基于单片机的自动对焦系统的硬件设计中期报告 B09010137王静 导师:吴慎将

基于单片机的自动对焦系统的硬件设计中期报告  B09010137王静 导师:吴慎将
基于单片机的自动对焦系统的硬件设计中期报告  B09010137王静 导师:吴慎将

西安工业大学北方信息工程学院毕业设计(论文)中期报告

题目:基于单片机自动对焦系统的

硬件设计

系别光电信息系

专业测控技术与仪器

班级 B090101

姓名王静

学号 37

导师吴慎将

2013 年 3 月15 日

图1 方案框图

具体工作原理:将光敏电阻放置在工作台上的工件表面上,激光打标机发射的准直激光与辅助光源发射出的红光相交于一点(该点为焦点),用步进电机调节距离,寻找该点。方法是:用光敏电阻遇强光之后输出电阻值,两端外加电压后,用电压比较器比较出高电平,输入到51单片机进行处理,信号反馈到步进电机模块,经驱动电路进行信号放大后,传输给步进电机,并由步进电机调整距离至焦点处。注:如果

图1 LM339电压比较器

注:1)正文:宋体小四号字,行距20磅,单面打印;其他格式要求与毕业论文相同。

2)中期报告由各系集中归档保存,不装订入册。

最新单片机硬件系统设计原则

单片机硬件系统设计 原则

●单片机硬件系统设计原则 ●一个单片机应用系统的硬件电路设计包含两部分内容:一是系统扩展,即单片机内部的功能单 元,如ROM、RAM、I/O、定时器/计数器、中断系统等不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统的配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、A/D、D/A转换器等,要设计合适的接口电路。 ●系统的扩展和配置应遵循以下原则: ● 1、尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准化、模块化打下良好的基 础。 ● 2、系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行 二次开发。 ● 3、硬件结构应结合应用软件方案一并考虑。硬件结构与软件方案会产生相互影响,考虑的原则 是:软件能实现的功能尽可能由软件实现,以简化硬件结构。但必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。 ● 4、系统中的相关器件要尽可能做到性能匹配。如选用CMOS芯片单片机构成低功耗系统时,系统 中所有芯片都应尽可能选择低功耗产品。 ● 5、可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷 电路板布线、通道隔离等。 ● 6、单片机外围电路较多时,必须考虑其驱动能力。驱动能力不足时,系统工作不可靠,可通过增 设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。 ● 7、尽量朝“单片”方向设计硬件系统。系统器件越多,器件之间相互干扰也越强,功耗也增大, 也不可避免地降低了系统的稳定性。随着单片机片内集成的功能越来越强,真正的片上系统SoC已经可以实现,如ST公司新近推出的μPSD32××系列产品在一块芯片上集成了80C32核、大容量FLASH 存储器、SRAM、A/D、I/O、两个串口、看门狗、上电复位电路等等。 ●单片机系统硬件抗干扰常用方法实践 ●影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结 构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 ●形成干扰的基本要素有三个: ●(1)干扰源。指产生干扰的元件、设备或信号,用数学语言描述如下:du/dt, di/dt大的地 方就是干扰源。如:雷电、继电器、可控硅、电机、高频时钟等都可能成为干扰源。 ●(2)传播路径。指干扰从干扰源传播到敏感器件的通路或媒介。典型的干扰传播路径是通过导线 的传导和空间的辐射。 ●(3)敏感器件。指容易被干扰的对象。如:A/D、 D/A变换器,单片机,数字IC,弱信号放大器 等。 ● 1 干扰的分类 ● 1.1 干扰的分类 ●干扰的分类有好多种,通常可以按照噪声产生的原因、传导方式、波形特性等等进行不同的分 类。按产生的原因分: ●可分为放电噪声音、高频振荡噪声、浪涌噪声。 ●按传导方式分:可分为共模噪声和串模噪声。 ●按波形分:可分为持续正弦波、脉冲电压、脉冲序列等等。 ● 1.2 干扰的耦合方式

单反相机自动对焦系统简史

进入数码时代之后,所有的数码单反相机都有自动对焦功能。用久了习以为常就会觉得这是一项必备功能,于是对自动对焦怎么来的课题就不再深究。事实上,今天的数码单反相机自动对焦系统年纪并不大,从第一台成功打开自动对焦单反市场的美能达Maxxum 7000起(1985年)也不过25年。这25年中自动对焦技术年年进步。目前的数码单反即使是入门级机身,也有多个对焦点及支持拍摄移动物体的各种功能。这在十多年前是高级机身的专利,二十多年前多半是幻想,和最早的Maxxum 7000相比更快速且准确。所以,这是一篇多少有些怀古的文章,大略介绍从最早自动对焦单反相机到独树一帜的康泰时AX(1996年)之间的演变,剩下来的就是大家耳熟能详的发展了。 早期自动对焦原型机和量产机 自动对焦的研究起源甚早,譬如尼康在1971年的Photo Expo(美国芝加哥市)展出了装在F2机身上的自动对焦镜头AF Nikkor 85mm f/4.2(见下图),徕卡也在1976年Photokina 上展出了带自动对焦系统的Correfot原型机、又在1978年Photokina上展出了功能齐全的相机,不过这些机型都没有正式量产上市。 第一台正式量产上市的自动对焦相机是柯尼卡C35 AF(1977年,下左图),这是使用霍尼韦尔的Visitronic自动对焦系统的简单(俗称傻瓜)相机。第一台有自动对焦功能的单反相机是宝丽莱在1978年推出的SX-70 Sonar OneStep(下右图)。它使用装在机顶的声纳(sonar)透过超音波测量对焦距离进行自动对焦。 第一批自动对焦单反镜头

第一波有自动对焦能力的单反镜头在1981年前后出现,它们是佳能FD 35-70mm f/4 AF和启能AF 50mm f/1.7(后来又加上了AF 35-70mm f/3.3-4.5);下左照片是佳能AL-1机身配FD 35-70mm f/4 AF,下右是启能CE-4s机身加上AF 50mm f/1.7。 佳能和启能这两个自动对焦镜头前方都有两个小窗。启能镜头使用红外线,一个小窗后面有旋转的红外线发射器,另一个小窗内有接收器(见下图)。自动对焦时,会旋转的红外线发射器不断发出红外线、对焦马达驱动镜头移动,当接收器收到从被摄体反射回来最强的讯号时就停止对焦马达,从发射的角度和两个小窗之间的距离可以算出对焦距离。 佳能的系统比较复杂,不用红外线也没有移动的部份。镜头上两个小窗后面各有一片反光镜,两片反光镜之间是一个反光棱镜,它后面是一个CCD数组(见下图)。被摄体经过两个棱镜反射到反光棱镜、再投射到CCD上产生两个像,如果这两个像相同就表示对焦正确。在对焦时,镜头内的对焦马达驱动镜头,比较投射在CCD上的两个像,直到对焦完成为止,从两个像之间的距离就可以算出对焦距离。 佳能和启能这两个镜头与机身完全没有通信,用户把相机取景器中央的对焦点对准被摄体,再按住镜头上的对焦键进行对焦,成功后会发出提示音或亮灯(取景器中可见),然后按下快门拍摄。因为镜头和机身没有通信,佳能的镜头可以在使用FD接环的机身上自动对焦;同理,启能的镜头可以在使用宾得K接环的机身上对焦。另外,对焦马达都在镜头内,需要安装电池,所以镜头都很大且重,对焦速度相当慢、失误率颇高。更重要的是,两者都不是用镜头拍到的影像对焦,所以常会对错对象,而且近距离时有平行视差。启能镜头由于使用红外线,很容易受被摄体和相机之间的物体(譬如玻璃)干扰导致对焦失误,然而它却可以在全黑的环境中对焦。

AVR单片机软硬件设计入门教程

A VR的性价比远高于51: 高速、RISC:主频最高达20MHz 低功耗,宽电压:1.8V~5.5V,最低全速运行功耗<300uA IO口驱动能力强:推拉电流能力均达30mA,可以直接驱动蜂鸣器、继电器等 片内资源丰富:外部中断、定时/计数器、UART、SPI、IIC、ADC、模拟比较器 型号齐全,而且40脚以下的A VR均具有DIP的封装形式 软件开发环境 编辑与编译软件:WinA VR 仿真调试软件:A VR Studio 下载软件:MuCodeISP 硬件开发环境 仿真调试工具:JtagICE 下载线工具:STK200/300 学习板一块:LT-Mini-M16 技术手册 A VR官方中文版技术手册 《AVR 单片机与GCC 编程》 https://www.360docs.net/doc/8014347111.html, A VR的时钟源(晶振、内部RC等)不经过分频直接提供给CPU使用,而51的CPU主频等于晶振的12分频 A VR既具有简单的、可以自制的ISP下载线和Jtag仿真器,又有DIP直插的封装形式 A VR的C语言编程与C语言教科书上学习的标准C语言语法是几乎一样的,不像51的C 语言,一些bit、srf之类的变量定义在教科书中是找不到的,有利于后续嵌入式系统的学习 构建最小系统 电源: 数字电源VCC:任何场合必选 模拟电源A VCC:使用片上ADC或模拟比较器时必选 晶振:对时钟要求严格的场合,如使用USART时必选 复位按键:需要手动复位时必选 ISP下载线接口:需要进行ISP下载时必选 Jtag仿真器接口:需要进行Jtag仿真调试时必选 PCB技术与Protel简介 PCB是印刷电路板(Printed Circuit Board )的缩写,顾名思义,就是把导线印刷在板子上。覆铜板 印刷感光胶 曝光 钻孔 化学腐蚀 金属化过孔 喷绝缘漆 印刷丝印层 切割Protel软件是最流行的PCB设计软件,可以在电脑上完成PCB的设计,然后送到PCB加工厂出板。 常用版本:Protel99SE,Protel DXP 2004,Altium Designer 6(AD6) AD6是最新版本,风格与Protel DXP 2004区别不大 Protel设计PCB步骤如下: 1.绘制元件的PCB封装库(.pcblib) 2.绘制元件的原理图库(.schlib)

相位检测对焦

详细讲解(反差式自动对焦与相位检测对焦)原理 本帖最后由民心于 2011-1-1 12:16 编辑 此帖更加详细的讲解两种自动对焦原理,普及技术贴。 近日富士推出一款F305EXR采用了独特的相位检测自动对焦系统。与单反相机不同,该机将CCD中内置相位侦测像素。这种传感器上的成对相位检测传感器的工作方式 与DSLR的传感器相似。 富士对焦专用像素 对比检测自动对焦在检测到最大对比度之前不断调整,因而速度较慢,相位检测自动对焦与其不同,它将入射光线分成成对的图像,执行一次相位差计算以确定对焦调整的精确方向和调整量,富士测试自动对焦检测速度最高达约0.158秒。 从富士的介绍上我们对两种自动对焦的特点有了初步了解,那么我们看看他们 的区别:

对比检测自动对焦(反差式对焦) 对比检测自动对焦系统的原理是根据焦点处画面的对比度变化,寻找对比度最大时的镜头位置,也就是准确对焦的位置。 对比自动对焦原理(图片源自新摄影)

对焦过程:随着对焦镜片开始移动,画面逐渐清晰,对比度开始上升;当画面最清晰,对比度最高时,其实已经处于合焦状态,但相机并不知道,所以会继续移动镜头,当发现对比度开始下降。进一步移动镜片,发现对比度进一步下降,相机知道已经错过焦点;镜片回退至对比度最高的位置,完成对焦。 这个过程的重复“确认”就是富士所说的“测到最大对比度之前不断调整” 相位检测自动对焦: 相位检测对焦比反差对焦多出一些硬件部分。包括一个分离镜头(和线性传感器图像通过分离镜头分离出2个图像,然后通过线性传感器检测出两个图像之间的距 离。 相位自动对焦原理(图片源自新摄影)

《单片机系统设计》实验报告

短学期实验报告 (单片机系统设计) 题目: 专业: 指导教师: 学生姓名: 学号: 完成时间: 成绩:

基于单片机的交流电压表设计 目录 1系统的设计要求 (2) 2系统的硬件要求 (2) 2.1真有效值转换电路的分析 (2) 2.2放大电路的设计 (3) 2.3A/D转换电路的设计 (3) 2.4单片机电路的分析 (4) 2.5显示电路 (4) 3 软件设计 (5) 3.1 软件的总流程图 (5) 3.2 初始化定义与定时器初始化流程图 (5) 3.3 A/D转换流程图 (6) 3.4 数据处理流程图 (6) 3.5 数据显示流程图 (7) 4 调试 (7) 4.1 调试准备 (7) 4.2 关键点调试 (7) 4.3 测试结果 (8) 4.4 误差分析 (8) 5结束语 (8) 5.1 总结 (9) 5.2 展望 (9) 附录1 总原理图 (10) 附录2 程序 (10) 附录3 实物图 (14)

基于单片机的交流电压表设计 ****学院 ****专业 姓名 指导老师:******* 1 设计要求 (1)运用单片机实现真有效值的检测和显示。 (2)数据采集使用中断方式,显示内容为有效值与峰值交替进行。 2 硬件设计 本系统是完成一个真有效值的测量和显示,利用AD737将交流电转换成交流电压的有效值,用ADC0804实现模数转换,再通过单片机用数码管来显示。系统原理框图如图2-1所示。系统框图由真有效值转换电路、放大电路、A/D 转换电路、单片机电路、数码管显示电路五部分。 图2-1 原理框图 2.1 真有效值转换电路 真有效值转换电路主要是利用AD737芯片来实现真有效值直流变换的,即将输入的交流信号转换成直流信号的有效值,其原理图如图2-2所示。 图2-2 真有效值转换电路 由于AD737最大输入电压为200mV, 所以需要接两个二极管来限制输入电压,起到限幅的作用。如图中D1、D2,由IN4148构成,电容C6是耦合电容,电阻R1是限流电阻。 2.2 放大电路设计 放大电路主要是利用运放uA741来进行放大,电路原理图如图2-3所示。 A/D 转换 单片机 电路 显示 电路 转换 电路 交流 信号 放大 电路

单片机红绿灯电路设计

四川现代职业学院《单片机原理及应用》课程设计红绿灯实训报告 题目:红绿灯项目设计报告 系别:电子信息技术系 专业:电子信息工程技术 组员:贺淼、纪鹏、邵文稳 指导老师:陶薇薇 2014年7月12日

摘要 交通在人们的日常生活中占有重要的地位,随着人们社会活动的日益频繁,这点更是体现的淋漓尽致。交通信号灯的出现,使交通得以有效管制,对于疏导交通流量、提高道路通行能力,减少交通事故有明显效果。近年来随着科技的飞速发展,单片机的应用正在不断深入,同时带动传统控制检测技术日益更新。在实时检测和自动控制的单片机应用系统中,单片机往往作为一个核心部件来使用,仅单片机方面知识是不够的,还应根据具体硬件结构软硬件结合,加以完善。本系统采用STC89C52点单片机以及数码管为中心器件来设计交通灯控制器,实现了南北方向为主要干道,要求南北方向每次通行时间为30秒,东西方向每次通行时间为25秒。启动开关后,南北方向红灯亮25秒钟,而东西方向绿灯先亮20秒钟,然后闪烁3秒钟,转为黄灯亮2秒钟。接着,东西方向红灯亮30秒钟,而南北方向绿灯先亮25秒,然后闪烁3秒钟,转为黄灯亮2秒钟,如此周而复始。 软件上采用C语言编程,主要编写了主程序,中断程序延时程序等。经过整机调试,实现了对十字路口交通灯的模拟。

目录 (一)硬件部分--------------------------- 3 1.1 STC89C52芯片简介-----------------------3 1.2 主要功能特性---------------------------4 1.3 STC89C52芯片封装与引脚功能-------------5 1.4 基于STC89C52交通灯控制系统的硬件电路分析及设计-------------------------------------------10 (二)软件部分----------------------------14 2.1 交通灯的软件设计流程图-----------------14 2.2 控制器的软件设计-----------------------15 (三)电路原理图与PCB图的绘制-------------16 3.1 电路原理图的绘制(见附录二)----------16 3.2 PCB图的绘制(见附录三)---------------16 3.3 印刷电路板的注意事项------------------16 (四)调试及仿真---------------------------------------19 4.1 调试----------------------------------19 4.2 仿真结果------------------------------20 (五)实验总结及心得体会---------------------------21 5.1 实验总结-----------------------------------------------21 5.2 实验总结-----------------------------------------------22 附录程序清单---------------------------22

电子巡更系统设计方案

电子巡更设计方案

目录 1项目意义 (4) 2系统概述 (4) 3.1系统设计目的 (4) 3.2系统设计原则 (5) 3.3设计依据 (5) 3.4系统组成 (6) 3.5系统拓扑图 (6) 3.6解决方案示意图 (7) 3.7 系统工作流程图 (8) 3系统组成介绍 (9) 3.1“铁码3”巡更机介绍 (9) 3.1.1技术参数 (9) 3.1.2产品特点 (9) 3.2巡更点介绍 (10) 3.2.1技术参数 (10) 3.3巡检系统软件介绍 (11) 3.3.1软件主要功能模块 (12) 3.3.2软件界面介绍 (12) 4系统配置表 (15) 5技术特点及优势 (16) 5.1技术、质量指标 (16) 5.2铁码3创新点 (16) 6系统安装 (16) 6.1安装要求 (16) 6.2安装准备工作 (16) 6.3巡更点施工 (17) 6.4设置软件 (17) 7售后服务承诺 (17) 7.1售后服务主要内容 (17) 7.2系统维护 (17) 7.3售后服务管理 (18) 7.3.1售后服务管理 (18) 7.3.2质量保修费用 (18)

1项目意义 为了进一步确保智能化小区、工厂、仓库、酒店、学校等企事单位的财产安全,每个企业都加强了保安巡逻制度的建立和完善,但是仍然无法杜绝保安玩忽职守所造成的财产损失、火灾、用户投诉等现象的频繁发生。如何通过科学有效的技术手段,加强对保安巡逻人员的有效监管是当前管理者不容忽视的重要问题。通常的方法是依靠员工的自觉性,在巡检巡逻的地点上定时签到,以达到目的。但是这种方法又不能避免一次多签。作为管理者难以进行有效、公平合理的监督管理,从而形同虚设。 电子巡更系统完全可以解决这些问题,从而为管理者提高各类巡逻巡检工作的规范化及科学管理水平。杜绝了对巡逻巡检人员无法科学、准确考核管理的现象,有效地保障了企业井然有序的工作流程,把巡逻人员管理工作落到了实处。把只限于特定时间、地点及人员的考勤范围通过系统的预先设定,可满足各种场合的特殊考勤,方便记录下工作人员到达巡更点的时间及状态信息。从而达到事半功倍的效果。 2系统概述 铁码3拍照巡更管理系统是采用世界领先的RFID自动感应识别技术、计算机网络通信与数据处理技术、拍照技术,实现对巡逻人员的考核管理。只要将巡更点安装在指定的巡逻位置,巡逻人员手持巡更机到每一个巡更点采集信息后,自动记录巡逻人员所到位置的准确时间和位置名称。巡逻结束后通过USB 数据线将巡逻信息传输给计算机,就可以显示整个巡逻过程(如需要再由打印机打印,就形成一份完整的巡逻报告)。 3.1系统设计目的 ?增强安全防范管理的科学化手段,技术实现具有先进性达到行业领先水平; ?解决传统布线巡检模式下需要投大量的施工费和材料费的问题;

各种马达自动对焦原理精

各种马达自动对焦原理 精 集团文件版本号:(M928-T898-M248-WU2669-I2896-DQ586-M1988)

各种马达自动对焦原理(转载)在数码相机中,对焦是保证所记录的影像取得清晰效果的关键步骤。对焦机构就是用来调节镜头和CCD之间的距离,使得像平面落在CCD的成像表面。目前,常用的数码相机中多采用自动对焦,即根据被拍摄目标的距离,由电路驱动马达移动镜片到相应的位置上,从而使被拍摄目标自动清晰成像。 从基本原理来说,自动对焦可以分成两大类:一类是基于镜头与被拍摄目标之间距离测量的测距自动对焦,另一类是基于对焦屏上成像清晰的聚焦检测自动对焦。 1.测距自动对焦 测距自动对焦主要有红外线测距法和超声波测距法。 红外线测距法该方法的原理是由照相机主动发射红外线作为测距光源,并由红外发光二极管间构成的几何关系,然后计算出对焦距离。 超声波测距法该方法是根据超声波在数码相机和被摄物之间传播的时间进行测距的。数码相机上分别装有超声波的发射和接收装置,工作时由

超声振动发生器发出持续超声波,超声波到达被摄体后,立即返回被接收器感知,然后由集成电路根据超声波的往返时间来计算确定对焦距离。 红外线式和超声波式自动对焦是利用主动发射光波或声波进行测距的,称之为主动式自动对焦。 2.聚焦检测自动对焦 聚焦检测方法主要有对比度法和相位法 a 对比度法该方法是通过检测图像的轮廓边缘实现自动对焦的。图像的轮廓边缘越清晰,则它的亮度梯度就越大,或者说边缘处景物和背景之间的对比度就越大。反之,失焦的图像,轮廓边缘模糊不清,亮度梯度或对比度下降;失焦越远,对比度越低。利用这个原理,将两个光电检测器放在CCD前后相等距离处,被摄影物的图像经过分光同时成在这两个检测器上,分别输出其成像的对比度。当两个检测器所输出的对比度相差的绝对值最小时,说明对焦的像面刚好在两个检测器中间,即和CCD 的成像表面接近,于是对焦完成。 b 相位法该方法是通过检测像的偏移量实现自动对焦的。 在感光CCD的位置放置一个由平行线条组成的网格板,

基于图像处理的相机自动对焦方法研究综述

基于图像处理的相机自动对焦方法研究综述摘要:随着各种成像设备自动化、智能化的迅速发展,自动对焦技术的应用越来越广泛。自动对焦系统一般由分析处理模块和控制驱动模块组成,而分析处理这一块是整个自动对焦系统的重中之重,从传统的测距法到像偏移法,再到近来流行的基于图像处理的自动对焦法都无不体现了自动对焦技术的发展。现在就来简单的介绍一下基于图像处理的自动对焦技术。 关键词:图像处理;自动对焦;对焦评价函数;对焦搜索策略 一自动对焦技术的发展 自动对焦技术是计算机视觉和各类成像系统的关键技术之一, 在照相机、摄像机、显微镜、内窥镜等成像系统中有着广泛的用途。自动对焦技术从20 世纪70 年代后期发展起来, 到现在已经日臻成熟并取得了广泛应用。 1.1 传统的自动对焦方法 (1)测距法: 测距法是通过向被摄物体发射光波或辐射波,并接收反射波来测量目标的距离,然后通过计算机来控制自动对焦,主要包括红外测距法、激光测距法、超声波测距法等。优点:结构简单,可靠性高;缺点:由于所拍物体的吸收和反射能力不同会造成随机噪声。 (2)像偏移法: 像偏移法是利用三角测距原理,由被摄物体发出的光线,同时进入左、右两组接收器,并成像在接收元件上,通过两组信号的对比求得合适的对焦位置。被摄物体的距离信息通过在CCD上成像位置的差异反映出来,可直接由CCD元件进行检测和分辨。优点:结构简单、可靠性高;缺点:CCD元件与光电转换、运算系统的电路技术要求较高,成本也高。

2 焦点检测自动对焦法 焦点检测法主要用于单反相机中,它是在镜头的焦点附近设置自动对焦微型组件,将镜头焦点直接作为探测对象的一种方式,它能够适应各种变焦镜头且拍摄距离大。该方法又分为反差检测和相位检测两种。 焦点检测法的优点是:在一般状况下能够较好地实现对焦,检测装置不需要发射源,能耗少,能够实现远距离对焦。其缺点是:对于运动的、细线条的或者是低反差的拍摄体进行自动对焦有困难,同时对含有偏光特性的物体对焦也比较困难。 二基于图像处理的自动对焦原理 在数字系统里面的自动对焦是基于图像处理的自动对焦,基于数字图像处理的自动对焦方法主要有离焦深度发(DFD,Depth from Defocusing)和对焦深度法(DFF,Depth from Focusing)两种。 1 离焦深度法(DFD) 离焦深度法是一种从离焦图像中取得深度信息从而完成自动对焦的方法。离焦深度法又分为基于图像恢复的离焦深度法和基于离焦量估计的离焦深度法。 离焦深度法的主要缺点是:需要事先获得成像系统精确的数学模型,才能保证对焦的精度,而该数学模型在理论上还不能精确地确定,只能近似估计,从而导致误差极大。 2 对焦深度发(DFF) 对焦深度法是一种建立在搜寻过程上的对焦方式。它通过选取一种适当的评价函数来评价不同对焦位置所获得图像的清晰度,清晰度值最大时对应最佳的对焦位置。 基于图像处理对焦的两大优点:a、调焦更加智能化,聚焦判据更加灵活和多样; b、利用计算机可以很方便地对运动执行机构进行控制,从而避开复杂的调焦电路和机构。

单片机硬件系统设计原则

单片机硬件系统设 计原则 1

单片机硬件系统设计原则 一个单片机应用系统的硬件电路设计包含两部分内容:一是系统扩展,即单片机内部的功能单元,如ROM、RAM、I/O、定时器/计数器、中断系统等不能满足应用系统的要求时,必须在片外进行扩展,选择适当的芯片,设计相应的电路。二是系统的配置,即按照系统功能要求配置外围设备,如键盘、显示器、打印机、A/D、D/A转换器等,要设计合适的接口电路。 系统的扩展和配置应遵循以下原则: 1、尽可能选择典型电路,并符合单片机常规用法。为硬件系统的标准 化、模块化打下良好的基础。 2、系统扩展与外围设备的配置水平应充分满足应用系统的功能要求,并留有适当余地,以便进行二次开发。 3、硬件结构应结合应用软件方案一并考虑。硬件结构与软件方案会产生相互影响,考虑原则是:软件能实现的功能尽可能由软件实殃,以简化硬件结构。但必须注意,由软件实现的硬件功能,一般响应时间比硬件实现长,且占用CPU时间。 2

4、系统中的相关器件要尽可能做到性能匹配。如选用CMOS芯片单片机构成低功耗系统时,系统中所有芯片都应尽可能选择低功耗产品。 5、可靠性及抗干扰设计是硬件设计必不可少的一部分,它包括芯片、器件选择、去耦滤波、印刷电路板布线、通道隔离等。 6、单片机外围电路较多时,必须考虑其驱动能力。驱动能力不足时,系统工作不可靠,可经过增设线驱动器增强驱动能力或减少芯片功耗来降低总线负载。 7、尽量朝”单片”方向设计硬件系统。系统器件越多,器件之间相互干扰也越强,功耗也增大,也不可避免地降低了系统的稳定性。随着单片机片内集成的功能越来越强,真正的片上系统SoC已经能够实现,如ST公司新近推出的μPSD32××系列产品在一块芯片上集成了80C32核、大容量FLASH 存储器、SRAM、A/D、I/O、两个串口、看门狗、上电复位电路等等。单片机系统硬件抗干扰常见方法实践 影响单片机系统可靠安全运行的主要因素主要来自系统内部和外部的各种电气干扰,并受系统结构设计、元器件选择、安装、制造工艺影响。这些都构成单片机系统的干扰因素,常会导致单片机系统运行失常,轻则影响产品质量和产量,重则会导致事故,造成重大经济损失。 3

自动对焦镜头工作原理

自动对焦镜头(auto focal camera lens)从工作原理上分两大类:一类为间接实测物距方式,另一类为高频分量析出方式。 1.间接实测物距方式: 它是利用一些可以被利用的间接距离测量方式来获取物距,通过运算,伺服电路驱动焦距调节的微型马达,带动调焦镜片组的轴向移动,来达到自动焦距调节的目的。 经常被利用来的间接距离测量方式有:无源光学基线测距、有源超声波测距、有源主动红外测距以及现代的激光技术在测量领域的应用等。 无源光学基线测距:熟悉摄影的朋友都知道,在取景器里使用光学基线原理得到磨砂、裂像、菱锥等手段的焦距调节方式。磨砂颗粒最细腻时、景物目标在两半圆裂像环中完全吻合上、菱锥的晶体不再明显时就是被摄目标的物距调节到清晰了……这些应用技术都是可以通过光路传递给光电电路捕获到阴影面积发生的变化,经过一系列的函数分析计算后,进行调焦驱动。 有源超声波测距:通过发射具有特征频率的超声波对被摄目标的探测,通过发射出特征频率的超声波和反射回接受到特征频率的超声波所用的时间,换算出距离,也就是物距,伺服电路驱动焦距调节的微型马达,达到自动调焦的目的。有源主动红外测距以及现代激光技术测距原理上基本相似。 这类方式在应用上目标精度高,成本高是可想而知的,且体积一般都比较大,维护也相当困难,不过在高档照相摄影器材中有一些这类技术简化了的身影出现。 2.高频分量析出方式: 这种方式是直接利用我们摄象机的视频信号进行焦距调节,能够满足绝大多数场合的调焦需要。 工作原理:如果我们把视频图象看成由若干个点组成的一帧图象,这时候会发现,在焦距清晰时,这些点的边缘也清晰,焦距模糊时,这些点的边缘也变得模糊起来。再进一步讨论时我们又发现,其他条件不变,同样是摄取同一景物,仅焦距发生了改变,图象清晰的视频信号的高频分量成分丰富,而图象模糊的视频信号的高频分量要相对少一些。这也正是电视技术中提到的,图象的细节由电视信号的高频分量表示。实现手段:调焦中心区剪取、高频分量析出、伺服比较驱动。 1.剪取调焦中心虽然实际场景是三维空间,但反映到画面上时,就只有一个平面的二维了,也就简化了我们的设计了。由于我们经常需要的被摄目标处于靶面的中心位置,通过大量的实际调查统计,这个区域的大小为靶面1/3~1/5,反映到监视器上就是屏幕中心的1/3~1/5区域为我们的主要观察目标区。在电路上我们通过行、场扫描的时序控制将这一区域的视频信号给剪取下来。 2.高频分量析出,将剪取下来的视频信号通过一特定的高通带宽滤波器,析出对焦距变化敏感的高频分量成份。 3.通过析出的对焦距变化敏感的高频分量成份,通过比较器(comparator) 电路伺服驱动调焦微型可逆马达转动,直到得到最大值,完成一次自动调焦过程。 现在比较普遍采用的就是这个模式,这个工作原理提出后,新闻、民用一体化摄象机就被采用了,历经时代的变迁,现在这一技术被应用到现代安防工程的一体化摄象机上。由于各摄象机制造厂家间技术应用上的差异,在细小的单元处理电路上会有不同。 在换算驱动输出处理方式上、输出累积误差环节上,有以施加时间段电压方

AF摄像头工作模式原理

AF摄像头工作模式原理 AF(Auto Focus)自动对焦:自动对焦有两种方式,根据控制原理分为主动式和被动式两种。主动式自动对焦通过相机发射红外线,根据反射回来的射线信号确定被摄体的距离,再自动调节镜头,实现自动对焦。被动式对焦有一点仿生学的味道,是分析物体的成像判断是否已经聚焦,比较精确,但技术复杂,成本高,而且在低照度条件下难以准确聚焦,多用于高档专业相机。一些高智能相机还可以锁定运动的被摄体甚至眼控对焦。 有的手机平台上引出的GPIO口控制或者是Sensor中集成的AF算法,不需要单独使用MCU,有的手机平台是靠MCU集成AF算法,比如MTK的6228。Sensor 的AF算法是在ISP(DSP)的fireware里面的,就是MCU. 对于Sensor带有AF功能的一般通过I2C下命令就行了。手机平台如果是采用IO口控制的话,软件必须有AF的算法,根据图像的清晰度通过IO口控制马达的驱动IC使VCM或者Step(步进电机)动作。 实际上和音圈的原理是一样的,首先对马达供给有低到高的直流电VCM的转子由低到高走完全程,在走的过程中使用IC读取SENSOR固定位置上的亮度数值并记录实时电流数值,到达顶端后在供给马达在sensor亮度值最高时的电压,用VC开发会比较快。镜头直接就可以拧进VCM马达的镜头槽中的,在你给VCM 进行控制时可以有两种控制方式一种时PWm控制方式,还有的是IIC的控制方

式,在控制信号输入到驱动芯片时,驱动信号便发出电流来驱动VCm马达,使VCm马达机构上下移动,所以就实现了自动对焦的目的。 基于DSP的自动对焦系统,自动对焦技术是计算机视觉和各类成像系统的关键技术之一,在国外AF技术已经非常普遍,照相机、摄像机、显微镜、内窥镜等成像系统中有着广泛的用途。在我们国家这个方面应用比较少。传统的自动对焦技术较多采用测距法,即通过测出物距,由镜头方程求出系统的像距或焦距,来调整系统使之处于准确对焦的状态。随着现代计算技术的发展和数字图像处理理论的日益成熟,自动对焦技术进入一个新的数字时代,越来越多的自动对焦方法基于图像处理理论对图像有关信息进行分析计算,然后根据控制策略驱动电机,调节系统使之准确对焦。 本文利用数字式CMOS图像传感器作为感像器件,运用DSP芯片采集图像信息并计算系统的对焦评价函数,根据优化的爬山搜索算法控制驱动步进电机,调节系统光学镜头组的位置,使系统成像清晰,从而实现自动对焦。这是一种数字式的自动对焦方法,其准确性和实时性使其在视频展示台和显微镜等设备中的应用具有广泛的前景。

相机自动对焦原理

照相机自动对焦原理 赵辛 3070011205 光电技术的进步正不断的改变着人类的生活:达到飞向太空的宇宙飞船,小到计算器上的太阳能电池。2009年诺贝尔物理学奖也都颁发给了光电领域的科学家,两位美国科学家因为“发明了一种成像半导体电路,即CCD(电荷耦合器件)传感器”获此殊荣。 说到CCD,大家首先联想到的就是数码相机。正是因为CCD可以实现光信号向电信号的转换,我们才可以抛弃传统相机将光信号转换为化学信号的模式,走入一个快捷搞笑的读图时代。但是,如果我们对比现在和几十年前的照相机会发现,除了成像方式的变化,对焦方式也发生了很大的变化。现在的相机可以自动对焦,甚至可以自动进行人脸识别。其实,这也与CCD的发明密不可分。 以下就来介绍一下照相机自动对焦的原理。 照相机自动对焦系统的可以追溯到60年代。1963年,佳能公司曾在西德的科隆博览会上展出一架具有自动对能力的照相机原型,这个时期的自动对焦技术仍相当原始,1974年,尼康公司也推出了一款具备自动对焦能力的原型机;但其设计仍十分仰赖机械结构,体积大、反应慢是最大的缺点。一直到1975年,美国Honeywell公司才发表了具有实用价值的自动对焦组件VISITRONIC AUTOMATIC FOCUSING SYSTEM,又称为VAF 系统。很可惜,美国的创举到最后却反而为日本的相机工业带来革命,1977年日本小西六写真工业公司,也就是后来柯尼卡公司的前身,向美国购买了这套系统改良专利权,而于同年11月制作出了世界上第一架自动对焦照相机柯尼卡 C35 AF,成为世界上第一款有自动对焦能力的相机。

图1 相位检测自动对焦原理示意图 图2 自动对焦组件结构示意图 第一代自动对焦相机的对焦模式直接来源与手动对焦原理,属于被动的自动对焦。当调焦准确时,经过分离镜片生成的两束光线投影在CCD阵列上的距离是一定的,从而CCD(记住这是一个阵列)上被光束照射所产生的电荷的那一对CCD元件的位置也是固定不变的。这对CCD元件之间的距离在照相机设计时已经整定好了,作为焦点检测的基准。这个技术的基本原理是以分析来自景物主体的反光为参考指标。KONICA C35 AF 的 VAF 自动对焦系统是在两个测距窗后置有一个的三菱镜,三菱镜负责折射光线到

数码相机自动对焦模式详解

数码相机自动对焦模式详解 要把远近不同的物体拍清楚就要调整照相机镜头的焦点,这个过程就叫对焦,也叫调焦。老式相机是用手转动镜头筒,直到取景器里看到最清楚的影像,这叫手动对焦(MF)。现在的相机有强大的自动对焦功能,相机能自动测量到被摄主体的距离,利用马达驱动镜头里的一些镜片移动位置以往主体最清晰。 自动对焦的不同方式叫对焦模式。常用的基本对焦模式有两种单次对焦模式(AF—S)和连续对焦模式(AF—c),有的相机还有一种自动对焦模式(AF—A}。在相机的菜单里面可以选择相机的对焦模式。 1.单次对焦模式 单次对焦模式(佳能标记为0NE SHOT 尼康标记为AF—s)在半按快门按钮时相机完成对焦,半按快门的手指不松开(也不继续按下去)就会锁定焦点,这时不管怎样转动方向,或者镜头前的景物移动位置对焦点都不会改变。单次对焦模式下取景器里选定的对焦点会闪亮,一般情况是,焦点无法对准时对焦框变成黄色。焦点已经对准时对焦框变成绿色。 在拍摄实践中拍摄对象的主体部分并不总在画面中央,而是经常偏左或偏右一些,比如在拍摄留念照时。如果直接对着前方半按快门那么相机就会以正前方的物体为对焦点把距离较远的建筑树术等拍得很清晰而较近的.人物反而模糊了。 解决这个问题的方法就是采用单次对焦模式。首先把相机对准站在画面边上的人物轻轻半按下快门这时取景器里会在人物身上显示出一个绿框表示焦点对在这里,然后手指不要动,轻轻转动相机取景把人和背景都放在台适的位置,再轻轻地彻底按下快门,这样拍摄的照片,焦点就在较近的人物身上,人物是最清楚的。所以,单次对焦模式适台拍摄对象静止可以从容构图的情况。 2.连续对焦模式 连续对焦模式下{佳能标记为AI SERVO,又称人工智能伺服AF尼康标记为AF-C),在半按下快门按钮的时候相机对拍摄对象持续进行对焦,拍摄对象在画面里即使不断改变位置和距离。相机也时刻保持它最清晰。随时完全按下快门,都可以拍到主体清晰的照片。我们可以在安静的地方试验一下,这种模式下半按快门,可以听到相机里面的吱吱声,这就是自动对焦系统在连续工作。AI伺服模式下取景器里选定的对焦框不闪亮,即使对焦目标不移动,自动对焦系统仍然“吱吱”地连续工作。 比如有一个人从对面跑过来,在他离我们15米远的时候我们对准他半按快门,这时相机就锁定他为对焦点,他继续往前跑,离我们越来越近,这时相机就会始终把他作为对焦点持续进行调整,不管他离你8米还是5米,你随时彻底按下快门拍下照,片中跑步的人都是清晰的。因为这个模式下相机一直在对焦,所以如果我们拍摄的对象是固定的这种模式反:想用好连续对焦模式就要深入了解其特性。相机取景器里面分布着很多对焦点每种相机大约是从3个到51个不等,用户可以激活任何一个对焦点,也可以激活全部对焦点。 A.激活一个对焦点:半按快门时始终由这个对焦点进行对焦,移动镜头,面对的景物发生了变化,相机就对新的目标进行对焦。比如一个人从我们面前跑过,一开始他在对焦点上,

自动聚焦原理

基于智能相机的三可变镜头自动控制系统 KOWA镜头有视频处理电路实现自动聚焦 博世视频自动光圈 https://www.360docs.net/doc/8014347111.html,/products/japanlens/tlzjlens/1018.html 可变(AI视频)自动聚焦变焦镜头TM20Z1024AFP自动 https://www.360docs.net/doc/8014347111.html,/cctv/af.htm ▼KZ0660AF系列▼KZ0880AF系列 ▼KZ75112AF系 列 ▼KZ10200AF系列▼KZ15300AF系列▼KZ8585AFIR系列 ▼KZ86154AFIR系列 自动对焦原理(转载) 此帖对""的评论 在数码相机中,对焦是保证所记录的影像取得清晰效果的关键步骤。对焦机构就是用来调节镜头和CCD之间的距离,使得像平面落在CCD的成像表面。目前,常用的数码相机中多采用自动对焦,即根据被拍摄目标的距离,由电路驱动马达移动镜片到相应的位置上,从而使被拍摄目标自动清晰成像。 从基本原理来说,自动对焦可以分成两大类:一类是基于镜头与被拍摄目标之间距离测量的测距自动对焦,另一类是基于对焦屏上成像清晰的聚焦检测自动对焦。 1.测距自动对焦 测距自动对焦主要有红外线测距法和超声波测距法。 红外线测距法该方法的原理是由照相机主动发射红外线作为测距光源,并由红外发光二极管间构成的几何关系,然后计算出对焦距离。 超声波测距法该方法是根据超声波在数码相机和被摄物之间传播的时间进行测距的。数码相机上分别装有超声波的发射和接收装置,工作时由超声振动发生器发出持续超声波,超声波到达被摄体后,立即返回被接收器

感知,然后由集成电路根据超声波的往返时间来计算确定对焦距离。 红外线式和超声波式自动对焦是利用主动发射光波或声波进行测距的,称之为主动式自动对焦。 2.聚焦检测自动对焦 聚焦检测方法主要有对比度法和相位法 a 对比度法该方法是通过检测图像的轮廓边缘实现自动对焦的。图像的轮廓边缘越清晰,则它的亮度梯度就越大,或者说边缘处景物和背景之间的对比度就越大。反之,失焦的图像,轮廓边缘模糊不清,亮度梯度或对比度下降;失焦越远,对比度越低。利用这个原理,将两个光电检测器放在CCD前后相等距离处,被摄影物的图像经过分光同时成在这两个检测器上,分别输出其成像的对比度。当两个检测器所输出的对比度相差的绝对值最小时,说明对焦的像面刚好在两个检测器中间,即和CCD的成像表面接近,于是对焦完成。 b 相位法该方法是通过检测像的偏移量实现自动对焦的。 在感光CCD的位置放置一个由平行线条组成的网格板, 线条相继为透光和不透光。网络板后适当位置上与光轴对称地放置两个受光元件。网络板在与光轴垂直方向上往复振动。当聚焦面与网络板重合时,通过网格板透光线条的光同时到达其后面的两个受光元件。而当离焦时,光束只能先后到达两个受光元件,于是它们的输出信号之间有相位差。有相位差的两个信号经电路处理后即可控制执行机构来调节物镜的位置,使聚焦面与网格板的平面重合。 3.各种自动对焦的特点 各种自动对焦方式各有其局限性。例如红外测距和超声测距的对焦方法,当被测目标对红外光或超声波有较强的吸收作用时,将使测距系统失灵或对焦不准确;而对比度法聚焦检测受光照条件的制约,当光线暗弱或被摄体与背景明暗差别很小时,对焦就会有困难,甚至失去作用。 4.应用分析 目前市场的消费级数码相机很多采用对比度法进行自动对焦,从对比度法的原理可知,当两个检测器所输出的对比度差值绝对值最小时是最佳状态,我们假定两个检测器所输出的对比度差值的绝对值为m, 要使m最小,必须多次移动镜头后再利用差值法逐次逼近.多次移动镜头需要耗费很多时间,而数码相机对于对焦时间又有一定的要求,这本身是一对矛盾,所以折中的办法就是,在满足使用的情况下,给定一个值,我们暂且假定为Q,只要m < Q ,我们就认为是对焦成功。 所以我们可以得出下列结论: a Q值设定的越小自动对焦的精度就越高,对焦的速度越慢。反之Q值越大,对焦精度就越低,对焦的速度就越快。 b 图像的反差越大,光线强,差值法逐次逼近的速度越快,容易满足对焦条件。 c 图像的反差越小,光线弱,差值法逐次逼近的速度越慢,不易对焦,光线很弱时,根本无法完成对焦。 从而我们即可知道在不同的情况下,根据我们的需要来设定这个Q值,以满足要求。目前的数码相机的对焦速度是不可调整的,已经固化在fireware中,但我们可以从相机的不同设定中看到对焦速度的差别。 我们可以简单将数码相机的应用分为以下几档: a 高精度档此档对焦最慢,对光线要求高。 b 普通精度档此档对焦最一般,对光线要求不是太苛刻。 c 次精度档此档对焦速度稍快,但精度有所下降。 d 低精度档此档对焦速度最快,但对焦的精度很低。 5.实例说明 下面结合FZ10我们分析一下不同的对焦速度的应用: 做为数码相机的应用,我们就很容易的将FZ10的各种固化模式进行归类: 微距模式就是FZ10的小花模式应该属于高精度档,一般拍时光线不错,自动对焦慢点没关系,主要是要获得

89C51单片机44键盘应用实例程序设计(含硬件仿真电路图)

89c51单片机4*4键盘应用实例硬件仿真电路图如下: 程序如下(编译成功): #include"reg51.h" #include"LCD1602.h" #include"hardware.h" char code tab[4][4]={ {'1','4','7','#'}, {'2','5','8','0'}, {'3','6','9','*'}, {'A','B','C','D'}}; //0到F的16个键植 void delay(unsigned char a) { unsigned char i; while(a--)

for(i=100;i>0;i--) ; } char kbscan() //键盘扫描 { unsigned char hang,lie,key; if(P3!=0x0f) delay(5); if(P3!=0x0f) { switch(P3&0x0f) { case 0x0e:lie=0;break; case 0x0d:lie=1;break; case 0x0b:lie=2;break; case 7:lie=3;break; } P3=0xf0; P3=0xf0; switch(P3&0xf0) { case 0xe0:hang=0;break; case 0xd0:hang=1;break; case 0xb0:hang=2;break; case 0x70:hang=3;break; } P3=0x0f; while(P3!=0x0f); key=tab[hang][lie]; } else key=0; return (key); } void main() { unsigned char temp; LCD_initial(); LCD_prints("piaoling"); P3=0x0f; P0=0xff; while(1)

相关文档
最新文档