏良正等提出图像分割的自适应模糊阈值法,利用目标一背景对比度自动选取窗宽的方法,并给出了根据目标与摄像机间的相对距离估计目标--背景对比度的算法,克服隶属函数的分布特性及其窗宽对阈值选取的不良影响。其应用于智能电视跟踪系统,对不同对比度和不同距离的海面舰船图像进行阈值分割,有较强的场景适应能力。王培珍、杜培明等人提出了一种用于多阈值图像自动分割的混合遗传算法,针对Papamarkes等提出爬山法的多阈值分割和Olivo提出子波变换的方法只对明显峰值有效而对不明显的峰值无效的缺点,以及结合模糊C-均值算法和遗传算法的两大显著特点而改进的算法,这种分割方法能够快速正

图像分割阈值选取技术综述

图像分割阈值选取技术综述 中科院成都计算所刘平2004-2-26 摘要 图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域.本文是在阅读大量国内外相关文献地基础上,对阈值分割技术稍做总结,分三个大类综述阈值选取方法,然后对阈值化算法地评估做简要介绍. 关键词 图像分割阈值选取全局阈值局部阈值直方图二值化 1.引言 所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交地区域,使得这些特征在同一区域内,表现出一致性或相似性,而在不同区域间表现出明显地不同[37].简单地讲,就是在一幅图像中,把目标从背景中分离出来,以便于进一步处理.图像分割是图像处理与计算机视觉领域低层次视觉中最为基础和重要地领域之一,它是对图像进行视觉分析和模式识别地基本前提.同时它也是一个经典难题,到目前为止既不存在一种通用地图像分割方法,也不存在一种判断是否分割成功地客观标准. 阈值法是一种传统地图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛地分割技术.已被应用于很多地领域,例如,在红外技术应用中,红外无损检测中红外热图像地分割,红外成像跟踪系统中目标地分割;在遥感应用中,合成孔径雷达图像中目标地分割等;在医学应用中,血液细胞图像地分割,磁共振图像地分割;在农业项目应用中,水果品质无损检测过程中水果图像与背景地分割.在工业生产中,机器视觉运用于产品质量检测等等.在这些应用中,分割是对图像进一步分析、识别地前提,分割地准确性将直接影响后续任务地有效性,其中阈值地选取是图像阈值分割方法中地关键技术. 2.阈值分割地基本概念 图像阈值化分割是一种最常用,同时也是最简单地图像分割方法,它特别适用于目标和背景占据不同灰度级范围地图像[1].它不仅可以极大地压缩数据量,而且也大大简化了分析和处理步骤,因此在很多情况下,是进行图像分析、特征提取与模式识别之前地必要地图像预处理过程.图像阈值化地目地是要按照灰度级,对像素集合进行一个划分,得到地每个子集形成一个与现实景物相对应地区域,各个区域内部具有一致地属性,而相邻区域布局有这种一致属性.这样地划分可以通过从灰度级出发选取一个或多个阈值来实现. 阈值分割法是一种基于区域地图像分割技术,其基本原理是:通过设定不同地特征阈值,把图像像素点分为若干类.常用地特征包括:直接来自原始图像地灰度或彩色特征;由原始灰度或彩色值变换得到地特征.设原始图像为f(x,y>,按照一定地准则在f(x,y>中找到特征值T,将图像分割为两个部分,分割后地图像为 若取:b0=0<黑),b1=1<白),即为我们通常所说地图像二值化. <原始图像)<阈值分割后地二值化图像) 一般意义下,阈值运算可以看作是对图像中某点地灰度、该点地某种局部特性以及该点在图像中地位置地一种函数,这种阈值函数可记作 T(x,y,N(x,y>,f(x,y>> 式中,f(x,y>是点(x,y>地灰度值;N(x,y>是点(x,y>地局部邻域特性.根据对T地不同约束,可以得到3种不同类型地阈值[37],即 点相关地全局阈值T=T(f(x,y>> (只与点地灰度值有关> 区域相关地全局阈值T=T(N(x,y>,f(x,y>> (与点地灰度值和该点地局部邻域特征有关> 局部阈值或动态阈值T=T(x,y,N(x,y>,f(x,y>> (与点地位置、该点地灰度值和该点邻域特征有关> 图像阈值化这个看似简单地问题,在过去地四十年里受到国内外学者地广泛关注,产生了数以百计地阈值选取方法[2-9],但是遗憾地是,如同其他图像分割算法一样,没有一个现有方法对各种各样地图像都能得到令人满意地结果,甚至也没有一个理论指导我们选择特定方法处理特定图像. 所有这些阈值化方法,根据使用地是图像地局部信息还是整体信息,可以分为上下文无关(non-

彩色图像分割-RGB模型

成绩评定表学生姓名班级学号 专业电子信息工 程课程设计题目彩色图像分割程序设 计——RGB模型 评 语 组长签字: 成绩 日期201年月日

课程设计任务书 学院信息科学与工程专业电子信息工程 学生姓名班级学号 课程设计题目彩色图像分割程序设计——RGB模型 实践教学要求与任务: 本次课程设计中,主要任务是实现基于RGB模型的彩色图像分割的程序设计,对给定的彩色图像的颜色,使用RGB颜色模型,来对其进处理。 并且设计MATLAB程序,使其能完成输入图像便自动使用RGB 模型来进行图像分割。 工作计划与进度安排: 第一阶段(1-2天):熟悉matlab编程环境,查阅相关资料; 第二阶段(2-3天):算法设计; 第三阶段(2-3天):编码与调试; 第四阶段(1-2天):实验与分析; 第五阶段(1-2天):编写文档。 指导教师: 201年月日专业负责人: 201年月日 学院教学副院长: 201年月日

Matlab是当今最优秀的科技应用软件之一,它一强大的科学计算与可视化功能,简单易用,开放式可扩展环境,特别是所附带的30多种面向不同领域工具箱支持,使得它在许多科学领域中成为计算机辅助设计与分析,算法研究和应用开发的基本工具盒首选平台在图像处理中,Matlab也得到了广泛的应用,例如图像变换,设计FIR滤波器,图像增强,四叉树分解,边缘检测,小波分析等等。不同的颜色空间在描述图像的颜色时侧重点不同。如RGB(红、绿、蓝三原色)颜色空间适用于彩色监视器和彩色摄象机,HSI(色调、饱和度、亮度)更符合人描述和解释颜色的方式(或称为HSV,色调、饱和度、亮度),CMY(青、深红、黄)、CMYK(青、深红、黄、黑)主要针对彩色打印机、复印机等,YIQ (亮度、色差、色差)是用于NTSC规定的电视系统格式,YUV(亮度、色差、色差)是用于PAL规定的电视系统格式,YCbCr(亮度单一要素、蓝色与参考值的差值、红色与参考值的差值)在数字影像中广泛应用。 彩色图像的处理有时需要将图像数据在不同的颜色空间中表示,因此,图像的颜色空间之间的转换成为一项有意义的工作。其中RGB在颜色空间转换中其关键作用,是各个空间转换的桥梁。Matlab中的颜色空间转换只涉及到了RGB、HSV、YCbCr、YIQ等,没有包含lαβ和其它颜色空间的转换。 关键字:Matlab;图像处理;RGB

图像分割常用算法优缺点探析

图像分割常用算法优缺点探析 摘要图像分割是数字图像处理中的重要前期过程,是一项重要的图像分割技术,是图像处理中最基本的技术之一。本文着重介绍了图像分割的常用方法及每种方法中的常用算法,并比较了各自的优缺点,提出了一些改进建议,以期为人们在相关图像数据条件下,根据不同的应用范围选择分割算法时提供依据。 关键词图像分割算法综述 一、引言 图像分割决定了图像分析的最终成败。有效合理的图像分割能够为基于内容的图像检索、对象分析等抽象出十分有用的信息,从而使得更高层的图像理解成为可能。目前图像分割仍然是一个没有得到很好解决的问题,如何提高图像分割的质量得到国内外学者的广泛关注,仍是一个研究热点。 多年来人们对图像分割提出了不同的解释和表达,通俗易懂的定义则表述为:图像分割指的是把一幅图像分割成不同的区域,这些区域在某些图像特征,如边缘、纹理、颜色、亮度等方面是一致的或相似的。 二、几种常用的图像分割算法及其优缺点 (一)大津阈值分割法。 由Otsu于1978年提出大津阈值分割法又称为最大类间方差法。它是一种自动的非参数非监督的门限选取法。该方法的基本思路是选取的t的最佳阈值应当是使得不同类间的分离性最好。它的计算方法是首先计算基于直方图而得到的各分割特征值的发生概率,并以阈值变量t将分割特征值分为两类,然后求出每一类的类内方差及类间方差,选取使得类间方差最大,类内方差最小的t作为最佳阈值。 由于该方法计算简单,在一定条件下不受图像对比度与亮度变化的影响,被认为是阈值自动选取的最优方法。该方法的缺点在于,要求得最佳阈值,需要遍历灰度范围0—(L-1)内的所有像素并计算出方差,当计算量大时效率会很低。同时,在实际图像中,由于图像本身灰度分布以及噪声干扰等因素的影响,仅利用灰度直方

彩色图像分割技术研究本科毕业论文

彩色图像分割技术研究本科毕业论文 目录 1. 引言 (1) 1.1.课题的研究背景和意义 (1) 1.2.彩色图像分割的现状 (2) 1.3.本文的容安排 (5) 2.彩色图像分割研究 (6) 2.1.数字图像处理概述 (6) 2.2.常用的颜色空间 (7) 2.3.彩色图像分割方法 (9) 2.3.1.阈值化方法 (10) 2.3.2.基于边缘的分割方法 (10) 2.3.3.基于区域的分割方法 (12) 3.无监督彩色图像分割 (13) 3.1.概述 (13) 3.2.颜色空间的转换 (14) 3.3.Sobel算子边缘提取 (15) 3.4.种子的选取 (16) 3.5.区域生长与合并 (17) 4.实验结果与分析 (18)

5.结论 (20) 参考文献 (21) 谢辞 (23)

1. 引言 1.1.课题的研究背景和意义 在人类所接收的信息中,有80%是来自视觉的图形信息,对获得的这些信息进行一定的加工处理也是目前一种广泛的需求,图像分割就是将图像中感兴趣的部分分割出来的技术。在图像分割的基础上,才能对目标进行特征提取和参数测量,使得更高层的图像分析和理解成为可能。因此,对图像分割的研究在图像处理领域具有非常重要的意义。 图像分割作为图像分析的基础,是图像分析过程中的关键步骤。图像分割,顾名思义是将图像按照一定的方法划分成不同的区域,使得同一区域像素之间具有一致性,不同区域间不具有这种一致性。 因为人眼对亮度具有适应性,即在一幅复杂图像的任何一点上只能识别几十种灰度级,但可以识别成千上万种颜色,所以许多情况下,单纯利用灰度信息无法从背景中提取出目标,还必须借助于色彩信息。由于彩色图像提供了比灰度图像更加丰富多彩的信息,因此随着计算机处理能力的提高,彩色图像处理正受到人们越来越多的关注。 自数字图像处理问世不久就开始了图像分割的研究,吸引了很多研究者为之付出了巨大的努力,在不同的领域也取得了很大的进展和成就,现在人们还一直在努力发展新的、更有潜力的算法,希望实现更通用、更完美的分割结果。目前,针对各种具体问题已经提出了许多不同的图像分割算法,对图像分割的效果也有很好的分析结论。但是,由于图像分割问题所面向领域的特殊性,而且问题本身具有一定的难度和复杂性,到目前为止还不存在一个通用的分割方法,也不存在一个判断分割是否成功

图像分割方法综述

图像分割方法综述 摘要:图像分割是计算计视觉研究中的经典难题,已成为图像理解领域关注的一个热点, 本文对近年来图像分割方法的研究现状与新进展进行了系统的阐述。同时也对图像分割未来的发展趋势进行了展望。 关键词:图像分割;区域生长;活动边缘;聚类分析;遗传算法 Abstract: Image segmentation is a classic problem in computer vision,and become a hot topic in the field of image understanding. the research actuality and new progress about image segmentation in recent years are stated in this paper. And discussed the development trend about the image segmentation. Key words: image segmentation; regional growing; active contour; clustering analysis genetic algorithm 1 引言 图像分割是图像分析的第一步,是计算机视觉的基础,是图像理解的重要组成部分,同时也是图像处理中最困难的问题之一。所谓图像分割是指根据灰度、彩色、空间纹理、几何形状等特征把图像划分成若干个互不相交的区域,使得这些特征在同一区域内表现出一致性或相似性,而在不同区域间表现出明显的不同。简单的说就是在一副图像中,把目标从背景中分离出来。对于灰度图像来说,区域内部的像素一般具有灰度相似性,而在区域的边界上一般具有灰度不连续性。 关于图像分割技术,由于问题本身的重要性和困难性,从20世纪70年代起图像分割问题就吸引了很多研究人员为之付出了巨大的努力。虽然到目前为止,还不存在一个通用的完美的图像分割的方法,但是对于图像分割的一般性规律则基本上已经达成的共识,已经产生了相当多的研究成果和方法。本文根据图像发展的历程,从传统的图像分割方法、结合特定工具的图像分割方法、基于人工智能的图像分割方法三个由低到高的阶段对图像分割进行全面的论述。 2 传统的图像分割方法 2.1 基于阀值的图像分割方法 阀值分割法是一种传统的图像分割方法,因其实现简单、计算量小、性能较稳定而成为图像分割中最基本和应用最广泛的分割技术。阀值分割法的基本原理是通过设定不同的特征阀值,把图像像素点分为具有不同灰度级的目标区域和背景区域的若干类。它特别适用于目标和背景占据不同灰度级范围的图,目前在图像处理领域被广泛应用,其中阀值的选取是图像阀值分割中的关键技术。 灰度阀值分割方法是一种最常用的并行区域技术,是图像分割中应用数量最多的一类。图像若只用目标和背景两大类,那么只需要选取一个阀值,此分割方法称为单阀值分割。单阀值分割实际上是输入图像f到输出图像g的如下变换:

彩色图像分割算法:Color Image Segmentation Based on Mean Shift and Normalized Cuts

Color Image Segmentation Based on Mean Shift and Normalized Cuts Wenbing Tao,Hai Jin,Senior Member,IEEE,and Yimin Zhang,Senior Member,IEEE Abstract—In this correspondence,we develop a novel approach that provides effective and robust segmentation of color images.By incor-porating the advantages of the mean shift(MS)segmentation and the normalized cut(Ncut)partitioning methods,the proposed method requires low computational complexity and is therefore very feasible for real-time image segmentation processing.It preprocesses an image by using the MS algorithm to form segmented regions that preserve the desirable discontinuity characteristics of the image.The segmented regions are then represented by using the graph structures,and the Ncut method is applied to perform globally optimized clustering.Because the number of the segmented regions is much smaller than that of the image pixels, the proposed method allows a low-dimensional image clustering with signi?cant reduction of the complexity compared to conventional graph-partitioning methods that are directly applied to the image pixels.In addition,the image clustering using the segmented regions,instead of the image pixels,also reduces the sensitivity to noise and results in enhanced image segmentation performance.Furthermore,to avoid some inappro-priate partitioning when considering every region as only one graph node, we develop an improved segmentation strategy using multiple child nodes for each region.The superiority of the proposed method is examined and demonstrated through a large number of experiments using color natural scene images. Index Terms—Color image segmentation,graph partitioning,mean shift (MS),normalized cut(Ncut). I.I NTRODUCTION Image segmentation is a process of dividing an image into different regions such that each region is nearly homogeneous,whereas the union of any two regions is not.It serves as a key in image analysis and pattern recognition and is a fundamental step toward low-level vision, which is signi?cant for object recognition and tracking,image re-trieval,face detection,and other computer-vision-related applications [1].Color images carry much more information than gray-level ones [24].In many pattern recognition and computer vision applications,the color information can be used to enhance the image analysis process and improve segmentation results compared to gray-scale-based ap-proaches.As a result,great efforts have been made in recent years to investigate segmentation of color images due to demanding needs. Existing image segmentation algorithms can be generally classi?ed into three major categories,i.e.,feature-space-based clustering,spa-tial segmentation,and graph-based approaches.Feature-space-based clustering approaches[12],[13]capture the global characteristics of the image through the selection and calculation of the image features, which are usually based on the color or texture.By using a speci?c distance measure that ignores the spatial information,the feature Manuscript received August3,2006;revised December10,2006.This work was supported by the National Natural Science Foundation of China under Grant60603024.This paper was recommended by Associate Editor I.Bloch. W.Tao and H.Jin are with the Cluster and Grid Computing Laboratory, School of Computer Science and Technology,Huazhong University of Science and Technology,Wuhan430074,China,and also with the Service Computing Technology and System Laboratory,School of Computer Science and Technol-ogy,Huazhong University of Science and Technology,Wuhan430074,China (e-mail:wenbingtao@https://www.360docs.net/doc/8013328451.html,;hjin@https://www.360docs.net/doc/8013328451.html,). Y.Zhang is with the Center for Advanced Communications,Villanova University,Villanova,PA19085USA(e-mail:yimin.zhang@https://www.360docs.net/doc/8013328451.html,). Color versions of one or more of the?gures in this paper are available online at https://www.360docs.net/doc/8013328451.html,. Digital Object Identi?er10.1109/TSMCB.2007.902249samples are handled as vectors,and the objective is to group them into compact,but well-separated clusters[7]. Although the data clustering approaches are ef?cient in?nding salient image features,they have some serious drawbacks as well.The spatial structure and the detailed edge information of an image are not preserved,and pixels from disconnected regions of the image may be grouped together if their feature spaces overlap.Given the importance of edge information,as well as the need to preserve the spatial relation-ship between the pixels on the image plane,there is a recent tendency to handle images in the spatial domain[11],[28].The spatial segmen-tation method is also referred to as region-based when it is based on region entities.The watershed algorithm[19]is an extensively used technique for this purpose.However,it may undesirably produce a very large number of small but quasi-homogenous regions.Therefore,some merging algorithm should be applied to these regions[20],[28]. Graph-based approaches can be regarded as image perceptual grouping and organization methods based on the fusion of the feature and spatial information.In such approaches,visual group is based on several key factors such as similarity,proximity,and continuation[3], [5],[21],[25].The common theme underlying these approaches is the formation of a weighted graph,where each vertex corresponds to n image pixel or a region,and the weight of each edge connecting two pixels or two regions represents the likelihood that they belong to the same segment.The weights are usually related to the color and texture features,as well as the spatial characteristic of the corresponding pixels or regions.A graph is partitioned into multiple components that minimize some cost function of the vertices in the components and/or the boundaries between those components.So far,several graph cut-based methods have been developed for image segmentations[8], [14],[22],[23],[27],[30],[31].For example,Shi and Malik[23] proposed a general image segmentation approach based on normalized cut(Ncut)by solving an eigensystem,and Wang and Siskind[8] developed an image-partitioning approach by using a complicated graph reduction.Besides graph-based approaches,there are also some other types of image segmentation approaches that mix the feature and spatial information[4],[29]. This correspondence concerns a Ncut method in a large scale. It has been empirically shown that the Ncut method can robustly generate balanced clusters and is superior to other spectral graph-partitioning methods,such as average cut and average association[23]. The Ncut method has been applied in video summarization,scene detection[17],and cluster-based image retrieval[18].However,image segmentation approaches based on Ncut,in general,require high computation complexity and,therefore,are not suitable for real-time processing[23].An ef?cient solution to this problem is to apply the graph representation strategy on the regions that are derived by some region segmentation method.For example,Makrogiannis et al.[20] developed an image segmentation method that incorporates region-based segmentation and graph-partitioning approaches.This method ?rst produces a set of oversegmented regions from an image by using the watershed algorithm,and a graph structure is then applied to represent the relationship between these regions. Not surprisingly,the overall segmentation performance of the region-based graph-partitioning approaches is sensitive to the region segmentation results and the graph grouping strategy.The inherent oversegmentation effect of the watershed algorithm used in[20]and [28]produces a large number of small but quasi-homogenous regions, which may lead to a loss in the salient features of the overall image and,therefore,yield performance degradation in the consequent region grouping. To overcome these problems,we propose in this correspondence a novel approach that provides effective and robust image segmentation 1083-4419/$25.00?2007IEEE

相关文档
最新文档